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Abstract 

The coordination between mitochondrial and nuclear genes is crucial to eukaryotic organisms. 

Predicting the nature of these epistatic interactions can be difficult because of the transmission 

asymmetry of the genes involved. While autosomes and X-linked genes are transmitted through 

both sexes, genes on the Y chromosome and in the mitochondrial genome are uniparentally 

transmitted through males and females respectively. Here, we generate 36 otherwise isogenic 

Drosophila melanogaster strains differing only in the geographical origin of their mitochondrial 

genome and Y chromosome to experimentally examine the effects of the uniparentally inherited 

parts of the genome, as well as their interaction, in males. We assay longevity and gene 

expression through RNA-sequencing. We detect an important role for both mitochondrial and Y-

linked genes, as well as extensive mitochondrial-Y chromosome epistasis, in both traits. In 

particular, genes involved in male reproduction appear to be especially sensitive. Despite these 

interactions, we find no evidence that the mitochondrial genome and Y chromosome are co-

adapted within a geographic region. Overall, our study demonstrates a key role for the 

uniparentally inherited parts of the genome for male biology, but also that mito-nuclear 

interactions are complex and not easily predicted from simple transmission asymmetries.  
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Introduction 

The co-evolution between mitochondrial and nuclear genes is one of the oldest and best studied 

examples of symbiosis [1–3]. Orchestrated interaction between genes in the two genomes is 

essential for a number of eukaryotic traits, especially metabolism and energy production [4–6], 

and this intimate coordination has been taken as evidence for positive selection for cooperative 

mito-nuclear combinations [7,8]. Moreover, there has also been a well-documented transfer of 

genes from the mitochondrial to the nuclear genome [9–11], and animal mitochondrial genomes 

contain only 37 genes. Finally, the case for the importance of adaptive mito-nuclear epistasis is 

further strengthened by the observation that placing mitochondrial genomes on novel nuclear 

backgrounds is often, though not always, associated with adverse fitness effect (see for example 

Reinhardt et al. [12] and Eyre-Walker [13] for alternative perspectives).  

A key factor governing mito-nuclear co-evolution is the difference in transmission 

between the two genomes. For example, because the mitochondrial genome is almost exclusively 

maternally inherited [14], mutations that are deleterious in males can spread in a population, 

given that they are beneficial or neutral in females [15–20]. The occurrence of male-deleterious 

mitochondrial mutations is particularly well studied in plants [21–24], where such mutations 

usually prevent pollen production in hermaphroditic plants, essentially rendering individuals 

female, guaranteeing the mutation’s transmission through ovules. This phenomenon is therefore 

called cytoplasmic male sterility. In the zoological literature, following Gemmell et al. [15], the 

presence of mitochondrial mutations with deleterious effects in males is known as the Mother’s 

Curse.  

Other than the mitochondrial genome, other uniparentally inherited genes are those 

located on the sex-determining chromosome, i.e. on the Y in an XY system where males are the 
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heterogametic sex and on the W in a ZW female heterogametic system. The strict paternal 

inheritance makes the Y an especially interesting candidate for mito-nuclear epistasis. In 

particular, it has been suggested to be an ideal location for modifiers that counteract the male 

deleterious effects of mitochondrial mutations [25,26], a scenario formally modelled by Ågren, 

Munasinghe and Clark [27]. Despite its heterochromatic structure and paucity of protein coding 

genes, the Y chromosome is now recognized as being able to affect a wide variety of traits [28–

30]. For example, in Drosophila it underlies variation in traits ranging from susceptibility to 

bacterial infection [31], male reproductive success [32], to sex-specific aging [33].  

The extent of mito-Y interactions and their importance to male fitness remain poorly 

understood. Some suggestive evidence comes from empirical work by Innocenti et al. [34], who 

found that loci in the mitochondrial genome can affect the expression of a large number of 

autosomal loci in male, but not in female, Drosophila melanogaster. Such sexual dimorphism in 

expression is consistent with a sex-specific selective sieve being central to mitochondrial genome 

evolution. Furthermore, several of the loci identified by Innocenti et al. [34] to be sensitive to 

mitochondrial variation overlap with loci shown by Lemos et al. [29] to be sensitive to variation 

on the Y chromosome. The extent to which male autosomal gene expression is subject to mito-Y 

interactions, however, is unclear. If they are important, one prediction may be that males that 

carry a Y-chromosome and a mitochondrial genome that have co-evolved in the same sympatric 

population may differ from males where the mitochondrial genome and Y chromosome are from 

diverged populations and therefore represent a novel mito-Y combination.  

