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Abstract

It is difficult to predict how antibodies will behave when mixed together, even after
each has been independently characterized. Here, we present a statistical mechanical
model for the activity of antibody mixtures that accounts for whether pairs of
antibodies bind to distinct or overlapping epitopes. This model requires measuring n

individual antibodies and their n(n−1)
2 pairwise interactions to predict the 2n potential

combinations. We apply this model to epidermal growth factor receptor (EGFR)
antibodies and find that the activity of antibody mixtures can be predicted without
positing synergy at the molecular level. In addition, we demonstrate how the model can
be used in reverse, where straightforward experiments measuring the activity of
antibody mixtures can be used to infer the molecular interactions between antibodies.
Lastly, we generalize this model to analyze engineered multidomain antibodies, where
components of different antibodies are tethered together to form novel amalgams, and
characterize how well it predicts recently designed influenza antibodies.

Author summary

With the rise of new combination antibody therapeutic regimens, it is important to
understand how antibodies work together as well as individually. Here, we investigate
the specific case of monoclonal antibodies targeting a cancer-causing receptor or the
influenza virus and develop a statistical mechanical framework that predicts the
effectiveness of a mixture of antibodies. The power of this model lies in its ability to
make a large number of predictions based on a limited amount of data. For example,
once 10 antibodies have been individually characterized, our model can predict how any
of the 210 = 1024 combinations will behave. This predictive power provides ample
opportunities to test our model and paves the way to expedite the design of future
therapeutics.

Introduction 1

Antibodies can bind with strong affinity and exquisite specificity to a multitude of 2

antigens. Due to their clinical and commercial success, antibodies are one of the largest 3

and fastest growing classes of therapeutic drugs [1]. While most therapies currently use 4

monoclonal antibodies (mAbs), mounting evidence suggests that mixtures of antibodies 5

can behave in fundamentally different ways [2]. There is ample precedent for the idea 6
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that combinations of therapeutics can be extremely powerful—for instance, during the 7

past 50 years the monumental triumphs of combination anti-retroviral therapy and 8

chemotherapy cocktails have provided unprecedented control over HIV and multiple 9

types of cancer [3, 4], and in many cases no single drug has emerged with comparable 10

effects. However, it is difficult to predict how antibody mixtures will behave relative to 11

their constitutive parts. Often, the vast number of potential combinations is 12

prohibitively large to systematically test, since both the composition of the mixture and 13

the relative concentration of each component can influence its efficacy [5]. 14

Here, we develop a statistical mechanical model that bridges the gap between how 15

an antibody operates on its own and how it behaves in concert. Specifically, each 16

antibody is characterized by its binding affinity and potency, while its interaction with 17

other antibodies is described by whether its epitope is distinct from or overlaps with 18

theirs. This information enables us to translate the molecular details of how each 19

antibody acts individually into the macroscopic readout of a system’s activity in the 20

presence of an arbitrary mixture. 21

To test the predictive power of our framework, we apply it to a beautiful recent case 22

study of inhibitory antibodies against the epidermal growth factor receptor (EGFR), 23

where 10 antibodies were individually characterized for their ability to inhibit receptor 24

activity and then all possible 2-Ab and 3-Ab mixtures were similarly tested [6]. We 25

demonstrate that our framework can accurately predict the activity of these mixtures 26

based solely on the behaviors of the ten monoclonal antibody as well as their epitope 27

mappings. 28

Lastly, we generalize our model to predict the potency of engineered multidomain 29

antibodies from their individual components. Specifically, we consider the recent work 30

by Laursen et al. where four single-domain antibodies were assayed for their ability to 31

neutralize a panel of influenza strains, and then the potency of constructs comprising 32

2-4 of these single-domain antibodies were measured [7]. Our generalized model can 33

once again predict the efficacy of the multidomain constructs based upon their 34

constitutive components, once a single fit parameter is inferred to quantify the effects of 35

the linker joining the single-domain antibodies. This enables us to quantitatively 36

ascertain how tethering antibodies enhances the two key features of potency and 37

breadth that are instrumental for designing novel anti-viral therapeutics. Notably, our 38

models do not posit complex molecular synergy between antibodies. Our results 39

therefore show that many antibody mixtures function without synergy, and hence that 40

their effects can be computationally predicted to expedite future experiments. 41

