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Abstract 15 

Individual animals perform tasks in different ways, yet the nature and origin of that 16 
variability is poorly understood. In the context of spatial memory tasks, variability is often 17 
interpreted as resulting from differences in memory ability, but the validity of this 18 
interpretation is seldom tested since we lack a systematic approach for identifying and 19 
understanding factors that make one animal’s behavior different than another. Here we 20 
identify such factors in the context of spatial alternation in rats, a task often described as 21 
relying solely on memory of past choices. We combine hypothesis-driven behavioral design 22 
and reinforcement learning modeling to identify spatial preferences that, when combined 23 
with memory, support learning of a spatial alternation task.  Identifying these preferences 24 
allows us to capture differences among animals, including differences in overall learning 25 
ability. Our results show that to understand the complexity of behavior requires quantitative 26 
accounts of the preferences of each animal. 27 

 28 

Introduction 29 

 Modeling animal behavior provides a rigorous and falsifiable way to formulate 30 
quantitatively the computations that underlie the decisions that drive actions. Such modeling is 31 
often applied to tasks under tight experimental control via momentary sensory input or motor 32 
output, and the models are typically created to capture the behavior after acquisition of the 33 
task has occurred. These detailed models can capture much of the variability of animal 34 
behavior, and have thereby provided variables that help explain neural activity patterns 35 
recorded during these tasks1-5.  36 

 Many tasks are not under such tight experimental control, however, and often the goal 37 
is to understand not asymptotic performance but instead the learning process whereby 38 
experience drives systematic changes in behavior. Such learning and memory tasks, which 39 
include the Morris water maze6-8, the Barnes maze9-11, the T-maze12,13 and the W-track14-17, are 40 
widely used, but rigorous and systematic models of these behaviors are less common as 41 
methods of understanding the actions of the animals. Instead, behavior in these tasks is 42 
interpreted using intuition and qualitative, model-agnostic, metrics that are intended to 43 
capture the underlying learning and memory processes. 44 

We have recently shown that such intuition is not sufficient to capture the course of 45 
learning in a simple spatial alternation task:  a simple agent endowed with perfect spatial 46 
memory could not learn the task as quickly as an animal18. This result calls into question the 47 
common process of interpreting spatial alternation behavior only in terms of memory. In that 48 
work, we hypothesized that pre-existing or trainable preferences for particular locations or 49 
transitions between locations, in addition to memory, could underlie the learning of spatial 50 
tasks; however, the structure of the simple task limited any validation of that hypothesis. Here 51 
we sought to develop a systematic approach to determine the computational components for 52 
learning spatial alternation. We sought a solution that would provide critical information about 53 
the variables that best describe the different behavior of individuals, as well as the whole 54 
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group. We expect that this would allow accurate inferences about individually idiosyncratic 55 
neural activity patterns along with the algorithms implemented by those patterns.  56 

Modeling the entire course of learning is central to this approach; however, modeling 57 
the entire course of learning is difficult for experimental and analytical reasons. Experimentally, 58 
animals are typically exposed to behavioral tasks without prior experiences that would aid in 59 
identifying, or controlling, pre-existing preferences. In particular, these tasks are often 60 
implemented by combining the learning about the spatial environment in which the task is set 61 
with learning of the rules of the task. This makes it challenging to quantify pre-existing 62 
preferences that manifest in the way in which an animal interacts with the space independent 63 
of the constraints of the task. Moreover, at least until recently19-22, it has been common to 64 
shape the behavior of each subject in an individualized and heterogeneous manner. This is well 65 
suited to studies of asymptotic performance of tasks, but problematic for understanding the 66 
acquisition of those tasks. 67 

Analytically, each subject only provides one set of data points about their entire learning 68 
trajectory. This makes it challenging to convincingly fit a model to individual animal behavior, 69 
and attribute that single learning course to innate capabilities as opposed to random variation. 70 
The standard implementations of Reinforcement Learning (RL)23 models that capture these 71 
behaviors also presents challenges. RL formalizes the notion of updating information about a 72 
task based upon actions taken and rewards delivered and has the capacity to learn highly 73 
complex tasks24-27. However, the standard RL agents that capture asymptotic adaptivity 74 
extremely well often fail to describe competently the whole course of learning. In general, 75 
agents learn more slowly than animals do, since the agents do not embody the extensive 76 
knowledge about the world that animals apparently possess. Specific, model-based agents, by 77 
contrast, can be constructed to absorb the relevant information efficiently (or be provided with 78 
an advantageously restricted set of inputs). These models (unfairly) gain information from the 79 
outset as to which are the critical features of the environment28,29 and thus learn very quickly. 80 
In sum, neither standard RL nor model-based RL, as normally implemented, matches the 81 
learning rates of the animals.  82 

Here we present a general approach that addresses these challenges. We develop an 83 
automated behavioral system that minimizes tailored shaping and provides a higher-84 
throughput method to record behavior. This allows for more animals and more data for model 85 
validation. We include a period of free exploration prior to beginning an alternation task, 86 
allowing for the measurement of unconstrained behavioral preferences of each individual 87 
animal. We design an extended alternation task that includes a series of increasingly complex 88 
alternation contingencies providing multiple learning opportunities for each animal, thereby 89 
allowing for a distinction between random variation and innate capacity. Finally, we develop a 90 
series of RL agents specifically focused on capturing the dynamics of learning of individual 91 
animals. The result is a quantitative understanding of spatial alternation behavior that 92 
concludes that not only is memory critical for the way in which rats perform a spatial 93 
alternation task, but also that dynamic preferences play a large role in determining the choices 94 
that individual animals make. 95 

 96 
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Results 97 

Automated system for rats to learn a series of spatial alternation contingencies 98 

As our goal was to model the entire course of learning, and thereby understand the 99 
computations that underlie spatial alternation behavior, it was critical to standardize the 100 
behavioral training and to reduce potential effects of experimenter-subject interactions on 101 
learning30. We therefore developed an automated behavioral system19-21 that requires minimal 102 
animal handling: once animals were placed in the apparatus, no further experimenter contact 103 
was necessary until the end of the daily behavior. This system also enables the measurement of 104 
behavior across many animals throughout the entire course of learning and performance of the 105 
task. The apparatus contains four parts: 1) a six-armed track with reward wells at the end of 106 
each arm; 2) four rest boxes, each with a reward well; 3) corridors connecting the rest boxes to 107 
the track; and 4) doors to gate the pathway on and off the track for each rest box (Fig. 1A). 108 

Our previous work suggested that accurate descriptions of learning might require 109 
dynamic preferences, defined as (changeable) tendencies for animals to prefer specific 110 
locations or specific transitions between locations18. It was therefore critical to measure the 111 
initial values for these preferences. Furthermore, we sought to disambiguate the learning of the 112 
task from the learning of the space of the task. Therefore prior to the rats beginning the spatial 113 
alternations task, they had 14 – 16 sessions (362 – 425 total trials) of exploration on the track 114 
wherein the rats were rewarded at any arm visited as long as it was not a repeat visit to the 115 
immediately preceding arm. 116 

These exploration sessions revealed multiple preferences. First, individual rats showed 117 
preferences towards visiting specific arms (Fig. 1B&E). 22 of the 24 rats showed significant (𝑝 <118 
0.05) deviation from a random arm visit pattern (𝑝 = 1.1 × 10!", see Methods). Second, rats 119 
also had a large propensity to transition from their current arm to neighboring arms (Fig. 1C&E), 120 
with all 24 rats showing significant (𝑝 < 0.05) deviation from randomly transitioning between 121 
arms, even given their individual arm visit probabilities (𝑝 = 6.3 × 10!#, see Methods). And 122 
finally, the rats exhibited directional inertia, calculated as the frequency of an animal going in 123 
the same direction as it did on the immediately preceding trial (Fig. 1D&E). A partially different 124 
22 out of 24 rats showed significant (𝑝 < 0.05) deviation from random directional inertia, even 125 
accounting for their individual transition probabilities (𝑝 = 1.7 × 10!", see Methods).  126 

Given the existence of these preferences, we proceeded to ask whether those 127 
preferences play a role in learning. Following this initial exploratory period, and without any 128 
external signal to indicate a change, rats were sequentially exposed to different spatial 129 
alternation contingencies. The six arms of the track allow for the learning of multiple spatial 130 
alternation contingencies31,32, and we exposed animals to six different contingencies to provide 131 
multiple learning exposures with different levels of difficulty (Fig. 1F). These exposures in turn 132 
help constrain the models for each individual animal and provide opportunities to cross-133 
validate the models by training on one set of contingencies and testing on another.  134 

In each contingency, only three arms had the potential to deliver reward. Reward was 135 
delivered within a given contingency if the rat alternates between the outer arms after every 136 
visit to the center arm. For instance, if the contingency was at arms 2-3-4, then to get reward 137 
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the animal would have to follow the sequence 3-4-3-2-3-4-3 etc. Following previous studies in a 138 
related environment15,33 we defined inbound trials as trials where the animal starts from an 139 
arm that is not the center arm (arm 3 in this example), and outbound trials as trials where the 140 
animal starts at the center arm of the contingency.  141 

