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Abstract:  

The cell surface proteome, the surfaceome, is the interface for engaging the extracellular 

space in normal and cancer cells. Here we apply quantitative proteomics of N-linked 

glycoproteins to reveal how a collection of some 700 surface proteins is dramatically 

remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most 

prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and 

HER2, and downstream signaling partners such as KRAS, BRAF, MEK and AKT. We find 

that each oncogene has somewhat different surfaceomes but the functions of these proteins 

are harmonized by common biological themes including up-regulation of nutrient 

transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, 

and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks 

MAPK signaling brings each oncogene-induced surfaceome back to a common state 

reflecting their strong dependence on the MAPK pathway to propagate signaling. Using a 

recently developed glyco-proteomics method of activated ion electron transfer dissociation 

(AI-ETD) we found massive oncogene-induced changes in 142 N-linked glycans and 

differential increases in complex hybrid glycans especially for KRAS and HER2 

oncogenes. Overall, these studies provide a broad systems level view of how specific driver 

oncogenes remodel the surface glycoproteome in a cell autologous fashion, and suggest 

possible surface targets, and combinations thereof, for drug and biomarker discovery.  
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Significant statement  

The cell surface glycoproteome (surfaceome) mediates interactions between the cell and 

the extracellular environment, and is a major target for immunotherapy in cancer. Using 

state-of-the-art proteomics methods, we compared how six neighboring proliferative 

oncogenes cause large and bidirectional expression of some 700 surface proteins and the 

142 different glycans that decorate them. While each oncogene induces large and 

somewhat unique glycoproteomes relative to non-transformed cells, we find common 

functional consequences that are massively reversed by small molecule inhibition of the 

MAPK pathway. This large-scale comparative study provides important insights for how 

oncogenes remodel isogenic cells in a cell autologous fashion, and suggest possible new 

opportunities for antibody drug discovery in more complex tumor settings. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808139doi: bioRxiv preprint 

https://doi.org/10.1101/808139
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Introduction:  

The cell surface proteome, or surfaceome, is the main interface for cellular signaling, 

nutrient homeostasis, cellular adhesion, and defines immunologic identity. To survive, 

cancer cells adjust to promote increased nutrient import, pro-growth signaling, and evasion 

of immunological surveillance among others (Hanahan and Weinberg, 2011). There are 

some 4,000 different membrane proteins encoded in the human genome (Gonzalez et al., 

2010; Wallin and von Heijne, 1998), yet antibodies to only about two dozen cell surface 

targets have been approved for therapeutic intervention, prompting the need to discover 

novel tumor specific antigens (Carter and Lazar, 2018; Chames et al., 2009).  

 

Recent surfaceome studies in an isogenic MCF10A breast epithelial cell line transformed 

with oncogenic KRAS have identified more than two dozen up-regulated surface proteins 

that function in a cell autologous fashion to promote increased cell proliferation, 

metastasis, metabolic activity and immunologic suppression (Martinko et al., 2018; Ye et 

al., 2016; Ying et al., 2012). Many of the most powerful oncogenes are linked to KRAS 

and the MAPK pathway including overactivation of receptor tyrosine kinases, such as 

EGFR and HER2, or mutations in BRAF or RAS (Fig 1A). It is well-known these 

neighboring oncogenes are mutually exclusive in human tumors.  For example, lung cancer 

patients with oncogenic EGFR mutations seldom harbor oncogenic KRAS or BRAF 

mutations and vice versa (Cancer Genome Atlas Research Network et al., 2014). Also, 

recent evidence show that oncogene co-expression can induce synthetic lethality or 

oncogene-induced senescence further reinforcing that activation of one oncogene without 

the others is preferable in cancer (Cisowski et al., 2015; Unni et al., 2015).  
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There is also substantial evidence that cell surface glycosylation is altered in cancer. 

Incomplete or truncated synthesis, extended branching, core fucosylation, and sialylation 

of cell surface glycans are hallmarks of tumor cells, which alter physiological mechanisms 

of cell-cell adhesion, communication, and immune system recognition (Fernandes et al., 

1991; Hakomori, 1996; Hudak et al., 2014; Xia et al., 2016; Xiao et al., 2016; Kannagi et 

al., 2010; Varki and Gagneux, 2012). Over the past decade, chemical glycoproteomics has 

revealed specific examples of altered glycosylation and heterogeneity of glycans on 

particular proteins (Palaniappan and Bertozzi, 2016). However, we do not know how 

expression of different oncogenes globally alters glycosylation on individual proteins at a 

proteome-wide scale. Very recently, hybrid type ETD methods, such as activated ion 

electron transfer dissociation (AI-ETD) and ETD with supplemental activation (EThcD), 

have emerged as forerunners for glycoproteomic profiling due to their ability to generate 

sequence informative tandem mass spectra that links both the peptide backbone and 

corresponding glycan modification (Liu et al., 2017; Riley et al., 2019; Yang et al., 2017). 

These techniques can provide granularity to the altered glycosylation states of cell surface 

proteins upon oncogenic transformation.  

 

Here we address how neighboring driver oncogenes (KRASG12V, HER2 overexpression, 

EGFRL858R, BRAFV600E, phosphomemetic MEKS218D/S222D, and myristoylated AKT) stably 

expressed in a common non-cancerous isogenic epithelial cell alters the surface 

glycoproteome. Using cell-surface capture (CSC)(Bausch-Fluck et al., 2015; Wollscheid 

et al., 2009) and AI-ETD glycoproteomics (Riley et al., 2019), we found each oncogene 
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induced common and unique sets of up and down-regulated surface proteins and associated 

glycans. These sets of protein revealed common biological themes including increased 

expression of nutrient transporters and decreased expression of adhesion molecules. These 

effects were massively reversed upon inhibition of the MAPK pathway emphasizing its 

central importance in remodeling the surfaceome. These oncogene-induced surface 

proteins highlight targets or combinations to consider for immunotherapy.       
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Results: 
 
Phenotypic analysis of oncogene transformed MCF10A cells 

Tumor biology is highly complex and varies depending on the cell type of origin, stage, 

oncogenes, epigenome, stroma, vascularization, the immune system and metabolism. We 

deliberately took a simplistic reductionist approach to compare how specific proliferative 

oncogenes alter the cell surface proteome in a cell autologous fashion by using isogenic 

cells stably transformed with different oncogenes. No single cell type, culturing condition, 

or context is representative of all or even one cancer type. For practical reasons we chose 

the spontaneously immortalized breast epithelial MCF10A as our parental cell line because 

it is often used as a neutral starting point for oncogene studies (Allen-Petersen et al., 2014; 

Martins et al., 2015; Qu et al., 2015; Soule et al., 1990). Although MCF10A certainly does 

not recapitulate the diversity of mammary cell biology, it is of epithelial origin like most 

common tumors; it is non tumorigenic, requires growth factors for survival and does not 

harbor gene amplifications or other chromosomal aberrations typical of advanced cancer 

cell lines. Our intent is to compare how neighboring driving oncogenes remodel their 

surface glycoproteomes in isogenic cells in a cell autologous fashion. 

 

Lentivirus was used to stably transform MCF10A cells with six prevalent oncogenes that 

are neighbors in proliferative signaling: HER2 overexpression, EGFRL858R, KRASG12V, 

BRAFV600E, the phosphomimetic MEKS218D/S222D (MEKDD) and myristoylated AKT 

(AKTmyr) (Figure 1A).  Remarkably, the morphologies of each of the transformed cells 

varied from each other when cultured in the absence of growth factors indicative of 

differences in proteomic landscape (Figure 1B). In the absence of growth factors, cells 
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transformed with HER2 and KRASG12V grew to confluence, while cells harboring 

EGFRL858R, BRAFV600E, and MEKDD did not reach confluency, indicative of contact 

dependent growth inhibition. Cells transformed with AKTmyr, which signals through a 

parallel pathway relative to the other five oncogenes, had the most dramatic morphology 

change, displaying vertically stacked clusters of cells. Unlike the parental cell line, all the 

MCF10A cells stably transformed with any of the six oncogenes proliferated in the absence 

of growth factors to various degrees (Figure 1C). The HER2 and KRASG12V transformed 

cells proliferated most rapidly in the absence of growth factors, and even comparable or 

faster to the untransformed MCF10A cultured in the presence of growth factors. The HER2 

and KRASG12V cells also lifted off the plates much more readily than the others, suggesting 

reduced adhesion phenotype.   