Results 42

Modeling the mechanisms of action for antibody mixtures 43

Consider a monoclonal antibody that binds to a receptor and inhibits its activity. Two 44

parameters characterize this inhibition: (1) the dissociation constant KD quantifies an 45

antibody’s binding affinity (with a smaller value indicating tighter binding) and (2) the 46

potency α relates the activity when an antibody is bound to the activity in the absence 47

of antibody. A value of α = 1 represents an impotent antibody that does not affect 48

activity while α = 0 implies that an antibody fully inhibits activity upon binding. As 49

derived in S1 Text Section A, for an antibody that binds to a single site on a receptor, 50

the activity at a concentration c of antibody is given by 51

Fractional Activity =
1 + α c

KD

1 + c
KD

. (1)

To characterize a mixture of two antibodies, we not only need their individual 52
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dissociation constants and potencies but also require a model for how these antibodies 53

interact. When two antibodies bind to distinct epitopes, the simplest scenario is that 54

their ability to bind and inhibit activity is independent of the presence of the other 55

antibody, and hence that their combined potency when simultaneously bound equals 56

the product of their individual potencies (Fig 1A). Alternatively, if the two antibodies 57

compete for the same epitope, they cannot both be simultaneously bound (Fig 1B). 58

We also define the general case of a synergistic interaction where the binding of the 59

first antibody alters the binding or potency of the second antibody (Fig 1C, purple 60

text). This definition encompasses cases where the second antibody binds more tightly 61

(K
(2)
D,eff < K

(2)
D ) or more weakly (K

(2)
D,eff > K

(2)
D ) in the presence of the first antibody, as 62

well as when the potency of the second antibody may increase (α2,eff > α2) or decrease 63

(α2,eff < α2). This also includes cases where two epitopes slightly overlap and partially 64

inhibit one another’s binding, and the competitive binding model can be viewed as the 65

extreme limit K
(2)
D,eff →∞ where one antibody infinitely penalizes the binding of the 66

other. 67

While the synergistic model in Fig 1C has the merit of being highly general, an 68

important feature of the independent and competitive models (Fig 1A,B) is that they 69

predict all antibody combinations with few parameters. In both of these latter models, 70

once the K
(j)
D and αj of 10 antibodies are known (which requires 2 · 10 experiments) 71

and their epitopes are mapped (10·9
2 additional experiments), the potency of all 72

210 = 1024 possible mixtures of these antibodies can be predicted without recourse to 73

fitting. In contrast, because the synergistic model allows arbitrary interactions between 74

each combination of antibodies, the behavior of a mixture exhibiting synergy cannot be 75

predicted without actually making a measurement on that combination to quantify the 76

synergy. 77

For these reasons, in this work we focus on the two cases of independent or 78

competitive binding and show how we can combine both models to transform our 79

molecular understanding of each monoclonal antibody’s action into a prediction of the 80

efficacy of an antibody mixture. Deviations from our predictions provide a rigorous way 81

to measure antibody synergy by computing
K

(2)
D,eff

K
(2)
D

and
α2,eff

α2
. 82

To mathematize the independent and competitive binding models, we enumerate the 83

possible binding states and compute their relative Boltzmann weights. The fractional 84

activity of each state equals the product of its relative probability and relative activity 85

divided by the sum of all relative probabilities for normalization (see S1 Text Section A). 86

When two antibodies bind independently as in Fig 1A, this factors into the form 87

Fractional Activity(distinct epitopes) =

1 + α1
c1
K

(1)
D

1 + c1
K

(1)
D

1 + α2
c2
K

(2)
D

1 + c2
K

(2)
D

 . (2)

If these two antibodies compete for the same epitope as in Fig 1B, the activity becomes 88

Fractional Activity(overlapping epitopes) =
1 + α1

c1
K

(1)
D

+ α2
c2
K

(2)
D

1 + c1
K

(1)
D

+ c2
K

(2)
D

. (3)

These equations are readily extended to mixtures with three or more antibodies (see S1 89

Text Section A). 90

Antibody mixtures against EGFR are well characterized using 91

independent and competitive binding models 92

To test the predictive power of the independent and competitive binding models, we 93

applied them to published experiments on the epidermal growth factor receptor (EGFR) 94
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Fig 1. Binding modes for a 2-Ab mixture. Two antibodies with concentrations c1 and c2 can bind (A) independently
to different epitopes or (B) competitively to the same epitope. (C) Antibodies bind synergistically if either the product of

binding affinities (K
(j)
D ) or potencies (αj) are altered when both antibodies bind.

where ten monoclonal antibodies were individually characterized and then the activity 95

of all 165 possible 2-Ab and 3-Ab mixtures was measured [6]. We first use each 96

monoclonal antibody’s response to infer its dissociation constant KD and potency α. 97