Performance improved on each of the contingencies, such that by the end of each one, 142 
rats typically made few outbound or inbound errors (Fig. 1G, S1B). There was, however, 143 
substantial and systematic variability across animals, where individual animals consistently 144 
showed higher or lower performance across all contingencies (see yellow and cyan colored lines 145 
in Fig. 1F&G for examples). This variability provided an additional goal for our modeling, in that 146 
an ideal model would capture not only the overall learning of the group but also the differences 147 
among individuals.  148 

Modeling framework 149 

In this work we use a similar modeling framework as our previous study18. For clarity 150 
and completeness, we describe and motivate the choices of that model. We first specify the 151 
algorithm that we use at the base of the model. We use a simple algorithm that, like the 152 
animals, does not require acausal information, can alter its internal information based upon its 153 
choices and rewards to increase the expected return of reward, and can work in the face of 154 
partial observability (see below). This led us to the actor-critic class of RL accounts trained by 155 
the REINFORCE policy gradient algorithm34, and employing a form of working memory35. 156 
REINFORCE is a popular choice for characterizing animal learning behavior in RL paradigms36, 157 
and there is also evidence of its use in humans37.  158 

Given that algorithm, we can specify a family of models with a common form. The 159 
models describe the behavior of an agent choosing an arm on trial 𝑡, which we write as 𝑎$. The 160 
choice of 𝑎$ depends probabilistically on an internal characterization of its situation or state 𝑠$, 161 
which can contain various sorts of information such as past arm choices. This dependence 162 
arises through a collection of action preferences or propensities 𝑚(𝑎, 𝑠$), such that actions with 163 
higher propensities are more likely to be chosen. The propensities are updated as a function of 164 
reward. The full details of the equations involved are provided in the Methods. In brief: a 165 
conventional softmax function converts the propensities to probabilities, 𝑝(𝑎; 𝑠$), of choosing 166 
to go to arm 𝑎$%& = 𝑎 on this trial (Eq. 1). Via the rules of the task, this choice of arm then 167 
determines whether the model receives a reward, 𝑟$%&, and also causes the state to update to 168 
𝑠$%&. This reward is then used to calculate the prediction error, 𝛿$, using the value function of 169 
the critic at states 𝑠$ and 𝑠$%&, 𝑉(𝑠$) and 𝑉(𝑠$%&) (Eq. 2). 𝛿$ is then used to update 𝑉(𝑠$) (Eq. 6) 170 
and the factors governing the propensities 𝑚(𝑎, 𝑠$) (Eq. 3 – 5). Finally, new propensities 171 
𝑚(𝑎, 𝑠$%&) are calculated, at which point the process begins again with the agent choosing its 172 
next arm to visit (Fig. 2A&B). 173 

All of the models described below have only three parameters, all of which take values 174 
between 0 and 1. The first parameter is the temporal discount factor, 𝛾, which determines the 175 
weighting of rewards in the farther future in defining the long-run values of states (and thus in 176 
calculating the prediction error, 𝛿) (Eq. 2). The second parameter is the learning rate, 𝛼, which 177 
determines how much 𝛿 updates the propensities and the value function (Eq. 3 – 6). The third 178 
parameter is the forgetting rate, 𝜔, which determines how quickly the propensity parameters 179 
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and the value function decay towards 0 (Eq. 3 – 6), a value that would indicate that there is no 180 
specific information about which arm to visit in any state since the value  would be the same for 181 
all propensities. 𝜔 enables the model to adapt to the nonstationarity of the task by constantly 182 
depreciating old information, allowing for changes in the propensities and the value function 183 
during changes in contingencies. 184 

The framework described above falls into the category of model free (MF) RL agents and 185 
MFRL agents typically learn slower than animals. Therefore, to develop a model that has the 186 
potential to learn as quickly as individual rats continually learn a task, we started by comparing 187 
the best each model could do to the average behavior across all rats (Fig. 2C&D). This provided 188 
a straightforward way to determine if the model had the potential to fit individual animals 189 
because if the best version of the model could not learn as quickly as the animals there would 190 
be no chance for it to capture the learning of all of the individual animals.  191 

Finally, we note that our goal was not to perfectly recapitulate all aspects of each 192 
animal’s behavior, as such a task is well beyond our current understanding. Instead, we sought 193 
to develop a simple, interpretable model that could capture learning rates across at least a 194 
subset of contingencies. Such a model would allow us to determine whether incorporating 195 
spatial preferences was important for describing behavior. That model, if it could be fit to 196 
individual animals, could also help us quantify differences in behavior among individuals. 197 
Finally, areas of lack of fit would provide a clear direction forward for future augmentation and 198 
understanding. 199 

Memory alone is not sufficient  200 

 We previously demonstrated that a model with working memory alone does not 201 
capture the rapid way rats learn a simple spatial alternation task18. We replicate and extend 202 
that finding in this more complex environment using our first model (M1). As we did in the 203 
previous work18, we added a memory component following an approach by Todd et al.35 where 204 
the state of the model is augmented to include a memory unit that stores the immediate past 205 
action. This enables the models to make decisions based upon current and past information. 206 
Such a strategy has been used to learn common rat behavioral tasks38, and exhibits features of 207 
rat behavior39. In all of the models, the state, 𝑠$ = {𝑎$ , 𝑎$!&}, includes both the current and the 208 
most recent past arm (Fig. 2B). For model M1 the propensities are 𝑚&(𝑎, 𝑠$) = 𝑏(𝑎|𝑎$ , 𝑎$!&). 209 
For each state, 𝑏(𝑎|𝑎$ , 𝑎$!&) contains 5 numbers governing the propensity to make a transition 210 
from the current arm to each of the other 5 arms. Returning to the same arm is not allowed in 211 
the model, as it was never rewarded in the behavior. 212 

 This working memory (WM) RL agent starts with perfect memory of the immediate past 213 
and has the capacity to perform each contingency well; however, it learns to do so far slower 214 
than the average across the rats (Fig. 2C&D), even when the parameters are set to optimize the 215 
obtained reward. With M1, good performance on the first contingency arises at the correct 216 
timescale—something that will be discussed further below—but performance on all the 217 
subsequent contingencies improves much more slowly than for the rats. For contingencies 2 – 218 
5, M1 reached 75% correct 2.7 – 4.9 times slower than the average performance of the rats, 219 
and for contingency 6 M1 was 10.9 times slower.   220 
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Arm and transition preferences, combined with memory, enables the model to learn as 221 
rapidly as the rats 222 

Given the failure of M1 to show relevant learning rates, we then asked whether the 223 
incorporation of dynamic preferences would be sufficient to enable rapid learning, as was the 224 
case for the simpler three-arm version of the task18. To capture the preferences, we added 225 
individual propensities to the model. As the goal of modeling is always to develop the simplest 226 
model that explains the data, we begin by adding a single term for each arm to capture the 227 
individual arm preferences shown by the animals (Fig. 1B, S2A). This yields model M2, where 228 
𝑚'(𝑎, 𝑠$) = 𝑏(𝑎|𝑎$ , 𝑎$!&) + 𝑏((𝑎) (Fig. 2B). The term 𝑏((𝑎), which we call a dynamic 229 
independent arm preference, provides the agent with additional preferences to choose specific 230 
arms next, independent of its current or past locations. As with the state-dependent propensity 231 
terms, 𝑏((𝑎) are also updated by 𝛿$ through the process of learning. Importantly, adding this 232 
term allows us to capture both the fact that the animals may prefer specific arms before 233 
beginning the learning of the alternation contingencies and that these preferences can be 234 
dynamic and shaped by reward. Importantly, including this term or any other preference 235 
related term does not entail adding any additional free parameter to the model. 236 

Including the dynamic independent arm preference yields an agent that can learn much 237 
more quickly, but still failed to match the learning rates of the rats (Fig. 2C&D).  M2 learned the 238 
first contingency faster than the animals, reaching 75% correct 5 times faster than the rats. By 239 
contrast, for contingencies 2 – 5, M2 reached 75% correct 1.0 – 1.6 times slower than the 240 
average performance of the rats, and for contingency 6 M2 was 4.4 times slower.   241 

The failure to match learning rates led us to incorporate an additional preference 242 
observed in the animals, a dynamic transition preference. This yielded model M3, for which 243 
𝑚)(𝑎, 𝑠$) = 𝑏(𝑎|𝑎$ , 𝑎$!&) + 𝑏((𝑎) + 𝑏*!𝜒&(𝑎 = 𝑎$ ± 1)	+ 𝑏*"𝜒'(𝑎 = 𝑎$ ± 2) (Fig. 2B, S2B). 244 
The additional propensities capture the preference of the animals to transition to neighbors 245 
that are either one, 𝑏*!, or (as an addition to our previous model,18 because of the structure of 246 
the task) two arms 𝑏*", away, independent of the current location of the animal (Fig. 1C). Here 247 
again these state values update using the same three parameters as the previous models.  248 

Model M3 more closely approximates the behavior of the rats (Fig. 2C&D). While M3 249 
reached 75% correct 10 times faster than the rats on the first contingency and 3.6 times slower 250 
for contingency 6, for contingency 2 – 5, M3 reached 75% correct at rates more similar to the 251 
average performance of the rats. 252 

