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Summary: 1 

Genes embedded in H3 lysine 9 methylation (H3K9me)–dependent 2 

heterochromatin are transcriptionally silenced1-3. In fission yeast, 3 

Schizosaccharomyces pombe, H3K9me heterochromatin silencing can be 4 

transmitted through cell division provided the counteracting demethylase Epe1 5 

is absent4,5. It is possible that under certain conditions wild-type cells might 6 

utilize heterochromatin heritability to form epimutations, phenotypes mediated 7 

by unstable silencing rather than changes in DNA6,7. Here we show that resistant 8 

heterochromatin-mediated epimutants are formed in response to threshold 9 

levels of the external insult caffeine. ChIP-seq analyses of unstable resistant 10 

isolates revealed new distinct heterochromatin domains, which in some cases 11 

reduce the expression of underlying genes that are known to confer resistance 12 

when deleted. Targeting synthetic heterochromatin at implicated loci confirmed 13 

that resistance results from heterochromatin-mediated silencing. Our analyses 14 

reveal that epigenetic processes allow wild-type fission yeast to adapt to non-15 

favorable environments without altering their genotype. In some isolates, 16 

subsequent or co-occurring gene amplification events enhance resistance. 17 

Thus, heterochromatin-dependent epimutant formation provides a bet-hedging 18 

strategy that allows cells to remain genetically wild-type but transiently adapt 19 

to external insults. As unstable caffeine-resistant isolates show cross-20 

resistance to the fungicide clotrimazole it is likely that related heterochromatin-21 

dependent processes contribute to anti-fungal resistance in both plant and 22 

human pathogenic fungi. 23 
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Main Text: 24 

H3K9me heterochromatin can be copied during replication by a read-write 25 

mechanism4,5 and has been observed to arise stochastically at various loci, albeit only 26 

in the absence of key anti-silencing factors8-11. We reasoned that if heterochromatin 27 

can redistribute in wild-type S. pombe cells epimutations could be generated that 28 

allow cells to adapt to external insults. Unlike genetic mutants we predicted that such 29 

epimutants would be unstable, resulting in gradual loss of the resistance phenotype 30 

following growth in the absence of the external insult. To explore this possibility, we 31 

chose to test caffeine resistance because deletion of genes with a wide variety of 32 

cellular roles is known to confer resistance12, thereby increasing the chance of 33 

obtaining epimutations. We also reasoned that such unstable epimutants would 34 

occur more frequently at moderate caffeine concentrations that prevent most cells 35 

from growing (16 mM) rather than at high stringency selection (20 mM) used in 36 

screens for genetic caffeine-resistant mutants12.  37 

As other secondary events might also occur upon prolonged growth on caffeine, we 38 

froze one aliquot of each isolate as soon as possible after resistant colony formation 39 

and then froze consecutive aliquots of each isolate after continued growth on caffeine 40 

(Fig. 1a). This provided a time series, permitting detection and separation of potential 41 

initiating and subsequent secondary events. 42 

Colonies that grew after plating wild-type fission yeast (972 h-) cells in the presence 43 

of caffeine (16 mM caffeine, +CAF) were picked. Following freezing, isolates were 44 

then successively propagated in the absence of caffeine (-CAF). Re-challenging 45 

isolates with caffeine revealed that 23% lost their caffeine resistance after 14 days of 46 
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non-selective growth (denoted ‘unstable isolates’, UR) whereas 13% remained 47 

caffeine resistant (denoted ‘stable isolates’, SR). 64% of isolates did not display a 48 

clear phenotype (denoted ‘unclear’) (Fig. 1b, c and Extended Data Fig. 1a, b). 49 

Deletion of clr4+ encoding the sole H3K9 methyltransferase in S. pombe13,14 from 50 

resistant isolates resulted in immediate loss of caffeine resistance in unstable, but not 51 

in stable isolates (Fig. 1d and Extended Data Fig. 1c), indicating that caffeine 52 

resistance in unstable isolates requires heterochromatin.  53 

Whole genome sequencing (WGS) of the stable isolate SR-1 uncovered a mutation in 54 

pap1+ responsible for the caffeine-resistant phenotype (Extended Data Fig. 2 and 15). 55 

ChIP-seq for H3K9me2 on SR-1 revealed no changes in heterochromatin distribution.  56 

WGS of unstable isolates revealed no genetic changes in coding sequences involved 57 

in either caffeine resistance or H3K9me2-mediated silencing, and 8 of 30 analyzed 58 

unstable isolates had no detectable genetic change compared to wild-type 59 

(Supplementary Information Table 1). ChIP-seq for H3K9me2 on unstable isolates 60 

revealed an altered heterochromatin distribution (Fig. 2a, b). Unstable resistant isolate 61 

UR-1 exhibited a new H3K9me2 domain over the hba1 locus, whereas UR-2 – UR-6 62 

exhibited H3K9me2 domains over ncRNA.394, ppr4, grt1, fio1 and mbx2 loci, 63 

respectively (Fig. 2a, b and Supplementary Information Table 1). Deletion of hba1+ is 64 

known to confer caffeine resistance16, suggesting that these novel heterochromatin 65 

domains may drive caffeine resistance by silencing underlying genes. Accordingly, 66 

RT-qPCR analysis revealed reduced expression of genes underlying the observed 67 

novel heterochromatin domain at the hba1 locus (Fig. 2c).  68 
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The ncRNA.394, ppr4, grt1, fio1 and mbx2 loci have not previously been implicated 69 

in caffeine resistance. Interestingly, 24 of 30 unstable isolates showed an ectopic 70 

heterochromatin domain over the ncRNA.394 locus (Extended Data Fig. 3a and 71 

Supplementary Information Table 1), and reduced levels of transcripts were present 72 

(Fig. 2c), suggesting that transcriptional silencing within this region might mediate 73 

caffeine resistance. ncRNA.394 was previously described as a heterochromatin 74 

‘island’8, yet H3K9me2 levels over this locus were close to background in wild-type 75 

cells and only increased in the absence of the counteracting demethylase Epe1. Our 76 

analysis failed to detect H3K9me2 over ncRNA.394 in untreated wild-type cells (Fig. 77 

2b and Extended Data Fig. 3a). 78 

Deletion of ncRNA.394 did not result in caffeine resistance (Extended Data Fig. 3b). 79 

Prolonged non-selective growth without caffeine of cells exhibiting the ncRNA.394 80 

H3K9me2 domain resulted in loss of H3K9me2 over this region, whereas growth with 81 

caffeine present extended the H3K9me2 domain upstream to include the 82 

SPBC17G9.13c+ and SPBC17G9.12c+ genes (Extended Data Fig. 3c). Deletion of 83 

SPBC17G9.12c+ or eno101+ did not result in caffeine resistance (Extended Data Fig. 84 

