1 Phylogenomic data reveal how a climatic inversion and glacial refugia shape

2 patterns of diversity in an African rain forest tree species

- 3
- 4 Andrew J. Helmstetter¹*, Biowa E. N. Amoussou^{1,2}, Kevin Bethune¹, Narcisse G.
- 5 Kandem³, Romain Glèlè Kakaï⁴, Bonaventure Sonké³, Thomas L. P. Couvreur^{1,3,5}
- 6
- ¹ IRD, UMR DIADE, Univ. Montpellier, Montpellier, France
- 8 ² Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 04 BP 1525,
- 9 Cotonou, Benin
- 10 ³ Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences
- 11 Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047,
- 12 Yaoundé, Cameroon
- 13 ⁴ Laboratoire de Biomathématiques et d'Estimations Forestières, Université
- 14 d'Abomey-Calavi, 03 BP 2819, Cotonou, Bénin
- ⁵ Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del
- 16 Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Ecuador
- 17
- 18 * Corresponding Author
- 19 Email: <u>andrew.j.helmstetter@gmail.com</u>
- 20 Address:
- 21 UMR DIADE, équipe DYNADIV
- 22 Institut de recherche pour le développement (IRD)
- 23 911 avenue d'Agropolis, BP 64501
- 24 34394 Montpellier Cedex 5
- 25 France

26 ABSTRACT

27	The world's second largest expanse of tropical rain forest is in Central Africa and
28	contains incredible species diversity. Population genetic studies have consistently
29	revealed significant structure across central African rain forest plants, in particular a
30	North-South genetic discontinuity close to the equator at the level of a climatic
31	inversion. Here, we take a phylogeographic approach using 351 nuclear markers in
32	112 individuals across the distribution of the African rain forest tree species Annickia
33	affinis (Annonaceae). We show for the first time that the North-South divide is the
34	result of a single major colonisation event across the climatic inversion from an
35	ancestral population located in Gabon. We suggest that environmental differences
36	across the inversion and associated trait divergence may have contributed to this
37	phylogenetic discontinuity. We find evidence for inland dispersal, predominantly in
38	northern areas, and variable demographic histories among genetic clusters, indicating
39	that populations responded differently to past climate change. We show how newly-
40	developed genomic tools can provide invaluable insights into our understanding of
41	tropical rain forest evolutionary dynamics.
42	
43	Keywords: Phylogenomics, phylogeography, rain forest, sequence capture, Africa,

44 dispersal

46 Abbreviations

- 47 TRF = Tropical rain forest
- 48 CAR = central African rain forest
- 49 LGM = last glacial maximum
- 50 SFS = site frequency spectrum
- 51

52 1 INTRODUCTION

53 Tropical rain forests (TRFs) possess an incredibly diverse flora and fauna making up 54 half of the world's biodiversity. Understanding how this diversity is generated is 55 critical if we are to protect it (Mace et al. 2003). Central Africa hosts the world's 56 second largest continuous extent of TRF (Linder 2001). Climatic fluctuations during 57 the Pleistocene and associated glacial forest refugia are suggested to have influenced 58 how genetic diversity is distributed in Central African rain forests (CAR) (Hardy et al. 59 2013). However, the nature (Anhuf et al. 2006; Diamond and Hamilton 1980; Maley 60 1996; Bonnefille 2007) and importance of forest refugia continue to be intensely 61 debated (Cowling et al. 2008; Lezine et al. 2019). Population genetic studies within 62 CAR plant species document differing levels of response to past climatic fluctuations 63 (reviewed in Hardy et al. 2013). Conversely, one major phylogeographic pattern 64 common to many CAR plant species studied is the existence of a phylogeographic 65 barrier along a North-South axis around 0-3 degrees north (see Fig. 1A; Hardy et al. 66 2013; Faye et al. 2016; Heuertz et al. 2014). There appears to be no visible geographic 67 barrier to explain this break as continuous rain forest exists across the entire area. This 68 North-South phylogeographic barrier corresponds, however, to the central African 69 climatic hinge, an inversion zone between the northern and southern rainy seasons 70 (Hardy et al; 2013). Interestingly, this barrier is rarely recovered in phylogeographic

71 studies of animals and thus seems to affect a greater effect on plants groups (e.g.

Fuchs and Bowie 2015; Bohoussou et al. 2015; Bell et al. 2017; Blatrix et al. 2017).

73

74	Three main hypotheses have been suggested to explain how this North-South genetic
75	discontinuity originated (Hardy et al. 2013). First, TRF might have disappeared
76	(repeatedly) along the climatic hinge during past climatic fluctuations, isolating
77	allopatric north/south populations, which subsequently recolonised the area. Second,
78	because seasons are inverted across the hinge, flowering times might be displaced
79	between northern and southern populations preventing interbreeding and gene flow.
80	Third, successful colonisation across the climatic hinge may be limited by factors
81	such as environmental differences (e.g. changing levels of water stress). At present,
82	little is known about the relative importance of these three scenarios in generating the
83	observed genetic discontinuity.
84	

85 The phylogeographic approach (Avise et al. 1987) can unravel the history of 86 populations, and ultimately uncover which processes have shaped current patterns of 87 diversity. It is therefore an ideal framework to study how the climatic inversion, and 88 other factors, have shaped patterns of intraspecific diversity in CAR plants. High-89 throughput sequencing allows the generation of phylogeographic datasets consisting 90 of large numbers of independently segregating nuclear loci that can account for 91 coalescent stochasticity (Edwards et al. 2016) where studies with small numbers of 92 markers fall short. Phylogenomic data can also be used to reconstruct the spatial 93 evolutionary history of species by inferring phylogenetic trees among populations and 94 dispersal dynamics. These approaches can help us to understand relationships among

- 95 populations on either side of the climatic inversion and how often lineages traversed
- 96 this barrier.
- 97

98	If glacial refugia have played an important role in CAR plant dynamics we would
99	expect to find evidence of dispersal inland because most putative CAR refugia are
100	located in the Atlantic Guineo-Congolian region (Fig. 1A; Maley 1996; Anhuf et al.
101	2006). For example, within the palm species Podococcus barteri, modelling past
102	ranges and genetic data supported the hypothesis of one large coastal refugia in
103	western Gabon and southwestern Cameroon (Faye et al. 2016). Furthermore, we
104	would expect population size to increase towards the present as populations spread
105	out from climatically stable areas.
106	
107	To develop upon our current understanding of the phylogeographic patterns
108	introduced above, we present, for the first time using nuclear phylogenomic
109	approaches, the evolutionary dynamics of a central African tree species, Annickia
110	affinis. This species belongs to the pantropical plant family Annonaceae (Chatrou et
111	al. 2012) growing up to 30 metres tall and typically inhabits primary, secondary and
112	degraded rain forests (Versteegh and Sosef 2007). The species is widespread and
113	common across Lower Guinea, from southern Nigeria to the western tip of
114	Democratic Republic of Congo and is therefore ideal for studying CAR
115	phylogeography and the nature of the climatic inversion as a phylogeographic barrier.
116	
117	Here, we used a newly developed baiting kit (Couvreur et al. 2019) to sequence
118	hundreds of nuclear markers in 112 individuals covering most of the distribution of A.
119	affinis. First, we identified the major genetic clusters within A. affinis and their

120	distribution to test if A. affinis shows a North-South genetic structuring along the
121	climatic inversion. Second, we built a phylogenetic hypothesis of relationships among
122	genetic clusters and conducted spatiotemporal diffusion analyses to test if dispersal
123	has been frequent across the climatic inversion, or if it has been restricted over time.
124	We also test for an inland (west to east) dispersal pattern, congruent with expansion
125	out of climatically stable areas. Finally, we reconstruct effective population size
126	through time to infer the past demography of each identified genetic cluster to test for
127	recent population expansion, and if demographic histories are congruent among
128	clusters.
129	
130	2 MATERIAL AND METHODS

131 **2.1 Sample collection**

132 A total of 112 individuals of Annickia affinis were sampled across most of the species

133 distribution range in Central Africa (Table S1). In addition, two individuals were

- 134 sampled from the sister species *Annickia polycarpa* as outgroups (Couvreur et al.
- 135 2019).
- 136

137 **2.2 DNA extraction, gene capture and sequencing**

- 138 DNA was extracted from silica gel dried leaves using the MATAB (Sigma-Aldrich,
- 139 Saint Louis, Missouri, USA) and chloroform separation methods following Couveur
- 140 et al. (2019). Nuclear markers were captured using the Annonaceae bait kit (Couvreur
- 141 et al. 2019) made of 11,583 baits 120 bp long targeting 469 exonic regions. Barcoded
- 142 Illumina libraries were constructed based on a modified protocol of Rohland and
- 143 Reich (2012). See supplementary methods for details.
- 144