We then utilize surface plasmon resonance (SPR) measurements to determine which 98

pairs of antibodies bind independently and which compete for the same epitope. These 99

data enable us to use the above framework and predict EGFR activity in the presence 100

of any mixture. 101

EGFR is a transmembrane protein that activates in the presence of epidermal 102
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growth factors. Upon ligand binding, the receptor’s intracellular tyrosine kinase domain 103

autophosphorylates which leads to downstream signaling cascades central to cell 104

migration and proliferation. Overexpression of EGFR has been linked to a number of 105

cancers, and decreasing EGFR activity in such tumors by sterically occluding ligand 106

binding has reduced the rate of cancer proliferation [6]. 107

Koefoed et al. investigated how a panel of ten monoclonal antibodies inhibit EGFR 108

activity in the human cell line A431NS [6]. They then measured how 1:1 mixtures of 109

two antibodies or 1:1:1 mixtures of three antibodies affect EGFR activity. All 110

measurement were carried out at a total concentration of 2 µg
mL , implying that each 111

antibody was half as dilute in the 2-Ab mixtures and one-third as dilute in the 3-Ab 112

mixtures relative to the monoclonal antibody measurement. 113

The 45 possible 2-Ab mixtures (35 binding to distinct epitopes; 10 binding to 114

overlapping epitopes) and the 120 possible 3-Ab mixtures (50 binding to distinct 115

epitopes; 70 binding to overlapping epitopes) were assayed for their ability to inhibit 116

EGFR activity. Fig 2A shows the experimental measurements for mixtures of two 117

antibodies, with the monoclonal antibody measurements shown on the diagonal, the 118

measured activity of 2-Ab mixtures shown on the bottom-left and the predicted activity 119

on the top-right. Each antibody is labeled with its binding epitopes inferred through 120

SPR [6], so that antibodies binding to overlapping epitopes are predicted using Eq (3) 121

(pairs within the dashed gray boxes) while mixtures binding to distinct epitopes use 122

Eq (2). 123

For example, antibodies #1 and #4 bind to distinct epitopes (III/C and III/B, 124

respectively). Hence, the predicted activity of their mixture (0.50) very nearly equals 125

the product of their individual activity (0.65× 0.75 = 0.49), with the slight deviation 126

arising because each antibody concentration was halved in the mixture (c1 = c2 = 1 µg
mL 127

for the 2-Ab mixture characterized by Eq (2), whereas the individual mAbs were 128

measured at c = 2 µg
mL using Eq (1)). The predicted activity roughly approximates the 129

measured value 0.43 of the mixture. 130

On the other hand, antibodies #1 and #2 bind to the same epitope (III/C), and 131

hence their predicted combined activity (0.67) lies between their individual activities 132

(0.65 and 0.69) since both antibodies compete for the same site. The measured activity 133

of the mixture (0.65) closely matches the prediction of the overlapping epitope model, 134

but is very different than the prediction of 0.45 made by the distinct-binding model. 135

Fig 2B shows the measured EGFR activity in the presence of all 2-Ab and 3-Ab 136

mixtures is highly correlated with the predicted activity (R2 = 0.90) Notably, the 137

predictions are made solely from the monoclonal antibody data and epitope 138

measurements, and do not involve any fitting of the 2-Ab or 3-Ab measurements. The 139

strong correlation between the predicted and measured activities suggests that EGFR 140

antibody mixtures can be characterized with minimal synergistic effects in either their 141

binding or effector functions. If we did not have the epitope mapping through SPR and 142

assumed that all antibodies bound to distinct epitopes (Fig 2C, R2 = 0.85) or competed 143

for the same epitope (Fig 2D, R2 = 0.86), the resulting predictions are slightly more 144

scattered from the diagonal, demonstrating that properly acknowledging which pairs of 145

antibodies vie for the same epitope boosts the predictive power of the model. 146

That said, the predictions incorporating the SPR mapping display a consistent bias 147

towards having a slightly lower measured than predicted activity, suggesting that 148

several pairs of antibody enhance one another’s binding affinity or potency. To quantify 149

this, if we recharacterize the activity from the 2-Ab mixtures to a synergistic model 150

where each α2,eff is fit to exactly match the data, we find an average value of 151