3b). SPBC17G9.13c+ is essential for viability precluding testing a deletion mutant for 85 

resistance. Together these analyses suggest that reduced expression of 86 

SPBC17G9.13c+ may mediate caffeine resistance. 87 

To test directly if heterochromatin formation at these specific loci can result in caffeine 88 

resistance, tetO DNA binding sites were inserted at the hba1 and ncRNA.394 loci and 89 

a TetR-Clr4* (catalytically active but lacking the Clr4 chromodomain) fusion protein 90 

expressed to force assembly of synthetic heterochromatin upon recruitment to these 91 
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loci4,5. Combining tetO with TetR-Clr4* in the absence of anhydrotetracycline (-AHT) 92 

resulted in a novel H3K9me2 domain at each locus and growth of cells in the 93 

presence of caffeine (Fig. 3 and Extended Data Fig. 4). This indicates that 94 

heterochromatin-mediated silencing at either the hba1 or ncRNA.394 loci results in 95 

caffeine resistance. Because TetR-Clr4* tethering close to SPBC17G9.13c+ resulted 96 

in caffeine resistance we surmise that reduced expression of the SPBC17G9.13c+ 97 

gene upstream of ncRNA.394 is likely responsible for caffeine resistance at this locus.  98 

Remarkably, we found that strains with forced synthetic heterochromatin at either 99 

hba1 or ncRNA.394 loci displayed resistance to the widely-used clinical fungicide 100 

clotrimazole (Fig. 3, +CLZ). Further investigation of our unstable caffeine-resistant 101 

isolates revealed that those with heterochromatin formation at the hba1 (UR-1) and 102 

the ncRNA.394 (UR-2) loci are also resistant to clotrimazole and generate small 103 

interfering RNAs (siRNAs) homologous to the surrounding genes (Extended Data Fig. 104 

5). 105 

In addition to a heterochromatin domain over ncRNA.394, analysis of ChIP-seq input 106 

DNA indicated that many independent unstable caffeine-resistant isolates also 107 

contained overlapping regions of chromosome III present at increased copy number 108 

(Extended Data Fig. 6). In 11 of 12 isolates, the minimal region of overlap contains the 109 

cds1+ gene, overexpression of which is known to confer caffeine resistance17. To 110 

determine if amplification of the cds1 locus occurred before or after formation of the 111 

ncRNA.394 H3K9me2 domain we analyzed a sample frozen later in the time series 112 

for the same isolate (UR-2). ChIP-seq analysis showed that the ncRNA.394 H3K9me2 113 

domain was present in the initial caffeine-resistant isolate (4 days +CAF), whereas the 114 
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cds1 locus amplification arose later (7 days +CAF) (Extended Data Fig. 7a). These 115 

data suggest that development of resistance is a multistep process in which a 116 

combination of different events can increase resistance. In agreement with this 117 

hypothesis, deletion of clr4+ in the initial UR-2 isolate (4 days +CAF) resulted in loss 118 

of caffeine resistance in all transformants tested (6/6) (Extended Data Fig. 7b and 1c). 119 

However, only half of the transformants (3/6) lost resistance to caffeine when clr4+ 120 

was deleted in the isolate displaying cds1 locus amplification (7 days +CAF), 121 

suggesting that once amplification of the cds1 locus occurs heterochromatin is not 122 

required for resistance. In UR-2 a new heterochromatin domain occurred before 123 

cds1+ amplification but it is possible that events are stochastic and occur in no fixed 124 

order. Interestingly, both events – the ncRNA.394 H3K9me2 domain and cds1 locus 125 

amplification – are unstable and lost following growth in the absence of caffeine 126 

(Extended Data Fig. 7c).  127 

To investigate the dynamics of heterochromatin domain formation in response to 128 

caffeine we exposed wild-type cells to low (7 mM) or medium (14 mM) doses of 129 

caffeine for 18 hours. Cells in low caffeine accomplished ~8 doublings, whereas fewer 130 

than 3 population doublings occurred in medium caffeine. ChIP-seq for H3K9me2 131 

identified several new ectopic domains of heterochromatin following exposure to low 132 

caffeine. Ectopic domains were detected at loci known to accumulate H3K9me2 in 133 

the absence of Epe18, including ncRNA.394 (Fig. 4a, top). Remarkably, following 134 

treatment with medium doses of caffeine, ectopic heterochromatin was restricted to 135 

ncRNA.394, and H3K9me2 levels at this locus were approximately 2-fold greater than 136 

those after exposure to low caffeine (Fig. 4a, bottom). Together these data indicate 137 

that, when exposed to near-lethal doses of caffeine (medium, 14 mM), wild-type cells 138 
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can rapidly develop resistance by forming heterochromatin over a locus (ncRNA.394) 139 

that confers resistance when silenced. 140 

To determine if other insults also induce novel heterochromatin domains, we exposed 141 

wild-type cells to oxidative stress by addition of hydrogen peroxide (1 mM). ChIP-seq 142 

for H3K9me2 revealed the presence of ectopic heterochromatin domains at similar 143 

locations to those observed in low caffeine treatment, albeit H3K9me2 levels were 144 

lower (Fig. 4b). Thus, our results reveal an adaptive epigenetic response following 145 

exposure to external insults, and suggest that stress-response pathways may 146 

regulate activities that modulate heterochromatin formation thereby ensuring cell 147 

survival in fluctuating environmental conditions (Extended Data Fig. 8). 148 

It is well known that DNA methylation-dependent epimutations arise in plants and are 149 

propagated by maintenance methyltransferases18,19. RNAi-mediated epimutations 150 

have been shown to arise in the fungus Mucor circinelloides20, but it is not known if 151 

these are DNA methylation or heterochromatin dependent. As fission yeast lacks DNA 152 

methylation21,22 this epigenetic mark cannot be responsible for the epimutations 153 

described here. Instead our analyses indicate that these adaptive epimutations are 154 

transmitted in wild-type cells by the previously-identified Clr4/H3K9me read-write 155 

mechanism4,5.  156 

Our findings prompt the question as to why epimutants have not been detected 157 

previously in mutant screens. Phenotypic screens are usually very stringent, and 158 

generally only the strongest mutants are retained for further investigation and 159 

eccentric mutants are discarded. Here we essentially select for weak mutants by 160 

applying low doses of a drug that is at the threshold of preventing the growth of most 161 
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cells. Selection was applied for a short period of time in order to maximize the chance 162 

of identifying isolates that exhibit unstable phenotypes prior to the development of 163 

genetic alterations. 164 

Fungal infections are on the rise, especially in immunocompromised humans. There 165 

are few effective anti-fungal agents and resistance is rendering them increasingly 166 

ineffective23,24. The widespread use of related azole compounds to control fungal 167 

deterioration of crops may leave low fungicide levels in the soil, possibly leading to 168 

the unwitting selection of resistant epimutants in fungi, similar to those described 169 

here, that may ultimately drive the increasing number of cases of azole-resistant 170 