Recent attempts to empirically address these questions in the fruitfly D. melanogaster 

have revealed some suggestive patterns. Yee et al. [25] used combinations from three 

populations (a total of 9 mito-Y combinations) to provide a proof-of-concept evidence of how 
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mito-Y combinations may affect aspects of male fitness. However, they did not find evidence 

that males with sympatric mito-Y combinations had higher fitness than males with novel 

combinations. Similarly, Dean et al. [26] found that both mitochondrial and Y-linked genes 

independently affected male locomotor activity, but only under certain diets and social 

environments.  

Here, we extend these studies in three ways. First, we increase the sample size 

considerably, by including 36 mito-Y combinations of D. melanogaster males with 

mitochondrial and Y chromosomes sampled from five worldwide locations (Table 1). Second, 

we assay longevity, another major fitness trait previously shown to be sensitive to mito-nuclear 

epistasis [35–38]. Finally, we performed RNA-sequencing on all lines to identify the importance 

of mitochondrial and Y chromosome variation, as well as mito-Y epistasis, for differential gene 

expression. In line with Dean et al. (2015) and Yee et al. (2015), we found an important role for 

both mitochondrial and Y-linked genes and an abundance of mito-Y chromosome epistasis in 

both longevity and autosomal gene expression.  

 

Methods 

Drosophila melanogaster strains 

Both the longevity and the gene expression assays were performed on isogenic D. melanogaster 

males differing only in the geographical origin of their mitochondrial genome and their Y 

chromosome (referred to as mito-Y combinations throughout). We used a 6×6 crossing design 

(Table 1), crossing females from six mitochondrial replacement lines with males from six Y 

chromosome replacement lines, resulting in male offspring with 36 mito-Y combinations. 

Mitochondrial genomes came from Beijing, China (2 lines; B38 and B39), Ithaca, NY, USA (1 
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line; I02), and the Netherlands (3 lines; N01, N02, and N23), and the Y chromosomes from 

Beijing, China (2 lines; B04 and B11), the Netherlands (2 lines; N03 and N07), and Zimbabwe 

(2 lines ; ZWH123 and YZW139). These populations represent deeply divergent mitochondrial 

and Y chromosome clades and all lines were chosen from the Global Diversity Lines [39]. If the 

mtDNA and Y chromosome were from the same geographic region, they are labelled 

“sympatric” and otherwise they are labelled “novel.” 
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Table 1 Geographical origin of strains used to generate mito-Y combinations. Sympatric combinations are shown on white 

background and novel on grey.  

  

  

 

Y chromosome genotype 

  
  
  
  
  
  
