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Abstract	

Speech	neuroimaging	research	targeting	individual	speakers	could	help	elucidate	

differences	that	may	be	crucial	to	understanding	speech	disorders.		However,	this	research	

necessitates	reliable	brain	activation	across	multiple	speech	production	sessions.	In	the	

present	study,	we	evaluated	the	reliability	of	speech-related	brain	activity	measured	by	

functional	magnetic	resonance	imaging	data	from	twenty	neuro-typical	subjects	who	

participated	in	two	experiments	involving	reading	aloud	simple	speech	stimuli.	Using	

traditional	methods	like	the	Dice	and	intraclass	correlation	coefficients,	we	found	that	most	

individuals	displayed	moderate	to	high	reliability.	We	also	found	that	a	novel	machine-

learning	subject	classifier	could	identify	these	individuals	by	their	speech	activation	

patterns	with	97%	accuracy	from	among	a	dataset	of	seventy-five	subjects.	These	results	

suggest	that	single-subject	speech	research	would	yield	valid	results	and	that	

investigations	into	the	reliability	of	speech	activation	in	people	with	speech	disorders	are	

warranted.	
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1.	Introduction	

Our	understanding	of	the	neural	mechanisms	responsible	for	speech	and	language	

has	dramatically	improved	in	recent	decades	due	to	the	development	of	non-invasive	

techniques	for	measuring	whole-brain	activity.	Perhaps	the	most	widely	used	technique	of	

this	type	is	functional	magnetic	resonance	imaging	(fMRI);	at	least	4,500	papers	have	been	

published	on	this	topic	in	pubmed	since	20001.	To	date,	the	vast	majority	of	fMRI	studies	of	

speech	and	language	have	involved	analyzing	group	average	results	from	cohorts	of	10	or	

more	neurotypical	participants,	in	many	cases	compared	to	similar-sized	cohorts	of	

patients	with	neurological	conditions	that	impact	speech	or	language	function.	Collectively,	

these	studies	have	revealed	a	network	of	brain	areas	that	are	commonly	active	during	

speech	production	(Guenther,	2016;	Price,	2012).	When	brain	responses	are	compared	

between	groups,	however,	the	results	are	often	less	consistent	(e.g.,	Connelly	et	al.,	2018	vs.	

Chang	et	al.,	2009).	This	could	result	from	the	relatively	small	sample	sizes	of	typical	fMRI	

study	designs	lacking	sufficient	power,	a	shortcoming	that	is	being	addressed	in	more	

recent	studies	with	larger	samples	sizes	and	data	pooling	(Brown	et	al.,	2005;	Costafreda,	

2009;	Turkeltaub	et	al.,	2002),	i.e.,	measuring	across	larger	groups.		

Larger	groups,	however,	cannot	address	another	factor	that	is	becoming	more	

apparent	to	those	mapping	the	functional	components	of	the	speech	production	network:	

high	between-subjects	variability	in	the	location	and	level	of	speech-related	BOLD	

responses.	Attempts	to	localize	the	locus	of	“crucial”	neural	damage	in	acquired	apraxia	of	

speech	(AOS),	for	instance,	have	reported	a	variety	of	locations	(Dronkers,	1996;	Hillis	et	

																																																								
1	Derived	from	a	search	of	articles	on	pubmed.com	on	February	25,	2020	containing	the	
terms	“fMRI”	or	“functional	magnetic	resonance	imaging”	and	“speech”	or	“language”	in	
their	title	or	abstract.	
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al.,	2004;	Moser	et	al.,	2016).	Moreover,	there	is	tremendous	variability	in	the	location	and	

extent	of	stroke-related	damage	to	neural	tissue	across	individuals.	This	individual	

variability	found	in	AOS	and	other	speech	network	disturbances	(e.g.,	stuttering,	Wymbs	et	

al.,	2013)	can	mask	group	differences	in	fMRI	analyses,	and	make	it	difficult	to	map	the	

neural	locus	(or	loci)	of	a	given	disorder.		

An	alternative	approach	for	studying	speech	disorders	is	to	use	subject-specific	

study	designs	that	are	unaffected	by	between-subjects	variability.	A	number	of	studies	have	

demonstrated	the	utility	of	single-subject	fMRI	study	designs	or	encouraged	its	future	use	

for	a	range	of	purposes.	These	include	mapping	language	areas	prior	to	resective	surgery	

for	patients	with	epilepsy	or	gliomas	(Babajani-Feremi	et	al.,	2016;	Bizzi	et	al.,	2008;	Chen	

&	Small,	2007;	Gross	&	Binder,	2014)	improving	diagnosis	of	disorders	(Raschle	et	al.,	

2012;	Sundermann	et	al.,	2014),	and	determining	whether	neural	plasticity	following	

stroke	can	predict	outcomes	(Chen	&	Small,	2007;	Kiran	et	al.,	2013;	Meltzer	et	al.,	2009).		

In	the	speech	domain,	single-subject	approaches	have	been	used	to	evaluate	responses	to	

treatment	in	AOS	(e.g.,	Farias	et	al.,	2014),	but	these	could	be	expanded	to	tracking	natural	

neural	organization	changes	over	time	in	developmental	speech	disorders	like	stuttering.	

Due	to	the	individuality	of	the	presentation	of	these	disorders,	subject-specific	approaches	

could	provide	more	meaningful	measures	of	change	not	captured	in	group	average	

analyses.	

However,	the	suitability	of	subject-specific	studies	of	speech	and	language	

processes,	depends	heavily	on	the	reliability	of	speech-related	activity	in	individual	brains.	

The	main	purpose	of	the	current	study	is	to	test	this	assumption	by	assessing	the	reliability	

of	single-subject	fMRI	measured	during	speech	production	tasks	across	scanning	sessions.	
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Several	prior	studies	have	examined	within-subject	reliability	of	BOLD	responses	during	

language	production	tasks	(e.g.	Mayer,	Xu,	Paré-Blagoev,	&	Posse,	2006;	Otzenberger,	

Gounot,	Marrer,	Namer,	&	Metz-Lutz,	2005;	Wilson,	Bautista,	Yen,	Lauderdale,	&	Eriksson,	

2017).	Many	have	used	a	covert	speech	task	(Brannen	et	al.,	2001;	Harrington	et	al.,	2006;	

Maldjian	et	al.,	2002;	Mayer	et	al.,	2006;	Otzenberger	et	al.,	2005;	Rutten	et	al.,	2002)	or	

have	focused	on	a	limited	set	of	regions	of	interest	(ROIs)	like	Broca’s	area	and	temporo-

parietal	cortex	(e.g.,	Brannen	et	al.,	2001;	Harrington	et	al.,	2006;	Mayer	et	al.,	2006;	

Otzenberger	et	al.,	2005;	Rau	et	al.,	2007).	However,	speech	requires	overt	motor	actions	

and	the	integration	of	sensory	feedback	supported	by	large	and	often	distant	areas	of	the	

brain	(Guenther,	2016;	Sato,	Vilain,	Lamalle,	&	Grabski,	2015).	Four	recent	studies	

(Gorgolewski	et	al.,	2013;	Nettekoven	et	al.,	2018;	Paek	et	al.,	2019;	Wilson	et	al.,	2017)	

have	assessed	reliability	in	neurologically	normal	participants	across	the	cortex	during	

overt	word	production.	These	studies	report	moderate	to	high	levels	of	reliability	and	each	

provides	unique	insight	into	the	factors	that	impact	test-retest	reliability,	especially	

pertaining	to	older	adults	and	clinical	populations.	

Our	aim	in	the	present	study	was	to	determine	whether	such	reliability	is	robust	in	

the	speech	production	network	across	different	speaking	tasks	and	interscan	intervals.		To	

do	this,	we	performed	a	retrospective	analysis	of	participants	who	had	taken	part	in	more	

than	one	fMRI	study	of	speech	production	in	our	lab.	This	had	the	advantage	of	assessing	

the	reliability	of	general	speech	network	activation	patterns	in	an	individual	rather	than	

the	reliability	of	a	specific	task	to	allow	for	greater	generalization	of	the	results	herein.	