 

These oncogenes can drive multiple branched pathways yet it was previously shown that 

inhibition of the MAPK pathway with the potent and selective MEK inhibitor (PD032590, 

MEKi) significantly reverses the surfaceome changes of MCF10A cells transformed with 

KRASG12V (Martinko et al., 2018). Indeed, MEKi substantially hampered growth for all 

cell lines either in the absence or presence of growth factors (Figure 1D, Figure S1). 

Overexpression of HER2 was most resistant to MEKi, followed by KRASG12V and AKTmyr, 

whereas cells containing EGFRL858R, BRAFV600E, or MEKDD were most sensitive to MEKi.  

 

Differential expression of oncogene-induced surfaceomes in MCF10A cells  

We next probed how the cell surfaceome is altered in the oncogene transformed cells 

compared to the empty vector control. N-glycosylation is present on >85% of cell surface 
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proteins (Apweiler et al., 1999) and can be exploited to capture the N-glycosylated proteins 

using a biotin hydrazide enrichment method called cell surface capture (CSC) (Bausch-

Fluck et al., 2018; Wollscheid et al., 2009). Here, we utilized a CSC protocol coupled with 

stable isotope labeling by amino acids in cell culture (SILAC) to compare the surfaceomes 

from the oncogene transformed MCF10A cells to the empty vector control (Figure S2) 

(Leung et al., 2019). We identified and quantified a total of 654 cell surface proteins across 

the six oncogenic cell lines (Figure 2A). Remarkably, the expression for 43% of the 

aggregate surface proteins (280 of 654) was altered by at least two-fold for the oncogene 

transformed cell lines relative to empty vector control reflecting significant remodeling of 

the surfaceomes. In each of the six datasets, we observed at least two-fold changes for 100 

to 150 different surface proteins (Figure 2A, Figure S3A-F); these changes were evenly 

split between up or down regulated sets reflecting bi-directional remodeling. Many of the 

differentially expressed proteins overlapped, but each cell line had a substantial number of 

uniquely differentially regulated proteins, presumably resulting from slight differences in 

signaling between each oncogene.  Although it is well known that correlations between 

protein and RNA levels are not often strongly correlated (Lundberg et al., 2010; Martinko 

et al., 2018; Schwanhäusser et al., 2011), we were prompted to determine whether the most 

common changes we observed. BCAM and NRCAM downregulation, in particular, were 

also observed in patient samples harboring the same oncogenic signatures in a number of 

cancers types of epithelial origin (Figure 2B-C). Utilizing 17 TCGA provisional dataset 

from The Cancer Genome Atlas with carcinoma (epithelial origin) annotation (Cancer 

Genome Atlas Research Network et al., 2013), activating oncogenic signature was defined 

as G12 or Q61 mutation in KRAS, L858 or amplification of EGFR, V600E mutation in 
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BRAF, or amplification of HER2. Transcriptional upregulation of MME, however, was not 

found in any of the dataset searched, suggesting regulation at the translational level or 

additional factors at play. 

 

At a global level, there were greater similarities between particular oncogenes. For 

example, cells harboring KRASG12V and HER2 clustered more closely together (Cluster 1), 

and those containing BRAFV600E, AKTmyr, EGFRL858R and MEKDD clustered together 

(Cluster 2) as seen either in the upset plot (Figure 2A) or a heatmap with hierarchical 

clustering (Figure 2D). The Pearson correlation coefficients were also higher within rather 

than across the two Clusters (Figure S4A). One of the striking findings was the 

upregulation of HER2 expression in the KRASG12V transformed cells but not in Cluster 2 

transformed cells (Figure S5), which may help to explain the stronger similarity in 

oncogene-induced surfaceomes between the HER2 and KRASG12V cell lines. This same 

analysis also showed striking compensating regulation, where HER2 is down-regulated in 

the EGFR oncogene expressing cell line.   

 

Despite detailed differences at the individual target level, these harmonized into common 

biological processes when viewed by Gene Set Enrichment Analysis (GSEA) (Figure 2E). 

For example, glycosylation and carbohydrate metabolism were similarly altered features 

for all the oncogenes (Figure 2F), consistent with numerous reports that altered 

glycosylation correlates with the development and progression of cancer (Pinho and Reis, 

2015; Varki et al., 2015). In addition, we see strong down-regulation of proteins involved 

in differentiation and adhesion reflecting cell attachment and migration (Supplemental 
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Fig 6A). There were also large changes in some cell surface phosphatases involved in 

down-regulation of receptor tyrosine kinases (Figure S6B).  These specific heatmaps 

reinforce the general division between Cluster 1 and Cluster 2. Due to the complexity of 

this datatype, a data browser was made to view each individual gene sets identified 

(https://wellslab.ucsf.edu/oncogene_surfaceome). 

 

MEK inhibition induces common surfaceome changes 

The MAPK pathway is a central driver of cell proliferation and has been a major 

therapeutic target in cancer. Indeed, MEKi significantly impedes the growth of all the 

oncogene transformed cells either in the absence (Figure 1D) or presence of growth factors 

(Figure S2). To determine how MEKi alters the surfaceome of the oncogene transformed 

cells, we compared the proteomic landscape of each oncogenic cell line in the presence and 

absence of MEKi. The proteomics dataset identified and quantified a total of 772 proteins, 

including an intersection of 492 proteins with the empty vector dataset discussed above, 

for a total of 934 proteins quantified between the two experiments. (Figure 3A-C).  

 

In large measure MEKi reversed the effects of the oncogenes and remarkably induced a 

more common state between all the cell lines including the empty vector control. For 

example, in contrast to the uninhibited datasets where 43% of proteins were differentially 

regulated by more than two-fold in the oncogene expressing cells, only 17% of the proteins 

(129 of 772) were altered by more than two-fold in the presence of MEKi (Figure 3A). Of 

the proteins detected, 18 proteins were commonly changed across all oncogenes, as 

opposed to three in the absence of MEK inhibition (Figure 3A, Figure S3G-M). The 
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similarity can be seen by hierarchical clustering of the MEKi datasets showing common 

changes across all cell lines (Figure 3B). The Pearson correlation between the six 

oncogene and untransformed control were also higher in general (Figure S4B). MEKi in 

KRASG12V and HER2 are still most closely correlated. GSEA of the MEKi data indicated 

a general common phenotypic reversal with down regulation of membrane transporters, 

metabolism, and upregulation of cell adhesion proteins consistent with a decrease in cancer 

associated phenotypes such as cellular proliferation and metastasis (Figure 3C, Figure 

S6C-D).  