α2,eff

α2
= 0.9, showing that when pairs of antibodies are simultaneously bound they 152

typically boost their collective inhibitory activity by ∼10%. 153
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Fig 2. Predicting how antibody mixtures affect the epidermal growth factor receptor (EGFR). (A) The
fractional activity of EGFR in the presence of monoclonal antibodies (diagonal) together with the measured (bottom-left) and
predicted (top-right) activity of all 2-Ab combinations. The dashed gray boxes enclose antibody pairs that compete for the
same epitope while all other pairs bind independently. (B) The predicted versus measured fractional activity for all 2-Ab and
3-Ab mixtures using the same epitope mapping as in Panel A inferred by SPR. Without the epitope map, the activity of the
mixtures could alternately be predicted by assuming that all antibodies either (C) bind independently or (D) compete for the
same epitope; in either case, the resulting predictions fall further from the diagonal line, indicating poorer predictive power.

Differentiating distinct versus overlapping epitopes using 154

antibody mixtures 155

In the previous section, we used SPR measurements to quantify which antibodies 156

compete for overlapping epitopes, thereby permitting us to translate the molecular 157

knowledge of antibody interactions into a macroscopic quantity of interest, namely, the 158

activity of EGFR. In this section, we do the reverse and utilize activity measurements 159

to categorize which subsets of antibodies bind to overlapping epitopes. This method can 160

be applied to model antibody mixtures in other biological systems where SPR 161

measurements are not readily available. 162

For the remainder of this section, we ignore the known epitope mappings discerned 163

by Koefoed et al. and consider what mapping best characterizes the data. For example, 164
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given the individual activities of antibody #1 (0.65) and #2 (0.69), the predicted 165

activity of their combination (at the concentration of 1 µg
mL for each antibody dictated by 166

the experiments) would be 0.45 if they bind to distinct epitopes and 0.67 if they bind to 167

overlapping epitopes. Since the measured activity of this mixture was 0.65, it suggests 168

the latter option. We note that such analysis will work best for potent antibodies 169

(whose individual activity is far from 1), since only in this regime will the predictions of 170

the distinct versus overlapping models be significantly different. Therefore, the activity 171

measurements of each individual antibody would optimally be carried out at saturating 172

concentrations (where Eq (1) is as far from 1 as possible). 173

Proceeding to the other antibodies, we characterize each pair according to whichever 174

model prediction lies closer to the experimental measurement. To account for 175

experimental error, we left an antibody pair uncategorized if the two model predictions 176

were too close to one another (within 4σ = 0.16 where σ is the SEM of the 177

measurements) or if the experimental measurement was close (within 1σ) to the average 178

of the two model predictions (see S1 Text Section B). 179

Fig 3A shows how this analysis compares to the experimental measurement inferred 180

by SPR. While the model predictions are much sparser (with the majority of antibody 181

pairs uncategorized because the two model predictions were too close to one another), 182

the classifications only disagreed with the SPR measurements in two cases (claiming 183

that antibodies #7-8 overlap with antibody #10; notice that antibodies #7-8 have 184

individual activities close to 1, making them difficult to characterize). 185

Using these classifications, we defined unique EGFR epitopes by grouping together 186

any antibodies that bind to overlapping epitopes. In this way, we split the ten 187

antibodies into four distinct groups (antibodies #1-3, #4-5, #6, and #7-10 indicated by 188

the dashed gray rectangles in Fig 3A), enabling us to distinguish which antibodies bind 189

independently or competitively and hence predict the activity of the 2-Ab and 3-Ab 190

mixtures. Note that it is not the pairwise classification between two antibodies that 191

determines whether we apply the distinct or competitive models, but rather these four 192

groupings of antibody epitopes. For example, although antibodies #7 and #8 are 193

uncategorized through their 2-Ab mixture, they fall within a single epitope group and 194

hence are considered to bind competitively. Similarly, antibody #1 and #4 are modeled 195

as binding independently because they belong to two distinct epitope groups. Antibody 196

#6 is considered to be in its own epitope group since it did not overlap with any other 197

antibody. 198

Surprisingly, the results shown in Fig 3B have a coefficient of determination 199

R2 = 0.90 that is on par with the results obtained using the SPR measurements 200

(Fig 2B). Since the inferred epitope map relied on the 2-Ab activity data, we compared 201

the predicted activity of the 3-Ab mixtures using the epitopes inferred through SPR 202

with those inferred through the activity data and showed that they are nearly identical 203

(R2 = 0.997, see S1 Text Section A). This suggests that there is no loss in the predictive 204

power of the model when an epitope mapping is inferred through activity measurements. 205