Compared	to	previous	work,	we	included	studies	with	stimuli	that	limited	higher-level	

linguistic	processing.		Doing	so	allowed	us	to	assess	the	reliability	of	neural	activity	specific	
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to	speech	motor	control	processes.		Finally,	since	these	datasets	were	collected	for	basic	

research	purposes	in	healthy	individuals,	they	were	composed	of	much	longer	sessions	

which	may	improve	the	reliability	of	an	individual’s	speech	network	activity.	

We	used	the	Dice	coefficient	to	measure	the	spatial	overlap	of	active	brain	regions	

within	individuals	across	multiple	speech	production	studies.	This	easily	interpretable	

measure	can	be	compared	to	numerous	previous	studies	of	fMRI	reliability	(Bennett	&	

Miller,	2010).	For	a	more	thorough	reliability	measure	that	accounts	for	both	the	location	

and	relative	scale	of	activity	across	the	brain,	we	calculated	a	single-subject	intraclass	

correlation	coefficient	(ICC;	as	in	Raemaekers	et	al.,	2007).	While	each	of	these	provides	an	

estimate	of	similarity	that	can	be	used	in	a	single-subject	context,	further	information	can	

be	gleaned	from	measures	that	assess	reliability	in	relation	to	a	between-subjects	standard.		

We	therefore	computed	an	ICC	for	each	vertex	on	the	cortical	surface	to	yield	a	map	of	

reliability	(as	in	Aron,	Gluck,	&	Poldrack,	2006;	Caceres,	Hall,	Zelaya,	Williams,	&	Mehta,	

2009;	Freyer	et	al.,	2009;	Meltzer	et	al.,	2009).	This	measure	estimated	the	reliability	and	

discriminability	of	activation	across	the	entire	brain	at	a	vertex	level.	Finally,	we	directly	

tested	whether	an	individual	speaker’s	neural	activation	patterns	during	speech	in	one	

study	could	predict	activation	in	a	second	study	using	a	machine	learning	classifier.	

Reliability	measures	were	compared	to	two	benchmarks:	a	chance-level	baseline	derived	

from	random	data	maps,	and	a	residual	signal	map	derived	from	anatomy-related	

information	in	the	BOLD	signal	that	we	would	expect	to	have	high	reliability.	

	

2.	Materials	and	Methods	

2.1.	Participants	
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Our	dataset	comprises	seventy-five	individuals	who	previously	participated	in	fMRI	

studies	of	speech	production	in	the	SpeechLab	at	Boston	University.	Of	these,	data	from	

twenty	individuals	(mean	age:	28.95	years,	range:	19-44,	10	female/10	male)	who	

participated	in	at	least	two	fMRI	studies	(see	Tables	1	and	2)	were	used	to	evaluate	

reliability	(median	number	of	days	between	studies:	13.5,	range:	6	-	196).	Data	from	the	

remaining	fifty-five	speakers	(age	range:	18-51)	from	these	or	three	other	speech	

production	studies	(see	Table	2)	were	added	in	the	classifier	analysis	to	train	the	subject	

classifier	and	to	generalize	its	features	to	the	broader	population	of	healthy	speakers	(see	

section	2.5.4.	Subject	Classifier).	All	participants	were	right-handed	native	speakers	of	

American	English	and	reported	normal	or	corrected-to-normal	vision	as	well	as	no	history	

of	speech,	language,	hearing,	or	neurological	disorders.	Informed	consent	was	obtained	

from	all	participants,	and	each	study	was	approved	by	the	Boston	University	Institutional	

Review	Board.		

	

2.2.	Speech	Tasks	

All	speech	tasks	included	in	the	present	study	were	overt	productions	of	either	real	

words	or	pseudowords	formed	by	two	or	more	consecutive	phonemes.	These	

characteristics	ensure	a	distribution	of	tasks	used	in	neuroimaging	studies	of	speech,	while	

limiting	activation	patterns	to	those	associated	with	overt	speech	production	that	includes	

phonemic	transitions.	A	list	of	speaking	tasks	and	their	visual	baseline	control	conditions	

from	each	study	is	included	in	Table	1.	Details	of	the	four	studies	from	which	repeated	

measures	were	taken	(CCRS,	FRS,	APE,	and	PBB)	are	described	here.		More	detailed	
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information	on	the	other	studies	(OP,	SylSeq,	and	CAT)	is	provided	in	the	publications	

listed	in	Table	1.	

The	CCRS	and	FRS	experiments	were	block-design	fMRI	studies	in	which	subjects	

produced	sequences	of	pseudowords	during	continuous	scanning.	Both	studies	included	

multiple	speech	conditions	and	a	baseline	condition.	During	speech	trials,	subjects	

simultaneously	viewed	an	orthographic	representation	and	heard	a	recording	of	the	

pseudoword	to	be	produced.	A	white	cross	replacing	the	orthographic	representation	cued	

the	subject	to	produce	the	pseudoword.		On	baseline	trials,	subjects	saw	a	series	of	

asterisks	on	the	screen	rather	than	orthographic	stimulus	and	rested	quietly.	Functional	

runs	were	organized	into	blocks	of	6	trials	of	the	same	condition	with	a	3	s	pause	between	

blocks.	Pseudowords	and	conditions	were	randomized	within	runs.			

Sequences	in	the	CCRS	study	comprised	pairs	of	two-syllable	pseudowords	that	

varied	in	the	number	of	unique	phonemes,	consonant	clusters	and	syllables	in	the	

sequence.	The	conditions	were:	exact	repetition	(e.g.,	‘GROI	SLEE,	GROI	SLEE’);	same	

phonemes	and	consonant	clusters,	different	syllables	(e.g.	‘GROI	SLEE,	GREE	SLOI’);	and	

different	phonemes,	consonant	clusters,	and	syllables	(e.g.	‘KWAI	BLA,	SMOO	KROI’).	Each	

trial	lasted	2.5	s.	Runs	consisted	of	fifteen	blocks,	and	lasted	approximately	5	min.	Each	

subject	completed	7	runs	that	optimally	allowed	for	approximately	21	blocks	per	condition	

per	subject.	In	total,	120	fMRI	volumes	were	acquired	continuously	during	each	run.	

Sequences	in	the	FRS	study	were	pairs	of	monosyllabic	pseudowords	that	varied	in	

the	number	of	unique	phonemes,	syllables,	and	syllabic	frames	(see	MacNeilage,	1998).	The		

conditions	were:	exact	repetition	(e.g.	‘TWAI,	TWAI’);	same	frames,	different	phonemes	and	

syllables	(e.g.	‘FAS	REEN’);	same	phonemes,	different	frames	and	syllables	(e.g.	‘RAUD	
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DRAU’);	and	different	frames,	phonemes,	and	syllables	(e.g.	‘DEEF	GLAI’).	Each	trial	lasted	2	

seconds.	Runs	consisted	of	eighteen	blocks	and	lasted	approximately	4.5	min.	Each	

pseudoword	or	pseudoword	pair	was	maximally	used	once	per	block	and	in	2-3	blocks	

throughout	the	experiment	to	maintain	novelty.	Each	subject	completed	6	runs	that	

optimally	allowed	for	approximately	27	blocks	per	condition	per	subject.	In	total,	108	fMRI	

volumes	were	acquired	continuously	during	a	run.	

The	APE		(Tourville	et	al.,	2008)	and	PBB	studies	(Golfinopoulos	et	al.,	2011),	used	a	

sparse	fMRI	acquisition	design	that	allowed	subjects	to	produce	speech	during	silent	

intervals	between	fMRI	volume	acquisitions.	In	both	experiments,	subjects	were	instructed	

to	read	aloud	the	speech	stimulus	presented	orthographically	at	the	onset	of	each	trial	or	to	

remain	silent	if	a	control	stimulus	(the	letter	string	‘yyy’)	was	presented.		Stimuli	in	the	APE	

study	consisted	of	8	/CεC/	words	(e.g.,	beck,	bet,	debt).	Stimuli	remained	onscreen	for	2	s.	