 

Integrating oncogenic transformation and MEK inhibition dataset, 20 protein targets 

symmetrically flip from being significantly up to down regulated or vice versa in at least 

three cell lines, suggesting that the expression of these proteins is strongly dependent on 

the MAPK signaling pathway (Figure 3D). One such target, PODXL, appears to be 

stringently regulated by the MAPK pathway. Utilizing the same informatics approaches 

described above, transcription of PODXL was also found to be strongly upregulated in 

several cancer types of epithelial origin (Figure 3E). Additionally, 75 targets that were 

markedly up or down regulated revert to a median level of expression upon treatment with 

MEKi in at least three cell lines (Figure 3F). Interestingly, there were a handful of 

oncogene-induced targets that are further up-regulated upon MEKi, such as MME, 

suggesting they are maintained by circuitous pathways outside of MAPK (MEKi 

independent). Overall, the six oncogenes cause profound changes to the surfaceome that 

alter common biological processes, which can be largely blunted by inhibition of the 

MAPK pathway.  
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Oncogenes induce large changes to the glycoproteome 

Glycosylation has long been known as a biomarker for cancer (Adamczyk et al., 2012; 

Mechref et al., 2012; Peracaula et al., 2008; Pinho and Reis, 2015) and our GSEA data 

shows systematic up regulation of proteins involved in glycosylation, especially in Cluster 

2 (Figure 2E). We thus sought to identify the N-glycosylation modifications on specific 

membrane proteins for the six oncogene-transformed cell lines to compare among 

themselves and the empty vector control. For maximal coverage we enriched the 

glycoproteomes using the lectin Concanavalin A (ConA) and hydrophilic interaction liquid 

chromatography (HILIC), that provide a complementary means for capturing high 

mannose type and complex type glycans, respectively (Totten et al., 2017; Zhang et al., 

2016). We processed the N-glycoproteomes in biological triplicate utilizing LC-MS/MS 

coupled with activated ion electron transfer dissociation (AI-ETD) (Figure S7) (Riley et 

al., 2017). AI-ETD fragmentation combines radical-driven dissociation and vibrational 

activation and was recently shown to afford robust fragmentation of intact glycopeptides 

(Riley et al., 2019). Spectral assignments were made using the Byonic search engine (Bern 

et al., 2012); glycopeptides that were not identified across each of the three biological 

replicates for each cell line were removed. (Figure S8)  

 

Combining ConA and HILIC enrichments allowed for sampling of different glycan classes 

and the aggregated results of intact N-glycoproteomic analyses identified a total of 2,648 

unique N-glycopeptides that passed conservative filtering described in Materials and 

Methods (Fig 4, S9). Of this total, 189 were redundant glycan-glycosite pairs, i.e., 
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glycoforms that resulted from miscleaved or differentially oxidized peptides leaving a total 

of 2,459 unique glycoforms (Figure 4A). These glycoforms map to 785 N-glycosites found 

on a total of 480 glycoproteins. Thus, on average each glycoprotein had 1.6 N-linked 

glycosites and each site had on average 3.1 different glycans, reflecting significant 

heterogeneity in glycosylation. Similar, yet unique glycoforms indicated that the 

heterogeneity of protein N-glycosylation is driven largely by the biology and not artifacts 

of in-source fragmentation. Of the 785 glycosites, 324 are either known or predicted to be 

glycosylated in UniProt (UniProt Consortium, 2010), and over half are newly reported 

here. 

 

In total we identified 142 different glycan structures. The glycans can be categorized into 

six structural classes based on their maturation state as they transition from ER to Golgi 

and then split off to either lysosomal, granular, or cell surface destinations (Figure 

S10)(Yarema and Bertozzi, 2001). The six glycan categories represent a gradation of 

maturation from the least mature high mannose, to paucimannose, phosphomannose, 

complex/hybrid, and finally fucosylated and sialylated (Figure 4B). We identified 1,636 

mannose glycopeptides containing any of 8 high mannose-type glycans and 210 were 

found trimmed to contain any of 9 different paucimannose structures. The remaining 767 

N-glycopeptides had more complex glycans including: 210 complex/hybrid glycopeptides 

with 28 different structures, 314 of the sialylated class with 54 different structures, and 226 

of the fucosylated class with 42 different structures. We found only 17 phosphomannose 

containing glycopeptides each having the same structural type that are on proteins typically 

found in lysosomes (Kornfeld and Mellman, 1989; Rohn et al., 2000; Rouillé et al., 2000). 
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Thus, over 60% of the N-glycopeptides identified contained less mature high mannose or 

paucimannose structures originating from processing in the ER or early Golgi. It is not 

surprising to find these high mannose modifications associated with cell surface proteins 

as others have seen that high mannose N-glycosylation is abundant at the cell surface and 

especially associated with oncogene transformation (An et al., 2012; Balog et al., 2012; 

Holst et al., 2016).  

 

We found significant heterogeneity in the number of different glycan structures at any 

given site (Figure 4C). Approximately 45% of the sites were observed with only one 

glycan structure, but the range of glycans on these sites was broad.  Some glycosites, such 

as position N-234 on aminopeptidase N (ANPEP) had up to 39 different glycans detected. 

Additionally, the number of glycosites per protein varies considerably; about 70% of the 

glycoproteins have only one site of N-glycosylation but about 10% have over five sites.  

There is a general trend between the number of glycosites identified on a given protein and 

the number of unique glycans it has; however, some proteins show significantly increased 

heterogeneity of glycans relative to their number of total glycosites (Figure 4D). The most 

extreme glycan diversity was observed on ANPEP, on which 59 unique glycans were 

identified across 8 glycosites (Figure 4E). Interestingly, the glycosites with higher glycan 

diversity mapped to specific regions on the 3D structure of ANPEP. One face of the protein 

containing a cluster of four asparagines (at positions 128, 234, 265 and 818) had high 

glycan diversity ranging from 19 to 39 different glycan structures per glycosite, while the 

opposite face containing three clustered asparagines (at positions 625, 681 and 735) had 
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much lower diversity, ranging between 1 and 8 different glycan structures per site. This 

suggests topological bias of glycosylation on the folded protein structure. 

 

We next applied quantitative analysis to compare the different oncogene transformed cell 

lines in terms of their glycoproteome landscapes and changes between them and the empty 

vector control. We observed hundreds of glycopeptides that were significantly and 

differentially expressed (q < 0.05) upon oncogenic transformation relative to the empty 

vector control (Figure S11). In general, the volcano plots were symmetric reflecting bi-

directional changes and the fold-changes ranged from 50-fold down to 50-fold upregulated 

representing significant remodeling of the glycoproteome. Changes in glycosylation were 

greater than changes in surface protein expression which range from 2-8 fold (Figure S3). 

We quantified about 600 glycopeptides in each data set, of which two-thirds are shared in 

all data sets (Figure 5A). There was high quantitative reproducibility of the glycopeptide 

measurements based on the close hierarchical clustering of the three biological replicates 

(Figure 5B), tight clustering by principal component analysis, and low (<30%) median CV 

from the empty vector control cell line (Figure S12A-B). MEKDD and BRAFV600E had the 

greatest glycoproteome similarity, while empty vector was the furthest removed from all 

the oncogenes. 

 

The UpSet plot in Figure 5c displays significant glycopeptide differential expression that 

is shared and unique to each cell line. MCF10A transformed with the KRASG12V oncogene 

resulted in the largest set of uniquely changing glycopeptides. 154 of the 234 differentially 

expressed glycopeptides in the KRASG12V cell line were unique to KRASG12V 
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transformation. Some of these were highly protein specific. For example, 28 of the 154 

glycopeptides uniquely differentially expressed by KRASG12V were identified from 

ANPEP and all were upregulated upon oncogenic transformation as was the protein itself 

(Figure S13). Other glycopeptides from ANPEP were differentially expressed in different 

sets of cell lines. In fact, 51 of 69 glycopeptides from ANPEP were differentially expressed 

in at least one cell line; 12 ANPEP glycopeptides were significantly upregulated in HER2 

and 5 were shared between HER2 and KRASG12V.  

 

BRAFV600E, EGFRL858R, and MEKDD shared the most overlap of significantly changing 

glycopeptides between any group of three cell lines (Figure 5C); 24 glycopeptides 

belonged to this intersection. 12 were overexpressed and 12 were under expressed upon 

oncogenic transformation. Laminin subunit alpha-3 (LAMA3) and N-acetylglucosamine-

6-sulfatase (GNS) were most represented in the over expressed and under expressed group, 

respectively. Four glycopeptides from each protein were identified and significantly 

differentially expressed in these three cell lines. Six glycopeptides were significantly 

differentially expressed across all 6 cell lines, 3 of which were identified from galectin-3 

binding protein (Gal-3BP) and all were downregulated glycopeptides modified with high 

mannose glycans (Figure S14).  