Model with memory and arm and transition preferences fits individual animals  253 

M3, despite its relative simplicity, proved sufficiently flexible to match the average 254 
learning rates of the animals for some contingencies. This in turn suggested that it could be 255 
sufficiently powerful to capture important aspects of the behavior of individual rats. For the fit 256 
to an individual rat, we forced the model to make the same sequence of arm visits as the 257 
animal during the initial exploratory phase, effectively using the data of the animal to inform 258 
the initial condition of the model. We then fit aspects of selected contingencies, testing how 259 
well the resulting parameters permitted generalization to the behavior in the other 260 
contingencies. 261 
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To determine the best fitting parameters we used an Approximate Bayesian 262 
Computation (ABC) method40, consistent with other studies using RL agents to fit rodent 263 
behavior39,41. ABC methods find parameters such that the average behavior of the model when 264 
operating in the task, choosing stochastically, matches as well as possible that of an individual 265 
animal, according to some suitably chosen statistics. We averaged 200 repeats of the model 266 
and chose as statistics the inbound and outbound performance for the contingencies we fit. We 267 
then evaluated the fit of each model to each animal by calculating the root mean square (rms) 268 
difference between the model and data on inbound and outbound trials on all contingencies. 269 

We found that even though the model was able to fit to the inbound and outbound 270 
errors of the first contingency (Fig. S3A), the parameters from those fits did a poor job of 271 
capturing the behavior of the animals on subsequent contingencies (Fig. S3B). This failure was 272 
not too surprising given that the first contingency was an outlier when evaluating the maximal 273 
reward the models could receive (Fig. 2C). We will return to understand this difference in the 274 
first contingency below. 275 

Therefore, we chose to fit specifically the second and third contingencies. These 276 
contingencies are the most representative for this task, as 1) both follow other simple 277 
contingencies, and 2) occur before the hardest, fourth, contingency, for which the required 278 
alternation involves skipping neighboring arms. Fitting the second and third contingencies 279 
allowed us to use the performance of the model on the subsequent, and preceding, 280 
contingencies as predictions that could test the goodness of fit of the models. Finally, to verify 281 
that the additional preferences of M3 were necessary for the fit to individual animals, we also 282 
fit to M1 and M2.  283 

The fits of the second and third contingencies (Fig 3A) confirmed that M3 fit the 284 
individual animals better than M2 and M1 (Fig. 3B). Specifically, both M2 and M3 fit inbound 285 
and outbound errors with lower rms errors as compared to M1 (p < 10!", paired permutation 286 
test), and M3 improved upon M2’s performance for outbound errors (𝑝 = 1.4 × 10!+, paired 287 
permutation test). These findings indicate that incorporating all three observed propensities—288 
memory, independent arm and neighbor transitions preferences—improves the fit of the 289 
model to the data. We note that there remain clear situations in which M3 still does not fit the 290 
data well, however. We return to this observation below. 291 

Individual model fits capture variability in behavior 292 

 M3 yielded parameter estimates for the learning-related variables that were much more 293 
variable across animals, suggesting that it might capture individual differences. When 294 
compared to M2, the M3 fits to all 24 rats had an interquartile range 7.8 times larger for 𝛼 (0.39 295 
vs. 0.05) (𝑝 = 0.0021, paired permutation test), 3.0 times larger for 𝛾 (0.11 vs. 0.04) (𝑝 =296 
0.0007, paired permutation test), and 1.8 times larger for 𝜔 (0.004 vs. 0.002) (𝑝 = 0.023, 297 
paired permutation test). 298 

Indeed, M3 fit not only the overall structure of the learning of all animals, but also 299 
captured information about the individual learning rates of each animal. Individual animals had 300 
different overall reward rates (Fig. 1F), and thus to be able to capture differences between the 301 
animals, the model needs to show differences in reward rates between the fits of the animals. 302 
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This was the case: the fits of M3 to the individual animals correspond to different total reward 303 
rates of the model (Fig. 4A).  This means that M3 provides a good substrate to explain the 304 
different performance of the rats on the task.  305 

M3 also captures the relative performance of the animals better than M2. We ordered 306 
the animals based upon the actual reward rate the animals received during the second and 307 
third alternation contingencies and compared that to the order of the animals based on the 308 
reward rate the model received when fit with either M2 or M3. M3 better accounted for the 309 
variability in reward rates than M2 for contingences which the model was fit (Fig. 4B). M3 310 
captured 58.8% of the variance in the ordering of reward rates of the animals during 311 
contingency 2 and 3, which was substantially larger than the 29.1% captured by M2 (𝑝 = 0.017, 312 
paired permutation test).  313 

That strong correlation is a necessary, but not sufficient condition for M3 being 314 
considered a good model. A good model should also make accurate predictions on new data. 315 
We therefore asked if M3 could capture the variability in the performance of the animals for 316 
the contingencies on which the model was not fit and thereby capture something about the 317 
learning for each animal. We found that the ordering of the model reward rates from 318 
contingency 2 and 3 captured 15.3% of the variance in the performance of the animals to the 319 
contingencies that were not fit by the model (1, 4, 5, and 6), which is substantially larger than 320 
the 1.3% captured by M2 (𝑝 = 0.017, paired permutation test) (Fig. 4C). Importantly, M3 321 
captured the same amount of variance in the reward rate of the animals to the contingencies 322 
that were not fit as the actual reward rates of the animals in contingencies 2 and 3 (𝑟' =323 
10.6%; 	𝑝 = 0.30, paired permutation test). That indicates that M3 does at least as good a job 324 
of predicting the reward rate of the animals as the reward rate of the animals themselves. 325 

An examination of the overall reward rates themselves confirmed these conclusions. We 326 
performed a median split based off of the reward rate of the model to contingency 2 and 3. The 327 
higher performing half of the animals showed a significantly greater overall reward rate on the 328 
remaining contingencies (1, 4, 5 and 6) compared to the lower performing half of the animals 329 
(Fig. 4D, 𝑝 = 0.02, rank sum test). The average performance of the higher performing half of 330 
the animals was consistently larger than the lower performing half of the animals across all of 331 
the contingencies, even though the median split was made off of the reward of the model for 332 
contingency 2 and 3 (Fig. 4E). 333 

Model agnostic analysis confirms importance of neighbor preference 334 

The modeling provides strong support for the importance of the dynamic preferences 335 
for the rapid learning of this family of spatial alternation tasks. In particular, adding in the 336 
neighbor arm preference was critical for capturing the individual variability among rats in 337 
learning this task (Fig. 3C, 4). That observation led us to ask whether the neighbor bias could 338 
also account for other aspects of behavioral performance.  339 

Consistent with this possibility, we found evidence that the neighbor bias from the 340 
exploratory period of the task relates to overall performance on the alternation task. During the 341 
exploratory period, we calculated the frequency with which each animal visits the neighboring 342 
arm. There was a range of preferences across the rats for neighboring arms during the 343 
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exploratory period, which correlated surprisingly well with the average reward rate across all 344 
contingencies for each animal (Fig. 5A, 𝑝 = 0.0016, 𝑟' = 0.37). Thus, animals that 345 
demonstrate a stronger preference for visiting neighboring arms tend to obtain more rewards, 346 
possibly because the structure of the task includes neighboring arm visits.  347 

Additional preference governs slower learning of first alternation contingency 348 

It is possible that learning the alternation task draws upon preferences that were not 349 
included in the model. As shown in Figure 1D&E, animals exhibit directional inertia during the 350 
exploration period. M3 did not include this preference, allowing us to ask whether any of the 351 
discrepancies between M3 and the behavior of the rats could be due to the absence of 352 
directional inertia in the model. Directional inertia leads to large sweeps across the track (Fig. 353 
1D) and sweeps larger than 3 arms are counterproductive for the alternation task.  354 

We asked whether there was strong evidence for including directional inertia in the 355 
model by asking if the preference to perform large sweeps during the exploratory period 356 
predicted the average reward rate throughout the task, as occurred for the neighbor transition 357 
preference (Fig. 5A). This was not the case: even though directional inertia was prevalent for 358 
the animals (Fig. 1E), there was no significant correlation between the large sweep rate (sweeps 359 
>3 arms) during the exploratory period and the total reward rate during the alternation task 360 
(Fig. S5A) (𝑝 = 0.4).  361 

There was, however, clear evidence of slower learning by the rats on the first 362 
contingency, as compared to M3. This slower learning occurred in part because for the rats, but 363 
not the model, large sweeps often persist into the first contingency. We calculated the 364 
proportion of arm visits that were a part of a large sweep (>3 arms) during the exploratory 365 
period and into the first alternation contingency (Fig. 5B). The values are identical between the 366 
animals and the models fit to those animals during the exploratory period because we force 367 
each model to follow the same series of arm visits as the individual rats (see Methods). At the 368 
transition to the first contingency, M3 drops to a low baseline level of large sweeps. In contrast, 369 
the rats persist with an elevated large sweep rate after the transition to the first alternation 370 
contingency (Fig. 5B). 371 