145 **2.3 Read filtering, contig assembly and multi-sequence alignment**

146 Reads were cleaned and filtered following the protocol in Couvreur et al. (2019) and

- 147 Hybpiper (Johnson et al. 2016) was used to prepare sequence data for phylogenetic
- 148 inference. Alignments were conducted using MAFFT (Katoh and Standley 2013) and
- 149 cleaned with GBLOCKS (Castresana 2000). Putative paralogs for A. affinis that were
- 150 flagged by Hybpiper were verified and removed during this processes. Further
- 151 information can be found in the supplementary methods.
- 152

153 **2.4 Phylogenetic inference**

- 154 We filtered our dataset by choosing only those exons that had 75% of their length
- reconstructed in 75% of *A. affinis* individuals. We then used the corresponding
- supercontigs (i.e. targeted regions and surrounding off-target sequences) for
- 157 phylogenetic inference. We added empty sequences when individuals were missing
- 158 from locus alignments and we concatenated loci with the pxcat function from phyx
- 159 (Brown et al. 2017). We assigned a different GTR+GAMMA model to each locus to
- account for differences in substitution rates. We then ran RAxML (v8.2.9)
- 161 (Stamatakis 2014) using the '-f a' option with 100 replicates. The tree was rooted
- 162 using A. polycarpa as outgroup. For comparison we also conducted a coalescent-
- 163 based phylogenetic analysis using ASTRAL-III (Zhang et al. 2017), which uses
- 164 individual gene trees to infer a species tree. Finally, we constructed a phylogenetic
- 165 network using splitstree (v4.14.6; Huson and Bryant 2006) and the full SNP dataset
- 166 (see below) using the neighbour-net algorithm.

167

168 **2.5 Phylogeographic Diffusion in Continuous Space**

169	We reconstructed the spatiotemporal dynamics of A. affinis using BEAST v1.8.4
170	(Drummond and Rambaut 2007) and spreaD3 v0.9.6 (Bielejec et al. 2011). As this
171	analysis is computationally intensive we used a subset of our dataset by selecting only
172	the five most informative loci based on number of phylogenetic informative sites. We
173	added a partition consisting of longitude and latitude coordinates as continuous trait
174	data. We used a HKY+G substitution model and a strict clock model for each genetic
175	locus and an exponential growth coalescent tree prior. We ran the analysis for 100
176	million generations and assessed effective sample sizes (ESS) using Tracer v1.7
177	(Rambaut et al. 2018). We then used spreaD3 to visualize the output at several time
178	points during the history of A. affinis. We repeated this analysis with the next five
179	most informative loci to ensure similar patterns were recovered across datasets.
180	
181	2.6 SNP calling
181 182	2.6 SNP calling We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a
182	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a
182 183	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs
182 183 184	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs removed) that is tailored to the given dataset, which is more efficient than the bait kit
182 183 184 185	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs removed) that is tailored to the given dataset, which is more efficient than the bait kit reference made from distantly related Annonaceae species. We then mapped our
182 183 184 185 186	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs removed) that is tailored to the given dataset, which is more efficient than the bait kit reference made from distantly related Annonaceae species. We then mapped our cleaned, paired reads to this psuedoreference using BWA (v0.7.12; Li and Durbin
182 183 184 185 186 187	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs removed) that is tailored to the given dataset, which is more efficient than the bait kit reference made from distantly related Annonaceae species. We then mapped our cleaned, paired reads to this psuedoreference using BWA (v0.7.12; Li and Durbin 2009). Duplicates were removed and SNPs were called using HaplotypeCaller in
182 183 184 185 186 187 188	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs removed) that is tailored to the given dataset, which is more efficient than the bait kit reference made from distantly related Annonaceae species. We then mapped our cleaned, paired reads to this psuedoreference using BWA (v0.7.12; Li and Durbin 2009). Duplicates were removed and SNPs were called using HaplotypeCaller in GATK (v4.0; McKenna et al. 2010). We used bcftools (v1.8; Li 2011) to apply
182 183 184 185 186 187 188 189	We used SeCaPr (v1.1.4; Andermann et al. 2018) to call SNPs as it generates a psuedoreference made up of the consensus sequences for each target locus (paralogs removed) that is tailored to the given dataset, which is more efficient than the bait kit reference made from distantly related Annonaceae species. We then mapped our cleaned, paired reads to this psuedoreference using BWA (v0.7.12; Li and Durbin 2009). Duplicates were removed and SNPs were called using HaplotypeCaller in GATK (v4.0; McKenna et al. 2010). We used bcftools (v1.8; Li 2011) to apply thresholds of mapping quality (>40%) depth (>25), quality by depth (>2) to filter

2.7 Population genetic clustering and statistics

194	We examined the genetic structure of A. affinis using three approaches. First, we
195	undertook a Discriminant Analysis of Principal Components (DAPC) (Jombart et al.
196	2010). We used the function <i>find.clusters</i> in the R package 'adegenet' (Jombart 2008)
197	to identify clusters using successive K-means with 100,000 iterations per value of k
198	and a maximum k value of 20. We identified the most appropriate number of clusters
199	by examining the change in Bayesian Information Criterion (BIC) with increasing
200	values of k (number of clusters). We then used the function <i>dapc</i> in order to define the
201	diversity between the groups identified using <i>find.clusters</i> . We performed cross-
202	validation of our DAPC analysis to ensure our chosen number of PCs was reliable.
203	We used cluster membership inferred using DAPC to define populations for
204	calculating summary statistics (see supplementary methods) and downstream
205	analyses.
206	
207	Second, we used TESS3 - an approach that takes into account geographic location
208	information when inferring population clusters (Caye et al. 2016). TESS3 was
209	
	implemented using the R package 'tess3r' (Caye et al. 2016). We used the projected
210	implemented using the R package 'tess3r' (Caye et al. 2016). We used the projected least squares algorithm and a maximum k of 20. We examined the cross-validation
210 211	
	least squares algorithm and a maximum k of 20. We examined the cross-validation
211	least squares algorithm and a maximum k of 20. We examined the cross-validation
211 212	least squares algorithm and a maximum k of 20. We examined the cross-validation score for each value of K to identify the appropriate number of clusters.
211 212 213	least squares algorithm and a maximum k of 20. We examined the cross-validation score for each value of K to identify the appropriate number of clusters. Third, we used fastSTRUCTURE (Raj et al., 2014) on a reduced set of unlinked SNPs
211212213214	least squares algorithm and a maximum k of 20. We examined the cross-validation score for each value of K to identify the appropriate number of clusters. Third, we used fastSTRUCTURE (Raj et al., 2014) on a reduced set of unlinked SNPs (one per locus). We ran fastSTRUCTURE using the default settings and the simple
 211 212 213 214 215 	 least squares algorithm and a maximum k of 20. We examined the cross-validation score for each value of K to identify the appropriate number of clusters. Third, we used fastSTRUCTURE (Raj et al., 2014) on a reduced set of unlinked SNPs (one per locus). We ran fastSTRUCTURE using the default settings and the simple prior. The script 'chooseK.py' was used to identify the number of clusters that

2.8 Demographic history

219	We used stairway plot (v2; Liu and Fu 2015), a model-flexible approach that uses site
220	frequency spectra (SFS) to infer changes in effective population size (N_e) through
221	time. We generated filtered VCF files representing each cluster as detailed above but
222	did not apply a minor allele frequency filter. We then calculated folded SFS for each
223	cluster. Stairway plot uses SNP counts to estimate the timing of events and changes in
224	N_e so the removal of SNPs with missing data may skew counts. To overcome this we
225	modified each SFS by first calculating the minor allele frequency at each SNP and
226	then multiplying this by the mean number of sequences (haploid samples) at each site.
227	This results in a new SFS that makes use of all observed site frequencies and
228	minimizes the number of SNPs removed. The total of samples is slightly reduced
229	based on the amount of missing data. The number of random breakpoints were
230	calculated as recommended in the manual. We used 67% of sites for training and
231	performed 200 bootstrap replicates. The number of observed sites was calculated as
232	the total length of the pseudoreference. We used an angiosperm wide mutation rate of
233	5.35×10 $^{-9}$ sites/year (De la Torre et al. 2017) and a generation time of 15 years
234	based on the generation time of the Annonaceae species Annona crassiflora
235	(Collevatti et al. 2014). In addition, sequencing error can skew the SFS by inflating
236	the number of singletons. We ran analyses using the entire SFS, and then reran with
237	singletons removed to ensure similar histories were reached.
238	