Aspergillosis and Cryptococcosis in the clinic. Use of the existing battery of so called 171 

‘epigenetic drugs’ - compounds that inhibit histone modifying enzymes - may identify 172 

molecules that block heterochromatin formation and hence reduce the emergence of 173 

anti-fungal resistance in plant and animal pathogenic fungi. 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 
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Methods 242 

Yeast strains and manipulations 243 

Standard methods were used for fission yeast growth, genetics and manipulation25. 244 

S. pombe strains used in this study are described in Supplementary Information Table 245 

S2. Oligonucleotide sequences are listed in Supplementary Information Table S3. For 246 

pDUAL-adh21-TetR-2xFLAG-Clr4-CDD (abbreviated as TetR-Clr4*), the nmt81 247 

promoter of pDUAL-nmt81-TetR-2xFLAG-Clr4-CDD4, was replaced by the adh21 248 

promoter (pRAD21, gift from Y. Watanabe). NotI-digested plasmid was integrated at 249 

leu1+. Pap1-N424STOP strain and strains carrying 4xtetO insertions were 250 

constructed by CRISPR/Cas9-mediated genome editing using the SpEDIT system 251 

(Allshire Lab; available on request) with oligonucleotides listed in Supplementary 252 

Information Table S3. Yeast extract plus supplements (YES) was used to grow all 253 

cultures. 16 mM caffeine (Sigma, C0750) was added to media for caffeine resistance 254 

screens and serial dilution assays. Caffeine-resistant colonies that formed after seven 255 

days were picked and patched to +CAF plates. After four days of growth, isolates 256 

were frozen (4 days +CAF). 4 days +CAF isolates were repatched and grown for three 257 

days on +CAF plates and then frozen (7 days +CAF). Subsequently, 7 days +CAF 258 

isolates were repatched every three days on +CAF plates up to twenty days of total 259 

growth on +CAF plates (20 days +CAF). 0.29 µM clotrimazole (Sigma, C6019) was 260 

added to media for clotrimazole resistance serial dilution assays. 7 or 14 mM caffeine 261 

(Sigma, C0750), or 1 mM hydrogen peroxide (Sigma, H1009) were added to media 262 

for 18 hours for drug treatment experiments. To release TetR-Clr4*, 10 µM 263 

anhydrotetracycline (AHT) was added to the media. 264 
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Serial dilution assays 265 

Equal amounts of starting cells were serially diluted four-fold and then spotted onto 266 

appropriate media. Cells were grown at 30-32oC for 3-5 days and then photographed.  267 

Chromatin immunoprecipitation (ChIP) 268 

ChIP experiments were performed as previously described26 using anti-H3K9me2 269 

(5.1.1, a kind gift by Takeshi Urano). Immunoprecipitated DNA was recovered with 270 

Chelex-100 resin (BioRad) for ChIP-qPCR (qChIP) experiments or with QIAquick 271 

PCR Purification Kit (Qiagen) for ChIP-seq experiments. 272 

Quantitative ChIP (qChIP) 273 

qChIPs were analysed by real-time PCR using Lightcycler 480 SYBR Green (Roche) 274 

with oligonucleotides listed in Supplementary Information Table S3. All ChIP 275 

enrichments were calculated as % DNA immunoprecipitated at the locus of interest 276 

relative to the corresponding input samples and normalized to % DNA 277 

immunoprecipitated at the act1+ locus. Histograms represent data averaged over 278 

three biological replicates. Error bars represent standard deviations.  279 

ChIP-seq library preparation and analysis 280 

Illumina-compatible libraries were prepared as previously described26 using 281 

NEXTflex-96 barcode adapters (Bioo Scientific) and Ampure XP beads (Beckman 282 

Coulter). Libraries were then pooled to allow multiplexing and sequenced on an 283 

Illumina HiSeq2000, NextSeq or MiniSeq system (150-cycle high output kit) by 75 bp 284 

paired-end sequencing.  285 
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Approximately 6-10 million 75 bp paired-end reads were produced for each sample. 286 

Raw reads were then de-multiplexed and trimmed using Trimmomatic (v0.35)27 to 287 

remove adapter contamination and regions of poor sequencing quality. Trimmed 288 

reads were aligned to the S. pombe reference genome (972h-, ASM294v2.20) using 289 

Bowtie2 (v2.3.3)28. Resulting bam files were processed using Samtools (v1.3.1)29 and 290 

picard-tools (v2.1.0) (http://broadinstitute.github.io/picard) for sorting, removing 291 

duplicates and indexing. Coverage bigwig files were generated by BamCoverage 292 

(deepTools v2.0) and ratios IP/input were calculated using BamCompare (deepTools 293 

v2.0)30 in SES mode for normalisation31. Peaks were called using MACS232 in PE mode 294 

and broad peak calling (broad-cutoff = 0.05). Region-specific H3K9me2 enrichment 295 

plots were generated using the Sushi R package (v1.22)33. 296 

SNP and indel calling 297 

SNPs and indels were called as described34. Trimmed reads were mapped to the S. 298 

pombe reference genome (972h-, ASM294v2.20) using Bowtie2 (v2.3.3)28. GATK35,36 299 

was used for base quality score recalibration. SNPs and indels were called with GATK 300 

HaplotypeCaller35,36 and filtered using custom parameters. Functional effect of 301 

variants was determined using Variant Effect Predictor37. 302 

Copy number variation analysis 303 

Copy number variation was determined using CNVkit38 in Whole-Genome 304 

Sequencing (-wgs) mode. Wild-type ChIP-seq input bam files were used as reference. 305 

 306 

 307 
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qRT–PCR analysis 308 

For qRT-PCR, total RNA was extracted using the Monarch Total RNA Miniprep Kit 309 

(New England Biolabs) according to the manufacturer’s instructions. Contaminating 310 

DNA was removed by treating with Turbo DNase (Invitrogen) and reverse transcription 311 

was performed using LunaScript RT Supermix Kit (New England Biolabs). 312 

Oligonucleotides used for qRT-PCR are listed in Supplementary Information Table 313 

S3. qRT-PCR histograms represent three biological replicates; error bars correspond 314 

to the standard deviation. * P < 0.05 (t test). 315 

Small RNA-seq 316 

50 mL of log-phase cells were collected and processed using the mirVana miRNA 317 

Isolation kit (Invitrogen). Resulting sRNA was treated with TURBO DNase 318 

(Invitrogen) and used for library construction using NEBNext Multiplex Small RNA 319 

Library Prep Set for Illumina (New England Biolabs) according to manufacturer’s 320 

instructions. Libraries were pooled and sequenced on an Illumina NextSeq platform 321 

by 50 bp single-end sequencing. Raw reads were then de-multiplexed and 322 

processed using Cutadapt (v1.17) to remove adapter contamination and discard 323 

reads shorter than 19 nucleotides or longer than 25 nucleotides. Coverage plots were 324 

generated using SCRAM39. 325 

 326 

 327 

 328 
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Supplementary Information Table 1. Summary of epigenetic (H3K9me2 

domains) and genetic (SNPs, indels and copy number variation) changes found 

in unstable (UR) caffeine-resistant isolates. 