Mitochondrial 

genotype 

  B04 
Beijing 

B11 
Beijing  

N03 
Netherlands  

N07 
Netherlands 

ZWH23 
Zimbabwe  

ZW139 
Zimbabwe 

B38 
Beijing 

Beijing 
× 

Beijing 

Beijing 
× 

Beijing 

Beijing 
× 

Netherlands 

Beijing 
× 

Netherlands 

Beijing 
× 

Zimbabwe 

Beijing 
× 

Zimbabwe 

B39 
Beijing 

Beijing 
× 

Beijing 

Beijing 
× 

Beijing 

Beijing 
× 

Netherlands 

Beijing 
× 

Netherlands 

Beijing 
× 

Zimbabwe 

Beijing 
× 

Zimbabwe 

I02 
Ithaca 

Ithaca 
× 

Beijing 

Ithaca 
× 

Beijing 

Ithaca 
× 

Netherlands 

Ithaca 
× 

Netherlands 

Ithaca 
× 

Zimbabwe 

Ithaca 
× 

Zimbabwe 

N01 
Netherlands 

Netherlands 
× 

Beijing 

Netherlands 
× 

Beijing 

Netherlands 
× 

Netherlands 

Netherlands 
× 

Netherlands 

Netherlands 
× 

Zimbabwe 

Netherlands 
× 

Zimbabwe 

N02 
Netherlands 

Netherlands 
× 

Beijing 

Netherlands 
× 

Beijing 

Netherlands 
× 

Netherlands 

Netherlands 
× 

Netherlands 

Netherlands 
× 

Zimbabwe 

Netherlands 
× 

Zimbabwe 

N23 
Netherlands 

Netherlands 
× 

Beijing 

Netherlands 
× 

Beijing 

Netherlands 
× 

Netherlands 

Netherlands 
× 

Netherlands 

Netherlands 
× 

Zimbabwe 

Netherlands 
× 

Zimbabwe 
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Longevity assay 

Scoring survival 

Individual life span was quantified for all 36 mito-Y combinations. Flies were collected upon 

eclosion, sexed, and placed in vials with approximately 20 male flies in each. 6 replicate vials 

were used for every mito-Y combination. Every other day, flies were transferred without using 

CO2 to vials with fresh food, and individual deaths were recorded. Investigators scoring deaths 

were blind to which mito-Y combination a given vial contained. Vials were kept in climate 

controlled growth chambers at 25 °C, and at a 12:12 hours light:dark cycle. In total around 4,500 

individuals were scored (Table S1; Figure S1). 

 

Differential gene expression 

RNA extraction and sequencing 

3-5 day old males from each of the 36 mito-Y combinations were maintained in vials on standard 

medium in climate controlled growth chambers with a 12:12 hours light:dark cycle at 25 °C. For 

each mito-Y combination, 10 males were flash frozen. We used two biological replicates for 

each combination, with individuals for each replicate being collected from separate crosses 

performed on the same day. 

RNA was extracted from the 10 pooled whole-fly males and RNA seq libraries were 

prepared using the Lexogen QuantSeq 3’ mRNA-Seq Library Prep Kit FWD. Samples were 

sequenced in a single-end 75 bp run on a NextSeq500 at the Genomics Facility in the Cornell 

Biotechnology Resource Center. 
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Read Processing and Alignment 

The quality of the RNA sequences was assessed using FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). Trimmomatic was then used to clip 

adapters, the leading 10 bp, and reads once the average quality of a sliding window of 4 bp 

dropped below 20 [40]. Reads shorter than 20 bp were dropped from subsequent analysis. Next, 

reads were aligned to the D. melanogaster reference genome (Release 6; [41]) using STAR [42] 

and HTseq-count was used to determine the raw number of read counts per gene [43].  

Quantifying gene expression  

Differential transcript abundance was analysed using DESeq2 [44]. Read counts were 

normalized using DESeq2’s internal normalization function estimateSizeFactors, which corrects 

for both library size and RNA composition bias. Lowly expressed genes were removed from 

subsequent analysis, such that a given gene was only kept in the dataset if it had at least 20 

normalized counts in at least half of the samples. After filtering, 9,533 out of 17,324 (~55%) of 

the originally identified genes were kept for subsequent analysis. 

To identify nuclear genes sensitive to variation in the mitochondrial genome, the Y 

chromosome, and mito-Y epistasis, we conducted three separate differential expression analyses 

using linear models. Because principal component analyses suggested the presence of batch 

effects (Figure S2), all models were controlled for this. Additionally, surrogate variables were 

identified and incorporated into all models using SVA to adjust for noise and unmodeled 

artefacts ([45]; see Figure S2 for details). We characterized a gene as being differentially 

expressed if they maintain significance after performing independent filtering for multiple test 

corrections using the Benjamini-Hochberg method set with a false discovery rate of 0.05. 
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We performed a gene enrichment analysis to determine whether certain gene families 

were differentially expressed across Y haplotypes, mitochondrial haplogroups, and 

mitochondrial:Y interactions. We used the R Bioconductor package ‘goseq’ [46] to perform gene 

ontology (GO) analyses. Taking length bias into account, we identified GO categories as either 

significantly over- or under-represented using a 0.05 false discovery rate cutoff. REVIGO was 

used to semantically cluster the lists of enriched GO terms to find a representative subset that 

could be easily analysed and visualized [47].  