239 **2.9 Modelling of current and past ranges**

240 Current and Last Glacial Maximum (21k years ago; LGM) potential distributions

- 241 were modelled using MaxEnt (v3.3.3; Phillips et al. 2006) as implemented in
- 242 'biomod2' (v3.3-7.1;Thuiller et al.2009). Current and LGM (MIROC global
- 243 circulation model) climatic data were downloaded from WordClim ver. 1.4 (Hijmans

244	et al. 2005) at a resolution of 10*10 arc-minute. The LGM period represents the latest
245	unfavourable climate for tropical species and is therefore a good period to model the
246	impact of past climate change on potential range. A total of 346 presence data points
247	(Table S1) covering the known distribution of A. affinis were spatially filtered to one
248	point per cell to avoid overfitting due to sampling bias. Model overfitting was
249	constrained by using the β regularization parameter in Maxent, which limits model
250	complexity (Radosavljevic and Anderson 2014), and was set to 2.00 and 4.00, rather
251	than the default MaxEnt value of 1.00. Modelling with all 19 bioclim variables
252	produced unrealistic results and failed to properly model the current species range
253	independent of the regularization parameter (results not shown). Using just eight
254	bioclim variables (four precipitation and four temperature, see supplementary
255	methods) greatly improved the accuracy of the models to the known distribution.
256	Model performance was evaluated using a cross-validation procedure (Ponder et al.
257	2001, Muscarella et al. 2014, see supplementary methods). Model fit was assessed
258	using area under curve (AUC; Elith et al. 2006) and the true skill statistics (TSS,
259	Allouche et al. 2006). The best fitting model was then projected into the LGM.
260	
261	3 RESULTS
262	3.1 Sequencing
263	A total of 124.7 million reads were generated for 112 A. affinis individuals at an
264	average coverage depth of 77.5x across all targeted loci. Using HybPiper we
265	identified 366 loci where 75% of the exon length was recovered in at least 75% of

- 266 individuals. A total of 15 loci showed signs of paralogy and were removed, leading to
- 267 a final dataset of 351 supercontigs totalling 756 kb of sequence data. After cleaning

and filtering our SNP calling approach yielded 6,787 high-quality SNPs from 280

269 different loci.

270

271 **3.2** How are populations structured across the range of *A. affinis*?

- 272 After cross-validation, we chose to keep 40 PCA axes as this was shown to be
- 273 appropriate for accurately inferring clusters (Fig. S1A). Changes in BIC greatly
- 274 decreased after k = 4 (Fig. S1B) suggesting that four clusters best fit our data (Fig.
- 275 1A, Fig. S2). Two major clusters contained 35 and 63 individuals that were located
- 276 primarily in Western Gabon (cluster WG) and Cameroon (cluster CA) respectively.
- 277 Two smaller clusters of seven individuals each were located in eastern Gabon (cluster
- EG) and Gabon / Republic of Congo (cluster GC). There is a clear discontinuity in
- 279 genetic structure across the equator, separating cluster CA from the rest, except for a
- 280 pair of individuals belonging to cluster EG.
- 281

282 The TESS3 analysis also found that four clusters best defined our data (Fig. 1B, S3)

with geographic discontinuities generally congruent between analyses (Fig. 1; Fig.

S4). Individual admixture proportions revealed limited mixed ancestry within samples

- 285 (Fig. 1B), except at a single location. The two northern most individuals belonging to
- 286 cluster EG, found in at Meyo Centre in Cameroon (labelled in Fig. 1A), had a

287 considerable proportion of their ancestry from cluster CA (Fig. 1B). The inverse was

true of the two individuals from cluster CA that were from the same location. The

- 289 fastSTRUCTURE analysis supported aforementioned analyses, even with a reduced
- 290 SNP dataset. We found that k was between 3 and 5 and results closely mirrored
- 291 DAPC clusters (Fig. S5). However, there was little evidence for admixture when

292	using this approach. Our inferred phylogenetic network (Fig. 1C) also revealed four
293	major clusters, and that clusters WG & CA and EG & GC where grouped together.
294	
295	3.3 How did populations of A. affinis disperse across central Africa?
296	The RAxML phylogenetic tree (Fig. 1D) was highly supported at deeper nodes,
297	giving a reliable evolutionary history between major clades. The tree topology
298	reflected our clustering inferences, lending further support to our four identified
299	clusters and robust evidence for phylogeographic structuring. The topology of our
300	ASTRAL tree was very similar to the RAxML tree (Fig. S6).
301	
302	We assessed the geographic locations in these clusters at a finer scale by mapping
303	each tip of the RAxML phylogenetic tree to its collection site (Fig. S7). We
304	subdivided clusters WG and CA into major clades (I-IV) as points of reference (see
305	Fig. 1). In cluster WG (Fig. S7C) the earliest diverging individuals are found at Mt.
306	Cristal and in coastal rain forests in northwest Gabon. The remaining individuals in
307	cluster WG formed a monophyletic group (clade I) and are found to the South and
308	East, as far as the southern tip of the Republic of Congo. We then examined the
309	geographic locations in cluster CA and identified three clades with distinct geographic
310	distributions (Fig. S7D) going up the Cameroon's Atlantic coast. The middle and
311	largest cluster extended inland. Given this structure we repeated DAPC clustering
312	analyses using only cluster CA individuals and revealed fine-scale genetic structure
313	that supported these three clades (Fig. S8).
314	
315	Our diffusion analysis was based on 47.3kb of sequence data across five partitions
316	and converged with the $ESS > 200$ for all parameters after 100 million generations.

317	The root was inferred to be around central Gabon (Fig. 2A). We estimated a single
318	lineage crossed the climatic inversion, from South to North, establishing cluster CA
319	(Fig. 2). Late in the evolutionary history of A. affinis another dispersal event crossed
320	the barrier at Meyo Centre (see Fig. 1A). Our repetition of the diffusion analysis with
321	different loci matched these patterns (Fig. S9) indicating our results are reliable and
322	unlikely to have been biased by particular gene histories.
323	
324	3.4 Do different populations share similar demographic histories?
325	We estimated the demographic history of the four DAPC clusters (Fig. 3; Fig S10-13
326	for full plots). Over the last 100 thousand years (Ka) three clusters (GC, WG and CA)
327	experienced similar demographic histories with population decline around 60-80 Ka
328	followed by an increase in N_e towards the present. We found this increase began at
329	different times across these three clusters though all show rapid increases in
330	population size close to the end of the LGM, around 20 Ka. Cluster CA showed
331	evidence of a rapid growth very close to the present, in the last 4 Ka. Cluster EG had a
332	much different history, exhibiting a relatively constant population size throughout its
333	history with a gradual decline in the last 10 Ka. Results were very similar when
334	singletons were removed indicating that sequencing errors were not affecting our
335	analyses (results not shown).
336	
337	3.5 Which areas have remained climatically stable over time?
338	A total of 113 data points were retained after filtration. The best predictors were
339	Precipitation of Wettest Month (Bio13) and Precipitation Seasonality (Bio15) (Table
240	S_{2} A regularization multiplier of 2 generated a better model fit then with 4 showing

- 340 S2). A regularization multiplier of 2 generated a better model fit than with 4, showing
- a good visual match with the known distribution of the species at present (Fig. 4A).