 

We explored the glycan composition of differentially expressed glycopeptides to capture a 

broader view of differential glycosylation in the oncogene transformed cell lines and to see 

if general trends emerged. The heatmap in Figure 5D displays the differential glycome 

composition of glycopeptides changing more than 2-fold upon oncogenic transformation 
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compared to empty vector control. We, again, observe greatest similarity between 

BRAFV600E, EGFRL858R, and MEKDD cell lines, which have an increased proportion of high 

mannose glycans in upregulated glycopeptides. In contrast, HER2 and KRASG12V 

expressed fewer upregulated high mannose-modified glycopeptides and showed an 

increased proportion of complex/hybrid type glycopeptides. Further inspection revealed 

that nearly all the upregulated glycopeptides with a complex/hybrid glycan from the cell 

lines harboring HER2 (12 of 12) and KRASG12V (13 of 18) mapped to ANPEP. This protein 

was also upregulated on the KRASG12V surfaceome (Martinko et al., 2018), displayed the 

highest degree of glycan heterogeneity within the glycoproteomic data, and has previously 

been implicated in tumorigenesis (Dong et al., 2000; Pasqualini et al., 2000).  

 

Discussion:  

Oncogenesis is a complex phenomenon that involves aberrant changes in multiple 

biological processes to promote cancer cell survival (Hanahan and Weinberg, 2011). Here 

we study how the surfaceome remodels in a simplified cell autologous model by six 

prevalent and neighboring oncogenes that drive proliferation through the MAPK signaling 

node. Genetic studies have shown that these oncogenes typically exhibit mutual exclusivity 

in tumors from cancer patients (Cancer Genome Atlas Research Network et al., 2014). The 

surfaceome is a terminal manifestation of these signaling pathways. We find significant 

differences in detailed expression patterns consistent with differences in feedback loops 

and collateral signaling pathways between these oncogenes (Vaseva et al., 2018). However, 

we find these oncogene-induced surfaceome differences harmonize in similar functional 

outcomes overall, and consistent with observed mutual exclusivity.  
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We took a reductionist approach starting from an immortalized epithelial cell line stably 

transformed with each of the six different oncogenes to determine how the surfaceome is 

remodeled in a cell autologous fashion. This system is clearly an approximation and does 

not recapitulate the complexity of tumors that vary in cellular context, genetic variation, 

heterogeneity, oncogene expression, in the presence of host immune system and 

metabolism. Nonetheless, cell culture models are a practical reality allowing isogenic 

comparison between oncogenes, renewable access to materials that permits studies to be 

readily reproduced (Domcke et al., 2013; Rockwell, 1980; Wilding and Bodmer, 2014). 

We chose the spontaneously immortalized breast epithelial cell line, MCF10A, where the 

functional loss of p16INK4a allow cells to be cultured with a myriad of oncogenes without 

oncogene-induced senescence. We picked this over cancer cell lines which are already 

transformed or other artificially immortalized cell lines because they often contain genetic 

lesions that may cause genomic instability, leading to a more idiosyncratic background. 

Overall, we find that independent expression of each of these six oncogenes induced 

profound changes in the surfaceome, both in the proteins expressed and the glycans that 

decorate them.  

 

 

Common phenotypes and biological themes induced by the six oncogenes 

Although the six oncogenes we studied (HER2 overexpression, EGFRL858R, KRASG12V, 

BRAFV600E, MEKDD, and AKTmyr) have many variants that could have different 

phenotypes, we chose well known representatives to begin to understand the similarities 
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and differences between them at a course-grain level. Transformation with each of these 

oncogenes led to rapid growth to varying degrees in the absence of growth factors and 

produced somewhat different cell morphologies characteristic of a cancer cell transformed 

phenotype. Each oncogene caused large changes in the surfaceome where about 40% of 

the detected N-glyco proteins had altered expression level by more than two-fold evenly 

split between up and down-regulated proteins reflecting bi-directional cell surface 

remodeling.  

 

There were important differences between the oncogenes, and they clustered into two 

groups based on growth rates, surfaceomes and associated glycans. Cluster 1 containing 

HER2 overexpression and KRASG12V was most aggressive in proliferation and reduced 

adhesion. Cluster 2 was less aggressive included EGFRL858R, BRAFV600E, MEKDD and 

AKTmyr. We believe much of the similarity between HER2 and KRAS derives from KRAS 

induced expression of HER2, whereas EGFR suppresses expression of HER2 probably 

reflecting their signaling redundancy. MCF10A is derived from normal breast epithelial 

cells and among these oncogenes HER2 overexpression is most commonly seen in breast 

cancer patients at 13% compared to 2% for KRAS, 2.8 % for EGFR, 5% for AKT1, 1.7% 

for BRAF, and 0.6% for MEK1 (Figure S15). Each of these also shows remarkable mutual 

exclusivity relative to the others in breast cancer patients reflecting oncogene functional 

redundancies. Further in silico comparison of oncogenic mutational occurrence across all 

cancer types (Cerami et al., 2012; Gao et al., 2013) indicate a strong mutual exclusivity 

between BRAF and KRAS, and a slight mutual exclusivity with EGFR (Figure S16). 
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Alterations in transporter expression: One of the most pronounced oncogene-induced 

changes we observed is to proteins involved in solute transport that reverse upon MEK 

inhibition including: upregulation of SLC2A1, SLC6A15, SLC7A1, SLCO4A1, 

MF12/melanotransferrin, and down regulation of SLC22A5 and STEAP4 (Figure 3D). 

SLC6A15 acts as a preferential methionine amino acid transporter and shows dramatic 

upregulation in both KRAS and HER2 transformed cells. This is consistent with recent 

studies showing KRAS transformed cells exhibit an extreme sensitivity to methionine 

deprivation (De Sanctis et al., 2016). The Warburg Effect preferentially shifts cancer cells 

towards glycolysis, thereby promoting accelerated growth and division (Liberti and 

Locasale, 2016). We find SLC2A1, also known as glucose transporter-1 (GLUT1), is 

significantly upregulated in all oncogene transformed cells which would facilitate 

anaerobic glycolysis and increased growth for these cells. Our data show upregulation of 

SLCO4A1, a part of the organic anion transporter family that assists in transporting 

hormones such as prostaglandins, and vasopressin. Heightened expression of this hormone 

transporter has been previously seen in metastatic colorectal cancer (Buxhofer-Ausch et 

al., 2013). SLC7A1 has been shown to be upregulated across many cancer types, including 

colorectal cancer (Lu et al., 2013). Others have shown that SLC7A1 mRNA expression 

level decreases upon MAPK pathway inhibition(Calder et al., 2011), which is consistent 

with our proteomics data.  

 

General downregulation of receptor tyrosine phosphatases and tumor suppressors: 

Another important theme found within our data is a general down-regulation of surface 

proteins involved in receptor tyrosine phosphatases and other tumor suppressors such as: 
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PTPRF, PTPRS, UNC5B, and BCAM (Figure 2A, Figure 3D). The expression of PTPRF 

and PTPRS, in particular, have been associated with decreased metastasis through the 

inactivation of EGFR signaling, emphasizing their importance as tumor suppressor 

proteins in numerous cancer contexts (Davis et al., 2018; Tian et al., 2018). Both of these 

proteins show a marked decrease in expression across the majority of the oncogene 

transformed cells, perhaps as a means to promote growth and metastasis. Similarly, 

UNC5B has recently been shown to halt tumor progression in an in vivo model of bladder 

cancer through inducing cell cycle arrest in the G2/M phase (Kong et al., 2016). Lastly, 

BCAM has been previously shown to be a tumor suppressor in a model of hepatocellular 

carcinoma (Akiyama et al., 2013), and decreased expression in all oncogene transformed 

cells may signify the removal of tumor suppressive signaling.  