To determine whether any differentially expressed genes showed testis- or accessory 

gland-biased expression, we downloaded data from FlyAtlas, which measures the expression 

levels of a gene in each adult male [48]. The bias metric used is simply the expression of the 

gene in the tissue of interest divided by the sum of expression over all other tissues. We 

considered a gene biased for expression in a tissue of interest if the bias metric for that tissue is 

greater than 0.5, as that indicates that more than half the reads collected for that gene come from 

that tissue.  

All scripts used for the RNA-sequencing analysis are on GitHub 

(https://github.com/mam737/mitoY_RNASEQ).  

 

Results and Discussion 

Extensive variation in lifespan across mito-Y combinations 

We detected extensive variation in average lifespan across the 36 mito-Y combinations (Figure 

1; Table S1). The independent and epistatic contributions by the Y chromosome and 

mitochondrial background can be captured by the linear model: lifespan = mitochondrial type + 

Y chromosome + mito*Y interaction (Table 2). This analysis reveals a role for mitochondrial-Y 
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chromosome epistasis in governing longevity (F = 1.805, P = 0.00836). However, we find no 

evidence that individuals with a sympatric mito-Y combination live longer than individuals with 

a novel combination (Wilcoxon rank sum test, W = 1536800, P = 0.5114; Figure 1B).  

 

Figure 1 (a) Mean lifespan (days) ± standard error across 36 mito-Y combinations. Geographical 

origin of the mitochondrial genome is stated at the bottom and colour coded for the Y 

chromosome. Solid and dashed lines represent sympatric and novel mito-Y combinations 

respectively. (b) Mean lifespan (days) ± standard error for sympatric (N = 10) and novel (N = 26) 

mito-Y combinations.  
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Table 2 ANOVA for mito-Y interactions in longevity 

Source Degrees of 

freedom 

Sum of 

square 

Mean 

square 

F P 

Mitochondrial 
genome 

5 1589 317.7 3.192 0.00703 

Y chromosome 5 4000 800.1 8.039 1.49 ✕ 10-7 

Mito-Y 
interaction 

25 4492 1.805 1.805 0.00836 

Residuals 3789 37705    
 

To assess how mortality changed over time we fitted a number of survival functions based on 

different assumptions (non-parametric log-rank, Cox proportional hazard, Gompertz, Gompertz-

Makeham, Logistic, and Logistic-Makeham models; see Supplement for details). This 

comparison revealed significant variation across lines, but no difference between novel and 

sympatric mito-Y combinations.  

As in most species, male Drosophila live shorter than females [49,50], and recent studies 

have demonstrated a central role for both the mitochondria [51] and the Y chromosome [33] in 

explaining this difference. We too find that both the Y chromosome and mitochondria, as well as 

their epistatic interaction, contribute to variation in longevity. Consistent with previous work on 

mito-Y interactions [25,26], our results also reveal no evidence that males with sympatric mito-Y 

combinations differed in these traits compared to males with their mitochondrial genome and Y 

chromosome sampled from different populations.  
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Expression of many nuclear genes is sensitive to variation on the Y chromosome, in the 

mitochondrial genome or both 

We detected 71, 760, and 29 genes whose expression was sensitive to variation on the Y 

chromosome, in the mitochondrial genome, and mito-Y epistasis respectively. To gain insight 

into the biological function of these genes, we searched for gene ontology (GO) terms [52,53] 

that were either over- or under-represented among our significant hits. We found that genes 

associated with visual perception (GO:0007601; Padj = 0.006), response to stimulus 

(GO:0050896; Padj = 0.0144), and rhabdomere, a central compartment in compound eyes 

(GO:0016028; Padj = 0.0435) were over-represented among genes sensitive to Y haplotype. For 

those sensitive to mitochondrial haplotype, we find 44 over- and 3 under-represented GO 

categories with an enrichment of terms belonging to categories such as purine biosynthesis, 

metabolism, and immune responses (Figure 2). Whereas genes sensitive to mito-Y interactions 

show substantial variation in expression across samples (Figure 4), we detect no enrichment or 

depletion of GO categories among the genes sensitive to mito-Y epistasis. Below, we discuss 

certain biological trends that emerge among our most significant hits.  
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Figure 2. Semantic clustering of over-represented biological process GO terms found among 

genes sensitive to mitochondrial haplotype. Each rectangle represents a single cluster, which in 

are joined into larger ‘superclusters’ as visualized by colour. Size of the rectangles indicates p-

value significance (absolute value of the log 10 transformed p-value). 