An	experimental	run	consisted	of	64	speech	trials	(8	presentations	of	each	word)	and	16	

control	trials	(Tourville	et	al.,	2008).	On	25%	of	speech	trials,	the	first	formant	(F1)	of	the	

subject’s	speech	was	altered	before	being	fed	back	to	the	subject.		Trial	order	was	randomly	

permuted	within	each	run	such	that	consecutive	presentation	of	the	same	stimulus	and	

consecutive	F1	shifts	in	the	same	direction	were	prohibited.	Subjects	performed	3	or	4	

functional	runs.	Only	speech	trials	with	normal	feedback	and	baseline	trials	were	included	in	

the	present	study.	

Speech	stimuli	in	the	PBB	study	(Golfinopoulos	et	al.,	2011)	consisted	of	eight	

pseudowords	that	required	a	jaw	closure	after	producing	an	initial	vowel	(e.g.,	/au/,		/ani/,	

/ati/).	Stimuli	remained	onscreen	for	3	s.	Each	experimental	run	consisted	of	56	speech	

trials	(seven	presentations	of	each	pseudoword)	and	16	baseline	trials.	On	one	seventh	of	
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all	speech	trials	and	half	of	all	baseline	trials,	jaw	closure	was	restricted	by	the	rapid	

inflation	of	a	small	balloon	positioned	between	the	subjects’	upper	and	lower	molars.	Trial	

order	was	randomly	permuted	within	each	run	such	that	consecutive	perturbation	trials	

were	prohibited.	Subjects	included	in	the	present	analysis	completed	between	three	and	

five	runs.	No	perturbation	trials	were	included	in	the	present	analysis.		

	

Study Subjects 
Included 

Speech Task Visual 
Baseline 

Acquisition Type Associated 
Publications 

Consonant Cluster 
Representation (CCRS) 

16 
Ages: 20-43 

Repeating bisyllabic pseudowords that 
varied in terms of their phonemic, cluster, 

or syllabic content 

“****” Continuous 
 

Syllable Frame 
Representation (FRS) 

17 
Ages: 20-43 

Repeating monosyllabic pseudowords that 
varied in terms of their phonemic, frame, 

or syllabic content 

“****” Continuous 
 

Auditory Perturbation 
(APE) 

6 
Ages: 23-36 

Monosyllable CVC words (non-perturbed 
only) 

“yyy” Sparse Tourville, Reilly, & 
Guenther (2008) 

Somatosensory 
Perturbation (PBB) 

12 
Ages: 23-51 

VV or VCV pseudowords (non-perturbed 
only) 

“yyy” Sparse Golfinopoulos et al. 
(2011) 

Overt Production (OP) 10 
Ages: 19-47 

CV and CVCV  pseudowords “xxxx” Sparse Ghosh, Tourville, & 
Guenther  (2008) 

Syllable Sequence 
Representation (SylSeq) 

15 
Ages: 18-30 

Bisyllabic pseudowords that varied in terms 
of their phonemic or suprasyllabic content 

“XXXXX” Continuous Peeva et al. (2011) 

Auditory Category 
Perturbation (CAT) 

15 
Ages: 19-33 

Monosyllable CVC words (non-perturbed 
only) 

“***” Sparse Niziolek and Guenther 
(2013) 

Table	1.	Information	about	the	studies	from	which	activation	maps	were	included	in	the	present	analyses.	C	=	
consonant,	V	=	vowel.	
	

	

Subject Study 1 Study 2 Days Between 
Studies ID Speech Trials Baseline Trials ID Speech Trials Baseline Trials 

1 CCRS 378 126 FRS 258 66 6 

2 CCRS 378 126 FRS 258 66 14 

3 CCRS 324 108 FRS 258 66 52 

4 CCRS 378 126 FRS 258 66 7 

5 CCRS 324 108 FRS 258 66 6 

6 CCRS 378 126 FRS 258 66 20 

7 CCRS 324 108 FRS 258 66 7 

8 CCRS 378 126 FRS 258 66 13 
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9 CCRS 378 126 FRS 258 66 19 

10 CCRS 378 126 FRS 258 66 12 

11 CCRS 324 108 FRS 258 66 7 

12 CCRS 324 108 FRS 258 66 7 

13 CCRS 378 126 FRS 258 66 7 

14 CCRS 324 108 FRS 258 66 7 

15 APE 191 64 PBB 192 32 75 

16 APE 191 64 PBB 144 24 163 

17 APE 191 64 PBB 192 32 196 

18 APE 187 63 PBB 240 40 21 

19 APE 192 64 PBB 192 32 70 

20 APE 143 48 PBB 240 40 28 
	

Table	2.	Studies	in	which	each	test	subject	participated,	total	number	of	trials,	and	time	between	studies.	
Study	identification	codes	refer	to	abbreviations	in	the	‘Study’	column	of	Table	1.	
	

2.3.	Image	Acquisition	

MRI	data	were	acquired	at	the	Athinoula	A.	Martinos	Center	for	Biomedical	Imaging	

at	Massachusetts	General	Hospital	(APE,	PBB,	OP,	CCRS,	FRS),	the	Athinoula	A.	Martinos	

Imaging	Center	at	the	McGovern	Institute	for	Brain	Research	at	the	Massachusetts	Institute	

of	Technology	(CAT),	and	the	fMRI	Centre	of	Marseille	(SylSeq).	

For	CCRS	and	FRS,	data	were	acquired	using	a	3	Tesla	Siemens	Trio	Tim	scanner	

with	a	32-channel	head	coil.	For	each	subject,	a	whole-brain	high-resolution	T1-weighted	

MPRAGE	volume	was	acquired	(voxel	size:	1	mm3,	256	sagittal	images,	TR:	2530	ms,	TE:	

3.44	ms).	T2*-weighted	volumes	consisting	of	41	gradient	echo	–	echo	planar	axial	images	

(in	plane	resolution:	3.1	mm,	slice	thickness:	3	mm,	gap:	25%,	TR:	2.5	s,	TA:	2.5	s,	TE:	20	

ms)	were	collected	continuously	during	functional	runs.		

For	APE	and	PBB,	a	high-resolution	T1-weighted	anatomical	volume	(128	slices	in	

the	sagittal	plane,	slice	thickness:	1.33	mm,	in-plane	resolution:	1	mm2,	TR:	2530	ms,	TE:	

3.3	ms)	was	obtained	for	each	subject	prior	to	functional	imaging.	Functional	volumes	

consisted	of	32	gradient	echo	-	echo	planar	axial	images	(in	plane	resolution:	3.125	mm2,	
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slice	thickness:	5	mm,		TR:	2000	ms,	TE:	30	ms).	A	sparse	sampling	(Hall	et	al.,	1999)	

clustered	volume	acquisition	method,	consisting	of	silent	intervals	between	consecutive	

volume	acquisitions,	was	used.	Two	consecutive	volumes	(each	volume	acquisition	taking	2	

s)	were	acquired	5	s	after	the	onset	of	each	trial.	

See	Peeva	et	al.	(2010),	Ghosh,	Tourville,	&	Guenther	(2008),	and	Niziolek	&	

Guenther	(2013)	for	acquisition	parameters	for	the	SylSeq,	OP,	and	CAT	studies,	

respectively	(refer	to	Table	1	for	study	codes).	

	

2.4.	Preprocessing	and	first-level	analysis	

Preprocessing	was	carried	out	using	SPM12	(http://www.fil.ion.ucl.ac.uk/spm)	and	

the	CONN	toolbox	(Whitfield-Gabrieli	&	Nieto-Castanon,	2012)	preprocessing	modules.	

Each	participant’s	functional	data	were	motion-corrected	to	their	first	functional	image,	

and	coregistered	to	their	structural	image	using	SPM12’s	inter-modality	coregistration	

procedure	with	a	normalized	mutual	information	cost	function	(Collignon	et	al.,	1995;	

Studholme	et	al.,	1998).	For	CCRS	and	FRS,	BOLD	responses	were	high-pass	filtered	with	a	

128-second	cutoff	period	and	estimated	at	each	voxel	using	a	general	linear	model	(GLM).	