In summary, whether antibodies bind independently or competitively can be 206

determined either: (1) directly through pairwise competition experiments or (2) by 207

analyzing the activity of their 2-Ab mixtures in light of our two models. When this 208

information is combined with the potency and dissociation constant of each antibody, 209

the activity of an arbitrary mixture can be predicted. The Supplementary Information 210

contains a Mathematica program that can analyze either form of the pairwise 211

interactions to determine the epitope grouping. If the characteristics of the individual 212

antibodies are also provided, the program can predict the activity of any antibody 213

mixtures at any specified ratio of the constituents. 214
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Fig 3. Classifying antibody epitopes as overlapping or distinct. (A) Comparing the experimentally measured
activity to the overlapping or distinct epitope models enables us to characterize each antibody pair (provided the two models
predict sufficiently different activities). (B) The resulting predictions for the 2-Ab and 3-Ab mixtures have the same
predictive power (R2 = 0.90) as a model that relies on epitope groupings given by SPR measurements (Fig 2B).

Multidomain antibodies boost breadth and potency via avidity 215

While the previous sections analyzed combinations of whole, unmodified antibodies, we 216

now extend our framework to connect with the rising tide of engineering efforts that 217

genetically fuse different antibody components to construct multi-domain antibodies [8]. 218

Specifically, we focus our attention on recent work by Laursen et al. who isolated 219

single-domain antibodies from llamas immunized with H2 or H7 influenza 220

hemagglutinin (HA) [7]. The four single-domain antibodies isolated in this manner 221

included one antibody that preferentially binds influenza A group 1 strains (AbA1), 222

another that binds influenza A group 2 strains (AbA2), and two antibodies that bind to 223

influenza B strains (Ab
(1)
B and Ab

(2)
B ). Fig 4A,B shows data from a representative 224

influenza A group 1 strain (blue dot, only bound by the blue AbA1), influenza A group 225

2 strain (green dot, only bound by the green AbA2), and influenza B strain (gold dot, 226

bound by both of the yellow Ab
(1)
B and Ab

(2)
B antibodies). 227

In the contexts of rapidly evolving pathogens such as influenza, two important 228

characteristics of antibodies are their potency and breadth. Potency is measured by the 229

inhibitory concentration IC50 at which 50% of a virus is neutralized, where a smaller 230

IC50 represents a better antibody. Breadth is a measure of how many strains are 231

susceptible to an antibody. 232

In an effort to improve the potency and breadth of their antibodies, Laursen et 233

al. tethered together different domains using a flexible amino acid linker (right-most 234

columns of Fig 4A,B) and tested them against a panel of influenza strains. To make 235

contact with these multidomain constructs, consider a concentration c of the tethered 236

antibody AbA1–AbA2. Relative to the unbound HA state, the AbA1 or AbA2 portions 237

of the antibody will neutralize the virus with relative probability c
IC50,A1

or c
IC50,A2

, 238

respectively. Although neutralization is mediated by antibody binding, the two 239

quantities may or may not be proportional [9–11], and hence we replace dissociation 240

constants with IC50s in our model (see S1 Text Section C). 241

Laursen et al. determined that their tethered constructs cannot intra-spike crosslink 242

two binding sites on a single HA trimer, but they can inter-spike crosslink adjacent 243
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(1)
B –Ab

(2)
B . Representative

data shown for an influenza A group 1 (blue), influenza A group 2 (green), and influenza B (gold) strains. Strong potency is
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states of HA and their corresponding Boltzmann weights for multidomain antibodies, where crosslinking between adjacent
spikes boosts neutralization via avidity (ceff = 1400 nM in Eq (5)). (D) Theoretical predictions of the potency of all
multidomain antibodies versus their measured values. The red points denote two outlier influenza strains discussed in the
text that are not neutralized by AbA1 or AbA2 individually but are highly neutralized by their combination.

HA [7]. The linker connecting the two antibody domains facilitates such crosslinking, 244

since when one domain is bound the other domain is confined to a smaller volume 245

around its potential binding sites. This effect can be quantified by stating that the 246

second domain has an effective concentration ceff (Fig 4C, purple), making the relative 247

probability of the doubly bound state c
IC50,A1

ceff
IC50,A2

. Therefore, the fraction of virus 248

neutralized by two tethered antibody domains is given by 249

Fraction Neutralized =

c
IC50,A1

+ c
IC50,A2

+ c
IC50,A1

ceff
IC50,A2

1 + c
IC50,A1

+ c
IC50,A2

+ c
IC50,A1

ceff
IC50,A2

. (4)