To provide further evidence that persistent large sweeps lead to slower learning of the 372 
first contingency, we evaluated the large sweep rates of the higher and lower performing rats, 373 
as determined by the median split from the model fit to the second and third contingency (Fig. 374 
4C). The higher performing animals dropped their large sweep rate faster than the lower 375 
performing animals (Fig. 5B), with the higher performing rats having a lower overall large sweep 376 
rate in the first contingency compared to the lower performing rats (Fig. 5C) (𝑝 = 0.003, rank 377 
sum test). These two groups of animals did not show any difference in large sweep rates during 378 
the exploratory period (𝑝 = 0.55, rank sum test). This is consistent with the higher performing 379 
animals more quickly learning to not perform large sweeps.  380 

If so, then animals that learn faster should be able to more quickly overcome their 381 
preference for directional inertia. Indeed, that was the case. We calculated the large sweep rate 382 
from the first contingency, where fewer large sweeps would be expected to be associated with 383 
faster suppression of this preference. We found a strong inverse correlation between the 384 
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reward rate for the entire task and the first contingency large sweep rate (Fig. 5D) (𝑝 =385 
3.3 × 10!+, 𝑟' = 0.45). Consistent with the removal of the large sweeps being a function of 386 
the learning capacity of the animals, there was also strong inverse correlation between the 387 
learning rate, 𝛼, of the model (fit only to the second the second and third contingency) and the 388 
first contingency large sweep rate (Fig. 5E)  (𝑝 = 6.0 × 10!+, 𝑟' = 0.42), with 𝛼 also 389 
accounting for a large fraction of the variance of the overall reward rate (𝑝 = 1.2 × 10!), 𝑟' =390 
0.38). 391 

Finally, we asked whether the large sweep rate, and by extension the learning rate, 392 
capture a different aspect of the reward rate variability than that which is correlated with the 393 
neighbor transition frequency during the exploratory period (Fig. 5A). We found that it does: 394 
the neighbor transition frequency during exploration did not correlate with the large sweep 395 
rate during the first alteration contingency (Fig. S5B) (𝑝 = 0.2). 396 

In combination, the neighbor transition frequency during the exploratory period and the 397 
large sweep rate during the first alternation contingency account for 64.6% of the variance in 398 
the reward rates of the animals across the entire alternation task. We calculated the overall 399 
variance explained by fitting a multifactorial linear regression relating the transition frequency 400 
and large sweep rate to the overall reward rate during the alternation task. Consistent with the 401 
large sweep rate being correlated with the learning rate of the animals, the neighbor transition 402 
frequency during the exploratory period and the learning rate of the model (fit only to the 403 
second and third contingency) account for 58.2% of the variance in the reward rates of the 404 
animals across the entire alternation task. The slight increase in variance captured by including 405 
the large sweep rate in the first contingency over including the learning rate of the model 406 
occurs due to the fact that the large sweep rate in the first contingency is directly related to the 407 
amount of reward in the first contingency. If we compare the reward rate for contingencies 2 – 408 
6 the neighbor transition frequency combined with the large sweep rate accounts for 64.9% of 409 
the variance; whereas the neighbor transition frequency combined with the learning rate 410 
accounts for 66.4% of the variance. 411 

Taken together, these findings indicate that the lack of directional inertia contributed to 412 
the faster learning of the first alternation contingency by M3 as compared to the rats. But, after 413 
the transition from exploration to the first contingency, the variability of the animals with 414 
respect to directional inertia was well captured by the variability in the associated model 415 
learning rates. 416 

Model accurately predicts animal behavior 417 

As an additional test of the model and the importance of combining dynamic 418 
preferences and memory to describe the way the animals learn, we examine the ability of the 419 
model to predict the course of learning on the contingencies on which the model was not fit (1, 420 
4, 5, and 6). We first define a metric for model accuracy. Each time the model is run, it 421 
generates a set of choices and a corresponding set of inbound and outbound errors. Up until 422 
this point, we combine 200 repeats of the model to define the average inbound and outbound 423 
error rates. Here we assess the variability of the model by measuring the rms difference 424 
between the inbound and outbound errors of an individual run of the model and the average 425 
inbound and outbound error rates of the model. If the model is a good fit for an animal, then 426 
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the errors of the animal should be similar to those individual runs of the model (Fig. 6A, S6), 427 
and thus should have a similar rms difference to that of individual runs of the model to the 428 
average error rates from the 200 repeats. Model accuracy was therefore defined as the 429 
proportion of the individual model runs with larger rms differences than the data, and thus 430 
values less than 0.05 indicate significant deviations of data from model at p < 0.05, while large 431 
values indicate non-significant deviations.  432 

The model accuracy confirms the goodness of fit of the model to contingencies two and 433 
three, the contingencies to which it was fit (Fig. 6B). The majority of the animals show model 434 
accuracies far larger than 0.05 both for the inbound and outbound errors (table 1), creating a 435 
median p value for the population greater than 0.05, which indicates that the model fits of the 436 
error rates of the animals during contingency two and three cannot be distinguished from 437 
individual runs of the model.  438 

The models also provide good predictions for many of the remaining, nonfit, 439 
contingencies. Outbound errors on contingencies 4, 5, and 6 were well described by the model, 440 
as were the inbound errors on contingencies 5 and 6 (Fig. 6C, table 1). Of these the most 441 
surprising is that M3 fit to the second and third contingency predicted the outbound errors of 442 
the fourth contingency (Fig. 6C). This contingency, 2-4-6, is by far the hardest contingency, as it 443 
forces the animals to continue to alternate arms but to do so whilst skipping neighboring arms. 444 
Not surprisingly, the fits to the first contingency are poor, due at least in part to the initial 445 
directional inertia of the rats.  446 

Deviations of the behavior from the model point to generalization about the task 447 

Even though M3 fit to the second and third contingencies did a good job of predicting 448 
the outbound errors of the subsequent and unfit contingencies, we were surprised that the 449 
outbound errors of contingency five and six were less well fit than the outbound errors of the 450 
fourth, and hardest contingency. We quantified this and found that the distribution of model 451 
accuracies shifts is indeed worse for the outbound errors of the fifth and sixth contingencies, 452 
where the median of the distribution is 0.092 and 0.099, respectively (Fig. 6C). These accuracies 453 
are far worse than the outbound fit accuracies for the second (0.363; 𝑝 = 1.8 × 10!+ and 𝑝 <454 
1 × 10!, respectively, paired permutation test) and third (0.752; 𝑝 < 1 × 10!, and 𝑝 <455 
1 × 10!, respectively, paired permutation test) contingencies, and, surprisingly, the medians 456 
are also worse than the outbound fit accuracy for the fourth contingency (0.237; 𝑝 =457 
3.8 × 10!) and 𝑝 = 2.5 × 10!+ respectively, paired permutation test), even though the fifth 458 
and sixth contingencies are of the standard variety with neighboring arms being the outer arm. 459 

We then asked whether these less accurate fits were associated with better or worse 460 
performance by the model: if the model performs worse than the animals it would indicate 461 
more rapid learning and lower error rates in the animals that could result from generalization 462 
where the animals had extracted information about the structure of the task. To explore that 463 
possibility, we calculated the average difference between the inbound and outbound errors of 464 
the individual rats and the inbound and outbound errors of the model fits (Fig. 6D). Consistent 465 
with the possibility of generalization, the model makes more outbound errors at the beginnings 466 
of the fifth and sixth contingencies. This is in contrast to the performance on early 467 
contingencies (1 and 4) where the model tended to make fewer errors.  468 
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  469 

Discussion 470 

Can we rely on our intuition to understand behavioral performance in complex tasks? In 471 
the context of spatial alternation, differences in learning rates are typically interpreted as 472 
reflecting differences in the quality of each animal’s memory for past experiences12,13,15,17,33. 473 
We developed an automated six arm spatial task and exposed rats to both an initial exploration 474 
period and a series of alteration contingencies where the animal had to alternate among 475 
different subsets of arms (Fig. 1). We then developed a series of RL models, first using memory 476 
alone and then, when that model proved insufficient, incorporating specific dynamic 477 
preferences that reflect favored arms or favored transitions between arms (Fig. 2).  478 

As we also found for the simpler, three-arm task18, the incorporation of these dynamic 479 
preferences was sufficient to produce a model that can learn the spatial alternation task as 480 
rapidly as the rats (Fig. 2&3). That model also identified different learning parameters across 481 
animals and was able to predict individual animal behavior on data to which it had not been fit 482 
(Fig. 4&6). The specific preferences added to fit the data included a neighbor transition 483 
preference that could be estimated from the initial exploration period. The strength of that 484 
preference for individual animals was highly predictive of the total amount of reward they 485 
received throughout the task (Fig. 5A). Our results demonstrate that the dynamics of learning 486 
can be captured with relatively simple models that combine memory with dynamic preferences. 487 

Importance of assessing preferences before task learning 488 

 Traditionally, when studying spatial alternation behavior, animals experience the space 489 
of the task at the same time that they experience the rules of the task18. This conflates the 490 
learning of space with the learning of the task. Furthermore, it prevents any direct and 491 
independent measurement of the preferences that the animals bring to the task. 492 