The	hemodynamic	response	function	(HRF)	for	each	stimulus	block	was	modeled	using	a	

canonical	HRF	convolved	with	the	trial	duration	from	each	study.	For	APE	and	PBB,	the	

BOLD	response	for	each	event	was	modeled	using	a	single-bin	finite	impulse	response	

(FIR)	basis	function	spanning	the	time	of	acquisition	of	the	two	consecutive	volumes.	For	

each	run,	a	linear	regressor	was	added	to	the	model	to	remove	linear	effects	of	time,	as	

were	six	motion	covariates	and	a	constant	session	effect	(the	intercept	for	that	run).	See	

Peeva	et	al.	(2010),	Ghosh,	Tourville,	&	Guenther	(2008),	and	Niziolek	&	Guenther	(2013)	
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for	first-level	design	details	in	the	other	studies.	Functional	data	were	also	censored	

(Power	et	al.,	2014)	by	including	additional	regressors	for	all	studies	to	remove	the	effects	

of	volumes	with	excessive	motion	and	global	signal	change,	as	identified	using	ART	

(https://www.nitrc.org/projects	/artifact_detect/)	with	a	scan-to-scan	motion	threshold	of	

0.9	mm	and	a	scan-to-scan	signal	intensity	threshold	of	5	standard	deviations	above	the	

mean.	

In	all	studies	and	subjects,	first-level	model	estimates	for	each	speech	condition	and	

baseline	were	contrasted	at	each	voxel	and	averaged	across	all	study-specific	speech	

conditions	to	obtain	speech	activation	maps	(speech	maps).	Effect	size	maps	were	used	for	

subsequent	analyses	rather	than	significance	(p-value)	maps	because	a)	significance	maps	

are	not	as	consistent	for	individual	subjects	as	they	are	for	group	analyses	(Gross	&	Binder,	

2014;	Voyvodic,	2012)	and	b)	previous	research	has	demonstrated	greater	overlap	in	effect	

size	maps	(Wilson	et	al.,	2017).	T1	volume	segmentation	and	surface	reconstruction	were	

carried	out	using	the	FreeSurfer	image	analysis	suite	(freesurfer.net;	Fischl,	Sereno,	&	Dale,	

1999).	Activation	maps	were	then	projected	to	each	individual’s	inflated	structural	surface.	

To	align	subject	data,	individual	surfaces	were	inflated	to	a	sphere	and	coregistered	with	

the	FreeSurfer	mean	surface	template	(fsaverage;	see	Figure	1).	Surface	maps	were	then	

smoothed	using	iterative	diffusion	smoothing	with	40	diffusion	steps	(equivalent	to	a	8	mm	

full-width	half	maximum	smoothing	kernel,	Hagler	et	al.,	2006).	This	level	of	smoothing	has	

previously	been	shown	to	optimize	reliability	of	task-related	BOLD	response	data	in	

individuals	(Caceres	et	al.,	2009).	

In	addition	to	the	above	speech	maps,	we	computed	two	other	sets	of	maps	for	

comparison	purposes.	The	first	was	random	maps,	representing	randomly	generated	data	
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with	similar	spatial	properties,	and	processed	in	exactly	the	same	way	as	the	speech	maps.	

We	expected	these	maps	to	show	minimal	reliability	(chance-level).	Reliability	measures	

derived	from	random	maps	served	as	a	baseline	reference,	and	to	eliminate	the	possibility	

that	our	preprocessing	and	estimation	procedure	would	artifactually	introduce	unexpected	

biases	in	reliability	metrics.	The	second	was	null	maps,	representing	anatomical	

information	about	each	subject	like	tissue	morphology	and	neurovasculature	present	in	the	

average	BOLD	signal,	and,	again,	were	processed	in	exactly	the	same	way	as	the	speech	

maps.	We	expected	these	maps	to	show	high	reliability,	as	anatomical	information	is	

expected	to	vary	minimally	over	the	time	spans	considered	in	this	study.	Reliability	

measures	derived	from	null	maps	served	as	references	for	comparison	purposes,	and	to	

explore	the	possibility	that	reliability	of	speech-related	functional	activation	may	be	

influenced	by,	or	related	to,	reliability	of	anatomical	features.		

Maps	of	random	activation	(random	maps)	were	created	by	independently	replacing	

effect	sizes	at	each	vertex	with	a	randomly	chosen	value	from	a	normal	distribution	(mean	

of	0	and	a	standard	deviation	of	1)	and	smoothing	the	data	to	the	same	degree	as	the	speech	

maps.		To	obtain	maps	of	average	MRI	signal	(null	maps)	that	is	not	affected	by	task	effects,	

estimates	of	the	constant	regression	term	of	each	run	were	averaged	for	each	subject	in	

each	study.	These	maps	represent	the	average	T2*	signal	after	the	effects	of	speech,	

baseline,	motion,	and	outliers	have	been	removed.	Similar	to	the	speech	maps,	they	were	

then	projected	to	each	individual’s	structural	surface.	Because	there	is	individual	variability	

in	the	T2*	signal	across	the	cortex,	these	maps	represent	individual	features	of	a	subject’s	

cortical	anatomy	
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Figure	1.	Thresholding	pipeline	map	for	each	of	the	reliability	analyses.	After	preprocessing	and	estimation	of	
first-level	condition	effects,	the	speech,	null,	and	random	maps	were	calculated,	and	submitted	to	the	vertex-
wise	ICC	analysis.	A	speech	network	mask	was	applied,	so	that	only	vertices	inside	this	mask	were	used	for	
the	single-subject	ICC	and	variance	ratio	measures.	Next,	the	20%	of	vertices	with	the	highest	activation	
levels	were	kept	for	the	classifier	analysis.	Finally,	these	thresholded	maps	were	binarized	for	the	Dice	
coefficient	analysis.	Prior	to	calculating	reliability	measures	(except	the	Dice	coefficient),	maps	were	
normalized	to	account	for	differences	in	effect	size	scaling	between	subjects	and	studies.	Outlines	for	regions	
of	interest	previously	described	in	Tourville	&	Guenther	(2012)	are	included	for	reference,	and	appear	only	in	
areas	of	cortex	on	which	a	given	analysis	was	carried	out.		
	

2.5.	Reliability	Measures	

We	used	two	measures	to	quantify	individual-subject	activation	reliability	across	

different	sessions	in	individuals	(while	sessions	come	from	two	separate	studies,	for	clarity	

the	term	session	will	be	used	going	forward	to	refer	to	a	data	collection	time	point):	the	

Dice	coefficient	and	a	single-subject	intraclass	correlation	coefficient.		Two	further	

measures	were	used	to	examine	sampled-normed	reliability:	a	vertex-wise	intraclass	
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correlation	coefficient,	and	a	machine-learning	classifier.	Each	of	these	measures	was	

applied	to	the	speech,	random,	and	null	maps.	

	

2.5.1.	Single-subject	Spatial	Overlap	

To	measure	the	spatial	overlap	of	supra-threshold	vertices,	we	used	the	Dice	

coefficient,	a	metric	widely	used	in	fMRI	reliability	studies	(see	Bennett	&	Miller,	2010	for	a	

review).	It	is	the	ratio	between	the	extent	of	overlap	of	individual	maps	and	their	average	

size	and	yields	values	between	0	(no	overlap)	and	1	(complete	overlap).	A	strength	of	this	

measure	is	that	it	is	straightforward	to	interpret	and	provides	a	simple	way	to	characterize	

the	reproducibility	of	thresholded	activation	maps	(Bennett	&	Miller,	2013).	On	the	other	

hand,	the	Dice	coefficient	is	sensitive	to	how	these	maps	are	thresholded	(Duncan	et	al.,	

2009;	Smith	et	al.,	2005),	and	the	area	over	which	the	calculation	is	made	(Gorgolewski	et	

al.,	2013),	where	lower	thresholds	and	whole-brain	analyses	will	tend	to	increase	overlap.	

Despite	this,	the	Dice	coefficient	provides	a	rough	estimate	of	neural	response	reliability.	