Isolate Ectopic heterochromatin 
location SNPs or indels in coding sequences? Partial duplication of 

Chr III? 
 ncRNA.394 other loci   

UR-1  ✓ (hba1) Clr5-Q264STOP / Meu27-S100Y  

UR-2 ✓  Sdo1-R11C  

UR-3  ✓ (ppr4) Clr5-Q264STOP / Meu27-S100Y  

UR-4  ✓ (grt1) - ✓ 

UR-5  ✓ (fio1) Clr5-Q264STOP / Meu27-S100Y ✓ 

UR-6  ✓ (mbx2) - ✓ 

UR-7  ✓ (ppr4) Clr5-Q264STOP / Meu27-S100Y  

UR-8 ✓  -  

UR-9 ✓  -  

UR-10 ✓  Cob1-F318L  

UR-11 ✓  -  

UR-12 ✓  -  

UR-13 ✓  - ✓ 

UR-14 ✓  Npp-W300STOP / SPBC16H5.13-S1011L ✓ 

UR-15 ✓  - ✓ 

UR-16 ✓  -  

UR-17 ✓  SPCC777.02-R120R ✓ 

UR-18 ✓  SPCC777.02-R120R ✓ 

UR-19 ✓  Sdo1-R11C ✓ 

UR-20 ✓  -  

UR-21 ✓  - ✓ 

UR-22 ✓  - ✓ 

UR-23 ✓  Pch1-Q234STOP  

UR-24 ✓  -  

UR-25 ✓  - ✓ 

UR-26 ✓  SPBC1271.08c-A133A  

UR-27 ✓  SPCC4B3.13-A229V  

UR-28 ✓  Mug72-N116S  

UR-29 ✓  Mug72-N116S  

UR-30 ✓  -  
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Supplementary Information Table 2. Schizosaccharomyces pombe strains used 

in this study.  

Strain number Name Description 
143 wt h- ED972 wild-type 
B4411 SR-1 Stable 16 mM Caffeine Resistant Isolate – From wt – 1  
B4412 SR-2 Stable 16 mM Caffeine Resistant Isolate – From wt – 2 
B4413 UR-1 Unstable 16 mM Caffeine Resistant Isolate – From wt – 1  
B4414 UR-2 Unstable 16 mM Caffeine Resistant Isolate – From wt – 2 
B4415 UR-3 Unstable 16 mM Caffeine Resistant Isolate – From wt – 3  
B4416 UR-4 Unstable 16 mM Caffeine Resistant Isolate – From wt – 4 
B4417 UR-5 Unstable 16 mM Caffeine Resistant Isolate – From wt – 5  
B4418 UR-6 Unstable 16 mM Caffeine Resistant Isolate – From wt – 6  
B4419 UR-7 Unstable 16 mM Caffeine Resistant Isolate – From wt – 7  
B4420 UR-8 Unstable 16 mM Caffeine Resistant Isolate – From wt – 8  
B4421 UR-9 Unstable 16 mM Caffeine Resistant Isolate – From wt – 9  
B4422 UR-10 Unstable 16 mM Caffeine Resistant Isolate – From wt – 10  
B4423 UR-11 Unstable 16 mM Caffeine Resistant Isolate – From wt – 11  
B4424 UR-12 Unstable 16 mM Caffeine Resistant Isolate – From wt – 12  
B4425 UR-13 Unstable 16 mM Caffeine Resistant Isolate – From wt – 13  
B4426 UR-14 Unstable 16 mM Caffeine Resistant Isolate – From wt – 14  
B4427 UR-15 Unstable 16 mM Caffeine Resistant Isolate – From wt – 15 
B4428 UR-16 Unstable 16 mM Caffeine Resistant Isolate – From wt – 16  
B4429 UR-17 Unstable 16 mM Caffeine Resistant Isolate – From wt – 17  
B4430 UR-18 Unstable 16 mM Caffeine Resistant Isolate – From wt – 18  
B4431 UR-19 Unstable 16 mM Caffeine Resistant Isolate – From wt – 19  
B4432 UR-20 Unstable 16 mM Caffeine Resistant Isolate – From wt – 20  
B4433 UR-21 Unstable 16 mM Caffeine Resistant Isolate – From wt – 21  
B4434 UR-22 Unstable 16 mM Caffeine Resistant Isolate – From wt – 22  
B4435 UR-23 Unstable 16 mM Caffeine Resistant Isolate – From wt – 23  
B4436 UR-24 Unstable 16 mM Caffeine Resistant Isolate – From wt – 24  
B4437 UR-25 Unstable 16 mM Caffeine Resistant Isolate – From wt – 25  
B4438 UR-26 Unstable 16 mM Caffeine Resistant Isolate – From wt – 26  
B4439 UR-27 Unstable 16 mM Caffeine Resistant Isolate – From wt – 27  
B4440 UR-28 Unstable 16 mM Caffeine Resistant Isolate – From wt – 28  
B4441 UR-29 Unstable 16 mM Caffeine Resistant Isolate – From wt – 29  
B4442 UR-30 Unstable 16 mM Caffeine Resistant Isolate – From wt – 30  
B4443 SR-1 clr4Δ - 1 SR-1 clr4Δ::NAT - transformant 1 
B4444 SR-1 clr4Δ - 2 SR-1 clr4Δ::NAT - transformant 2 
B4445 SR-1 NAT control - 1 SR-1 NAT:3’ of ura4 - transformant 1 
B4446 SR-1 NAT control - 2 SR-1 NAT:3’ of ura4 - transformant 2 
B4447 SR-2 clr4Δ - 1 SR-2 clr4Δ::NAT - transformant 1 
B4448 SR-2 clr4Δ - 2 SR-2 clr4Δ::NAT - transformant 2 
B4449 SR-2 NAT control - 1 SR-2 NAT:3’ of ura4 - transformant 1 
B4450 SR-2 NAT control - 2 SR-2 NAT:3’ of ura4 - transformant 2 
B4451 UR-1 clr4Δ - 1 UR-1 clr4Δ::NAT - transformant 1 
B4452 UR-1 clr4Δ - 2 UR-1 clr4Δ::NAT - transformant 2 
B4453 UR-1 NAT control-1 UR-1 NAT:3’ of ura4 - transformant 1 
B4454 UR-1 NAT control-2 UR-1 NAT:3’ of ura4 - transformant 2 
B4455 UR-2 clr4Δ - 1 UR-2 clr4Δ::NAT - transformant 1 
B4456 UR-2 clr4Δ - 2 UR-2 clr4Δ::NAT - transformant 2 
B4457 UR-2 NAT control - 1 UR-2 NAT:3’ of ura4 - transformant 1 
B4458 UR-2 NAT control - 2 UR-2 NAT:3’ of ura4 - transformant 2 
B4352 Pap1-N424STOP h- pap1-N424STOP 
B4459 UR-2 +14 days -CAF UR-2 after growth on -CAF media for 14 days 
B4460 hba1Δ h- hba1Δ::NAT 
B4461 SPBC17G9.12cΔ h- SPBC17G9.12cΔ::NAT 
B4462 ncRNA.393Δ h- ncRNA.393Δ::NAT 
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B4463 ncRNA.394Δ h- ncRNA.394Δ::NAT 
B4464 eno101Δ h- eno101Δ::NAT 
B3797 TetR-Clr4* h+ leu1+adh21-TetROFF-2xFLAG-Clr4-cdd 
B3808 4xtetO-II h- 4xtetO 3' of SPBC17G9.13c leu1-32 
B3813 4xtetO-I h- 4xtetO 5' of hba1 leu1-32 
B3820 4xtetO-III h- 4xtetO 5' of ura4 leu1-32 