Here we have separated these two aspects of the behavior. In so doing we directly 493 
measured the preferences that rats have in exploring the six arms of the track (Fig. 1 B – E). The 494 
presence of these preferences indicates that they could be utilized while learning the task. We 495 
have presented model dependent (Fig. 4&6) and model agnostic (Fig. 5) evidence that rats 496 
dynamically utilize these preferences to enable their rapid learning of the spatial alternation 497 
task.  498 

Utilizing individual variability for model refinement 499 

The procedures of model generation, testing and refinement are exactly those of 500 
formulating and falsifying hypotheses about possible underlying causes of the observed 501 
behavior. Such hypotheses are typically componential—involving different potential processes 502 
(such as learning rules) and parameters (such as subject-specific learning rates or weights 503 
governing the impact of alternative mechanisms). Testing modelling hypotheses of this sort 504 
requires determining the values of the parameters that fit the data, and balancing the quality of 505 
the fits against the complexity of the models42. New and additional hypotheses then arise from 506 
features in the residuals of the fits to the data.  507 
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Since the modelling procedures can sometimes be buried or even ignored, we took the 508 
opportunity to lay out the logic of their development and motivate their form through the 509 
intricacies of the data. In doing this, we have presented a series of related models that 510 
increasingly capture the behavior of the animals across multiple stages of the task. 511 

Through refinement, we developed an RL agent that could perform the task as quickly 512 
as the rats and fit that model to capture the individual behavior. We laid bare the logic of the 513 
changes that we made to the RL agent to develop the final model. As the alternation task 514 
cannot be described as a Markov decision process, a working memory RL agent (M1)35 could 515 
learn the task, but did so far slower than the animals for all but the first alternation (Fig. 2). 516 
Incorporating dynamic preferences, motivated by the exploratory behavior of the rats, into the 517 
RL agent (ultimately model M3) enabled it to learn as rapidly as the rats (Fig. 2). Note that all 518 
models (M1 – M3) can be described as model-free agents with temporally-sophisticated 519 
representations; thus, our result confirms Akam et al.’s43 observation, that one need not 520 
necessarily appeal to more computationally sophisticated, model-based, components28 to 521 
account for all aspects of fast learning, but rather take appropriate account of structural 522 
contributions associated with preferences.  523 

Since, by their very nature, models offer incomplete and simplified representations of 524 
phenomena of interest, it is critical to be able to define how to decide where to stop the formal 525 
modeling process. Through the various model iterations, we had to decide both when to 526 
continue refining the model, and when to stop doing to so. The initial drive to continue the 527 
modeling was obvious. M1 couldn’t learn the task nearly as rapidly as the animals (Fig. 2). 528 
However, with M2, the need to continue was far more subtle. M2, largely, had the capacity to 529 
learn the task as rapidly as the rats; however, when we fit M2 to the individual animals the 530 
parameters mostly clustered around the parameters that maximized the amount of reward that 531 
M2 could receive (Fig. 3C). This indicated that there was still something fundamentally missing 532 
in the agent. None of the subtlety and richness of the individual variability between animals 533 
clearly apparent in Fig. 1F&G existed within the parameters for the fits of M2. Finally, with M3, 534 
the parameters from the fits to the individual animals varied away from the parameters that 535 
maximized reward for that agent. This indicated that we could consider no longer continuing 536 
the process of improving the modeling. 537 

The decision to stop the modeling at that point rested upon somewhat different factors. 538 
Even though M3 fails to capture certain identifiable aspects of the behavior of the rats, it 539 
closely matches different features of the way in which the individual animals learned the task 540 
(Fig. 6), and predicted the learning to contingencies that were not fit by the model (Fig. 4). It 541 
was the combination of capturing variability across animals and predicting features of the 542 
behavior outside of the fit that suggested that we might stop refining the model further. To go 543 
beyond this, it would be desirable to refine the paradigm, for instance to put the ‘skip’ 544 
contingency (2-4-6) at different points to examine its role in generalization; or to systematize 545 
the length of engagement with each contingency to study the possible decrease in learning rate 546 
as performance improved.  547 

Model successes and limitations point to continual learning and generalization 548 
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 Animals seamlessly learn tasks over many different timescales, a characteristic with 549 
which machine learning and artificial intelligence are just starting to grapple44,45. Such continual 550 
learning can be precisely defined using our presented modeling approach. Our model, fit to just 551 
two of the contingencies, predicts the behavior of the animals in other contingencies (Fig. 6). 552 
That indicates that there need be no new type of learning for the fit and predicted 553 
contingencies, even though the specific application of the rule changes. However, in places 554 
where the model does not predict the behavior, that provides specific times where the animal 555 
could change its learning and provide experimental substrate to better understand where and 556 
how animals continually learn. 557 

 The places where the model less well predicts the behavior of the animals also allows 558 
for the generation of specific hypothesis as to what the animals might be doing. The model 559 
made more outbound errors on the final alternation contingencies and fewer inbound errors of 560 
the fourth contingency (Fig. 6). We speculate that it is here that M3 is compromised by its 561 
inherent model-free nature and that the rats deviated from the RL agent because the rats have 562 
generalized by learning the structure of the task, enabling them to use that information to 563 
speed up the learning of a given contingency (or possibly slowing learning when their 564 
expectations fail to match reality). It will be interesting to study the timing and nature of this 565 
potential generalization further. Does the generalization only happen due to the number of 566 
contingencies, or is there something about the animals’ experience of the skip arm contingency 567 
that allows them to generalize the alternating nature of the task more competently? 568 

 Finally, using an extended and changing task combined with the modeling allowed us to 569 
find systematic differences between animals in the way that they learned the task (Fig. 4). 570 
These results are consistent with mice studies showing consistent learning capacities across 571 
tasks46,47. Furthermore, the link between exploratory behavior and learning ability (Fig. 5) is also 572 
consistent with previous mouse studies48. This sets the state for future studies that would 573 
identify individual differences in the circuitry supports the learning of these behaviors.  574 

 575 

Methods 576 

Animals: All experiments were conducted in accordance with University of California San 577 
Francisco Institutional Animal Care and Use Committee and US National Institutes of Health 578 
guidelines. Rat datasets were collected from Long Evans rats, ordered from Charles River 579 
Laboratories, that were fed standard rat chow (LabDiet 5001). To motivate the rats to perform 580 
the task, reward was sweetened evaporated milk, and the rats were food restricted to ~85% of 581 
their basal body weight. 582 

Two cohorts of rats, comprised of 6 males and 6 females each, were run on the 583 
automated behavior system. There were no systematic differences in reward probabilities 584 
between the male and female rats within the two cohorts (Fig. S1C), so data from all animals 585 
were aggregated for subsequent analyses. The entire behavior took place over the course of 22 586 
days for the first cohort and 21 days for the second cohort. The first cohort ran an extra day on 587 
the initial exploratory behavior, where the animals received rewards after visiting any arm of 588 
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the track. At the start of the behavior the first cohort of rats were 4 – 5 months old, and the 589 
second cohort of rats were 3 – 4 months old. 590 

Automated behavioral system: The automated behavior system was custom designed and 591 
constructed out of acrylic. All parts of the behavior system were enclosed with walls. There 592 
were different symbols on each arm of the track serving as proximal cues, and there were distal 593 
cues distinguishing the different walls of the room. Pneumatic pistons (Clippard) opened and 594 
closed the doors. Python scripts, run through Trodes (Spike Gadgets), controlled the logic of the 595 
automated system. The reward wells contained an infrared beam adjacent to the reward spigot 596 
(Fig. S1A). The automated system used the breakage of that infrared beam to progress through 597 
the logic of the behavior. In addition to the infrared beam and the spigot to deliver the reward, 598 
each reward well had an associated white light LED (Fig. S1A). 599 

The sequence of operations of the track for the set of behaviors are: 1) the doors open 600 
to clear the path from a single rest box to the track. Concurrently, the lights linked to all of the 601 
reward wells on the track turn on (Fig. S1A). 2) On the first break of a track reward well beam 602 
(Fig. S1A) following the opening of the doors, the door to the track closes, thus starting the 603 
session of that animal. The animal then has a fixed maximum number of trials for its session, 604 
and the session ends when either that maximum has been reached or following a time limit of 605 
30 minutes (see Methods). Only one animal ever reached the time limit (see Methods). 3) Upon 606 
breaking the beam at the reward well at the last trial of the session, all of the reward well lights 607 
turn off, and the doors reopen to allow for passage back to the appropriate rest box. 608 
Concurrently, the light to the reward well in that rest box turns on. 4) Upon breaking the beam 609 
of the rest box reward well, the doors to the track close and the well delivers reward. The light 610 
of the rest box reward well turns off after reward delivery. 5) The doors to the track for the rest 611 
box for the next subject open, and the process repeats itself. 612 