 

Mitochondrial haplotype influences the expression of metabolic genes 

Figure 2 highlights the abundance of genes related to metabolism that show differential 

expression across mitochondrial haplotypes. Many metabolic reactions involve mitochondria, so 

while the emergence of genes involved in several metabolic processes showing differential 

expression may not be surprising, the sheer number of nuclear genes whose expression is 

affected by mitochondrial variation is. Some of these genes exhibit consistent differences 

between the haplogroups. Several maltases involved in maltose/carbohydrate metabolism show 

reduced expression among the Netherlands haplogroups compared to the others, whereas 3 of the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/807768doi: bioRxiv preprint 

https://doi.org/10.1101/807768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15 

4 enzyme-encoding genes involved in the reduction of NADP to NADPH (Men, Idh, and Zw) 

show reduced expression in the Beijing B38 haplogroup (Figure S3).  

 

Genes related to male fertility show sensitivity to both Y and mitochondrial haplotype 

Both the Y chromosome, which contains six essential male fertility factors, and the 

mitochondrial genome have previously been demonstrated to affect male fertility in D. 

melanogaster [25,32,54–59]. Whereas there is no statistical enrichment of differentially 

expressed genes belonging to male fertility processes, there are several notable hits that not only 

show sensitivity across both Y and mitochondrial haplotypes, but also show elevated expression 

in both the testis and the accessory glands (Figures S5-S8). Among our Y sensitive hits, genes 

such as Testis EndoG-Like 1 (Tengl1), Adenosine deaminase-related growth factor A2 (Adgf-

A2), Male-specific RNA 98CA (Mst98Ca), gonadal (gdl), and Ductus ejaculatorius peptide 99B 

(Dup99B) show markedly higher, if not exclusive, expression in either the testis or the accessory 

glands. Furthermore, Adgf-A2, Mst98Ca, and gdl are all thought to be involved with 

spermiogenesis, spermatogenesis, or sperm function, while Dup99B is a sex-peptide that 

influences the female post-mating response [60–64]. 

 Several genes sensitive to mitochondrial haplogroup also show higher expression in the 

testis and accessory glands. Whereas many of these genes are not functionally characterized, 

there are a few worth highlighting. Protamine B (ProtB) packages the paternal genome in sperm 

during spermiogenesis [65,66], Otefin (Ote) encodes a nuclear membrane-associated protein 

involved in transcriptional silencing of bag-of-marbles (bam), which is a key protein involved in 

gametogenesis. Tim17a1, a subunit of the TIM23 complex, is involved in transporting proteins 

across the inner mitochondrial membrane and shows markedly higher expression in the testis 
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compared to all other tissues [67]. Seminase (Sems), which is expressed predominantly in the 

accessory glands, is not only transferred during mating but is also thought to be involved in 

sperm release from storage in females [68]. Finally, we also found several accessory gland 

proteins, lectin-46Ca, Acp53C14a, Acp33A, CG14034, and CG9029. lectin-46-Ca, Acp53C14a, 

and CG13309 (which is significant, but not enriched in the accessory gland) all show reduced 

expression among the Netherlands mitochondrial haplogroups compared to the others. In 

addition to genes that are enriched for expression in either the testis or the accessory gland, we 

find a handful of other genes related to male fertility. mt:COII and mt:Cyt-B have not only been 

demonstrated to influence male fertility, but also show no effect on females, leading authors to 

cite them as examples of Mother’s Curse variants in Drosophila [59,69–71]. For mt:COII, we 

see variable expression across mitochondrial haplogroups with the Netherlands N23 haplogroup 

showing the highest levels of expression (Figure 3b). Another top mitochondrial hit, the heat 

shock protein Hsp83, has been demonstrated to affect spermatid development and differentiation 

in D. melanogaster [72,73]. 
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Figure 3. Box and scatter plots visualizing differential expression of selected genes. Normalized 

read counts for (a) Dup99B, a male sex peptide, which shows reduced expression in the 

Netherlands haplotypes, (b) mt:COII, a mitochondrial subunit of cytochrome oxidase II, which 

shows variable expression across all 6 mitochondrial haplotypes, (c) G!76C, a Y-sensitive hit, 

linked to visual perception that shows significant differences in expression across all 6 Y 

haplotypes. 