B4465 TetR-Clr4* + 4xtetO-II h+ leu1+adh21-TetROFF-2xFLAG-Clr4-cdd 4xtetO 3' of 
SPBC17G9.13c 

B4466 TetR-Clr4* + 4xtetO-I h+ leu1+adh21-TetROFF-2xFLAG-Clr4-cdd 4xtetO 5' of hba1 
B4467 TetR-Clr4* + 4xtetO-IIII h+ leu1+adh21-TetROFF-2xFLAG-Clr4-cdd x4tetO 5' of ura4 
B4468 UR-2 (7 days +CAF) UR-2 after growth on +CAF media for 3 days 

B4469 UR-2 (7 days +CAF              
à14 days -CAF) 

UR-2 after growth on +CAF media for 3 days and then on -CAF 
media for 14 days 
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Supplementary Information Table 3. Oligonucleotides used in this study.  

Name Sequence Description 
qAct1-F GGTTTCGCTGGAGATGATG qPCR act1+ - F 
qAct1-R ATACCACGCTTGCTTTGAG qPCR act1+ - R 
qDg-F AATTGTGGTGGTGTGGTAATAC qPCR dg repeats - F 
qDg-R GGGTTCATCGTTTCCATTCAG qPCR dg repeats - R 
ST-52 GAATTGTGGAGCCATGTCCC qPCR slu7+ - F 
ST-53 TCTTCTCCTGTCCAACGAGC qPCR slu7+ - R 
ST-872 GAAACCCAGAAATTCGCAGGT qPCR kin17+ - F - primer pair 1 hba1 locus 
ST-873 ATGAGTTGCTTGGGCATCCA qPCR kin17+ - R - primer pair 1 hba1 locus 
ST-62 CAGCAAATTGGGGACTGTGT qPCR ish1+ - F - primer pair 2 hba1 locus 
ST-63 CTCAAGAAGCCTGGGAGTCA qPCR ish1+ - R - primer pair 2 hba1 locus 
ST-64 CGATGATCTGGTTGTATGGTGG qPCR hba1+ - F - primer pair 3 hba1 locus 
ST-65 TGCTCAGTACGCCATCTTGA qPCR hba1+ - R - primer pair 3 hba1 locus 
ST-66 GGGCTATCCTTAACGCTCTTC qPCR hba1+cds - F - primer pair 4 hba1 locus 
ST-67 CGCCTCCTCTGAACCAAAAG qPCR hba1+cds - R - primer pair 4 hba1 locus 
ST-58 CTTCCCACATCGCGTTCATT qPCR alp4+ - F - primer pair 5 hba1 locus 
ST-59 ACCTAAATCATCGCTGCTGG qPCR alp4+ - R - primer pair 5 hba1 locus 
ST-393 GGGCATGACAATCTCCGACT qPCR pyr1+ - F - primer pair 1 ncRNA.394 locus 
ST-394 GGCCTACCTCGGTGATCTTG qPCR pyr1+ - R - primer pair 1 ncRNA.394 locus 
ST-401 CCGTATGGTGAAGCAGGGTT qPCR SPBC17G9.12c+ - F - primer pair 2 ncRNA.394 locus 
ST-402 CCCGATCTCCGTGTAAGCAA qPCR SPBC17G9.12c+ - R - primer pair 2 ncRNA.394 locus 
ST-184 TTCGTCGTATGCCCTCTTGC qPCR SPBC17G9.13c+ - F - primer pair 3 ncRNA.394 locus 
ST-185 AAAATCCGCCATTTGCCCAG qPCR SPBC17G9.13c+ - R - primer pair 3 ncRNA.394 locus 
ST-251 TGCTGTAGTGATGCAGAGGAG qPCR ncRNA.393+ - F - primer pair 4 ncRNA.394 locus 
ST-252 GCGGCCATTTTGTTTACATTCC qPCR ncRNA.393+ - R - primer pair 4 ncRNA.394 locus 
ST-190 GAAAATTAGCGCGGCCGTTA qPCR ncRNA.394+ - F - primer pair 5 ncRNA.394 locus 
ST-191 TCAATCTGCTTGTCCCACCC qPCR ncRNA.394+ - R - primer pair 5 ncRNA.394 locus 
ST-263 GTGCTGCCCAAAAGAAGCTC qPCR eno101+ - F - primer pair 6 ncRNA.394 locus 
ST-264 TGGGAACCACCGTTCAAGAC qPCR eno101+ - R - primer pair 6 ncRNA.394 locus 
ST-249 AGCTTTCAAGGTAGCGGGTG qPCR cut2+ - F 
ST-250 TTCCTCTGCTCAGCGTAGAC qPCR cut2+ - R 
PA-354 CAGTTAGTTTCAGGTTTCCC qPCR +2.5 kb ura4+ - F - primer pair 1 ura4 locus 
PA-355 GCAGAGTAATGGTGATTGG qPCR +2.5 kb ura4+ - R - primer pair 1 ura4 locus 
ST-874 CACACAGTTTCAGAAGAAC qPCR tam14+ - F - primer pair 2 ura4 locus 
ST-875 GTTACGAGGAATCTTGGTAG qPCR tam14+ - R - primer pair 2 ura4 locus 
ST-796 CGCGACTGACAAGTTGCTTT qPCR ura4+ - F - primer pair 3 ura4 locus 
ST-797 AGCTAGAGCTGAGGGGATGA qPCR ura4+ - R - primer pair 3 ura4 locus 
ST-800 TGGTTTAAATCAAATCTTCCATGCG qPCR 5’ of ura4+ - F - primer pair 4 ura4 locus 
ST-801 TGAGCAAACTGCTTTTGTGGT qPCR 5’ of ura4+ - R - primer pair 4 ura4 locus 
ST-788 GGATGAAGCTGTCTCCCTGG qPCR new25+ - F - primer pair 5 ura4 locus 
ST-789 TATTGCTGCTTCTTCCCTGGC qPCR new25+ - R - primer pair 5 ura4 locus 
ST-876 GGAATCTATGTCGTTGCCG qPCR pmp20+ - F - primer pair 6 ura4 locus 
ST-877 GTAAACTCTCCGTTCCAGTC qPCR pmp20+ - R - primer pair 6 ura4 locus 