342	The mean value of the AUC for the training and test data were respectively 0.77 and
343	0.76. The mean value of TSS was 0.454, indicating that the model is better than a
344	random model. During the LGM, the highest presence probabilities were all located
345	along the Atlantic coast in Cameroon, Equatorial Guinea and Gabon (Fig. 4B).
346	
347	4 DISCUSSION
348	4.1 Limited dispersal across the climatic hinge
349	Intraspecific diversity, based on phylogenomic nuclear sequence data, within the
350	widespread tree species Annickia affinis is highly structured with a clear North-South
351	divide between identified genetic clusters (Fig. 1). This is the first time this has been
352	observed in plants using genomic data and adds to the growing evidence of an
353	important phylogeographic barrier around a climatic hinge between 0 and 3°N in
354	numerous CAR distributed plants (Hardy et al. 2013; Heuertz et al. 2014; Faye et al.
355	2016; Ley et al. 2017; Pineiro et al. 2017). This North-South discontinuity is,
356	however, generally not recovered in CAR distributed animals except in rare cases
357	(e.g. Portik et al. 2017). This suggests that the processes taking place in relation to
358	this barrier affect the flora of CARs more than the fauna. Indeed, Blatrix et al. (2017)
359	showed that this barrier was more abrupt in the studied tree species (Barteria
360	fistulosa) than within the associated symbiotic ants. However, the reasons for this
361	genetic break in a seemingly continuous rain forest region remain little understood
362	(Hardy et al. 2013).
363	

364 Here, we show that, throughout the evolutionary history of *A. affinis*, a single major

365 northward cross-hinge colonisation event occurred leading to the successful

366 establishment of the Cameroon population (Fig. 2C). This result lends support to the

367	third hypothesis of Hardy et al. (2013), that possible environmental differences have
368	prevented multiple establishments of populations crossing the hinge. Indeed, the small
369	red to black fleshy fruits of Annickia affinis (Versteegh & Sosef, 2007) are frugivore-
370	dispersed (Poulsen et al. 2001; Holbrook and Smith 2000) and can potentially travel
371	long distances (> 500 m) for example by hornbills. Thus, the genetic structure of A .
372	affinis in general, and the North-South divide in particular, is not linked to seed
373	dispersal limitation per se.
374	
375	We detected that one genetic cluster (cluster EG) extends across the climatic hinge
376	into south Cameroon (Meyo Centre site, Fig. 1A) leading to a more recent,
377	northwards migration event into the climatic hinge area (Fig. 2D). This indicates that
378	the barrier is not entirely impassable, agreeing with other studies (Hardy et al. 2013;
379	Duminil et al. 2015; Pineiro et al. 2017). The Meyo Centre site lies within the
380	inversion zone and several individuals with mixed ancestry are found here (Fig. 1A,
381	B). A similar result was found in <i>B. fistulosa</i> , with 20% of individuals sampled near
382	1°N being hybrids (Blatrix et al. 2017). In addition, the general lack of evidence for
383	admixture found between genetic clusters on either side of the inversion (Fig. 1B; Fig.
384	S5) suggest that gene flow is nevertheless rare. The existence of hybrids in the
385	absence of gene flow between clusters could be the result of intrinsic (developmental;
386	environment independent) or extrinsic (environment dependent) post-zygostic
387	isolation due to lower fitness of hybrids (Turelli et al. 2001; Blatrix et al. 2017). The
388	example of Meyo Centre provides some evidence that even if dispersal across the
389	hinge is possible, it doesn't result in the successful establishment of new populations,
390	reinforcing the phylogenetic break over time. Hardy et al.'s (2013) hypotheses were
391	not mutually exclusive and given that there is no clear barrier to dispersal of pollen or

- - -

392	seeds, there may be a role for divergence in traits such as flowering time causing
393	reproductive isolation. This may in turn be linked to why successful establishment
394	across the inversion is rare. However, more fine scale sampling and information on
395	ecological differences among populations across the hinge will be needed to test these
396	ideas. Interestingly, similar north-south phylogeographic breaks are also known from
397	the Atlantic rain forests of Brazil, due to differing climatic regimes and floral
398	compositions (Carnaval et al. 2014; Leite et al. 2016). This suggests that similar
399	processes, though not necessarily driven by exactly the same factors, might be driving
400	patterns of intraspecific diversity in different TRF regions.
401	
402	4.2 Out-of-refugia migration in northern forests
403	The inferred evolutionary dynamics of A. affinis support a role for Pleistocene forest

404 oscillations in shaping intraspecific genetic diversity patterns. The four retrieved 405 clusters are found in allopatry or parapatry (Fig. 1A). This supports the hypothesis of 406 incomplete mixing after post-glacial expansion and is similar to patterns found in 407 other CAR species (Hardy et al. 2013) and within species from other TRF regions 408 (Carnaval et al. 2009; Leite and Rogers 2013). Evidence was found for recent 409 demographic expansion in three clusters (CA, GC and WG, Fig. 3), as would be 410 expected if A. affinis expanded out of refugia. These expansions were estimated to 411 have taken place 15-25 Ka but we note that further work is needed to determine a 412 more accurate mutation rate and generation time for A. affinis to verify the timing of 413 these events. Therefore we avoid interpreting the exact timing of demographic events 414 and instead focussed on the population size trends. Sampling sizes were also small (n 415 =7) for clusters GC and EG meaning we are less confident in the patterns 416 reconstructed for these clusters. Similar patterns of recent expansion were detected in

417	populations of central African plants (Pineiro et al. 2017) and animals (Bell et al.
418	2017) as well as in studies on neotropical flora (Vitorino et al. 2016) and fauna
419	(Batalha-Filho et al. 2012). The refuge hypothesis has received support from
420	population genetic studies of CAR plants, showing concordance between putative
421	refugia and regions of high or unique allele/haplotype diversity (Lowe et al. 2010;
422	Dauby et al. 2014; Heuertz et al. 2014; Faye et al. 2016). However, cluster EG
423	showed constant population size with a slight decline towards the present, perhaps
424	indicating that refugia have not played in important role in its demographic history.
425	Similar demographic patterns were found populations of two central African
426	Erythrophleum species (Duminil et al. 2015) though these exhibited a more
427	pronounced decline in the last 50 Ka. Overall, our results indicate that demographic
428	responses to past climate change have been different among populations of A. affinis
429	across central Africa. Similar patterns of recent expansion were detected in
430	populations of central African plants (Pineiro et al. 2017) and animals (Bell et al.
431	2017) as well as in studies on neotropical flora (Vitorino et al. 2016) and fauna
432	(Batalha-Filho et al. 2012). The refuge hypothesis has received support from
433	population genetic studies of CAR plants, showing concordance between putative
434	refugia and regions of high or unique allele/haplotype diversity (Lowe et al. 2010;
435	Dauby et al. 2014; Heuertz et al. 2014; Faye et al. 2016).
436	
437	While our results are mixed, we do find evidence to support the scenario presented by

438 Anhuf et al. (2006) who proposed that coastal rain forests in central Africa acted as

- 439 refugia during the LGM. The modelled LGM distribution of *A. affinis* indicates that
- 440 suitable habitat was concentrated continuously along the coast, from Cameroon to
- 441 Gabon (Fig. 4B), like in the understory palm species *Podococcus barteri* (Faye et al.

442 2016). In addition, we uncovered fine-scale genetic structure and evidence for443 dispersal eastwards in Cameroon (Fig. 2), demonstrating a possible out-of-refugia

444 pattern in this area.

445

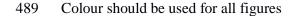
446	In contrast, an inland pattern of migration was not found in Gabon where dispersal				
447	was both towards the east and west from a central area. This may be because there				
448	was a large amount of highly-suitable area (>0.8) during the LGM that extended				
449	further from the coast in Gabon than in Cameroon (Fig. 4), meaning that populations				
450	could persist and expand out of this area. In addition, we inferred more pronounced				
451	East-West clustering (Fig. 1) in Gabon than in Cameroon, which has been observed in				
452	at least four other CAR tree species (Hardy et al. 2013). Bringing our results together,				
453	it appears that refugia may have played a different role for populations in different				
454	areas, and that each has responded to past climate in change in its own way.				

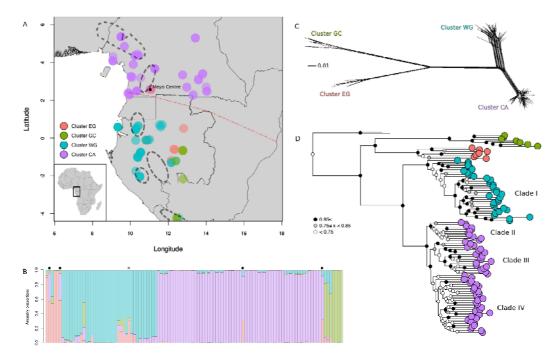
455

456 **5 CONCLUSIONS**

457 This study uncovered the evolutionary dynamics and demographic history of the CAR 458 tree species Annickia affinis. Our approach is the first to use genome-wide data from 459 hundreds of nuclear loci to infer population-level phylogeographic patterns in CAR 460 plants. We found high levels of genetic structure consistent with a pattern of North-461 South genetic discontinuity often recovered in this region. We highlighted how a 462 climatic inversion limits colonisation and shapes patterns of population structure 463 across a continuous rain forest region. We also show that the current distribution of 464 extant populations is the result of different demographic histories and, in northern 465 regions, migration inland from putative refugia in coastal rain forests. This study 466 provides a proof-of-concept for future work taking advantage of recent genomic