 

Alteration in adhesion molecules: Metastasis is the leading cause of death for patients 

with cancer, and tumor cells acquire the ability to penetrate the surrounding tissues, thus 

leading to invasion (Martin et al., 2013). Many of these acquired functionalities are through 

changes in adhesion molecules on the cell surface, which play the role of mediating cell-

cell interactions. Within our dataset, we identified five targets, LAMC2, LAMA3, LAMB3, 

PODXL, and MME, that are known to play important roles in mediating metastasis in 

various tumor types and we find to be upregulated across the majority of oncogenic mutants 

(Figure 2A, Figure 3D). LAMC2 has previously been shown to promote EMT and 

invasion in an in vivo model of lung adenocarcinoma (Moon et al., 2015). It has also been 

shown that colorectal cancer with high MAPK activity express heightened levels of 

LAMC2, supporting our proteomic results that show reversal upon MEK inhibition (Blaj 
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et al., 2017). PODXL had increased expression in all six mutant cell lines, and has been 

implicated in increasing the aggressiveness of breast and prostate cancer through the 

induction of both MAPK and PI3K signaling (Sizemore et al., 2007). PODXL is also a 

glycoprotein with extensive mucin-type O-glycosylation, the overexpression of which can 

lead to increased metastatic potential through increased cell cycle progression via the PI3K 

and MAPK axes (Nielsen and McNagny, 2009; Paszek et al., 2014; Woods et al., 2017). 

MME, known as matrix metalloprotease-12, was found upregulated in all six oncogenic 

mutants compared to the empty vector control. MME has been reported to participate in 

the break-down of extracellular matrix. It is involved in tumor invasion in some settings 

(Kerkelä et al., 2002) and can be used to promote oncolytic viral infection in tumors 

(Lavilla-Alonso et al., 2012). Interestingly, MME is upregulated across all oncogenes in 

both the oncogene and MEKi datasets, suggesting that MME expression is not regulated 

through the MAPK or PI3K axis. This heightened expression of MME in all oncogenic 

contexts presents an opportunity for future research into synthetic lethality studies with 

MME inhibition in combination with MEKi or other MAPK targets. 

 

Immune Modulation: Another prominent cause of cancer progression is the evasion of 

immune surveillance. This can be achieved by overexpressing proteins that have a net 

immunosuppressive effect or by downregulating proteins that increase immune activation. 

Here, we identified three differentially regulated proteins, NT5E, HLA-F, and DSE, that 

play important roles in immune functions (Figure 3D). NT5E, which was upregulated in 

all MAPK mutants, promotes immunosuppression through the production of adenosine 

from AMP, which can decrease the capacity of natural killer cells to produce immune 
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activating IFN molecules and prevents the clonal expansion of cytotoxic T cells in the 

surrounding tumor tissue (Gao et al., 2014). Conversely, HLA-F and DSE (also known as 

dermatan sulfate epimerase), were downregulated in all oncogene expressing cell lines, and 

both play a role in immune system activation and tumor-rejection, through activation of 

NK cells or cytotoxic T cells, respectively, in the tumor microenvironment (Dulberger et 

al., 2017; Liao et al., 2019). Both NT5E and HLA-F show reversed expression levels upon 

MEKi, suggesting a potential mechanism for immune re-activation after tumor 

development (Figure 3D). 

 

Down-regulation by shedding: Proteolytic cleavage of proteins at the cell surface leads 

to ectodomain shedding and the existence of neo N-termini. The loss of ectodomains would 

lead to decreased peptide detection by LC-MS/MS. We identified four surface proteins 

reduced in detection, MSLN, TACSTD2, NRCAM, and GPC1, that are known to undergo 

proteolysis to enhance the growth and metastasis of cancer.  (Kawahara et al., 2017; 

Morello et al., 2016; Stoyanova et al., 2012). In particular, NRCAM, which had lower 

surface levels in all six oncogenic mutants is a cell-cell adhesion molecule; it is known to 

be shed by proteolysis, and the shed form stimulates cell proliferation via the AKT pathway 

(Conacci-Sorrell et al., 2005). Perhaps unsurprisingly, NRCAM did not exhibit a 

renormalization of expression levels after MEK inhibition, due to its exclusive function 

through the AKT pathway. 

 

Changes in glycosylation machinery and protein N-glycosylation: Alterations in 

glycosylation are common features of cancer cells (Pinho and Reis, 2015) which can result 
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from a variety of factors, including changes in expression of glycosyltransferases, 

availability of sugar nucleotide substrates, alteration in expression of substrate proteins, or 

changes to the tertiary structure of the protein substrate that disrupt transfer of the glycan.  

We find glycosyl transferases FUT10, EXT2, GALNT11, GCTN2, and ST6GALNAC2 

are highly upregulated across all oncogenic cell lines. FUT10 is an α-1,3-

focusyltransferase, and FUTs are critical for the production of LewisX and Sialyl LewisX 

antigens which are hallmarks of invasion (Blanas et al., 2018).  In fact, the most aggressive 

of our oncogene cell lines (HER2 and KRAS) are significantly upregulated in complex 

hybrid type glycans for which these are members, and especially noteworthy for ANPEP. 

EXT2 forms a heterodimer with EXT1 in the Golgi functioning as a glycosyl transferase 

involved in catalyzing the formation of heparin, a substrate that contributes to structural 

stability of the extracellular matrix, thereby mediating processes such as adhesion, immune 

infiltration, and signaling (Nagarajan et al., 2018). Unsurprisingly, alterations in heparan 

sulfate formation has been shown to have emerging roles in oncogenesis, of which EXT2 

is a primary facilitator (Knelson et al., 2014). GALNT11 is a protein involved in the 

initiation of mucin-type O-glycosylation a well known marker that over-expressed in 

cancer (Villacis et al., 2016) ((Libisch et al., 2014) (Hussain et al., 2016). MUC-1 is also a 

very important drug target for immunotherapy (Bafna et al., 2010; Posey et al., 2016; 

Rivalland et al., 2015; Vassilaros et al., 2013). Interestingly, a common substrate for this 

family of enzymes, PODXL, is also upregulated across all oncogenic cell lines (see above), 

suggesting a possible mechanism by which increased GALNT11 promotes pro-growth 

phenotypes in these cell lines. GCTN2 is a glycosyltransferase (Bierhuizen et al., 1993), 
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and specifically implicated in the transition from naïve to germinal center B cell (Meyer et 

al., 2018).  

 

ST6GalNAc2 is a sialyltransferase that catalyzes attachment of GalNAc to core glycans 

and is paradoxically up-regulated in all the oncogene cell lines. A genome wide shRNA 

screen in mice for genes that suppress metastasis identified and validated ST6GalNAc2 as 

the strongest metastasis suppressor. ST6GalNAc2 is strongly down regulated in estrogen-

receptor negative breast cancer tumors. Silencing of ST6GalNAc2 promotes binding of 

Galectin-3 and retention of tumor cells to sites of metastasis. Galectin-3 is a member of S-

type lectins and known modulator of tumor progression (Liu and Rabinovich, 2005) by 

enhancing aggregation of tumor cells during metastasis and preventing anoikis (Bair et al., 

2006; Grassadonia et al., 2002; Lin et al., 2015). Galectin-3 binds to core glycans branched 

glycan structures with terminal fucosylation on Galectin-3 binding protein (Gal-3BP) that 

ST6GalNAc blocks via sialylation (Lin et al., 2015).  We found all glycopeptides from the 

eight glycosites Gal-3BP were down-regulated up to 50-fold in all cell lines (Figure S14).  