Note that this equation assumes that influenza virus is fully neutralized at saturating 250

concentrations of antibody (α = 0 in Eq (1), with Fraction Neutralized analogous to 251

1− Fractional Activity). 252

The IC50 of the tethered construct is defined as the concentration c at which half of 253
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the virus is neutralized, which can be solved to yield 254

IC50,A1–A2 =
IC50,A1 IC50,A2

ceff + IC50,A1 + IC50,A2
, (5)

with an analogous expression holding for the Ab
(1)
B –Ab

(2)
B construct. Using the 255

measured IC50s of AbA1–AbA2 and Ab
(1)
B –Ab

(2)
B against the various influenza strains, 256

we can infer the value of the single parameter ceff = 1400 nM (see S1 Text Section C). 257

This result is both physically meaningful and biologically actionable, as it enables us to 258

predict the IC50 of the tethered multidomain antibodies against the entire panel of 259

influenza strains. Fig 5A,B compares the resulting predictions to the experimental 260

measurements, where plot markers linked by horizontal line segments indicate a close 261

match between the predicted and measured values. 262

The two tethered antibodies display unique trends that arise from their 263

compositions. Since the two domains in AbA1–AbA2 bind nearly complementary strains, 264

the tethered construct will increase breadth (since this multidomain antibodies can now 265

bind to both group 1 and group 2 strains) but will only marginally improve potency. 266

Mathematically, if AbA1 binds tightly to an influenza A group 1 strain while AbA2 267

binds weakly to this same strain (IC50,A2 →∞), their tethered construct has an 268

IC50,A1–A2 ≈ IC50,A1. Said another way, AbA1–AbA2 should be approximately as 269

potent as a mixture of the individual antibodies AbA1 and AbA2. Note that since the 270

experiments could not accurately measure weak binding (> 1000 nM), the predicted 271

IC50 for the multidomain antibodies represents a lower bound. 272

On the other hand, tethering the two influenza B antibodies yields a marked 273

improvement in potency over either individual antibody, since both domains can bind to 274

any influenza B strain and boost neutralization via avidity. The process of engineering a 275

multivalent interaction is reminiscent of engineered bispecific IgG [8], and adding 276

additional domains could yield further enhancement in potency, provided that all 277

domains can simultaneously bind. 278

While the model is able to characterize the majority of tethered antibodies, it also 279

highlights some of the outliers in the data. For example, the H3N2 strains 280

A/Panama/2007/99 and A/Wisconsin/67/05 were poorly neutralized by either AbA1 or 281

AbA2 (IC50 ≥ 1000 nM), but the tethered construct exhibited an IC50 = 14 nM and 282

IC50 = 17 nM, respectively, far more potent than the 300 nM lower limit predicted for 283

both viruses (red circles in Fig 4D and red lines in Fig 5A). Interestingly, Laursen et 284

al. found that mixing the individual, untethered antibodies AbA1 and AbA2 also 285

resulted in shockingly poor neutralization (IC50 ≥ 1000 nM), suggesting that the tether 286

is responsible for the increase in potency [7]. From the vantage of our quantitative 287

model, this outlier cries out for further investigation. 288

To further boost neutralization, Laursen et al. created two additional constructs that 289

combined all four antibody domains, the first being the linear chain 290

(AbA1–AbA2–Ab
(1)
B –Ab

(2)
B ). Since the influenza A antibodies do not bind the influenza 291

B strains (and vise versa), this construct should have the same IC50 as AbA1–AbA2 for 292

the influenza A strains and as Ab
(1)
B –Ab

(2)
B for the influenza B strains, as was found 293

experimentally (compare the Predicted columns in Fig 5A-C). For example, the two 294

H3N2 strains (A/Panama/2007/99 and A/Wisconsin/67/05) were again found to have 295

measured IC50s (15 nM and 23 nM) far smaller than their predicted lower bound of 296

300 nM (red squares in Fig 4D, red lines in Fig 5C). 297

A second construct containing all four antibody domains attached two copies of 298

AbA1–AbA2–Ab
(1)
B –Ab

(2)
B through an IgG backbone (Fig 5D). Since the identical 299

domains in both arms of this construct should be able to simultaneously bind, the new 300

antibody should markedly boost potency through avidity. Surprisingly, the 301
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H1N1 A/New Caledonia/20/99
H1N1 A/California/07/09
H1N1 A/Puerto Rico/8/34-MA
H2N2 A/Guiyang/1/57
H2N2 A/Env/Hong Kong/MPU3156/05
H5N1 A/Hong Kong/156/97 (PR8)
H5N1 A/Vietnam/1194/04