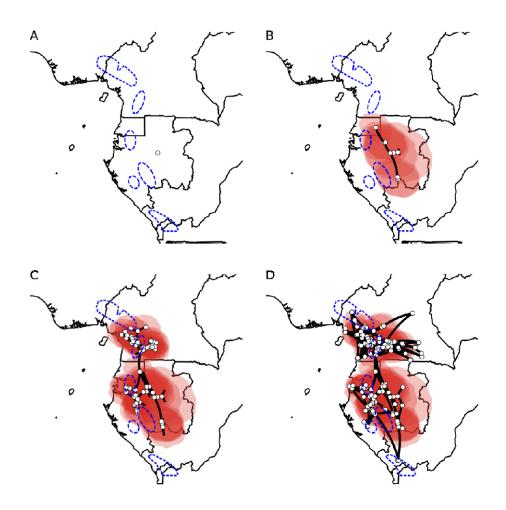
- 467 resources, such as the sequence capture kit used here, to improve our understanding of
- 468 TRF evolution, at the population level and above.
- 469

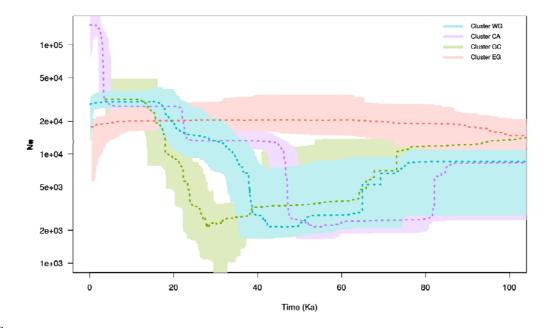

470 FUNDING


- 471 This study was supported by the Agence Nationale de la Recherche (grant number
- 472 ANR-15- CE02-0002-01 to TLPC).
- 473

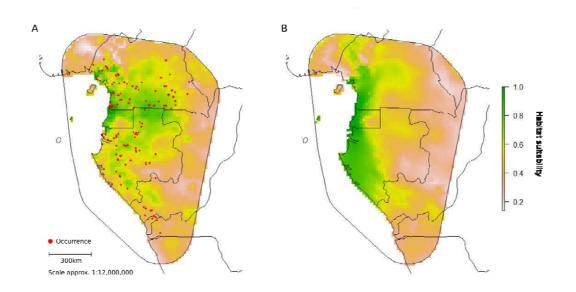
474 ACKNOWLEDGEMENTS

- 475 We thank Prof. Moutsambote, Raoul Niangadouma, Théophile Ayole for help in the
- 476 field. The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD
- 477 Montpellier for providing HPC resources. We are grateful to the Centre National de la
- 478 Recherche Scientifique et Technique (CENAREST), the Agence National des Parques
- 479 Nationaux (ANPN) and Prof. Bourobou Bourobou for research permits (AR0020/16;
- 480 AR0036/15 (CENAREST) and AE16014 (ANPN). Fieldwork in Cameroon was
- 481 undertaken under the "accord cadre de cooperation" between the IRD and Ministère
- 482 de la Recherche Scientifique et Technique (MINRESI). Prof. Bouka Biona of the
- 483 Institut National de Recherche en Sciences Excates et Naturelles (IRSEN) of the
- 484 Republic of Congo is thanked for research permits.
- 485
- 486 The authors have no competing interests.
- 487


488 FIGURES


491 Fig. 1. (A) Map of the study region showing genetic clusters inferred using 492 Discriminant analysis of principal components (DAPC, k=4). Individuals are colour 493 coded by cluster membership. Superimposed upon the map are the locations of 494 putative glacial refugia (adapted from Faye et al. 2016). The climatic hinge is shown 495 by a dashed red line. Inset is a map of the African continent showing highlighting the 496 study area. (B) Barplot of ancestry proportions inferred using TESS (k=4). Colours 497 were made to correspond to those in Fig. 1A as clustering was almost identical 498 between approaches. A single individual, "A_affinis_Ndjole_5" (marked with an x), 499 was inferred as cluster EG (red) in DAPC but TESS suggests the majority of its 500 ancestry is instead from cluster WG (blue). Individuals from the "Meyo Centre" 501 collection site (marked with a black circle in panel A) show evidence of admixture 502 between clusters across the North-South climatic inversion. (C) Phylogenetic network

- 503 among A. affinis individuals constructed in splitstree using NeighbourNet algorithm
- 504 based on 6787 SNPs. (D) RAxML tree representing relationships among Annickia
- 505 *affinis* samples, rooted on two *A. polycarpa* samples. Support values are shown and
- 506 tips are coloured based on genetic clustering results.


508

509 Fig. 2. Phylogeographic diffusion analysis split into four time slices. Images were 510 rendered using spreaD3 and move forward through time starting from the 511 (uncalibrated) time of the most recent common ancestor (A) to the present day (D). 512 White circles represent ancestrally estimated geographic locations for nodes in the 513 inferred phylogenetic tree, as well as current, real locations at tips. Polygons around 514 points represent uncertainty of estimated ancestral locations at 80% highest posterior 515 density (HPD). Putative refugia following Maley (1996) are shown in dashed blue 516 lines.

Fig. 3. Plots of effective population size through time for each of the four clusters inferred using stairway plot. The present is located on the left side of each graph. The dotted line represents the median population size and the shaded polygon represents the 80% central posterior density intervals. Colours correspond to the colours used in figure 1. Full plots of each species can be found in figures S10-13.

526 **Fig. 4.** Species distribution models (SDMs) for the present (A) and projected into the

527 past, during the last glacial maximum (B). SDMs were constructed using MaxEnt and

528 bioclimatic variables. The colour scale represents habitat suitability for each cell

529 where green indicates more suitable cells. Red circles in (A) indicate sites where A.

530 *affinis* individuals were collected and used in building the model.

531

REFERENCES

534	Allouche O, Tsoar A, Kadmon R. 2006 Assessing the Accuracy of Species
535	Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS).
536	Journal of Applied Ecology 43(6):1223–32. <u>https://doi.org/10.1111/j.1365-</u>
537	<u>2664.2006.01214.x</u> .
538	Andermann, T, Cano Á, Zizka A, Bacon C, and Antonelli A. 2018 SECAPR—a
539	Bioinformatics Pipeline for the Rapid and User-Friendly Processing of
540	Targeted Enriched Illumina Sequences, from Raw Reads to Alignments.
541	PeerJ 6:e5175. https://doi.org/10.7717/peerj.5175.
542	Anhuf D, Ledru M-P, Behling H, Da Cruz FW, Cordeiro RC, Van der Hammen
543	T, Karmann I et al. 2006 Paleo-Environmental Change in Amazonian and
544	African Rainforest during the LGM. Palaeogeography, Palaeoclimatology,
545	Palaeoecology 239(3-4):510-27.
546	https://doi.org/10.1016/J.PALAEO.2006.01.017.
547	Avise, JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA,
548	and Saunders NC. 1987. Intraspecific Phylogeography: The Mitochondrial
549	DNA Bridge Between Population Genetics and Systematics. Annual Review
550	of Ecology and Systematics 18(1):489–522.
551	https://doi.org/10.1146/annurev.es.18.110187.002421.
552	Batalha-Filho H, Cabanne GS, Miyaki CY. 2012 Phylogeography of an Atlantic
553	Forest Passerine Reveals Demographic Stability through the Last Glacial
554	Maximum. Molecular Phylogenetics and Evolution 65(3):892–902.
555	https://doi.org/10.1016/j.ympev.2012.08.010.
556	Bell, RC, MacKenzie JB, Hickerson MJ, Chavarría KL, Cunningham M,
557	Williams S, and Moritz C. 2011 Comparative Multi-Locus Phylogeography

558	Confirms Multiple Vicariance Events in Co-Distributed Rainforest Frogs.
559	Proceedings of the Royal Society B: Biological Sciences 279(1730):991–99.
560	https://doi.org/10.1098/rspb.2011.1229.
561	Bielejec F, Rambaut A, Suchard MA and Lemey P. 2011 SPREAD: spatial
562	phylogenetic reconstruction of evolutionary dynamics. Bioinformatics
563	27(20):2910-2912.
564	Blatrix R, Peccoud J, Born C, Piatscheck F, Benoit L, Sauve M, Djiéto-Lordon C
565	et al. 2017 Comparative Analysis of Spatial Genetic Structure in an Ant-
566	Plant Symbiosis Reveals a Tension Zone and Highlights Speciation
567	Processes in Tropical Africa. Journal of Biogeography 44(8):1856-68.
568	https://doi.org/10.1111/jbi.12972.
569	Bohoussou KH, Cornette R, Akpatou B, Colyn M, Peterhans JK, Kennis J,
570	Šumbera R et al. 2015 The Phylogeography of the Rodent Genus
571	Malacomys Suggests Multiple Afrotropical Pleistocene Lowland Forest
572	Refugia. Journal of Biogeography 42(11):2049–61.
573	https://doi.org/10.1111/jbi.12570.
574	Bonnefille R. 2007. Rainforest responses to past climate changes in tropical
575	Africa. In: Tropical rainforest responses to climate change (eds Bush MB,
576	Flenley JR), pp.117–170, Praxis Publishing, Chichester
577	Brown, JW, Walker JF, Smith SA. 2017 Phyx: Phylogenetic Tools for Unix.
578	<i>Bioinformatics</i> 33(12):1886–88.
579	https://doi.org/10.1093/bioinformatics/btx063.
580	Carnaval, AC, Hickerson MJ, Haddad CFB, Rodrigues MT, and Moritz C. 2009
581	Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot.
582	Science 323 (5915):785-89. https://doi.org/10.1126/science.1166955.