 

Our glycoproteomic analyses show protein N-glycosylation is dramatically changed upon 

oncogenic transformation, and that distinct genetic drivers of oncogenesis promote unique 

changes to the glycoproteome. The majority of differentially expressed glycopeptides were 

unique to individual cell lines. We observed greatest similarity between BRAFV600E, 

EGFRL858R, and MEKDD, which has been consistent throughout different analyses of these 

cell lines (Figure 5B). There were significant differences between the oncogene Cluster 1 

(KRAS/HER2) and Cluster 2 (EGFR/ BRAF/ MEK/AKT). Specifically, we found 
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differential increase in complex hybrid glycans and decrease in high mannose in Cluster 1 

and just the opposite for Cluster 2.  

 

There is abundant evidence to suggest that high-mannose type glycans are present at the 

cell surface, and furthermore, that cancerous cells display increased abundance of high-

mannose glycans at their cell surface (Holst et al., 2016; Hua et al., 2014). A similar 

observation was reported in the glycomic comparison of transformed versus human 

embryonic stem cells (hESC), where high-mannose glycans were observed at significantly 

higher abundance on plasma membranes of hESCs (An et al., 2012). Together, these 

observations help to explain the similarities between cancerous cells and hESCs, such as 

the regulation of tumor suppressor genes and the ability to self-renew (Shackleton, 2010). 

This is consistent with our studies although we cannot exclusively rule out that some of the 

high mannose glycans we observe are coming from proteins in route to the membrane.  

 

Our data suggest glycosylation is quite heterogeneous possibly reflecting incomplete 

maturation. The most stunning example in our data of heterogeneity in glycosylation was 

for ANPEP, an amino peptidase also upregulated at the protein level across most cell lines. 

The most extreme example was site N234 of ANPEP where we found 29 different glycan 

structures.  When these are arranged in order of glycan maturation, we observed a close 

representation of its steady state progression through the secretion pathway 

(Supplementary Figure 13). ANPEP also showed the greatest representation within 

complex/hybrid glycopeptides that were upregulated in HER2 and KRASG12V cell lines 

(Figure 5D). ANPEP was most upregulated in KRASG12V in surfaceomic analyses and its 
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expression was not dramatically influenced by MEK inhibition. ANPEP expression in our 

surfaceomic and glycoproteomic data represents one way in which KRASG12V diverges 

from other members of the MAPK pathway. These data, combined with ANPEP’s 

previously identified role in angiogenesis(Pasqualini et al., 2000), underscore its 

importance in KRASG12V-positive tumors. ANPEP glycosylation may serve as a very 

sensitive biomarker of glycan metabolism in cells given its highly diverse and 

heterogeneous patterns.  

 

Conclusions: 

We provide a large-scale comparative study of how six neighboring proliferative 

oncogenes cause large cell autologous remodeling in the surface glycoproteome. While 

many of the changes are specific to given oncogenes at both the protein and glycopeptide 

level, we observe common biological themes suggesting functional redundancy of the 

specific cellular expression. This is consistent with observations that common tumors can 

express these different oncogenes although not together.  We commonly observe 

upregulation of surface proteins involved in metabolite transport, glycosylation, and 

immune suppressors and down regulation of adhesion proteins and tumor suppressors 

which is consistent with increased cell growth and invasion that are well-known properties 

of cancer cells. These studies were deliberately conducted in isogenic cell lines to isolate 

the oncogene-induced changes. Even in a simplified autologous cell model we recapitulate 

many of the hallmarks of transformed cells driven by complex but functionally redundant 

changes to the surfaceome. We believe the work provides important insights into the 
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similarities and differences among the neighboring oncogenes and provide new 

opportunities to pursue antibody tools to follow in more complex tumor settings.   
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Materials and Methods 

All MCF10A cells were cultured according to established protocols unless otherwise 

stated. Surfaceome of each oncogene transformed cell line was compared to empty vector 

(EV) control using SILAC based quantification. For inhibition study, each oncogene 

transformed cell line was treated with 100nM MEK inhibitor PD032590 or DMSO control 

for three days and surfaceome changes were compared in each respective cell line using 
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SILAC based quantification. Glycoproteome of each oncogene transformed cell line was 

quantified using label-free quantification. Detailed materials and methods are included in 

SI appendix. 
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Figure 1: Growth rates and morphologies for MCF10A cells transformed with 
neighboring proliferative oncogenes that control the MAPK pathway. (A) Simplified 
signaling schematic relationship of six proliferative oncogenes studied, EGFRL858R, 
HER2 over-expression, KRASG12V, BRAFV600E, MEK DD and AKTmyr. (B) Oncogenic 
transformation of MCF10A induces diverse cellular morphologies. Note, images are 
presented in the same order of the schematic in panel A. (C) MCF10A cells stably 
transformed with lenti-virus with the different onocogenes grow independent of growth 
factor. Grey and black lines indicate cellular growth of MCF10A EV control with and 
without growth factors, respectively. Cell growth (n = 3) was measured each day for 6 
days by CellTiter-Glo luminescent cell viability assay and normalized to viability on day 
1. (D) Suppression of growth for all cell lines by treatment with 100 nM MEK inhibitor 
(PD0325901) in the absence of growth factors. MCF10A cells transformed with HER2 
appears to be least sensitive to MEKi, followed by KRASG12V and AKTmyr.   
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Figure 2: Proliferative oncogenes cause large changes in the surfaceome that are 
diverse in detail but have common functional themes. (A) Many differentially 
regulated proteins are unique to each cell line, and only three proteins were commonly up 
or down-regulated among all six cell lines. In the top bar graph, up-regulated proteins 
(red) are indicated by the upward bars, and down-regulated proteins (blue) are indicated 
by the downward bars. The specific overlapping groups are indicated by the black solid 
points below the bar graph. Total differentially regulated proteins for each cell line are 
indicated in the left bar graph. Up-regulated (red) and down-regulated (blue) proteins are 
defined as log2(FC) > 1 and p value < 0.05. (B-C) BCAM (B) and NRCAM (C) are 
significantly down regulated across various carcinoma with activating oncogenic 
signature in KRAS, HER2, BRAF and EGFR (blue) compared to no mutations in these 
genes (grey). Activating oncogenic signature was defined as G12 or Q61 mutation in 
KRAS, L858 or amplification of EGFR, V600E mutation in BRAF, or amplification of 
HER2. Genomic and expression data was obtained from 17 TCGA provisional dataset 
with carcinoma (epithelial origin) annotation. (D) Hierarchal clustering of surfaceome 
changes revealed similarities between HER2 and KRAS transformed cells.  (E) Top 30 
enriched gene sets identified by Gene Set Enrichment Analysis (GSEA) of the proteomics 
dataset using Gene Ontology terms shows clustering between HER2 and KRAS 
transformed cells. Positive normalized effect size (up-regulation) is shown in red and 
negative (down-regulated) normalized effect size is shown in blue. Proteins were pre-
ranked by median SILAC peptide ratio and GSEA was performed using MySigDB C5 
GO gene set collection. (F) Proteins involved in glycosylation (GO:0070085) are down 
regulated in the KRAS and HER2 cluster (blue) while the same proteins are up-regulated 
in the other oncogenes cluster. Heatmap for each Gene Set identified is also available at 
wellslab.ucsf.edu/oncogene_surfaceome. 
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Figure 3: Inhibition of MEK led to similar perturbations of the surfaceome 
regardless of oncogenic transformation. (A) Majority of differentially regulated surface 
proteins were either completely unique (highlighted in yellow) or completely common 
(bar 3) to all seven cell lines. In the top bar graph, up-regulated genes (red) are indicated 
by the upward bars, and down-regulated genes (blue) are indicated by the downward 
bars. The specific overlapping groups are indicated by the black solid points below the 
bar graph. Total differentially regulated proteins for each cell line are indicated in the left 