The	Dice	coefficient	is	formally	given	by:	

𝑅"#$%&'( =
2 ∗ 𝐴"#$%&'(
𝐴- + 𝐴/

																								 (𝐸𝑞. 1),	

where	A1	and	A2	are	defined	as	the	number	of	supra-threshold	vertices	for	individual	

sessions	and	Aoverlap	is	the	total	number	of	vertices	that	exceeds	the	threshold	in	both	

sessions	(Bennett	&	Miller,	2010).	Because	we	were	only	interested	in	assessing	reliability	

in	brain	areas	commonly	activated	during	speech	production,	we	masked	each	map	to	only	

analyze	activation	within	a	predefined	speech	production	network	area	covering	

approximately	35%	of	cortex	(see	Figure	1;	Tourville	&	Guenther,	2012).	Activation	maps	
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were	then	thresholded	to	retain	only	the	highest	20%	of	surface	vertices	within	the	masked	

area	(approximately	7%	of	total	cortex;	see	Figure	2	for	examples	of	these	thresholded	

maps).	Finally,	this	map	was	binarized	(active	voxels	=	1,	all	other	voxels	=	0).		

	

2.5.2.	Single-subject	ICC	

To	obtain	a	measure	of	reliability	that	was	not	threshold-dependent	and	took	into	

account	the	level	of	activation	at	each	vertex,	we	calculated	a	single-subject	ICC	(see	

Raemaekers	et	al.,	2007)	for	each	subject	that	compares	variance	between	sessions	to	

within-session	(across-vertex)	variance.	Like	the	Dice	coefficient,	the	ICC	is	relatively	

straightforward	to	interpret:	a	value	of	0	means	there	is	no	correlation	across	all	vertices,	

while	a	value	of	1	signifies	perfect	correlation	across	all	vertices.	Of	the	many	types	of	ICCs	

described	in	the	literature,	we	used	the	ICC(1)	as	defined	in	McGraw	and	Wong	(1996).	

This	type	of	ICC	is	based	on	an	analysis	of	variance	(ANOVA)	of	the	following	one-way	

random	effects	model:	

𝑦9: = 𝜇 + 𝑏9 + 𝑠9: 																				(𝐸𝑞. 2),	

where	yij	is	the	value	for	the	ith	vertex	and	the	jth	session,	μ	is	the	mean	value	across	all	

vertices	and	sessions,	bi	is	the	between-vertices	effect	at	vertex	i,	and	sij	is	the	residual,	

representing	the	between-sessions	effect.	ICC(1)	estimates	the	degree	of	absolute	

agreement	across	multiple	repetitions	of	a	set	of	measurements.	Formally,	it	is	an	estimate	

of		

𝐼𝐶𝐶(1) =
𝜎A/

𝜎A/ + 𝜎B/
																								 (𝐸𝑞. 3),	
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where	𝜎A/	is	the	between-vertex	variance	and	𝜎B/	is	the	between-sessions	variance.	Based	

on	McGraw	and	Wong	(1996),	the	sample	estimate,	𝐼𝐶𝐶(1)D ,	can	be	calculated	using	the	

following	formula:	

	

𝐼𝐶𝐶(1)D =
𝑀𝑆A − 𝑀𝑆B

𝑀𝑆A + (𝑘 − 1)𝑀𝑆B
																					(𝐸𝑞. 4),	

	

where	MSb	is	the	mean	squares	across	vertices,	MSs	is	the	mean	squares	of	the	residuals,	

and	k	is	the	number	of	within-subjects	measurements	(in	this	case,	2	sessions).	Following	

the	convention	of	Koo	and	Li	(2016),	ICC	values	below	0.5	indicate	poor	reliability,	between	

0.5	and	0.75,	moderate	reliability,	between	0.75	and	0.9,	good	reliability,	and	above	0.9,	

excellent	reliability.		

In	addition,	to	determine	whether	reliability	in	individual	subjects	across	sessions	

was	higher	than	that	across	the	sample,	we	also	computed	a	between-subjects	ICC	analysis.	

This	was	accomplished	by	averaging	each	individual’s	speech	maps	across	sessions,	and	

estimating	the	same	ICC	defined	in	Eq.	2	and	Eq.	3.	Thus,	the	s	term	estimated	the	between-

subjects	effect	rather	than	the	between-session	effect.	

For	this	analysis,	activation	maps	were	masked	with	the	same	speech	production	

network	mask	described	for	the	overlap	analysis	but	no	activation	threshold	was	applied,	

To	account	for	any	gross	scaling	differences	in	effect	sizes	across	contrasts	and	sessions	

that	could	affect	the	this	ICC	(McGraw	&	Wong,	1996),	effect	sizes	were	unit	normalized	

within	each	map	prior	to	each	analysis	by	dividing	the	value	at	each	vertex	by	the	Euclidian	

norm	of	all	the	vertices	in	the	map.	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2020. ; https://doi.org/10.1101/807925doi: bioRxiv preprint 

https://doi.org/10.1101/807925


	
	

19	

	

2.5.3.	Vertex-wise	Reliability	

As	in	previous	fMRI	reliability	studies	(Aron	et	al.,	2006;	Caceres	et	al.,	2009;	Freyer	

et	al.,	2009;	Meltzer	et	al.,	2009),	we	used	the	ICC	to	determine	the	vertex-wise	reliability	of	

individuals	across	sessions.	This	analysis	used	the	ICC(1)	as	in	2.5.2,	but	we	defined	MSb	in	

Eq.	4	as	the	mean	squares	between	subjects,	while	MSs	and	k	remained	the	same.	Then,	to	

focus	our	results	on	vertices	that	exhibited	‘good’	or	‘excellent’	reliability,	we	used	Koo	&	

Li's	(2016)	convention	to	threshold	the	resulting	ICC	map,	keeping	only	those	vertices	with	

good	or	excellent	reliability	(values	greater	than	or	equal	to	0.75).	Because	this	measure	is	

calculated	with	respect	to	the	sample	variance,	it	also	provides	a	measure	of	

discriminability	–	greater	differences	between	subjects	leads	to	higher	values.	We	applied	

this	analysis	to	all	cortical	vertices	(without	a	speech	network	mask)	in	order	to	compare	

the	discriminability	of	vertices	within	speech-related	areas	to	those	not	usually	associated	

with	speech.	As	with	the	previously	described	analyses,	activation	values	in	each	map	were	

unit	normalized.	

	

2.5.4.	Subject	Classifier	

Machine-learning	tools	have	recently	been	applied	to	MRI	data	to	detect	whether	

subject	groups	(e.g.,	patient	and	control)	are	discriminable	by	their	neural	structure	and	

function	(see	Sundermann	et	al.,	2014	for	a	review).	Here,	we	trained	a	nearest-neighbor	

subject	classifier	to	identify	individual	subjects	from	their	functional	maps,	in	order	to	

assess	both	the	reliability	and	discriminability	of	speech	and	null	maps	(separately)	for	

individual	subjects.	First,	a	session	map	from	the	20	subjects	who	were	scanned	twice	was	
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set	aside	as	the	testing	map.	A	randomly	selected	single-session	activation	map	from	all	75	

subjects	was	then	used	as	the	training	set	(excluding	the	testing	map).	The	training	set	data	

were	converted	to	a	set	of	activation	vectors,	demeaned,	and	whitened	using	the	observed	

between-subjects	covariance	within	the	training	set	(Strang,	1998).	The	nearest-neighbor	

classifier	then	selected	the	subject	within	the	training	set	that	had	the	smallest	Euclidean	

distance	to	the	test	map.	This	was	repeated	for	all	40	activation	test	maps	in	the	dataset	(2	

maps	from	each	of	the	20	subjects	with	repeated	measures)	and	a	percent	accuracy	score	

was	obtained.	This	whole	procedure	was	repeated	100	times,	each	time	selecting	different	

sets	of	random	single-session	activation	maps	for	training,	and	the	mean	accuracy	value	

across	these	repetitions	was	taken	as	the	classifier	predictive	accuracy.	Bias-corrected	and	

accelerated	(BCa)	bootstrapping	95%	confidence	intervals	(Efron,	1987)	for	accuracy	were	

estimated	with	1000	resamples.		