 

More surprisingly, we also see differential expression across both Y and mitochondrial 

haplotypes in genes related to piRNA synthesis. The germline-specific Piwi-interacting RNA 

(piRNA) pathway protects the genome against transposable elements and viruses and is a highly 

conserved genomic defence system [74–77]. It restricts transposable element activity by 

combining the effector function of the Argonaute protein and the specificity provided by the 

piRNAs [78]. In testes, the piRNA pathway directs this repression through Aub and Piwi, with 

Piwi playing a vital role in male fertility [75,79]. While piwi and aub did not pass our filtering 

criteria and were subsequently excluded from our analysis, we found that mino showed 
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significant differential expression across both Y and mitochondrial haplotypes. mino has been 

previously identified as being critical for primary piRNA biogenesis and is also known to 

localize to the outer mitochondrial membrane [80]. Two of our mitochondrial sensitive hits, 

Hsp83 and Hop, are thought to regulate the piRNA pathway through piwi to mediate canalization 

[81].  

Despite several genes related to male fertility showing sensitivity to both Y and 

mitochondrial haplotype, we see little evidence for epistatic interactions between them. Simply 

looking at the overlap of genes that show sensitivity to Y or mitochondrial haplotype yields only 

one gene: mino. Furthermore, when specifically testing for mito-Y epistasis, the only gene 

related to male fertility with significant differential expression is the seminal fluid protein 

Sfp24Ba, which, surprisingly, is not found to be significant when testing for sensitivity to just Y 

or mitochondrial haplotype. 

In summary, this analysis identifies several differentially expressed genes that present a 

strong potential to have downstream consequences for male fertility. The pattern of expression 

levels seen in Figure 4 suggests no simple additive role of mitochondrial and Y variants, but 

instead points to specific genotypic combinations having most aberrant expression. 
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Figure 4. Expression profile of genes sensitive to mitochondrial-Y interactions. Samples (36 

mito-Y combinations with 2 replicates, labelled A and B, for each) and genes of interest are 

listed along the x- and y-axis respectively. Colour indicates either overexpression (red) or 

underexpression (blue) compared to the mean expression level of that gene across all samples. 

 

Visual perception and nervous system processes show Y haplotype sensitivity 

Genes belonging to both visual perception (GO:0007601) and rhabdomere, a key compartment in 

compound eyes (GO:0016028)  are not only enriched among our Y sensitive hits, but they are 

also some of our most significant hits. We see less expression of these genes among the 

Netherlands haplotypes, yet markedly higher expression of these genes for the Beijing B11 
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haplotype (Figure S4). Previous work has shown that variable expression in Arr1, Arr2, Rh4, 

G!76C, trpl, and G"30A  may lead to phenotypic differences in rhodopsin inactivation, 

phototransduction, and the photoresponse [82–89].  

   

Conclusions  

In this study we used 36 mito-Y combinations to experimentally examine the effects of the 

uniparentally inherited parts of the genome on male Drosophila melanogaster. We detect an 

important role for both mitochondrial and Y-linked genes, as well as extensive mitochondrial-Y 

chromosome epistasis in longevity, but little sign that individuals with their Y chromosome and 

mitochondrial genome sampled from the same population being any different than individuals 

where the two are from geographically isolated populations. We also detect many genes that are 

sensitive to variation on the Y chromosome, in the mitochondrial genome or both. The biological 

function of these genes range from metabolic to visual and neuronal phenotypes, with the 

strongest effect being for genes involved in male reproduction. Although the results presented 

here fall short of demonstrating a clear co-evolutionary process between the Y chromosome and 

mitochondrial genome, the extensive gene expression and longevity interactions highlight the 

opportunity for these uniparentally inherited segments of the genome to influence male biology. 
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Analyzing longevity data 

To assess how mortality changed over time we fitted several survival functions, under various 

assumptions (Table S1). A non-parametric log-rank test for survival ~ mitochondrial-Y 

combination finds significant difference across lines, but no difference between novel and 

sympatric combinations (χ2 = 124 on 35 degrees of freedom, P = 7.81 × 10-12; Novel vs. 