6

8

10

12

14

16

Br
ea
st
In
va
siv
e
Ca
rc
ino
m
a

Es
op
ha
ge
al
Ad
en
oc
ar
cin
om
a

Pa
nc
re
at
ic
Ad
en
oc
ar
cin
om
a

St
om
ac
h
Ad
en
oc
ar
cin
om
a

Th
yr
oid

Ca
rc
ino
m
a

Ut
er
ine

Co
rp
us
En
do
m
et
ria
l C
ar
cin
om
a

lo
g 2
(P
O
D
X
L
R
S
E
M
+1

)
Normalizedeffect size
-2 -1 0 1 2

Normalizedeffect size
-2 -1 0 1 2

SI
LA
C
en
ric
hm
en
tr
at
io

-2
-1

0
1

2

M
EK
_M
EK
i

BR
AF
_M
EK
i

AK
T_
M
EK
i

EG
FR
_M
EK
i

KR
AS
_M
EK
i

HE
R2
_M
EK
i

EV
_M
EK
i

GO_REGULATION_OF_ANATOMICAL_STRUCTURE_MORPHOGENESIS
GO_REGULATION_OF_CELL_MORPHOGENESIS
GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION
GO_POSITIVE_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT
GO_REGULATION_OF_CELL_PROJECTION_ORGANIZATION
GO_REGULATION_OF_AXONOGENESIS
GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT
GO_POSITIVE_REGULATION_OF_NEURON_DIFFERENTIATION
GO_NEGATIVE_REGULATION_OF_CELLULAR_COMPONENT_ORGANIZATION
GO_REGULATION_OF_CELL_DEVELOPMENT
GO_NEGATIVE_REGULATION_OF_CELL_DEVELOPMENT
GO_POSITIVE_REGULATION_OF_CELLULAR_COMPONENT_BIOGENESIS
GO_GROWTH_FACTOR_BINDING
GO_ANCHORED_COMPONENT_OF_MEMBRANE
GO_PHOSPHATASE_ACTIVITY
GO_DEPHOSPHORYLATION
GO_SYNAPTIC_MEMBRANE
GO_POSTSYNAPSE
GO_CELL_PROJECTION_MEMBRANE
GO_REGULATION_OF_METAL_ION_TRANSPORT
GO_TRANSFERASE_ACTIVITY_TRANSFERRING_GLYCOSYL_GROUPS
GO_TRANSFERASE_ACTIVITY_TRANSFERRING_HEXOSYL_GROUPS
GO_NEGATIVE_REGULATION_OF_TRANSPORT
GO_REGULATION_OF_BODY_FLUID_LEVELS
GO_ENDOSOMAL_PART
GO_BASEMENT_MEMBRANE

AK
T

BR
AF

GXYLT2
ST6GAL1
GALNT3
ST3GAL1
FUT11
MUC16
B3GALT6
ST3GAL6
GCNT4
B3GALNT1
DAG1
MAGT1
GCNT1
GALNT1
EXT1
MAN2A2
POMT1
MGAT5
TUSC3
GNPTAB
MAN2A1
B4GALT3
DPY19L3
STT3B
MGAT4A
POMK
NAGPA
NPC1
ST3GAL2
GALNT18
FKTN
ST3GAL4
EDEM1
B3GALNT2
ALG9
B4GAT1
GALNT10
RPN1
POMT2
GXYLT1
STT3A
RPN2
MGAT4B
B3GNT5
B4GALT5
B3GNT2

KR
AS

HE
R2

EG
FR

M
EK

GO_AMINO_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVITY
GO_SOLUTE_CATION_SYMPORTER_ACTIVITY
GO_SYMPORTER_ACTIVITY
GO_BRANCHING_MORPHOGENESIS_OF_AN_EPITHELIAL_TUBE
GO_MORPHOGENESIS_OF_A_BRANCHING_STRUCTURE
GO_REGULATION_OF_VASCULATURE_DEVELOPMENT
GO_SODIUM_ION_TRANSPORT
GO_ANION_TRANSPORT
GO_ORGANIC_ANION_TRANSPORT
GO_ORGANIC_ACID_TRANSMEMBRANE_TRANSPORT
GO_SODIUM_ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY
GO_SECONDARY_ACTIVE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY
GO_ANION_TRANSMEMBRANE_TRANSPORT
GO_ORGANIC_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVITY
GO_FORMATION_OF_PRIMARY_GERM_LAYER
GO_GASTRULATION
GO_ANION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY
GO_ORGANIC_ANION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY
GO_REGULATION_OF_CELL_CYCLE
GO_CELLULAR_RESPONSE_TO_NITROGEN_COMPOUND
GO_CELL_CELL_CONTACT_ZONE
GO_RESPONSE_TO_ACID_CHEMICAL
GO_ENZYME_REGULATOR_ACTIVITY
GO_ANCHORED_COMPONENT_OF_MEMBRANE
GO_AMIDE_BINDING
GO_VACUOLE
GO_ENDOSOME
GO_REGULATION_OF_MULTI_ORGANISM_PROCESS
GO_RECEPTOR_MEDIATED_ENDOCYTOSIS
GO_DIVALENT_INORGANIC_CATION_HOMEOSTASIS

CNTN3
GPM6B
TSPAN13
ADGRL3
MME
TMX3
TMED9
CHST3
HSPG2
B3GNT2
TSPAN3
IMPAD1
SUN1
LAMB1
CLPTM1
TMEM259
CPD
NCEH1
NOTCH2
TMEM9B
TMEM106B
HM13
SLC2A1
LAMB2
JKAMP
APP
APLP2
CD63
TTYH3
CD164
PTTG1IP
STIM1
ACP2
HGSNAT
NPC1
LAMP1
MCOLN1
A4GALT
ERAP1
OSTM1
LMBRD1
TMEM179B

M
EKAK
T

EG
FR

BR
AF

H
ER
2

KR
AS

Normalizedeffect size
-2 -1 0 1 2

KR
AS
_E
V

H
ER
2_
EV

BR
AF
_E
V

m
AK
T_
EV

EG
FR
_E
V

M
EK
D
_E
V

SI
LA
C
en
ric
hm
en
tr
at
io

-2
-1

0
1

2

SI
LA
C
en
ric
hm
en
tr
at
io

-2
-1

0
1

2

SILAC enrichment ratio
2

SILAC enrichment ratio SILAC enrichment ratio
-2 -1 0 1 2

M
EK
_M
EK
i

EV
_M
EK
i

M
EK
D
_M
EK
i

BR
AF
_M
EK
i

AK
T_
M
EK
i

EG
FR
_M
EK
i

KR
AS
_M
EK
i

H
ER
2_
M
EK
i

BR
AF
_M
EK
i

m
AK
T_
M
EK
i

EG
FR
_M
EK
i

KR
AS
_M
EK
i

H
ER
2_
M
EK
i

EV
_M
EK
i

GO_REGULATION_OF_ANATOMICAL_STRUCTURE_MORPHOGENESIS
GO_REGULATION_OF_CELL_MORPHOGENESIS
GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION
GO_POSITIVE_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT
GO_REGULATION_OF_CELL_PROJECTION_ORGANIZATION
GO_REGULATION_OF_AXONOGENESIS
GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT
GO_POSITIVE_REGULATION_OF_NEURON_DIFFERENTIATION
GO_NEGATIVE_REGULATION_OF_CELLULAR_COMPONENT_ORGANIZATION

BR
AF

EG
FR

H
ER
2

KR
AS AK
T

M
EK

BR
AF
_M
EK
i

EG
FR
_M
EK
i

H
ER
2_
M
EK
i

KR
AS
_M
EK
i

AK
T_
M
EK
i

M
EK
_M
EK
i

UGT8
LAMC2
SLC6A14
LAMA3
SLCO4A1
NT5E
LAMB3
SLC7A1
SLC6A15
PODXL
STEAP4
CPM
UNC5B
HLA-F
PTPRF
PTPRS
TACSTD2
MSLN
GPC1
SLC22A5