Each cohort of rats were divided into groups of four animals. The same groups were 613 
maintained throughout the duration of the experiment. Within a group, a given rat was always 614 
placed in the same rest box, and the four rats of a group serially performed the behavior. The 615 
rats had multiple sessions on the track each day. During the exploratory period of the behavior, 616 
the duration of a session was defined by a fixed number of rewards. During the alternation task 617 
the duration of a session was defined either by a fixed number of center arm visits and at least 618 
one subsequent visit to any other arm, or a fixed amount of time on the track (30 minutes), 619 
whichever came first. During the alternation contingencies there were 3 sessions each day. For 620 
the first day of the first alternation contingency there were 10 center arm visits per session, for 621 
the second day of the first contingency and the first day of all other contingencies there were 622 
20 center arm visits per session, and for all other days there were 40 center arm visits per 623 
session. Only one of the female rats reached the time limit, and it did so for only two sessions 624 
toward the beginning of the first alternation contingency. For that one female we incorporated 625 
the trials that she ran on those sessions and did not distinguish the time out sessions for the 626 
analyses.  627 

The algorithm underlying the exploratory part of the behavior had only one rule. 628 
Reward was delivered for any infrared well beam break if and only if the current well infrared 629 
beam break was immediately preceded by an infrared beam break at any other well. This 630 
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prevented the animals from getting continuous reward at a single arm, and ensured the rats 631 
visited at least two of the arms.  632 

The algorithm underlying the spatial alternation task was such that three arms on the 633 
track had the potential for reward within a given contingency, for example during the 634 
contingency at arms 2-3-4, arms 2, 3, and 4 had the potential to be rewarded, and arms 1, 5, 635 
and 6 did not. Of those three arms we will refer to the middle of the three arms as the center 636 
arm (arm 3 in the above example) and the other two arms as the outer arms (arms 2 and 4 in 637 
the above example).  Reward was delivered at the center arms if and only if: 1) the immediately 638 
preceding arm whose reward well infrared beam was broken was not the center arm. Reward 639 
was delivered at the outer two arms if and only if: 1) the immediately preceding arm whose 640 
reward well infrared beam was broken was the center arm, and 2) prior to breaking the 641 
infrared beam at the center arm, the most recently broken outer arm infrared beam was not 642 
the currently broken outer arm infrared beam. The one exception to the outer arm rules was at 643 
the beginning of a session, following the first infrared beam break at the center arm, where 644 
only the first condition had to be met, if neither of the outer arms had yet to  be visited. 645 

For the running of the behavior, the infrared beam break determined an arm visit (Fig. 646 
S1A); however, the rats would sometimes go down an arm, get very close to the reward wells, 647 
but not break the infrared beam. Therefore, for all of the analyses described, an arm visit was 648 
defined as when a rat got close to a reward well. The times were extracted from a video 649 
recording of the behavior. These missed pokes were more frequent at the beginning of a 650 
contingency (Fig. S1D), but overall were not that common. This proximity-based definition of an 651 
arm visit added additional arm visits to those defined by the infrared beam breaks, and by 652 
definition none of them could ever be rewarded, nor alter the logic of the underlying algorithm. 653 
However, because of the non-Markovian nature of the reward contingency, the missed pokes 654 
could affect the rewards provided for subsequent choices. 655 

The different spatial alternation contingencies (Fig. 1F) were chosen to present 656 
increasing challenges and multiple learning opportunities. The transition from the first (2-3-4) 657 
to the second (1-2-3) contingency was designed to be relatively easy, since performing 2-3-4 658 
would allow a rat to readily find the central arm of the new contingency. Finding this arm is 659 
critical to gaining consistent reward. The transition from the second (1-2-3) to the third (3-4-5) 660 
contingency was designed to be harder since the central arm (4) of the new contingency is not 661 
included in 1-2-3. The fourth (2-4-6) contingency was designed to be the hardest, since the 662 
animals have to skip an arm to get to the correct outer arm of the contingency. The fifth (2-3-4) 663 
and sixth (4-5-6) contingencies were chosen for comparison with the first three contingencies 664 
to understand the evolution of the ability of the animals to perform the task and generalize 665 
from previous experience.  666 

As opposed to behaviors designed to study asymptotic performance, there need not be 667 
strict criteria on a per animal basis for switching between the contingencies since the purpose 668 
of this task was to understand the continual learning and behavior of the rats. Furthermore, the 669 
automated system matched the number of inbound rewards of the animals, for all of the 670 
animals that did not reach the time limit, ensuring that all animals had similar learning 671 
opportunities. We therefore switched to a new contingency the day after >80% of the animals 672 
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received >80% reward over the course of a session. That ensured that by the time each 673 
contingency switched almost all of the rats reached at least ~80% correct on a session during 674 
each contingency (Fig. S1B). 675 

RL agents: For this behavior we chose a simplified output as the modeled feature: visiting arms. 676 
The nature of the algorithm that governs the behavior led to the choice of arm visits for the 677 
model, as arms visits are the only factor taken into account when evaluating rewards.  678 

Given that each spatial alternation task could be framed as a partially observable 679 
Markov decision process, we adapted the working memory model of Todd et al.35 as the basis 680 
for our series of RL agents. The models specify rules governing propensities 𝑚(𝑎, 𝑠) that 681 
contain the preferences of the agent of choosing arm 𝑎 when the state is 𝑠. Models differ in 682 
terms of what counts as the state, and also according to the various terms whose weighted sum 683 
defines the propensity. 684 

In the first agent (M1) the state is defined as the current arm location, 𝑠$ = 𝑎$, of the 685 
agent. In all subsequent agents the state is defined as the combination of the current arm 686 
location of the agent and the immediately preceding arm location of the agent, 𝑠$ = {𝑎$!&,𝑎$}. 687 
This is a simplification from the Todd et al. model, whereby 𝑎$!& is always placed into the 688 
memory unit, effectively setting the gating parameter for the memory unit to always update 689 
the memory unit. Then, the first component of 𝑚(𝑎, 𝑠) for all models is 𝑏(𝑎, 𝑠), which is a 690 
6 × (6 + 1) or 6 × (36 + 6 + 1) matrix containing the transition contingencies to arm 𝑎 from 691 
state 𝑠. The reason for the additional states beyond just the 6 arms or 6x6 arms by previous 692 
arms is to include the rest box in the possible locations to allow for the inclusion of the first arm 693 
visit of a session. In so doing that adds 1 additional state to model M1, and 6+1 additional 694 
states into the subsequent agents since the animals can be located in the rest box and can be 695 
located at any of the 6 arms having previously been in the rest box. 696 

To provide the agents with additional spatial and transitional preferences we added 697 
components to the transition propensities. The first is an arm preference, 𝑏i(𝑎) that is 698 
independent of the current state of the animal. The second is a preference for visiting arms that 699 
neighbor in space the current arm, 𝑏*!𝜒(𝑎 = 𝑎$ ± 1), where 𝜒() is the characteristic function 700 
that takes the value 1 if its argument is true (and ignoring arms outside the range 1…6) and 𝑏*!  701 
is the (plastic) weight for this component. The third is a preference for visiting arms that are 702 
two removed, in space, from the current arm, 𝑏*"𝜒(𝑎 = 𝑎$ ± 2). The neighbor arm 703 
preferences contain only single values, the preference to go to a neighboring arm, independent 704 
of the current arm location. The neighbor preferences were applied equally in both directions 705 
when possible (i.e. if the agent was at the end of the track the neighbor preference could only 706 
be applied to one direction). 707 

To determine the probability of visiting each of the arms from a given state, the total 708 
propensity is passed through a softmax such that: 709 

𝑝(𝑎; 𝑠) =
exp(𝑚(𝑎, 𝑠))
∑ exp(𝑚(𝑏, 𝑠))/

 (1) 
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The agent’s visit is then determined by a sample from this distribution. The choice of arm then 710 
determines the reward, 𝑟, which is either 0 or 1, based on the algorithm that governs the 711 
spatial alternation task. The probability of revisiting the current arm is set to zero, and the 712 
probabilities of going to the remaining arms sums to 1. 713 

The model uses the REINFORCE policy gradient method34 within the actor-critic 714 
framework of temporal difference learning, to update the propensities in the light of the 715 
presence or absence of reward. To do this, the agent maintains a state-long-run-value 716 
approximation, 𝑉(𝑠), which functions as a lookup table, with one component for each state. 717 
The reward determines the state-value prediction error: 718 

𝛿$ = 𝑟$ + 𝛾𝑉(𝑠$%&) − 𝑉(𝑠$) (2) 

where 𝛾𝜖[0,1) is a parameter of the model called the temporal discounting factor, which 719 
determines the contribution of future rewards to the current state.   720 

 𝛿$ is then used to update the preferences all of the components of the propensities and 721 
𝑉(𝑠). The state-based transition component is updated according to the rule: 722 

𝑏(𝑎, 𝑠) ⇐ 𝑏(𝑎, 𝑠)(1 − 𝜔) + 𝛼𝛿$ × N
1 − 𝑝(𝑎; 𝑠), 𝑠 = 𝑠$ , 𝑎 = 𝑎$
−𝑝(𝑎; 𝑠), 𝑠 = 𝑠$ , 𝑎 ≠ 𝑎$