Influenza A Group 1
H3N2 A/Brisbane/10/07
H3N2 A/Hong Kong/1/68-MA
H3N2 A/Panama/2007/99
H3N2 A/Wisconsin/67/05
H4 A/waterfowl/Hong Kong/MPA892/06
H7N9 A/Anhui/1/13
H7N7 A/New York/107/03 (PR8)
H7N7 A/mallard/Netherlands/12/00
H10N7 A/chicken/Germany/n/49

Influenza A Group 2
B/Brisbane/60/08
B/Malaysia/2506/04
B/Florida/04/06
B/Harbin/7/94
B/Lee/40

Influenza B

C AbA2AbA1 AbBAb(1) AbBAb(2)

>

100

101

102

103

IC
50

 (n
M

)

MeasuredPredicted MeasuredPredicted

(1)AbA1 – AbA2 – AbB – AbB
(2)

>

100

101

102

103
D

IC
50

 (n
M

)

CH2

CH3CH3

CH3AbA2AbA1 AbBAb(1) AbBAb(2)

AbA2AbA1 AbBAb(1) AbBAb(2)

MeasuredPredicted MeasuredPredicted

(1)IgG AbA1 – AbA2 – AbB – AbB
(2)

B

IC
50

 (n
M

)

AbBAb(1) AbBAb(2) AbBAb(1) AbBAb(2)

Ab(1)
 – Ab(2)

B B

100

101

102

103>

BAb(1)

Measured
BAb(2)

Measured MeasuredPredicted

A

IC
50

 (n
M

)

AbA1 AbA2 AbA2AbA1

AbA1
Measured

>

AbA2
Measured

AbA1 – AbA2
Measured

100

101

102

103

Predicted

Fig 5. Neutralization of multidomain antibodies. (A,B) The potency of the 2-Ab constructs and their constitutive
antibodies against a panel of influenza strains. AbA1 primarily binds influenza A group 1 (blue), AbA2 to influenza A group
2 (green), and the two AbB antibodies to influenza B strains (gold). (C) All four antibodies were tethered to form the linear

chain AbA1–AbA2–Ab
(1)
B –Ab

(2)
B and (D) two copies of this chain were placed on an IgG backbone. The model suggests that

the two arms of the IgG are not capable of simultaneously binding a virion. Red lines indicate two outlier influenza strains
discussed in the text that are not neutralized by AbA1 or AbA2 individually but are highly neutralized by their combination.
Data was digitized from Figs 1 and 3 of Ref [7].

neutralization of this final construct was well characterized as half the IC50 of an 302

individual AbA1–AbA2–Ab
(1)
B –Ab

(2)
B , suggesting that there was no noticeable avidity 303

and that the increase in neutralization only arose from having twice as many antibody 304

domains. As above, this intriguing result presents an opportunity to both quantitatively 305

check experimental results and to advocate for future studies in potentially highly 306
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promising directions. In this particular instance, it suggests that the IgG backbone used 307

did not permit simultaneous binding of both arms. If a different multivalent scaffold 308

(perhaps with greater flexibility or with longer linkers) enabled bivalent binding of both 309

arms, it could potentially increase the neutralization of this construct by 100-fold as 310

seen in the influenza B constructs. 311

Discussion 312

In this work, we developed a statistical mechanical model that predicts the collective 313

efficacy of an antibody mixture whose constituents are assumed to bind to a single site 314

on a receptor. Each antibody is first individually characterized by its ability to bind the 315

receptor (through its dissociation constant KD) and inhibit activity (via its potency α) 316

as per Eq (1). Importantly, this implies that the activity of each monoclonal antibody 317

must be measured at a minimum of two concentrations in order to infer both 318

parameters, and additional measurements would further refine these parameter values 319

and the corresponding model predictions. 320

After each antibody is individually characterized, the activity of a combination of 321

antibodies will depend upon whether they bind independently to distinct epitopes or 322

compete for overlapping epitopes. Theoretical models often assume for simplicity that 323

all antibodies bind independently, and in the contexts where this constraint can be 324

experimentally imposed such models can accurately predict the effectiveness of antibody 325

mixtures [12]. Yet when the antibody epitopes are unknown or when a large number of 326

antibodies are combined, it is likely that some subset of antibodies will compete with 327

each other while others will bind independently, which will give rise to a markedly 328

different response. Our model generalized these previous results to account for antibody 329

mixtures where arbitrary subsets can bind independently or competitively (Eqs (2) and 330