- 583 Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno
- 584 R, Prates I et al. 2014 Prediction of Phylogeographic Endemism in an
- 585 Environmentally Complex Biome. *Proceedings of the Royal Society B:*
- 586 *Biological Sciences* 281(1792):20141461.
- 587 https://doi.org/10.1098/rspb.2014.1461.
- 588 Castresana J. 2000. Selection of Conserved Blocks from Multiple Alignments for
- 589 Their Use in Phylogenetic Analysis. *Molecular Biology and Evolution* 17
- 590 (4): 540–52. https://doi.org/10.1093/oxfordjournals.molbev.a026334.
- 591 Caye K, Deist TM, Martins H, Michel O, François O. 2016 TESS3: Fast
- 592 Inference of Spatial Population Structure and Genome Scans for Selection.
- 593 *Molecular Ecology Resources* 16(2):540–48. <u>https://doi.org/10.1111/1755-</u>
- <u>0998.12471</u>.
- 595 Chatrou LW, Pirie MD, Erkens RHJ, Couvreur TLP, Neubig KM, Abbott JR,
- 596 Mols JB, Maas JW, Saunders RMK, Chase MW. 2012 A New Subfamilial
- 597 and Tribal Classification of the Pantropical Flowering Plant Family
- 598 Annonaceae Informed by Molecular Phylogenetics. *Botanical Journal of*
- 599 *the Linnean Society* 169(1):5–40. <u>https://doi.org/10.1111/j.1095-</u>
- 600 <u>8339.2012.01235.x</u>.
- 601 Collevatti RG, Telles MP, Lima JS, Gouveia FO, Soares TN. 2014 Contrasting
 602 spatial genetic structure in Annona crassiflora populations from fragmented
 603 and pristine savannas. *Plant systematics and evolution* 300(7):1719-1727.
- 604 Couvreur TLP, Helmstetter AJ, Koenen EJM, Bethune K, Brandão RD, Little
- 605 SA, Sauquet H, Erkens RHJ. 2019 Phylogenomics of the Major Tropical
- 606 Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes.

607	Frontiers in Plant Science 9 (January). Frontiers:1941.
608	https://doi.org/10.3389/fpls.2018.01941.
609	Cowling SA, Cox PM, Jones CD, Maslin MA, Peros M, Spall SA. 2008
610	Simulated glacial and interglacial vegetation across Africa: implications for
611	species phylogenies and trans-African migration of plants and animals.
612	Global Change Biology 14:827-840. https://doi.org/10.1111/j.1365-
613	2486.2007.01524.x
614	Dauby G, Duminil J, Heuertz M, Koffi GK, Stévart T, Hardy OJ. 2014
615	Congruent Phylogeographical Patterns of Eight Tree Species in Atlantic
616	Central Africa Provide Insights into the Past Dynamics of Forest Cover.
617	<i>Molecular Ecology</i> 23(9):2299–2312. <u>https://doi.org/10.1111/mec.12724</u> .
618	De La Torre AR, Li Z, Van De Peer Y, Ingvarsson PK. 2017 Contrasting rates of
619	molecular evolution and patterns of selection among gymnosperms and
620	flowering plants. Molecular Biology and Evolution 34(6):1363–1377.
621	Diamond AW, Hamilton AC. 1980 The Distribution of Forest Passerine Birds
622	and Quaternary Climatic Change in Tropical Africa. Journal of Zoology 191
623	(3): 379–402. https://doi.org/10.1111/j.1469-7998.1980.tb01465.x.
624	Drummond AJ, Rambaut A. 2007 BEAST: Bayesian Evolutionary Analysis by
625	Sampling Trees. BMC Evolutionary Biology 7(1):214.
626	https://doi.org/10.1186/1471-2148-7-214.
627	Duminil J, Mona S, Mardulyn P, Doumenge C, Walmacq F, Doucet JL, Hardy
628	OJ. 2015 Late Pleistocene Molecular Dating of Past Population
629	Fragmentation and Demographic Changes in African Rain Forest Tree
630	Species Supports the Forest Refuge Hypothesis. Journal of Biogeography
631	42(8):1443-54. https://doi.org/10.1111/jbi.12510.

- 632 Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. 2016 Reticulation,
- 633 Divergence, and the Phylogeography–Phylogenetics Continuum.
- 634 *Proceedings of the National Academy of Sciences* 113(29):8025–32.
- 635 <u>https://doi.org/10.1073/pnas.1601066113</u>.
- 636 Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ et
- al. 2006 Novel Methods Improve Prediction of Species' Distributions from
- 638 Occurrence Data. *Ecography* 29(2):129–51.
- 639 https://doi.org/10.1111/j.2006.0906-7590.04596.x.
- 640 Faye A, Deblauwe V, Mariac C, Richard D, Sonké B, Vigouroux Y, Couvreur
- 641 TLP. 2016 Phylogeography of the Genus *Podococcus* (Palmae/Arecaceae)
- 642 in Central African Rain Forests: Climate Stability Predicts Unique Genetic
- 643 Diversity. *Molecular Phylogenetics and Evolution* 105:126–38.
- 644 https://doi.org/10.1016/j.ympev.2016.08.005.
- Fuchs J, Bowie, RC. 2015 Concordant genetic structure in two species of
- 646 woodpecker distributed across the primary West African biogeographic

647 barriers. *Molecular phylogenetics and evolution* 88:64-74.

- 648 Hardy OJ, Born C, Budde K, Daïnou K, Dauby G, Duminil J, Ewédjé EBK et al.
- 649 2013 Comparative Phylogeography of African Rain Forest Trees: A Review
- 650 of Genetic Signatures of Vegetation History in the Guineo-Congolian
- 651 Region. Comptes Rendus Geoscience 345(7–8):284–96.
- 652 https://doi.org/10.1016/j.crte.2013.05.001.
- 653 Heuertz M, Duminil J, Dauby G, Savolainen V, Hardy OJ. 2014 Comparative
- 654 Phylogeography in Rainforest Trees from Lower Guinea, Africa. *PLoS*
- 655 ONE 9(1):e84307. https://doi.org/10.1371/journal.pone.0084307.