0, 𝑠 ≠ 𝑠$
 (3) 

where 𝛼𝜖[0,1] is a parameter of the model called the learning rate, which determines the 723 
amount by which all components of the propensities change based on the new information. 724 
𝜔𝜖[0.001,0.015] is also a parameter of the model called the forgetting rate, and determines 725 
how the propensities decay. The independent arm preference is updated according to the rule: 726 

𝑏i(𝑎) ⇐ 𝑏i(𝑎)	(1 − 𝜔) + 𝛼𝛿$ × Q
1 − 𝑝(𝑎; 𝑠), 𝑎 = 𝑎$
−𝑝(𝑎; 𝑠), 𝑎 ≠ 𝑎$

 (4) 

The strength of the neighbor arm preferences are updated according to the rule: 727 

𝑏*# ⇐ 𝑏*# 	(1 − 𝜔) + 𝛼𝛿$ × Q
1 − 𝑝(𝑎 = {𝑎$ + 𝑖, 𝑎$ − 𝑖}; 𝑠), 𝑎 = 𝑎$ ± 𝑖
−𝑝(𝑎 = {𝑎$ + 𝑖, 𝑎$ − 𝑖}; 𝑠), 𝑎 ≠ 𝑎$ ± 𝑖

 (5) 

where 𝑖 is either 1 or 2 depending on whether the propensity being calculated is the immediate 728 
neighbor preference or the 2 arm away preference. And, finally, the state-value approximation 729 
is updated according to the rule: 730 

𝑉(𝑠) ⇐ 𝑉(𝑠)(1 − 𝜔) + 𝛼𝛿$ × Q
1, 𝑠 = 𝑠$
0, 𝑠 ≠ 𝑠$

 (6) 

The learning, 𝛼, and forgetting, 𝜔, rates were the same for all of the updating rules. This 731 
does not need to be the case, but since we found that a single learning and forgetting rate fit 732 
the data well, we did not feel there was a need to increase the complexity of the models by 733 
increasing the number of parameters. 734 
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Model fitting: The model was implemented in C++ and run and fit within Igor Pro 735 
(Wavemetrics). There were 7 arms at which the agent could be located, 6 track arms and 1 rest 736 
box “arm;” whereas, there we only 6 arms to which the agent could transition. That means that 737 
the model implemented the transition from the rest box to the track but did not model the 738 
return to the rest box from the track, this was done so that all track arm visits would be 739 
included in the analyses. For the working memory version of the model, there were, therefore, 740 
43 states in which the agent could find itself. 36 states (6') for all combinations for both the 741 
previous and current arm being one of the 6 track arms (6 of the states could never be visited 742 
since a return to the same arm is not allowed), an additional 6 states for the current arm being 743 
one of the 6 track arms and the previous “arm” being the rest box, and a final 1 state for the 744 
agent starting from the rest box. 745 

We fit the various agents to individual animals by using an Approximate Bayesian 746 
Computation method. We found the parameters that minimized the average rms difference 747 
between the inbound and outbound errors of the individual animal and of the average of 200 748 
different repeats of the model. The inbound and outbound fitting errors were summed with 749 
equal weighting to create the final fitting error. We used simulated annealing and ran the 750 
optimization at least 4 different times from different initial conditions. We chose the 751 
parameters with the minimal error. For each run of the model we used the same random 752 
number generating seed to minimize the random fluctuations between parameter sets42. 753 

We evaluated the error landscape of the fits to determine whether there were clear 754 
global minima for each animal. We found that there were indeed global minima that were 755 
distributed across the parameter space. Our fitting procedure reliably determined the vicinity 756 
of the global minima (see Fig. S4 for an example), indicating that the differences among animals 757 
are interpretable and reflect differences in behavior. 758 

Population statistics: For testing violations from randomness of the population, we consider a 759 
random effects model. Let 𝜃 be the population probability of randomness. We construct a 760 
frequentist test of the null hypothesis that 𝜃 = 0.5 against the one-tailed alternative that 𝜃 <761 
0.5.  762 

If we had 𝑚	subjects we knew were random and 𝑛 subjects we knew were not, with 763 
𝑚 + 𝑛 = 𝑁, then the frequentist probability associated with the null hypothesis would depend 764 
on the tail probability of the fair binomial distribution for values as, or more extreme than 𝑛: 765 
 

𝑝 =
1
20VW𝑁𝑘Y

*

123

 (7) 

In our case, we have subject 𝑖 with permutation tested probability 𝑃(datai|random) =766 
𝜙(. Thus, we have probabilities such as: 𝑃(𝑛 = 0|data;	ϕ) = ∏ 𝜙(0

(2& 	 , 𝑃(𝑛 = 1|data;	ϕ) =767 
∏ 𝜙(0
(2& × ∑ (&!5#)

5#
0
(2& 	, etc. Thus, we have 768 

 
𝑝 =V𝑃(𝑛 = 𝑗|data;	ϕ)

0

723

1
20VW𝑁𝑘Y

*

123

 (8) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2020. ; https://doi.org/10.1101/808006doi: bioRxiv preprint 

https://doi.org/10.1101/808006


 21 

In practice, we compute this by sampling 𝑃(𝑛 = 𝑗|data;	ϕ). This makes the three p-values for 769 
the different exploratory preferences of the rats: 1.08e-06, 6.31e-08 and 1.75e-06, respectively 770 
for the max arm probability, neighbor transition and directional inertia. 771 

Data and code availability: All data and code will be made available upon reasonable request. 772 
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Figure Legends 785 

Figure 1. Automated behavior system for analysis of continuous spatial alternation behavior. 786 
(A) Layout of automated behavior system. (B) Arm preferences of all rats (n = 24) during the 787 
exploratory period of the behavior, where a rat can get rewarded at any arm of the track. Rats 788 
ordered by arm preference. (C) Example transition matrix during the exploratory period of the 789 
behavior a single rat (animal #8 from A) showing the probability of going to any of the six arms 790 
when starting from each of the six arms. (D) Example arm choices (arrowheads) of a single rat 791 
(animal #1 from A) during a session of the exploratory behavior. (E) Probability of seeing the 792 
maximal arm preference (left) neighbor visit frequency (middle) or directional inertia (right) 793 
given random choices between the six arms. Horizontal line shows a probability of 0.05. For the 794 
neighbor transition frequency, the random distribution was defined by the arm visit probability 795 
of the animal, and for the directional inertia the random distribution was defined by the 796 
transition matrix of the animal. As the p-value was determined using 10,000 draws from 797 
distributions, the minimal value is 10!+. 14/24 rats were at that minimal value for the max arm 798 
probability, 24/24 for the neighbor visit frequency, and 19/24 for the directional inertia. (F) 799 
Probability of getting a reward for all 24 rats. Within each contingency, curves smoothed with a 800 
Gaussian filter with a standard deviation of 10 arm visits. Two different rats shown in colors 801 
(yellow and teal) to indicate consistency of performance in those rats across the different 802 
contingencies. Beginning of each contingency is demarcated by vertical lines above the plot. 803 
Contingencies indicated by the 3 arms that have the potential to be rewarded. (G) Error 804 
likelihoods for inbound and outbound trials for all 24 animals. Values smoothed with a Gaussian 805 
filter with a standard deviation of 10 inbound or outbound trials and then interpolated to 806 
reflect total arm visits. Colors indicate the same rats as in F. Contingencies indicated as in F. 807 

Figure 2. RL model with working memory and dynamic preferences can learn as rapidly as the 808 
rats. (A) Graphic of RL agent. Colored symbols, 𝑚*(𝑎, 𝑠$) and 𝑉, indicate the components that 809 
change as the agent goes to arms, 𝑎, and does or does not get reward, 𝑟. (B) The different 810 
components of the propensities, 𝑚*(𝑎, 𝑠$), for the different models. The state of the agent, 811 
and therefore the probability of transitioning to each of the arms, 𝑝(𝑎; 𝑠), is defined by either 812 
just the current arm location, 𝑎$, or by the current arm location, 𝑎$, and the previous arm 813 
location, 𝑎$!&, of the agent. 𝑏((𝑎) is the independent arm preference. 𝑏*!𝜒&(𝑎 = 𝑎$ ± 1) and 814 
𝑏*"𝜒'(𝑎 = 𝑎$ ± 2) are the preference to transition to a neighbor 1 or 2 arms away, 815 
respectively. (C) Average reward probability of all animals (n = 24) across all contingencies 816 
(grey), and average behavior of 200 repeats of the models with parameters chosen to maximize 817 
the rewards received across all contingencies. The model was given extra arm visits to reach 818 
asymptotic behavior (after the endpoints of the grey curves for each contingency) to show 819 
more clearly the model’s ability to learn the task. Dotted horizontal lines show 75% probability 820 
correct. Contingencies indicated as in Fig 1F. (D) Number of trials to pass 75% probability 821 
correct for the data (grey) and models; however, M1 not shown as it never performs above 75% 822 
correct.  823 