sympatric not significant, P = 0.536). We also tested three Cox proportional hazard models, 

accounting for the mitochondrial genotype (AIC = 55456.55), mitochondrial genotype and Y 

chromosome (AIC = 55431.19), and finally mitochondrial genotype, Y chromosome, and mito-Y 

combination (AIC = 55416.34). Comparing AIC scores shows that the last model that includes 

all three factors provides the best fit. As the name suggests, the Cox model assumes that the risk 

of dying is constant over time. Testing this assumption reveals it to be violated (P = 0.02139), 

suggesting that age-specific mortality models are more appropriate. A number of such models 

exist and we consider four of them (the Gompertz, Gompertz-Makeham, the Logistic, and 

Logistic-Makeham model respectively) using Deday (https://sourceforge.net/projects/deday/). 

The Gompertz model assumes an exponential increase in mortality with age with α = initial 

mortality rate (intercept) and β = age-dependent increase in mortality (slope) and the Gompertz-

Makeham model is the Gompertz model with an age-independent mortality (c).The Logistic 

model is the Gompertz model with a frailty parameter (s), which captures late-life mortality 

deceleration. Finally, the Logistic-Makeham model includes all four parameters (α, β, c, and s). 

We fitted all models across all 36 mito-Y combinations and a comparison of AIC scores suggests 

that the Gompertz model is best for (almost) all crosses. Because the models are nested we can 

also use likelihood ratio test to compare model parameters. This comparison reveals little 

difference across the 36 lines (Table S1; Figure S1).  
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Figure S1 Pairwise Z-tests of α, initial mortality rate (a), and β, age-dependent increase in 

mortality (b) in the Gompertz model. Reddish colours suggest low significance in difference. 

Key for genotype names is provided in Table S1.   
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Figure S2 Principal components analysis on RNA-Seq samples. (a) Samples are coloured by the 

batch they were processed in and show a clear clustering of samples processed in the second 

batch (b) Samples are coloured by mitochondrial haplotype while the shape denotes Y haplotype, 

(c) Samples are plotted identically to (b) except that the surrogate variables have been regressed 

out of the data to show how their inclusion reduced the level of variation between samples.  
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Surrogate Variable Analysis 

Principal components analysis not only shows a clear batch effect amoungst our samples (Fig 

S2a) but also the failure of our samples to cluster by any measured grouping (i.e. mitochondrial 

haplogroup, Y haplotype, and occasionally replicate). This suggested the presence of 

unmeasured variables that may be impacting the sequencing data. To account for this, we used 

the R package sva which estimates the number of surrogate variables in the data. These variables 

can then be incorporated into all models to control for any unmeasured factors. The models used 

to test for differential expression across Y haplotype or mitochondrial haplogroup use the same 

full model with 8 surrogate variables identified by sva ( ~ batch + surrogate_variable_1 +...+ 

surrogate_variable_8 + mitochondrial_haplogroup + Y_haplotype), while the test for differential 

expression due to mitochondrial-Y interactions uses a slightly different full model with an added 

interaction term and with 6 surrogate variables incorporated (~ batch + surrogate_variable_1 

+...+ surrogate_variable_6 + mitochondrial_haplogroup + Y_haplotype + 

mitochondrial_haplogroup:Y_haplotype).  
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Figure S3 Expression of metabolic genes found to show significant variability in expression 

across mitochondrial haplogroups. Samples  (36 mito-Y combinations with 2 replicates, labelled 

A and B, for each) and genes of interest are listed along the x- and y-axis respectively. Color 

indicates either overexpression (red) or under-expression (blue) compared to the mean 

expression level of that gene across all samples.  
 

 

Figure S4 Expression of vision genes found to show significant variability in expression across 

Y haplotypes. Samples (36 mito-Y combinations with 2 replicates, labelled A and B, for each) 

and genes of interest are listed along the x- and y-axis respectively. Colour indicates either 

overexpression (red) or under-expression (blue) compared to the mean expression level of that 

gene across all samples.  
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Figure S5 Y-Sensitive hits that are enriched for expression in the testis. 
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Figure S6 Y-Sensitive hits that are enriched for expression in the accessory glands. 
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Figure S7 Mito-sensitive hits that are enriched for expression in the testis. 
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Figure S8 Mito-sensitive hits that are enriched for expression in the accessory glands.  
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