For	this	analysis,	we	used	maps	that	were	masked,	thresholded,	and	unit	normalized	

(see	Figure	2B	for	examples).	This	meant	that	subjects	were	classified	by	the	patterns	of	

relative	activation	within	the	most	active	vertices.	We	also	ran	this	same	classifier	on	

random	maps	(described	in	section	2.4)	to	provide	an	estimate	of	the	accuracy	expected	

based	on	chance,	given	the	thresholding	steps	and	type	of	classifier	used.	
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Figure	2.	A.	Masked	and	thresholded	speech	maps	for	three	example	subjects	in	both	sessions.	Outlines	of	
regions	of	interest	covering	the	masked	speech	network	previously	described	in	Tourville	&	Guenther	(2012)	
are	included	for	reference.	B.	Masked	and	thresholded	null	maps	for	the	same	subjects.	In	both	cases,	the	
activation	peaks	display	broad	visual	similarity	between	sessions.	Note:	the	color	scale	indicates	the	rank	of	
vertex	activation	within	each	map,	where	lighter	colors	indicate	higher	activation.	
	

	 	

2.6.	Group-level	Statistical	Analyses	
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Session 
1 

Session 
2 
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Dice	coefficient	and	single-subject	ICC	reliability	measures	from	the	speech,	null,	and	

random	maps,	which	were	not	assumed	to	follow	a	normal	distribution,	were	compared	

using	Wilcoxon	Signed-Ranks	tests.	For	the	single-subject	ICC	analysis,	we	also	compared	

individual	ICC	values	with	the	between-subjects	ICC	group	measure.		In	addition,	we	

calculated	the	Spearman	correlations	between	the	speech	and	null	maps	in	these	measures	

to	determine	whether	reliability	in	these	two	conditions	was	related	(i.e.	whether	high	

reliability	in	the	speech	condition	corresponded	with	high	reliability	in	the	null	condition).	

	

2.7.	Data	and	Code	Sharing	Statement	

All	anonymized	data	and	analysis	code	are	available	upon	reasonable	request	in	

accordance	with	the	requirements	of	the	institute,	the	funding	body,	and	the	institutional	

ethics	board.		

	

3.	Results	

3.1.	Single-subject	Spatial	Overlap	

The	Dice	coefficient	for	each	subject’s	thresholded	speech	maps	compared	between	

scanning	sessions	can	be	found	in	Figure	3A.	On	average,	their	Dice	coefficient	was	0.693	

(SD:	0.089),	demonstrating	approximately	69%	spatial	overlap	of	individual	activation	

maps.	For	individual	null	maps,	the	Dice	coefficient	between	sessions	1	and	2	are	also	

shown	in	Figure	3A.	On	average,	individuals	had	a	Dice	coefficient	of	0.726	(SD:	0.110),	

indicating	about	73%	spatial	overlap	across	sessions.	To	understand	how	these	values	

would	compare	to	subjects	with	completely	uncorrelated	activation	maps,	random	maps	

yielded	a	Dice	coefficient	of	0.205	(SD:	0.016;	this	is	expected,	since	only	voxels	with	the	
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highest	20%	of	effect	sizes	in	each	map	were	included).	For	the	group	comparison,	

although	speech	scores	were	lower	than	null	scores,	this	comparison	was	not	significant	

(z=-1.31,	p=0.191).	However,	both	conditions	were	significantly	different	from	the	random	

maps	(z	=	3.92,	p	<	0.001	for	both).	Further,	there	was	no	correlation	between	Dice	

coefficients	for	speech	and	null	maps	(Spearman’s	r	=	0.098,	p	=	0.681).		

	
Figure	3.	Comparison	of	reliability	measures	across	conditions.	A.	Dice	coefficient	values.		Values	for	
individual	subjects	are	shown	as	circles	in	each	condition,	and	dashed	lines	connect	results	from	individual	
subjects	across	conditions.	For	each	condition:	thin	red	line	=	median;	blue	box	=	interquartile	range	(25th-
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75th	percentile);	black	lines	=	boundary	of	values	for	data	points	that	fall	within	1.5	times	the	IQR	away	from	
the	edges	of	the	box;	blue	crosses	signify	outliers	–	values	that	fall	outside	the	black	lines.	B.	Single-subject	
intraclass	correlation	coefficients.	Circles	and	box	plots	represent	the	same	information	as	in	A.	The	thick	red	
lines	show	the	between-subjects	intraclass	correlation	values.	Asterisks	in	line	with	each	condition	show	
comparisons	between	the	distribution	of	individual	points	and	the	Between-Subjects	ICC.	C.	Classifier	
accuracy.	Error	bars	denote	the	bias-corrected	and	accelerated	bootstrapping	95%	confidence	intervals	(see	
section	2.5.4	for	details).	n.s.:	non-significant	at	alpha	=	0.05;	**:	p	<	0.01;	***:	p	<	0.001.	
	
	
3.2.	Single-subject	ICC	

The	distribution	of	single-subject	speech	ICC	values	across	sessions	can	be	found	in	

Figure	3B.	Subjects	exhibited	poor	(0.196)	to	good	(0.868)	reliability	according	to	the	

convention	of	Koo	&	Li	(2016),	with	a	mean	ICC(1)	of	0.721	(SD:	0.172).	As	a	comparison,	

the	between-subjects	correlation,	calculated	on	the	averaged	individual	activation	maps	

across	both	sessions,	was	poor	with	a	value	of	0.475.	A	Wilcoxon	Signed-Rank	test	shows	

that	the	median	of	the	within-subject	ICCs	was	significantly	higher	than	the	between-

subject	ICC	(z=3.51,	p<0.001).	For	the	null	condition,	individuals	showed	moderate	(0.622)	

to	excellent	(0.976)	within-subject	reliability,	with	a	mean	ICC(1)	of	0.870	(SD:	0.092).	The	

between-subjects	correlation	for	this	condition	was	poor	at	0.345,	and	the	median	of	the	

within-subject	coefficients	was	significantly	greater	than	this	value	(z=3.92,	p<0.001).	The	

random	maps	yielded	a	mean	ICC	of	0.013	(SD:	0.025).	Within-subject	ICCs	for	the	null	

maps	were	significantly	greater	than	the	ICCs	for	the	speech	maps	(z=3.17,	p=0.002),	and	

both	were	significantly	greater	than	random	maps	(z	=	3.92,	p	<	0.001	for	both).	Similar	to	

the	Dice	coefficient,	there	was	no	significant	correlation	between	ICC	values	in	the	speech	

and	null	conditions	(Spearman’s	r	=	0.173,	p	=	0.464).		

	

3.3.	Vertex-wise	Reliability	
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The	vertex-wise	ICC	map	for	the	speech	data	thresholded	at	0.75	can	be	found	in	

Figure	4.	While	much	of	cortex	was	found	to	have	ICC	values	greater	than	0.5	(see	

Supplementary	Figures	1	and	2	for	an	unthresholded	ICC	map	of	speech	and	null	data),	the	

highest	within-subject	reliability	(>0.75,	reflecting	good	or	excellent	reliability;	Koo	&	Li,	

2016)	appeared	in	areas	commonly	activated	during	speech	production	including,	on	the	

lateral	surface:	bilateral	motor	and	somatosensory	cortex,	bilateral	secondary	auditory	

cortex,	bilateral	inferior	frontal	gyrus	(IFG)	pars	opercularis,	left	anterior	insula,	and	

bilateral	anterior	supramarginal	gyrus,	and	on	the	medial	surface:	bilateral	supplementary	

and	pre-supplementary	motor	areas,	and	bilateral	cingulate	motor	area.	Some	additional	

regions	showed	high	discriminability	as	well:	bilateral	IFG	pars	orbitalis,	right	anterior	

insula,	bilateral	middle	temporal	gyrus,	and	bilateral	posterior	cingulate	cortex.	Thus,	the	

speech	production	network	accounts	for	most	of	the	regions	with	high	within-subject	

reliability.	
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Figure	4.	Vertex-wise	ICC	values	for	the	speech	activation	maps	thresholded	at	0.75.	Regions	of	interest	
previously	described	in	Tourville	&	Guenther	(2012)	are	included	for	reference.	
	