656 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005 Very

- 657 Resolution Interpolated Climate Surfaces for Global Land Areas.
- 658 International Journal of Climatology 25(15):1965–78.
- 659 https://doi.org/10.1002/joc.1276.
- 660 Holbrook KM, Smith TB. 2000 Seed dispersal and movement patterns in two
- 661 species of *Ceratogymna* hornbills in a West African tropical lowland forest.
- 662 *Oecologia* 125:249–257. https://doi.org/10.1007/s004420000445
- Huson DH, Bryant D. 2006 Application of Phylogenetic Networks in
- 664 Evolutionary Studies. *Molecular Biology and Evolution*. 23(2):254-267.
- 665 https://doi.org/10.1093/molbev/msj030.
- Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega NJC,
- 667 Wickett NJ. 2016 HybPiper: Extracting Coding Sequence and Introns for
- 668 Phylogenetics from High-Throughput Sequencing Reads Using Target

669 Enrichment. *Applications in Plant Sciences* 4(7):1600016.

- 670 https://doi.org/10.3732/apps.1600016.
- 671 Jombart T. 2008 Adegenet: A R Package for the Multivariate Analysis of

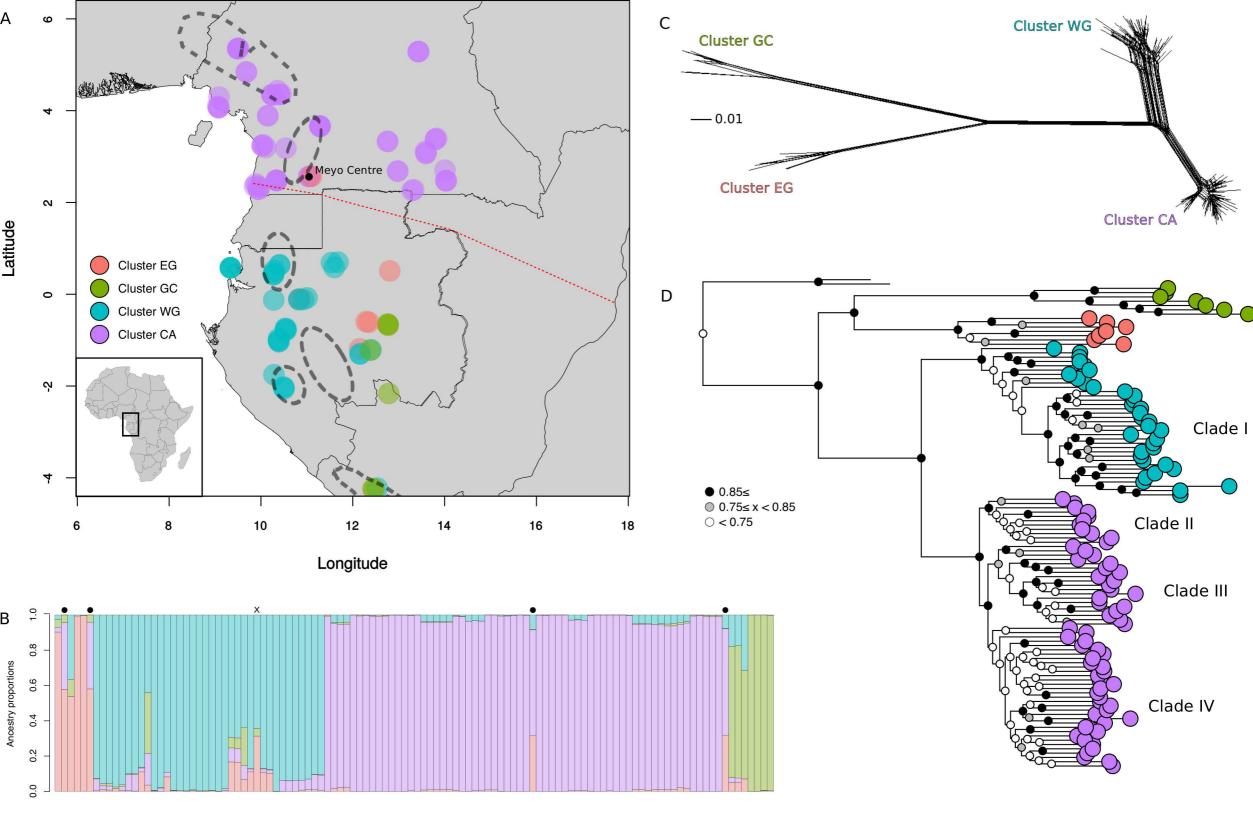
672 Genetic Markers. *Bioinformatics* 24(11):1403–5.

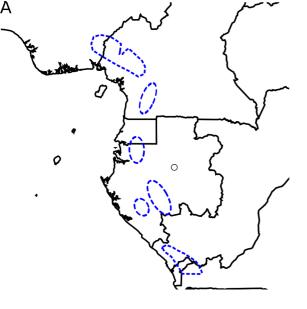
673 https://doi.org/10.1093/bioinformatics/btn129.

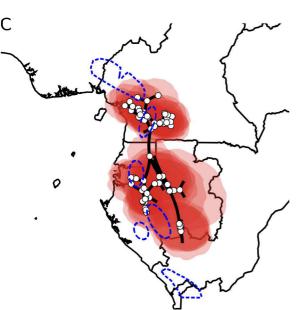
- 574 Jombart T, Devillard S, Balloux F. 2010 Discriminant Analysis of Principal
- 675 Components: A New Method for the Analysis of Genetically Structured
- 676 Populations. *BMC Genetics* 11(1):94. https://doi.org/10.1186/1471-2156-

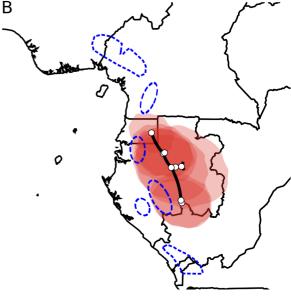
677 11-94.

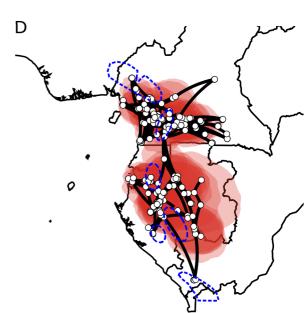
Katoh K, Standley DM. 2013 MAFFT Multiple Sequence Alignment Software
Version 7: Improvements in Performance and Usability. *Molecular Biology and Evolution* 30 (4): 772–80. https://doi.org/10.1093/molbev/mst010.

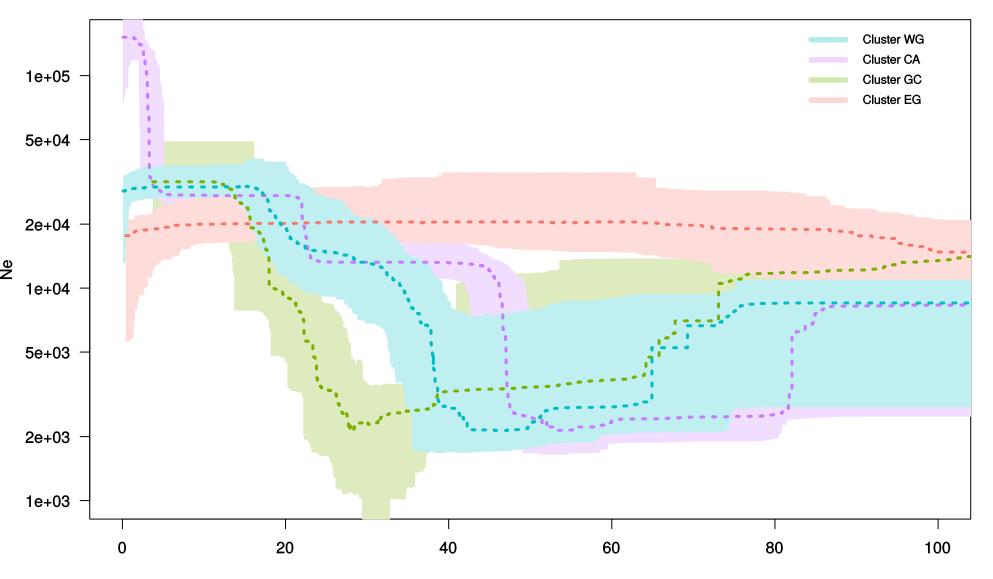

681	Leite RN, Rogers DS. 2013 Revisiting Amazonian Phylogeography: Insights into
682	Diversification Hypotheses and Novel Perspecitves. Organisms Diversity &
683	Evolution 13(4):639-64. https://doi.org/10.1007/s13127-013-0140-8.
684	Leite, YLR, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC,
685	Quaresma VS et al. 2016 Neotropical Forest Expansion during the Last
686	Glacial Period Challenges Refuge Hypothesis. Proceedings of the National
687	Academy of Sciences 113(4):1008–13.
688	https://doi.org/10.1073/pnas.1513062113.
689	Ley AC, Heuertz M, Hardy OJ. 2017 The Evolutionary History of Central
690	African Rain Forest Plants: Phylogeographical Insights from Sister Species
691	in the Climber Genus Haumania (Marantaceae). Journal of Biogeography
692	44(2):308–21. <u>https://doi.org/10.1111/jbi.12902</u> .
693	Lézine AM, Izumi K, Kageyama M, Achoundong G. 2019 A 90,000-year record
694	of Afromontane forest responses to climate change. Science 363(6423):177-
695	181.
696	Li H. 2011 A statistical framework for SNP calling, mutation discovery,
697	association mapping and population genetical parameter estimation from
698	sequencing data. Bioinformatics 27(21), 2987-2993.
699	Li H, Durbin R. 2009 Fast and Accurate Short Read Alignment with Burrows-
700	Wheeler Transform. <i>Bioinformatics</i> 25(14):1754–60.
701	https://doi.org/10.1093/bioinformatics/btp324.
702	Liu X, Fu YX. 2015 Exploring population size changes using SNP frequency
703	spectra. Nature Genetics 47, 555-559.