Clr4-KO-F 

ATTTTTTAAATTCGTTCAGGCA 
TCATTTGGAGGGTTTGCTAAA 
AATCATCTCACCAAACAAGAG 
GTTATTAGTTTTGCGACGGAT 
CCCCGGGTTAATTAA 

KO of clr4+ with Bahler construct - F 

Clr4-KO-R 

AAATGAATGACCTTTTTCAGTT 
TAACAGTAATGGAGAAAAACA 
AATTGTAATTATTGGAGTCAAC 
CAGTAATAAATTAGCGAATTC 
GAGCTCGTTTAAAC 

KO of clr4+ with Bahler construct - R 

ST-3 

GTCCAACACCCAGTTGTTAAC 
TGCTTATAATGACGCGTATGAT 
TGCGATATTTTAAGACTCTGGC 
CATCCACCGCTTTATCCGACG 
GATCCCCGGGTTAATTAA 

Inserting natMX6 marker 3’ of ura4+ (Control) - F 

ST-12 GCAGGTTCTAGTAATGCGCAT 
TCAATTTGTAGTATTCTTAAATA Inserting natMX6 marker 3’ of ura4+ (Control) - R 
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ATCATTAAACGACAAGGGCCTT 
CCGTGCTATAGTGTGAATTCGA 
GCTCGTTTAAAC 

ST-866 CtagaGGTCTCgGACTCTCCATTTTCGT
TAGAATTAGTTTcGAGACCcttCC Golden Gate cloning pap1-sgRNA-1-F 

ST-867 GGaagGGTCTCgAAACTAATTCTAACG
AAAATGGAGAGTCcGAGACCtctaG Golden Gate cloning pap1-sgRNA-1-R 

ST-868 
AGCATGGCGCGAACCCGCTGAATCA 
TTGGACAAAGAATTCTTTAACGACGA 
GGGTGAAATAGATGATGTTTTTCATAA 
TTATTTTCATAATTCTAACGTC 

Pap1-N424STOP - HR template - F 

ST-869 
GCTCAGGGAATGATTCGTTGGCATTC 
TCCAGAAAATCAAGACCATGCAATGA 
ATTAGTGATCAAGTCTCCATTTTCGTT 
AGACGTTAGAATTATGAAAAT 

Pap1-N424STOP - HR template - R 

ST-284 
CAGCTGTGTGTTTGATTGAATCCACA 
TTCGTCCTCATGTACTCATAGCTAGG 
TGAAATATATTAGGCTTTCAGTGATTC 
GCGGATCCCCGGGTTAATTAA 

KO of hba1+ with Bahler construct - F 

ST-285 
GAATGAATAAGAACCATAGTGAAGA 
GCTAAAAAAGAATCGAAAAGTACTT 
ACTATTTTACGAGTGGATCTTCTATC 
TCGCGAATTCGAGCTCGTTTAAAC 

KO of hba1+ with Bahler construct - R 

ST-391 
TCTTCTGCCTAACCATACTACTTCTT 
CTAGCCTTCAGACTTAAAAGCTTCG 
CCTTTAGAAAACATCTCTATTCCTTC 
AAACGGATCCCCGGGTTAATTAA 

KO of SPBC17G9.12c+ with Bahler construct - F 

ST-392 
CAAGAGAGATGGAAAACAGAGGA 
ATTGTGAACGTTCTCCTTATTCATAT 
TTCCATAAAGCTTCTCCAATGACCTT 
TATTGGAATTCGAGCTCGTTTAAAC 

KO of SPBC17G9.12c+ with Bahler construct - F 

ST-307 
GATAAAATCTTAGAGATTGTTGCTA 
AATAAGCAAACAGTGTCTTTGCTGT 
AACTGGTGAGATATGTTTAAAATTAAA 
TCACGGATCCCCGGGTTAATTAA 

KO of ncRNA.393+ with Bahler construct - F 

ST-308 
TGATATAATATATTTTCCTTCTTTACT 
ATTACATTTCCTATTTTTTCACCATTT 
ACGATATGTGTAACACTATCTAACCC 
GAATTCGAGCTCGTTTAAAC 

KO of ncRNA.393+ with Bahler construct - R 

ST-95 
TAATGAAAAAGGTTGCTAATTGGTTT 
GTTATATAAGAGTATGTCGCATTTGT 
TTACGATAGGAGAGAGCGATTTTCC 
ACACGGATCCCCGGGTTAATTAA 

KO of ncRNA.394+ with Bahler construct - F 

ST-96 
TATTACTATGACTCTGGTTCTAGCTC 
GACTCTGACCCTTGCCTGACATACA 
AATACTTTGCTCTTTTCAAAATGTACC 
GTGAATTCGAGCTCGTTTAAAC 

KO of ncRNA.394+ with Bahler construct - R 

ST-305 
ATATATAGAGTGGAAGGGCCGTCCG 
TTAGGACTTGTTTCAGTAAGAATCAAT 
TAGTATTCTACAGTAAACATCGTTAAT 
CCGGATCCCCGGGTTAATTAA 

KO of eno101+ with Bahler construct - F 

ST-306 
CTACTTCTACTACAACAACAGTTTAC 
TTTAATACTAATAATAAATAAACACG 
CAACCTGGCAAATTAATCCAAAACG 
CAAGAATTCGAGCTCGTTTAAAC 

KO of eno101+ with Bahler construct - R 

ST-756 CtagaGGTCTCgGACTGGTGCTTGACT 
TCTAATCTTGTTTcGAGACCcttCC Golden Gate cloning 4xtetO-I-sgRNA-F 

ST-757 GGaagGGTCTCgAAACAAGATTAGAAG 
TCAAGCACCAGTCcGAGACCtctaG Golden Gate cloning 4xtetO-I-sgRNA-R 