(3), S1 Text Section A). 331

We showed that in the context of the EGFR receptor, where every pairwise 332

interaction was measured using surface plasmon resonance, our model is better able to 333

predict the efficacy of all 2-Ab and 3-Ab mixtures than a model that assumes all 334

antibodies bind independently or competitively (Fig 2). This suggest that mixtures of 335

antibodies do not exhibit large synergistic effects. More generally, similar models in the 336

contexts of anti-cancer drug cocktails and anti-HIV antibody mixtures also found that 337

the majority of cases that were described as synergistic could instead be characterized 338

by an independent binding model [12,13]. This raises the possibility that synergy is 339

more the exception then the norm, and hence that simple models can computationally 340

explore the full design space of antibody combinations. 341

While it is often straightforward to measure the efficacy of n individual antibodies, it 342

is more challenging to quantify all n(n+1)
2 pairwise interactions and determine which 343

antibodies bind independently and which compete for an overlapping epitope. We 344

demonstrated that after each antibody is individually characterized, our model can be 345

applied in reverse by using the activity of 2-Ab mixtures to classify whether antibodies 346

compete or bind independently (Fig 3). Surprisingly, while the resulting categorizations 347

were much sparser than the direct SPR measurements, the classifications produced by 348

this method predicted the efficacy of antibody combinations with an R2 = 0.90, 349

comparable to the predictions made using the complete SPR results (Fig 2B). This 350

suggests that key features of how antibodies interact on a molecular level can be 351

indirectly inferred from simple activity measurements of antibody combinations. 352

Modern bioengineering has opened up a new avenue of mixing antibodies by 353

genetically fusing different components to construct multi-domain antibodies [8]. Such 354

antibodies can harness multivalent interactions to greatly increase binding avidity by 355

over 100x (e.g. comparing the IC50s of the A/Wisconsin/67/05 and B/Harbin/7/94 356
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strains of the 4-fused domains on an IgG backbone in Fig 5D to the corresponding 357

IC50s for the individual antibody domains in Panels A and B). For such constructs, the 358

composition of the linker can heavily influence the ability to multivalently bind and 359

neutralize a virus [11,14], although Laursen et al. surprisingly found little variation 360

when they modified the length of their amino acid linker (see Table S11 in Ref [7]). 361

Another curious feature of their system was that placing their linear 4-domain antibody 362

(Fig 5C) on an IgG backbone (Fig 5D) only resulted in a 2x decrease in IC50, suggesting 363

that the two “arms” of the IgG could not simultaneously bind. We would expect that a 364

different backbone that allows both arms to simultaneously bind would markedly 365

increase the neutralization potency of this construct. In this way, quantitatively 366

modeling these multidomain antibodies can guide experimental efforts to design more 367

potent constructs. 368

To close, we mention that two possible avenues of future work. First, although our 369

model classifies antibody epitopes as either distinct or overlapping, SPR measurements 370

indicate that there is a continuum of possible interactions. It would be fascinating to 371

translate this more nuanced level of interaction into more precise dissociation constants 372

when two antibodies are bound. Second, while our model focused on mixtures of 373

antibodies, it can be applied equally well to small molecule drugs where the number of 374

distinct combinations may be prohibitively large to measure experimentally but 375

straightforward to explore computationally. 376

Methods 377

The coefficient of determination used to quantify how well the theoretical predictions 378

matched the experimental measurements (Fig 2B-D, Fig 3B, Fig 4D) was calculated 379

using 380

R2 = 1−

∑n
j=1

(
y
(j)
measured − y

(j)
predicted

)2
∑n
j=1

(
y
(j)
data

)2 (6)

where ymeasured and ypredicted represent a vector of the measured and predicted 381

activities for the n mixtures analyzed. In Fig 4D, we computed the R2 of log10(activity) 382

to prevent the largest activities from dominating the result (since the IC50 values span 383

multiple decades). 384

Data from the EGFR antibody mixtures was obtained by digitizing Ref [6] Fig S1 385

using WebPlotDigitizer [15]. Data for the influenza multidomain antibodies was 386

obtained from the authors of Ref [7]. 387

The EGFR antibody epitopes experimentally characterized through SPR (Fig 3A, 388

bottom-left) were categorized as overlapping if the average of the two antibody 389

measurements (with preincubation by either antibody) were > 50 and as distinct if the 390

average was < 50. 391

The original nomenclature for the antibodies used in Koefoed et al. and Laursen et 392

al. are given in S1 Text Table S1. 393
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