3.4.	Subject	Classifier	

Accuracy	of	the	subject	classifier	for	the	speech	and	null	maps	is	displayed	in	Figure	

3C.	For	the	speech	maps,	classifier	accuracy	for	untrained	test	data	was	96.52%	(BCa	

bootstrapping	95%	confidence	interval:	92.5%	–	100%).	Similarly,	the	accuracy	of	this	

classification	method	reached	95%	for	the	null	activation	maps	(BCa	bootstrapping	95%	

confidence	interval:	90.48%	–	100%).	To	assess	whether	these	results	were	better	than	

chance,	we	substituted	random	maps	for	each	subject’s	speech	surface	maps	(while	

maintaining	the	number	of	maps	that	each	subject	has	and	the	thresholding	pipeline).	

These	results	show	that	for	random	data,	the	classifier	accuracy	was	1.63%	(BCa	

bootstrapping	95%	confidence	interval:	0%	–	10.42%).	

0.95 0.75 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2020. ; https://doi.org/10.1101/807925doi: bioRxiv preprint 

https://doi.org/10.1101/807925


	
	

27	

	

4.	Discussion	

Characterizing	individual	reliability	in	speech	activation	is	an	important	step	toward	

validating	subject-specific	speech	research	in	persons	with	and	without	speech	disorders.	

In	this	study,	we	used	four	methods	to	assess	reliability	in	a	group	of	20	healthy	speakers.	

	

4.1.	Subject-specific	Reliability	

The	Dice	coefficient	and	single-subject	ICC	results	in	this	study	demonstrated	that	

both	the	extent	and	degree	of	activation	patterns	during	speech	production	in	most,	but	not	

all,	individuals	showed	moderate	to	high	amounts	of	reliability	across	tasks	and	timepoints.	

The	Dice	values	found	in	this	study	were	generally	larger	than	those	found	in	previous	

overt	expressive	language	studies	(Gorgolewski	et	al.,	2013;	Nettekoven	et	al.,	2018;	Paek	

et	al.,	2019;	Wilson	et	al.,	2017).	There	are	several	possibilities	as	to	why	this	was	the	case.	

First,	the	high	number	of	trials	for	each	subject	included	herein	likely	increased	power	

which	could	have	improved	the	robustness	of	the	activation	patterns.	Indeed,	in	

Gorgolewski	et	al.	(2013),	participants	had	36	speech	trials	and	36	baseline	compared	to	an	

average	of	271.9	speech	trials	in	the	present	analysis	(range:	143	–	378)	and	78.7	baseline	

trials	(range	24	–	126),	likely	leading	to	differences	in	power	as	shown	previously	

(Friedman	et	al.,	2008).	Paek	et	al.	(2019),	on	the	other	hand,	included	60	speech	trials	and	

60	baseline	trials	which	may	have	contributed	to	its	relatively	higher	Dice	coefficients.		It	is	

important	to	note	that	sessions	in	these	studies	were	intentionally	shortened	to	

accommodate	clinical	populations,	future	studies	will	need	to	determine	how	to	balance	

the	duel	needs	of	maximal	power	with	minimal	scan	time.		
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In	addition,	as	previously	discussed,	the	Dice	coefficient	is	inherently	tied	to	the	

thresholding	scheme	used.	Gorgolewski	et	al.	(2013),	Nettekoven	et	al.,	(2018),	and	Paek	et	

al.	(2019)	used	statistically	thresholded	maps	rather	than	effect	size	maps	with	a	percent	

threshold.	Statistically	thresholded	maps	such	as	these	can	be	strongly	affected	by	multiple	

factors	including	noise	from	head	motion	and	total	scan	time	(Bennett	&	Miller,	2010;	

Gross	&	Binder,	2014).	Furthermore,	even	at	similar	levels	of	thresholding	(Wilson	et	al.,	

2017),	reducing	the	region	of	interest	to	pre-defined	cortical	speech	areas	in	the	present	

study	eliminates	extraneous	regions	that	show	session-specific	activations	not	related	to	

speech	per	se.	In	Wilson	et	al.	(2017),	Dice	values	in	predefined	language	regions	were	

notably	lower	than	when	they	looked	at	all	supratentorial	voxels,	suggesting	that	higher-

level	language	processing	may	lead	to	more	variable	activation,	have	lower	signal	change,	

and/or	contain	more	noise.	Gorgolewski	et	al.	(2013)	reported	the	opposite	effect,	although	

Dice	values	for	this	task	were	only	specified	for	auditory	cortices.	Finally,	the	older	cohorts	

used	in	Gorgolewski	et	al.	(2013;	age	range:	50-58	years),	Wilson	et	al.	(2017;	age	range:	

70-76	years),	and	Paek	et	al.,	(2019;	age	range:	64-83	years)	may	have	had	reduced	

reliability	due	to	various	factors	that	decrease	signal-to-noise	ratio	in	the	BOLD	signal	in	

older	adults	(D’Esposito	et	al.,	2003).		Future	work	will	have	to	confirm	the	relationship	

between	age	and	speech	activation	reliability.	

The	single-subject	ICC	applied	in	this	study	measured	the	degree	of	reliability	

between	two	cortical	activation	maps.	While	it	relied	only	on	within-subject	sources	of	

variance,	it	was	highly	correlated	with	the	Dice	coefficient	(speech:	Spearman’s	r	=	0.902,	p	

<	0.001;	null:	r	=	0.949,	p	<	0.001)	thus	demonstrating	its	validity	as	a	measure	of	

reliability.	One	noteworthy	difference	between	this	measure	and	the	Dice	coefficient	was	
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significantly	higher	ICC	for	the	null	maps	compared	to	that	of	the	speech	maps	with	some	

subjects	attaining	near	perfect	between-session	null	map	correspondence.	This	

demonstrates	that	once	all	task	and	motion	parameters	are	accounted	for,	the	underlying	

signal	patterns	that	reflect	individual	anatomy	maintain	high	reliability	for	individuals	

across	scanning	sessions.	Nonetheless,	both	speech	and	null	maps	generally	demonstrated	

greater	within-subject	reliability	than	a	matched	between-subjects	measure.		

There	were,	however,	two	participants	(Subject	6	and	Subject	7)	whose	within-

subjects	ICC	scores	for	the	speech	maps	were	less	than	the	between-subjects	ICC	estimate.	

In	both	cases,	the	median	beta	value	across	vertices	for	one	of	the	two	scanning	sessions	

(the	CCRS	study	session)	was	more	negative	than	that	of	any	other	subjects.	This	might	

imply	that	these	subjects	had	less	power	for	the	speech	contrasts	in	CCRS.	Although	they	

had	similar	numbers	of	speech	trials	as	the	other	subjects,	they	were	among	the	subjects	

with	the	highest	scan-to-scan	motion	and	global	signal	change	for	this	study.	They	also	had	

the	two	highest	scan-to-scan	global	signal	change	values	for	the	other	study	(FRS).	Changes	

in	global	signal	are	often	artifacts	associated	with	subject	motion,	(although	other	

physiological	sources	contribute	to	this	measure;	see	Liu,	Nalci,	&	Falahpour,	2017)	which	

was	found	to	be	detrimental	to	reliability	measures	in	previous	work	(Gorgolewski	et	al.,	

2013).	However,	their	motion	was	not	excessive	for	typical	neuroimaging	sessions	and	

other	subjects	with	similar	amounts	of	scan-to-scan	motion	and	signal	change	maintained	

among	the	highest	ICC	values.	Another	potential	reason	that	these	two	subjects	had	much	

lower	ICC	scores	is	methodological:	since	the	ICC(1)	measures	absolute	agreement	rather	

than	consistency	(McGraw	&	Wong,	1996),	it	does	not	account	for	global	differences	in	

effect	sizes	across	studies.	Indeed,	the	distribution	of	activation	values	was	shifted	between	
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the	two	sessions	to	a	greater	extent	for	these	subjects	than	for	others.	We	attempted	to	

correct	for	this	by	unit-normalizing	vertex	values	for	each	subject	in	each	study,	but	this	is	

not	a	perfect	method.	Thus,	both	data	quality	and	methodological	choices	likely	drove	

down	their	reliability	scores.	Minimizing	motion	will	therefore	be	especially	important	for	

future	subject-specific	analyses.	