Figure 3. Fitting model to individual animals to capture variability between rats. (A) Inbound 824 
and outbound error likelihood for an individual animal across all contingencies (purple/black). 825 
Values smoothed with a Gaussian filter with a standard deviation of 2.25 errors and then 826 
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interpolated to reflect arm visits. In green is the average behavior of 200 repeats of the model 827 
using the parameters that minimize the rms difference between the model and the animal 828 
during the second and third alternation contingencies (black). Purple indicates data that was 829 
not included in fitting the model. Contingencies indicated as in Fig 1F. (B) RMS difference 830 
between the model and the data for all animals (n = 24) for the inbound and outbound errors 831 
for each contingency for the different models. (C) Comparison of the parameters for the fits of 832 
individual animals (open circles) to the parameters that maximize rewards (closed circles) from 833 
Fig 1C. Box plots show the median, interquartile range and the range between the 9th and 91st 834 
percentile of the data. 835 

Figure 4. M3 captures differences in animal performance. (A) Three-dimensional space of 836 
parameters projected down on all pairs of parameters. The median and interquartile range of 837 
20 fits for each animal is plotted as the red or pink dot with errors bars in both axes. Red and 838 
pink colors indicate the median split of animals as shown in panels D and E. Color scale in 839 
background is the maximal reward rate during the second and third contingency for the pair of 840 
parameters. For instance, for the 𝛼/𝛾 plot, each color indicates the maximal reward value that 841 
can be obtained for the pairing of 𝛼 and 𝛾, which is found by scanning through all values of 𝜔. 842 
(B) Ordering of the animals based on the actual reward rate during contingencies 2 and 3 as a 843 
function of the ordering of the animals based upon the model reward rate during contingencies 844 
2 and 3, for M2 (left) and M3 (right). Dotted lines show a linear fit to the correlation. (C) 845 
Ordering of the animals based on the actual reward rate during contingencies 1, 4, 5, and 6 846 
(those not fit by the model) as a function of the ordering of the animals based upon the model 847 
reward rate during contingencies 2 and 3, for M2 (left) and M3 (right). Dotted lines show a 848 
linear fit to the correlation. (F) Box plots showing the data, median, interquartile range, and 9th 849 
to 91st percentile for the actual reward rate of the animals during contingencies 1, 4, 5, and 6 850 
when split by the model reward rate during contingencies 2 and 3. * indicates 𝑝 < 0.05. (E) 851 
Average (± sem) probability correct across all contingencies for the grouping by the median split 852 
of the M2 reward rate for contingencies 2 and 3. Contingencies indicated as in Fig 1F. Solids 853 
lines indicate contingencies that were not fit by the model, and dotted lines indicate those 854 
contingencies that were fit by the model. 855 

Figure 5. Dynamic preferences account for variability in reward rate across animals. (A) The 856 
average reward rate across all six alternation contingencies plotted relative to the average 857 
neighbor transition frequency during the exploratory period for each animal. Dotted line shows 858 
linear fit. (B) Average (± sd) large sweep rate (>3 arms) for each session during the exploratory 859 
period and first alternation contingency. Animals split into high (red) and low (pink) performers 860 
based upon median split from Fig 4. Same measurement calculated off of the 200 repeats of the 861 
model using the fitting parameters for each of the animas. M3 split based upon the same 862 
grouping as the animals. Solid vertical line demarcates the transition between exploration and 863 
the first alternation contingency. (C) Box plot showing the data, median, interquartile range, 864 
and 9th to 91st percentile of the large sweep rates across the entire first contingency for the 865 
high and low performing animals. ** indicates 𝑝 < 0.005. (D) The average reward rate across 866 
all six alternation contingencies plotted relative to the large sweep rate during the first 867 
alternation contingency for each animal. Dotted line shows linear fit. (E) Learning rate (𝛼) from 868 
the individual fits of model M3 to each animal (fit for 2nd and 3rd alternation contingency) 869 
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plotted relative to the large sweep rate during the first alternation contingency for each animal. 870 
Dotted line shows linear fit. 871 

Figure 6. Model predicts performance of animals on contingencies that were not fit. (A) 872 
Inbound and outbound error likelihood for an individual animal across all contingencies 873 
(purple/black). Values smoothed with a Gaussian filter with a standard deviation of 2.25 errors 874 
and then interpolated to reflect arm visits. In dark green is the average behavior of 200 repeats 875 
of the model using the parameters that minimize the rms difference between the model and 876 
the animal during the second and third alternation contingencies (black). Purple indicates data 877 
that was not included in fitting the model. In light green is the inbound and outbound error 878 
likelihood for a single repeat of the model using the parameters from the fit to the individual 879 
animal. (B) Histograms across animals of the log of the model accuracy of M3 for the two 880 
contingencies (2&3) that were used to fit the model. (C) Histograms across animals of the log of 881 
the model accuracy of M3 for the contingencies that were not used to fit the model. For B&C 882 
above each pair of histograms are the arm numbers that were rewarded during that 883 
contingency. Model accuracy is the probability of individual runs of the model providing an 884 
error greater than the error of the data (Fig S6). Vertical dotted lines show 𝑝 = 0.05 for 885 
comparison. Arrowheads point to value of the median for the model accuracies. (D) Difference 886 
between the error likelihood for the rats and the model fit to the individual rats, averaged 887 
across all rats (± standard deviation). Positive residual values indicate that the model had higher 888 
error likelihoods and negative residual values indicate that the model had lower error 889 
likelihoods. For panels A&D contingencies indicated as in Fig 1F. 890 

 inbound outbound 

contingency fraction of 
animals 𝑝 > 0.05 

population 
median p-value 

fraction of 
animals 𝑝 > 0.05 

population 
median p-value 

1 0/24 0.001 1/24 0.002 

2 17/24 0.16 24/24 0.36 

3 23/24 0.62 24/24 0.75 

4 3/24 0.004 18/24 0.24 

5 18/24 0.33 20/24 0.09 

6 20/24 0.29 20/24 0.10 

Table 1. Model accuracy statistics. Fraction of animals whose inbound and outbound errors 891 
cannot be distinguished (𝑝 > 0.05) from the model as well the population median p-value. 892 
Contingencies 2 &3 were fit to the model, the remaining contingencies were not included in the 893 
fit and therefore function as predictions of the model. 894 
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Supplementary Figure 1. Males and females perform the behavior comparably across the two 895 
cohorts. (A) Picture of a reward well showing the spigot through which milk is delivered, 896 
flanked by an IR LED and phototransister, encased in metal elbows, to detect the position of the 897 
animal. Any unconsumed milk exited the track through the drain below the spigot. A light is 898 
illuminated directly behind the reward well when there is potential for reward delivery (see 899 
methods). Reward wells were made entirely out of metal. (B) Maximal reward rate in a session 900 
for each contingency and for all animals. Horizontal dotted line demarcates 80% correct. (C) 901 
Average probability of getting a reward for the male (dotted line) and female (solid line) rats in 902 
the first (top) and second (bottom) cohort. Within each contingency, curves smoothed with a 903 
Gaussian filter with a standard deviation of 10 arm visits and then averaged across the different 904 
animals. Thickness of the line indicates the sem. Contingencies indicated as in Fig 1F. (D) 905 
Average missed poke likelihood across all contingencies. Averaged across all rats. Thickness of 906 
line indicates sem. Contingencies indicated as in Fig 1F. 907 

Supplementary Figure 2. Dynamics of individual arm and neighbor preferences for the model. 908 
The average individual arm preferences (𝛽8) (A) and neighbor arm preferences (𝛽*!  and 𝛽*") 909 
(B) across all contingencies and repeats of the model for the fit to the animal shown in Fig 5C. 910 
The values shown are those prior to passing through the exponential for the Softmax. 911 
Contingencies indicated as in Fig 1F. 912 

Supplementary Figure 3. Fitting M3 to first contingency does not predict subsequent 913 
contingencies. (A) Average inbound and outbound errors for the data (black) and model M3 914 
(green) after fitting M3 to each individual animal. (B) Average residuals between the fit to each 915 
individual animal and the model fit only to the first alternation contingency. See Fig. 6D for 916 
comparison. 917 

Supplementary Figure 4. Error landscape for M3. (A) Three-dimensional space of parameters 918 
projected onto the plane for the parameters from the fit. For instance, for the 𝛼/𝛾 plot, the 919 
plane for the fit value of 𝜔 is chosen. The median and interquartile range for the parameters for 920 
the same rat from Fig. 3 for 24 fits are plotted as the red dot with errors bars in both axes 921 
(obscured by the dot). The color scale in the background shows the error between the model 922 
and the data.  923 

Supplementary Figure 5. Lack of correlation between metrics. (A) Entire task reward rate 924 
plotted relative to the large sweep (>3 arms) rate during the exploratory period. Dotted line 925 
shows linear fit. (B) Neighbor transition frequency during the exploratory period plotted 926 
relative to the large sweep rate during the first alternation contingency for each animal. Dotted 927 
line shows linear fit. 928 

Supplementary Figure 6. Calculation of model accuracy. Cumulative distribution for all of the 929 
RMS difference errors between individual simulations of the model and the 200 repeats of the 930 
model for the outbound errors of the fourth contingency for the animal displayed in Fig. 6A. 931 
The RMS difference error for the data is shown in the black circle. Model accuracy is the 932 
fraction of the cumulative distribution that falls to the right of the data. 933 

 934 
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Supplementary Figure 4
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Supplementary Figure 6
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