ST-732 AAACGCTAATCTAGCATGTCATGAAGG Making 4tetO-I-HR-template - 1F 

ST-733 
actagtaggccttgCCGTATTGAAATCAAAA 
TTATTAATAATGAGTAAGTGAATATATA
CCA 

Making 4tetO-I-HR-template - 1R 

ST-734 TGATTTCAATACGGcaaggcctactagtgcat
gca Making 4tetO-I-HR-template - 2F 

ST-735 TCTATAACTTTTACGTTAGctggatttcgttt
acctcaccac Making 4tetO-I-HR-template - 2R 

ST-736 
gaggtaaacgaaatccagCTAACGTAAAAGT
TATAGACAGTATTATAACAAGTATTATT
GTAAAA 

Making 4tetO-I-HR-template - 3F 
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ST-737 TTTAATTGTATTTTTTTATTCAAAGGTTC
TACTTTGTCAATCATTTTCAA Making 4tetO-I-HR-template - 3R 

ST-752 CtagaGGTCTCgGACTATTTCTTTTG 
CTTTACGGTCGTTTcGAGACCcttCC Golden Gate cloning 4xtetO-II-sgRNA-F 

ST-753 GGaagGGTCTCgAAACGACCGTAA 
AGCAAAAGAAATAGTCcGAGACCtctaG Golden Gate cloning 4xtetO-II-sgRNA-R 

ST-720 TTGAATTAATTCATAGAGTATGATAAAA 
ATTGATAGTAAATTCATTGG Making 4tetO-II-HR-template - 1F 

ST-721 cactagtaggccttgATGCATGCTAATAAA 
TCATCGTAACTCAAGTAG Making 4tetO-II-HR-template – 1R 

ST-722 TTTATTAGCATGCATcaaggcctactagtgc
atgca Making 4tetO-II-HR-template – 2F 

ST-723 TTTTTTTTTTCATAAATATTTActgga 
tttcgtttacctcaccacc Making 4tetO-II-HR-template – 2R 

ST-724 
tggtgaggtaaacgaaatccagTAAATATTTAT
GAAAAAAAAAATAAATGATTCATAACAA
GCAGATGAAAA 

Making 4tetO-II-HR-template - 3F 

ST-725 TTTGTAATGTATAATCTTCATTTATTTT 
GAAGAGTCCTAATTCGT Making 4tetO-II-HR-template – 3R 

ST-760 CtagaGGTCTCgGACTATATTTTAGATA
GTTCTGTGGTTTcGAGACCcttCC Golden Gate cloning 4xtetO-III-sgRNA-F 

ST-761 GGaagGGTCTCgAAACCACAGAACTAT 
CTAAAATATAGTCcGAGACCtctaG Golden Gate cloning 4xtetO-III-sgRNA-R 

ST-744 CGGTAAGAAAACACGACATGTGCAG Making 4tetO-III-HR-template – 1F 

ST-745 
catgcactagtaggccttgTATAATTAAGATG 
TTTTAGAGACTTATACAATTTTGTCTTT 
ATAAATTCT 

Making 4tetO-III-HR-template – 1R 

ST-746 CTAAAACATCTTAATTATAcaaggccta 
ctagtgcatgca Making 4tetO-III-HR-template – 2F 

ST-747 TTTGCACTTTGTGAATctggatttcgttt 
acctcaccacca Making 4tetO-III-HR-template – 2R 

ST-748 gtaaacgaaatccagATTCACAAAGTGC 
AAACATTATCATGAAAAAGAAC Making 4tetO-III-HR-template – 3F 

ST-749 TGAAAAAGATAATCAGCCTTATAATC 
TTTACAAAAGTAAGAAATTCT Making 4tetO-III-HR-template – 3R 
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Figure 1. Identification of heterochromatin-dependent epimutants resistant to caffeine

a, Schematic of the screening strategy. S. pombe wild-type (wt) cells were plated on caffeine-containing (+CAF) plates. Caffeine-resistant 
isolates were then grown on +CAF plates for 4, 7 or 20 days or on non-selective (-CAF) medium plates for 2 and 14 days. Cells were then 
serially diluted and spotted on -CAF and +CAF media to assess resistance to caffeine.

b, Unstable (UR) and stable (SR) caffeine-resistant isolates were identified. After growth on non-selective media for 14 days caffeine resist-
ance is lost in UR isolates but not in SR isolates.

c, Frequency of unstable (UR) / stable (SR) caffeine-resistant isolates obtained from 3 independent screens. 64% of isolates did not display a 
clear phenotype (unclear).

d, Caffeine resistance in UR isolates depends on the Clr4 H3K9 methyltransferase. clr4+ (clr4Δ) or an unlinked intergenic region (Control) were 
deleted in unstable (UR-1) and stable (SR-1) caffeine-resistant isolates.
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Figure 2. Ectopic domains of heterochromatin are detected in unstable (UR) caffeine-resistant isolates

a, Genome-wide H3K9me2 ChIP-seq enrichment in UR isolates and wt. Data are represented as relative fold enrichment over input.

b, H3K9me2 ChIP-seq enrichment at ectopic heterochromatin domains in individual isolates. Data are represented as relative fold enrich-
ment over input and compared to levels in wt cells. Relevant genes within and flanking ectopic heterochromatin domains are indicated. Red 
arrows indicate essential genes.

c, Gene transcript levels within and flanking ectopic heterochromatin domains in isolates UR-1 and UR-2. Data are mean ± SD (error bars) 
(n = 3 experimental replicates). * P < 0.05 (t test).
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Figure 3. Forced synthetic heterochromatin placement at the identified loci is sufficient to drive caffeine resistance in wild-type 
cells

a, Diagram illustrating TetR-Clr4*-mediated H3K9me deposition at 4xtetO binding sites. Addition of anhydrotetracycline (+AHT) causes 
release of TetR-Clr4* from 4xtetO sites which results in active removal of H3K9me.

b-d, Wild-type cells harbouring 4xtetO binding sites at the hba1 or ncRNA.394 loci (or ura4 as control) and expressing TetR-Clr4* were 
assessed for caffeine resistance in the absence or presence of AHT. Quantitative chromatin immunoprecipitation (qChIP) of H3K9me2 
levels on hba1 (b), SPBC17G9.13c (c) and ura4 (d) loci. Data are mean ± SD (error bars) (n = 3 experimental replicates). Dumbbells 
indicate oligonucleotides used. *Note hba1 is not present in hba1Δ. Strains were also assessed for resistance to the fungicide clotrimazole.
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Figure 4. Dynamic heterochromatin redistribution following short exposure to external insults in wild-type cells

a, H3K9me2 ChIP-seq enrichment at ncRNA.394, mcp7 and ssm4 loci following 18 hr exposure to low (7 mM, top) or medium (14 mM, 
bottom) concentrations of caffeine.