In	sum,	we	found	high	within-subject	reliability	of	activation	in	the	speech	network,	

except	in	two	cases	where	motion	may	have	negatively	impacted	the	signal-to-noise	ratio.		

	

4.2.	Population-normed	Reliability	

	 The	other	two	measures	we	calculated	assessed	population-normed	reliability	by	

comparing	response	variability	within	subjects	(across	sessions)	to	variability	between	

subjects.	These	measures	assess	individual	reliability	relative	to	the	sample,	but	

additionally	characterize	how	discriminable	individuals	are	from	one	another.	The	vertex-

wise	speech	ICC	map	paralleled	previous	studies	that	calculated	this	metric	–	many	of	the	

areas	where	ICC	values	were	high	corresponded	to	areas	commonly	activated	during	the	

task	(Aron	et	al.,	2006;	Caceres	et	al.,	2009;	Freyer	et	al.,	2009;	Meltzer	et	al.,	2009).	Thus,	

for	speech	production,	speech-related	areas	in	somato-motor	cortex,	medial	and	lateral	

pre-motor	cortex	and	extended	areas	of	auditory	cortex	were	consistent	for	individual	

subjects	across	scanning	sessions.	In	addition,	even	areas	of	cortex	inconsistently	active	

during	speech	production	like	IFG	pars	orbitalis,	middle	temporal	gyrus	(MTG),	and	

posterior	cingulate	gyrus	(PCG)	showed	high	discriminability.	In	a	review	of	fMRI	studies	of	

speech	and	language	processing	(Price,	2012),	both	IFG	pars	orbitalis	and	MTG	were	

associated	with	semantic	processing,	while	MTG	was	also	associated	with	translating	
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orthography	into	sound.	This	second	explanation	would	be	relevant	because	all	tasks	

involve	reading	aloud,	but	it	is	less	clear	why	semantic	processing	centers	would	be	highly	

reliable	for	pseudoword	speaking	tasks.	The	PCG	is	part	of	the	default	mode	network	and	

appears	to	help	modulate	attentional	control	(Leech	&	Sharp,	2014).	Thus,	individuals	may	

consistently	activate	or	deactivate	this	region	depending	on	their	level	of	attention	during	

speaking	tasks.	Previous	studies	of	higher-level	cognitive	tasks	have	found	reliable	

activation	outside	of	areas	commonly	associated	with	the	task,	but	this	usually	occurred	in	

sensory	and	motor	regions	needed	to	complete	the	task	(Aron	et	al.,	2006;	Freyer	et	al.,	

2009).	Caceres	et	al.	(2009)	suggested	that	areas	with	high	reliability	but	low	significance	

values	have	time-series	that	are	reliable	but	do	not	fit	the	task/HRF	model,	and	

demonstrated	this	pattern	for	half	of	their	participants	in	one	ROI.	This	may	also	be	the	

case	in	the	present	study.		

It	may	be	worth	pointing	out	that	bilateral	primary	auditory	cortex	appears	less	

reliable	by	this	vertex-wise	ICC	measure.	While	it	is	counter-intuitive	that	a	low-level	

sensory	region	of	cortex	would	be	least	reliable,	this	may	be	an	example	of	one	of	the	

drawbacks	of	this	type	of	measure	–	since	between-subject	variance	is	an	important	

component	of	this	calculation,	areas	that	are	more	reliable	across	speakers	would	tend	to	

have	lower	ICC	values,	given	constant	within-subject	reliability.	Thus,	it	may	be	more	

accurate	to	say	that	vertices	with	a	high	ICC	value	in	this	map	are	the	most	discriminable	

areas	among	a	group	of	subjects.	

	 The	final	measure	of	population-normed	reliability	was	the	classifier	analysis.	This	

type	of	analysis,	which	has	not	previously	been	used	to	determine	the	reliability	of	an	

individual’s	neural	activation	patterns,	has	the	added	advantage	of	characterizing	the	
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distinctiveness	of	an	individual’s	brain	activation	maps.	From	the	near	perfect	accuracy	in	

identifying	a	subject	correctly	from	among	75	potential	classes	given	1	training	sample,	it	is	

clear	that	individuals	are	not	only	quite	reliable	but	also	have	distinct	activation	patterns	

during	speech	production	akin	to	a	neural	“fingerprint.”	In	fact,	the	only	subject	that	was	

ever	mis-classified	was	Subject	7,	who	also	had	the	lowest	within-subject	ICC	value	and	

Dice	coefficient,	thus	demonstrating	consistency	across	measures.	The	same	classification	

method	trained	on	the	null	maps	also	demonstrated	high	accuracy,	roughly	equivalent	to	

that	achieved	by	the	speech	map	classifier.	It	is	important	to	mention	that	the	classification	

method	used	in	the	current	study	is	among	the	simplest	of	modern	machine	learning	

options,	and	that	using	only	one	training	map	per	subject	severely	reduces	the	power	of	the	

method.	Nonetheless,	classification	accuracy	was	very	high.	We	thus	interpret	the	current	

result	as	a	lower	bound	of	discriminability	of	speech	activation	maps	among	individuals	

which	might	be	improved	with	more	sophisticated	machine	learning	algorithms.	

	

4.3.	Speech	vs.	Null	Reliability		

As	expected,	the	portion	of	the	mean	BOLD	signal	associated	with	brain	morphology	

and	neurovasculature	demonstrated	high	reliability	within	subjects	and	high	

discriminability.	However,	the	lack	of	a	correlation	between	reliability	measures	in	the	

speech	and	null	maps	suggests	that	unique	activation	patterns	during	the	speech	task	are	

not	dependent	on	underlying	individual	anatomy.	

	

4.4.	Reliability	for	Speech	Production	across	Tasks	
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	 The	speech	tasks	used	to	assess	within-subject	reliability	herein	differed	across	

sessions.	This	has	two	important	consequences	for	interpretation	of	the	results.	First,	the	

present	results	do	not	account	for	activation	variance	attributable	to	inter-task	reliability.	

There	may	be	differences	in	activation	between	the	studies	simply	because	the	speech	

stimuli	were	different.	Thus,	they	are	potentially	conservative	compared	to	the	results	for	a	

consistent	speaking	task	as	well	as	other	published	fMRI	reliability	literature.	Second,	it	

means	that	the	reported	reliability	(and	discriminability)	measures	reflect	consistency	of	

the	speech	production	network	response	rather	than	the	response	to	a	particular	task.	

Therefore,	the	results	are	more	generalizable	to	other	speech	production	tasks	(at	least	of	

the	same	characteristics	–	reading	orthographic	representations	of	mono-	and	bi-syllabic	

words	and	pseudowords).	This	is	important	for	assessing	the	validity	of	future	subject-

specific	analyses	that	use	speaking	tasks	that	depart	from	those	in	the	present	study.		

	

5.	Conclusion	

	 Based	on	the	results	of	four	measures	of	reliability,	we	conclude	that	speech	

activation	maps	for	most	neurologically-healthy	speakers	are	generally	highly	reliable,	

providing	justification	for	subject-specific	neuroimaging	research	of	speech	production.	

Exceptions	were	found	for	subjects	who	exhibited	higher	levels	of	scan-to-scan	motion	and	

signal	change,	reinforcing	the	widely-held	understanding	that	minimizing	motion	is	crucial	

for	trusting	neuroimaging	data.		Future	work	analyzing	activation	patterns	from	patients	

with	neurogenic	speech	disorders	will	be	needed	to	determine	whether	these	individuals	

are	similarly	reliable	(though	extant	work	examining	reliability	in	patients	with	stroke	

[Kimberley	et	al.,	2008]	and	mild	cognitive	impairment	[Zanto	et	al.,	2014]	are	promising),	
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and	ultimately	whether	subject-specific	neuroimaging	techniques	can	be	used	to	map	the	

speech	production	network	in	individuals	and	track	changes	in	these	patterns	across	time.	

This	future	research	would	be	an	important	contribution	to	the	growing	body	of	literature	

characterizing	disease	progression	and	neurorehabilitation	(Herbet	et	al.,	2016;	

Reinkensmeyer	et	al.,	2016),	and	has	the	potential	to	improve	diagnosis	and	treatment	for	

people	with	speech	disorders.	
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