MEK dependent regulation by oncogene
in at least 3 cell lines

CELSR2
MPPE1
NUP210
PCDHGC3
ITFG3
SDC1
CD33
TMEM132A
ERBB3
ICAM1
CDH2
PTPRM
GGT5
CNTN3
GPM6B
TSPAN13
ADGRL3
MME
TMX3
TMED9
CHST3
HSPG2
B3GNT2
TSPAN3
IMPAD1
SUN1
LAMB1
CLPTM1
TMEM259
CPD
NCEH1
NOTCH2
TMEM9B
TMEM106B
HM13
SLC2A1
LAMB2
JKAMP
APP
APLP2
CD63
TTYH3
CD164
PTTG1IP
STIM1
ACP2
HGSNAT
NPC1
LAMP1
MCOLN1
A4GALT
ERAP1
OSTM1
LMBRD1
TMEM179B

cluster 1cluster 2 cluster 2

M
EK
D_
M
EK
i

KR
AS
_M
EK
i

HE
R2
_M
EK
i

BR
AF
_M
EK
i

m
AK
T_
M
EK
i

EG
FR
_M
EK
i

KR
AS
_M
EK
i

HE
R2
_M
EK
i

EV
_M
EK
i

BR
AF

EG
FR

HE
R2 AK
T

M
EK

BR
AF
_M
EK
i

EG
FR
_M
EK
i

HE
R2
_M
EK
i

KR
AS
_M
EK
i

AK
T_
M
EK
i

M
EK
_M
EK
i

UGT8
LAMC2
SLC6A14
LAMA3
SLCO4A1
NT5E
LAMB3
SLC7A1
SLC6A15
PODXL
STEAP4
CPM
UNC5B
HLA-F
PTPRF
PTPRS
TACSTD2
MSLN
GPC1
SLC22A5

MEK dependent regulation by oncogene
in at least 3 cell lines

BR
AF

EG
FR

HE
R2

KR
AS AK
T

M
EK

BR
AF
_M
EK

i

EG
FR
_M
EK

i

HE
R2
_M
EK

i
KR
AS
_M
EK

i

AK
T_
M
EK

i

M
EK
_M
EK

i DSE
PCDH1
ST3GAL1
GALNT3
LMF2
L1CAM
ITGB6
F3
EPCAM
TSPAN1
BCAM
SEMA4D
SUSD5
SLC26A2
EFNB3
SLC7A5
KIRREL
ACVR1
MST1R
ADCY3
CELSR2
MPPE1
NUP210
PCDHGC3
ITFG3
SDC1
CD33
TMEM132A
ERBB3
ICAM1
CDH2
PTPRM
GGT5
CNTN3
GPM6B
TSPAN13
ADGRL3
MME
TMX3
TMED9
CHST3
HSPG2
B3GNT2
TSPAN3
IMPAD1
SUN1
LAMB1
CLPTM1
TMEM259
CPD
NCEH1
NOTCH2
TMEM9B
TMEM106B
HM13
SLC2A1
LAMB2
JKAMP
APP
APLP2
CD63
TTYH3
CD164
PTTG1IP
STIM1
ACP2
HGSNAT
NPC1
LAMP1
MCOLN1
A4GALT
ERAP1
OSTM1
LMBRD1
TMEM179B

SILAC enrichment ratio
-2 -1 0 1 2

AK
T_
M
EK
i

EG
FR
_M
EK
i

M
EK
_M
EK
i

BR
AF
_M
EK
i

KR
AS
_M
EK
i

HE
R2
_M
EK
i

EV
_M
EK
i

MEK dependent regulation by oncogene
in at least 3 cell lines

A B

FC

D

10

5

0

5

10

KRAS_MEKi

HER2_MEKi

MEK_MEKi

EGFR_MEKi

ATK_MEKi

EV_MEKi

BRAF_MEKi

In
te
rs
ec
tio
n
Si
ze

of
sig
ni
fic
an
tly
up
-o
rd
ow
n-

re
gu
la
te
d
pr
ot
ei
n
ex
pr
es
sio
n

up
on
M
EK

in
hi
bi
tio
n

-40 -20 0 20 40
Set size

E

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808139doi: bioRxiv preprint 

https://doi.org/10.1101/808139
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

bar graph. Up-regulated (red) and down-regulated (blue) proteins are defined as log2(FC) 
> 1 and p value < 0.05. (B) Hierarchal clustering of surfaceome changes shows MEK 
inhibition treatment affected each cell line similarly. (C) Top 30 enriched gene sets 
identified by Gene Set Enrichment Analysis (GSEA) of the proteomics dataset using 
Gene Ontology terms show similarities between all cell lines, indicating unique changes 
could be functionally redundant. Positive normalized effect size (up-regulation) is shown 
in red and negative (down-regulated) normalized effect size is shown in blue. Proteins 
were pre-ranked by median SILAC ratio and GSEA was performed using MySigDB C5 
GO gene set collection. Heatmap for each Gene Set identified is also available at 
wellslab.ucsf.edu/oncogene_surfaceome. (D) MEK dependent regulation of protein 
expression induced by oncogenic transformation. Proteins shown were differentially 
regulated by oncogene (either log2(FC) > 1 or log2(FC) < -1 in oncogene vs EV) and 
were then reversed (flipped log2(FC) < -1 and log2(FC) > 1 in MEK inhibition vs 
respective cell line) in at least 3 cell lines. (E) PODXL is significantly upregulated across 
various carcinoma with activating oncogenic signature in KRAS, HER2, BRAF and 
EGFR (red) compared to no mutations in these genes (grey). Activating oncogenic 
signature was defined as G12 or Q61 mutation in KRAS, L858 or amplification of EGFR, 
V600E mutation in BRAF, or amplification of HER2. Genomic and expression data was 
obtained from 17 TCGA provisional dataset with carcinoma (epithelial origin) 
annotation. (F) MEK independent regulation of protein expression induced by oncogenic 
transformation. Proteins shown were differentially regulated by oncogene (either 
log2(FC) > 1 or log2(FC) < -1 in onco vs EV) and were then reverted to a median level 
but not reversed (flipped log2(FC) < -1 and log2(FC) > 1 in MEK inhibition vs respective 
cell line) in at least 3 cell lines.  
 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808139doi: bioRxiv preprint 

https://doi.org/10.1101/808139
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

 

Figure 4: A global overview of the MCF10a glycoproteome identified from all cell 
lines. (A) Unique glycans, glycoproteins, glycosites, and glycoforms identified across all 
six cell lines. A pie charts represents a high percentage of glycosites not previously 
reported in uniport. (B) High mannose glycan type is the most common glycan identified. 
A total of six common glycan types are used to categorize glycans identified. (C) The 
varying degrees of microheterogeneity (top) and macroheterogeneity (bottom) of protein 
N-glycosylation. (D) A scatter plot of unique glycans versus number of glycosites for 
each protein provides an additional view of heterogeneity in protein N-glycosylation. The 
protein with the most heterogenous glycoform was Aminopeptidase N (ANPEP, 
UniProtKB: P15144). (E) Mapping glycan diversity on structure of ANPEP reveals 
spatial regulation of glycosylation patterns. Asparagine residues with high (magenta) and 
low (teal) numbers unique glycans are highlighted. The most C-terminus glyan, N818, 
has high glycan diversity distance and has similar distance to all other asparagine 
residues. (PDB ID: 4FYR) 
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Figure 5: Quantitative glycopeptide measurements across mutant cell lines. (A) An 
UpSet plot shows glycopeptide identifications that are unique to or shared between data 
sets. (B) Pairwise Pearson correlations from all replicate analyses illustrates clustering 
between MEKDD and BRAFV600E glycoproteome. (C) An UpSet plot displays the shared 
and unique glycopeptides that are differentially expressed upon oncogenic 
transformation. (D) A heatmap display the differences glycan type distribution for up and 
down regulated glycopeptides across cell lines. 
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