b, H3K9me2 ChIP-seq enrichment at ncRNA.394, mcp7 and ssm4 loci following 18hr exposure to a low concentration of hydrogen 
peroxide (1 mM).

a-b, Data are represented as relative fold enrichment over input and compared to levels in wt cells. Relevant genes within and flanking 
ectopic heterochromatin domains are indicated. Red arrows indicate essential genes. H3K9me2 enrichment at pericentromeric dhI and 
dgI repeats (cen1L) of chromosome I shown as control (note different scale).
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Extended Data Figure 1. Identification of heterochromatin-dependent epimutants resistant to caffeine

a, Unstable (UR) and stable (SR) caffeine-resistant isolates were identified using our screening strategy. After growth on non-selective media 
for 14 days caffeine resistance is lost in UR isolates but not in SR isolates.

b, Caffeine resistance is lost progressively in unstable (UR) isolates but maintained in stable (SR) isolates.

c, Caffeine resistance in UR isolates depends on the Clr4 H3K9 methyltransferase. clr4+ (clr4Δ) or an unlinked intergenic region (Control) were 
deleted in unstable (UR-2) and stable (SR-2) caffeine-resistant isolates.
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Extended Data Figure 2

a
Pap1

Extended Data Figure 2. A mutation in pap1+ confers caffeine resistance in the stable isolate SR-1

a, High-throughput sequencing of the stable isolate SR-1 revealed a 7-nucleotide insertion in pap1+. The insertion results in a truncated 
version of Pap1 (Pap1-N424STOP) lacking the Nuclear Export Signal (NES).

b, Pap1-N424STOP is resistant to caffeine. The 7-nucleotide insertion identified in SR-1 was introduced in wt cells (Pap1-N424STOP) and 
caffeine resistance was assessed. hba1Δ and SR-1 cells were used as positive controls.
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Extended Data Figure 3
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Extended Data Figure 3. 24 of 30 unstable (UR) caffeine-resistant isolates present an ectopic heterochromatin domain over the 
ncRNA.394 locus

a, H3K9me2 ChIP-seq enrichment at the ncRNA.394 locus in individual isolates. Data are represented as relative fold enrichment over input 
and compared to levels in wt cells. Relevant genes within and flanking ectopic heterochromatin domains are indicated. Red arrows indicate 
essential genes. Dumbbells indicate oligonucleotides used in c.

b, Deletion of ncRNA.394 or non-essential adjacent genes does not result in caffeine resistance.

c, Quantitative chromatin immunoprecipitation (qChIP) of H3K9me2 levels at the ncRNA.394 locus in UR-2 cells. UR-2 cells were grown in 
the absence (-CAF) or presence (+CAF) of caffeine overnight or in the absence of caffeine for 14 days (+14 days -CAF). Data are mean ± 
SD (error bars) (n = 3 experimental replicates). Oligonucleotides used are indicated in a.
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Extended Data Figure 4. Forced synthetic heterochromatin placement at the identified loci is sufficient to drive caffeine resistance 
in wild-type cells

a-c, Quantitative chromatin immunoprecipitation (qChIP) of H3K9me2 levels in wild-type cells harbouring 4xtetO binding sites at the 
identified ectopic heterochromatin loci (or ura4 as control) and expressing TetR-Clr4* in the absence or presence of AHT. a, hba1 locus. b, 
ncRNA.394 locus. c, ura4 locus. Data are mean ± SD (error bars) (n = 3 experimental replicates). Dumbbells indicate oligonucleotides used. 
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Extended Data Figure 5

Extended Data Figure 5. Unstable (UR) caffeine-resistant isolates show cross-resistance to the fungicide clotrimazole and siRNA 
generation at ectopic heterochromatin domains

a, Unstable caffeine-resistant isolates UR-1 and UR-2 were serially diluted and spotted on non-selective (N/S), +CAF and +CLZ plates to 
assess resistance to caffeine and clotrimazole.

b-c, Left, small RNA sequencing showing presence of siRNAs (21-24 nucleotides) at ectopic heterochromatin domains in UR-1 (b, hba1 
locus) and UR-2 (c, ncRNA.394 locus) cells compared to wt cells. Right, pericentromeric siRNAs mapping to dhI and dgI repeats (cen1L) of 
chromosome I shown as control. Experiments were performed twice with similar results. *Transcripts mapping to the highly expressed gene 
eno101+ in euchromatic wt conditions (note these are unidirectional RNAs and not siRNAs).
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Extended Data Figure 6
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Extended Data Figure 6. Copy Number Variation (CNV) analysis reveals a partial duplication of chromosome III in 12 of 30 unstable 
(UR) caffeine-resistant isolates

a, Genome-wide coverage plots with overlaid segments in UR isolates showing partial duplication of chromosome III. Wild-type ChIP-seq 
input data were used as the reference.

b, Chromosome III coverage plots with overlaid segments in UR isolates showing partial duplication of chromosome III. Location of cds1+ is 
highlighted. Wild-type ChIP-seq input data were used as the reference.
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Extended Data Figure 7
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Extended Data Figure 7. Epigenetic changes preceded genetic changes (CNV) in unstable caffeine-resistant isolate UR-2

a, H3K9me2 ChIP-seq enrichment at the ncRNA.394 locus (left) and chromosome III coverage plots with overlaid segments (right) in UR-2 
cells following prolonged growth on +CAF media for 3 days (7 days +CAF). Wild-type ChIP-seq input data were used as the reference for CNV 
analysis.

b, clr4+ (clr4Δ) or an unlinked intergenic region (Control) were deleted in UR-2 cells (4 days +CAF) and UR-2 cells after prolonged growth on 
+CAF media for 3 days (7 days +CAF). All (6/6) UR-2 (4 days +CAF) clr4Δ transformants lost resistance to caffeine whereas only 50% (3/6) 
UR-2 (7 days +CAF) lost resistance to caffeine.

c, H3K9me2 ChIP-seq enrichment at the ncRNA.394 locus (left) and chromosome III coverage plots with overlaid segments (right) in UR-2 
cells following prolonged growth on non-selective media for 14 days after prolonged growth on +CAF media for 3 days (7 days +CAF --> 14 
days -CAF). Wild-type ChIP-seq input data were used as the reference for CNV analysis.
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Lethal insult
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Extended Data Figure 8. Model 

Resistant isolates arise following exposure to a lethal insult. Resistance might be mediated by permanent, DNA-based mutations (resistant 
mutants) or reversible, heterochromatin-based epimutations (resistant epimutants). Upon insult removal, resistant epimutants can revert to 
the wild-type phenotype by disassembling ectopic domains of heterochromatin, whereas resistant mutants continue displaying the mutant 
phenotype due to the genetic nature of DNA mutations. 
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