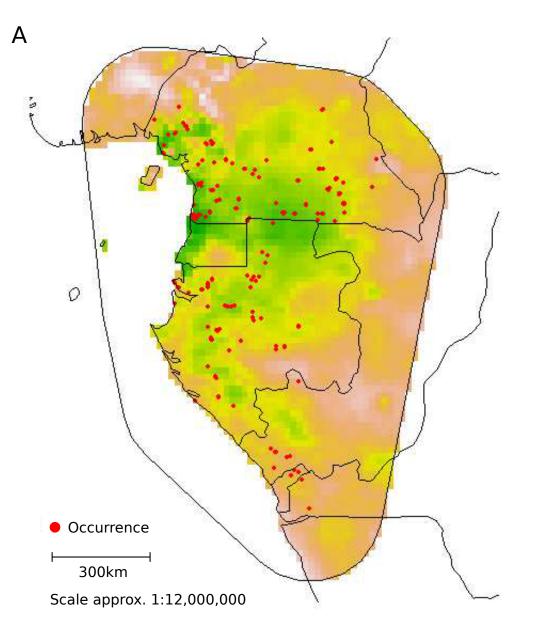

704	Linder HP. 2001 Plant Diversity and Endemism in Sub-Saharan Tropical Africa.
705	In Journal of Biogeography, 28:169-82. https://doi.org/10.1046/j.1365-
706	2699.2001.00527.x.
707	Lowe AJ, Harris D, Dormontt E, Dawson IK. 2010 Testing Putative African
708	Tropical Forest Refugia Using Chloroplast and Nuclear DNA
709	Phylogeography. Tropical Plant Biology 3(1):50–58.
710	https://doi.org/10.1007/s12042-010-9045-2.
711	Mace GM, Gittleman JL, Purvis A. 2003 Preserving the Tree of Life. Science
712	300 (5626):1707–9. https://doi.org/10.1126/science.1085510.
713	Maley J. 1996 The African Rain Forest - Main Characteristics of Changes in
714	Vegetation and Climate from the Upper Cretaceous to the Quaternary.
715	Proceedings of the Royal Society of Edinburgh Section B: Biological
716	Sciences 104:31-73. https://doi.org/10.1017/S0269727000006114.
717	McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. 2010 The
718	Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-
719	Generation DNA Sequencing Data. Genome Research 20(9):254-60.
720	https://doi.org/10.1101/gr.107524.110.20.
721	Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M,
722	Anderson RP. 2014 ENMeval: An R Package for Conducting Spatially
723	Independent Evaluations and Estimating Optimal Model Complexity for
724	Maxent Ecological Niche Models. Methods in Ecology and Evolution
725	5(11):1198–1205. https://doi.org/10.1111/2041-210x.12261.
726	Phillips SJ, Anderson RP, Schapire, RE. 2006 Maximum Entropy Modeling of
727	Species Geographic Distributions. <i>Ecological Modelling</i> 190(3–4):231–59.
728	https://doi.org/10.1016/j.ecolmodel.2005.03.026.

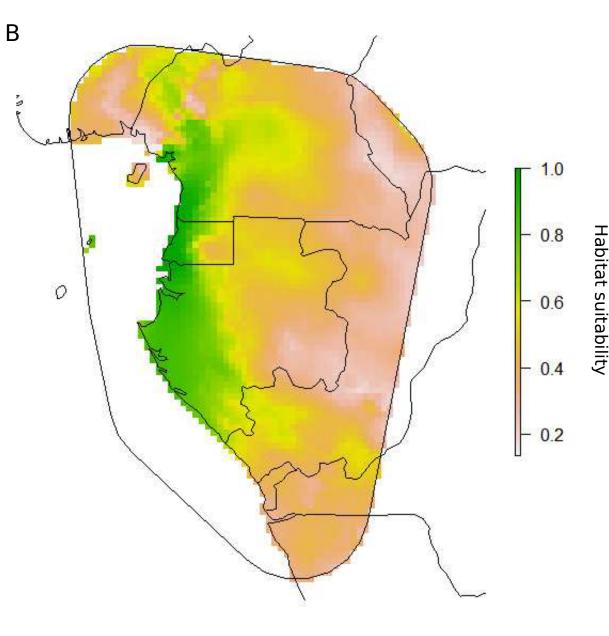

- 729 Piñeiro R, Dauby G, Kaymak E, Hardy OJ. 2017 Pleistocene Population
- 730 Expansions of Shade-Tolerant Trees Indicate Fragmentation of the African
- 731 Rainforest during the Ice Ages. *Proceedings of the Royal Society B:*
- 732 *Biological Sciences* 284(1866):20171800.
- 733 <u>https://doi.org/10.1098/rspb.2017.1800</u>.
- 734 Portik DM, Leaché AD, Rivera D, Barej MF, Burger M et al. 2017 Evaluating
- 735 mechanisms of diversification in a Guineo Congolian tropical forest frog
- using demographic model selection. *Molecular Ecology* 26(19):5245-5263.
- 737 Ponder WF, Carter GA, Flemons P, Chapman RR. 2001 Evaluation of Museum
- Collection Data for Use in Biodiversity Assessment. *Conservation Biology*15 (3): 648–57. https://doi.org/10.1046/j.1523-1739.2001.015003648.x.
- 740 Poulsen JR, Clark CJ, Smith TB. 2001 Seed Dispersal by a Diurnal Primate
- 741 Community in the Dja Reserve, Cameroon. *Journal of Tropical Ecology*742 17:787–808.
- 743 Radosavljevic A, Anderson RP. 2014 Making better Maxent models of species
- 744 distributions: complexity, overfitting and evaluation. *Journal of*
- 745 *Biogeography* 41:629–643. <u>https://doi.org/10.1111/jbi.12227</u>
- 746 Raj A, Stephens M, Pritchard JK. 2014 FastSTRUCTURE: Variational Inference
- 747 of Population Structure in Large SNP Data Sets. *Genetics* 197(2):573–89.
- 748 https://doi.org/10.1534/genetics.114.164350.
- 749 Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018 Posterior
- summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic
- 751 Biology. syy032. doi:10.1093/sysbio/syy032


752	Rohland N, Reich D. 2012.	Cost-Effective.	High-Through	out DNA Seq	uencing


- 753 Libraries for Multiplexed Target Capture. *Genome Research* 22(5):939–46.
- 754 https://doi.org/10.1101/gr.128124.111.
- 755 Stamatakis A. 2014 RAxML Version 8: A Tool for Phylogenetic Analysis and
- 756 Post-Analysis of Large Phylogenies. *Bioinformatics* 30(9):1312–13.
- 757 <u>https://doi.org/10.1093/bioinformatics/btu033</u>.
- 758 Thuiller W, Lafourcade B, Engler R, Araújo MB. 2009 BIOMOD a platform
- for ensemble forecasting of species distributions. *Ecography* 32:369–373.
- 760 https://doi.org/10.1111/j.1600-0587.2008.05742.x
- Turelli M, Barton NH, Coyne JA. 2001 Theory and speciation. Trends in
- 762 *Ecology & Evolution* 16:330–343. https://doi.org/10.1016/S0169-
- 763 5347(01)02177-2
- 764 Versteegh CP, Sosef M. 2007 Revision of the African Genus Annickia.
- 765 *Systematics and Geography of Plants* 77(1):91–118.
- 766 https://doi.org/10.1600/036364411X553108.
- 767 Vitorino LC, Lima-Ribeiro MS, Terribile LC, Collevatti RG. 2016
- 768 Demographical History and Palaeodistribution Modelling Show Range Shift
- towards Amazon Basin for a Neotropical Tree Species in the LGM. BMC
- 770 *Evolutionary Biology* 16(1):1–15. https://doi.org/10.1186/s12862-016-
- 771 0779-9.
- 772 Zhang C, Sayyari E, Mirarab S. 2017 ASTRAL-III: Increased Scalability and
- 773 Impacts of Contracting Low Support Branches. In Lecture Notes in
- 774 Computer Science (Including Subseries Lecture Notes in Artificial
- 775 *Intelligence and Lecture Notes in Bioinformatics*) 10562 LNBI:53–75.
- 776 https://doi.org/10.1007/978-3-319-67979-







Time (Ka)

