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Summary: We consider the problem of jointly modeling multiple covariance matrices by partial common principal

component analysis (PCPCA), which assumes a proportion of eigenvectors to be shared across covariance matrices

and the rest to be individual-specific. This paper proposes consistent estimators of the shared eigenvectors in PCPCA

as the number of matrices or the number of samples to estimate each matrix goes to infinity. We prove such asymptotic

results without making any assumptions on the ranks of eigenvalues that are associated with the shared eigenvectors.

When the number of samples goes to infinity, our results do not require the data to be Gaussian distributed.

Furthermore, this paper introduces a sequential testing procedure to identify the number of shared eigenvectors

in PCPCA. In simulation studies, our method shows higher accuracy in estimating the shared eigenvectors than

competing methods. Applied to a motor-task functional magnetic resonance imaging data set, our estimator identifies

meaningful brain networks that are consistent with current scientific understandings of motor networks during a motor

paradigm.
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1. Introduction

Common principal component analysis (CPCA) is an approach that simultaneously models

multiple covariance matrices. It extends the idea of principal component analysis by assuming

all covariance matrices share the same set of eigenvectors. Since it was first introduced by

Flury (1984), CPCA has been extensively applied in various fields including statistics (Gu,

2016; Pepler et al., 2016), finance (Goyal et al., 2008; Xu et al., 2019), and computer science

(Ye et al., 2012; Hadjipantelis et al., 2015).

Extensions of CPCA have been investigated from multiple angles. Flury (1987) proposed

partial common principal component analysis (PCPCA), where only a proportion of the

eigenvectors was assumed to be shared across covariance matrices and the rest to be individual-

specific. Another direction relaxed the Gaussianity assumption in CPCA, resulting in asymp-

totic theory for non-Gaussian distributions (Boik, 2002; Hallin et al., 2010). Other extensions

include Bayesian approaches (Hoff, 2009), algorithm acceleration (Browne and McNicholas,

2014) and modifications for high-dimensional data (Franks and Hoff, 2019). Among these

extensions of CPCA, PCPCA continues to be appealing, as it relaxes the assumption of a

completely common eigenspace across matrices while partially preserving the straightforward

interpretation of common eigenvectors, i.e., eigenvectors shared across matrices. Related work

on this topic includes Krzanowski (1984), Schott (1999), Boik (2002), Lock et al. (2013) and

Pepler et al. (2016).

In spite of these extensions, some questions related to PCPCA remain unanswered. Given

the number of common eigenvectors, how one can identify the common eigenvectors from a

pool of eigenvectors requires further investigation. Flury (1987) assumed that “some order

of the common components is defined”. Some of the literature assumed that the common

eigenvectors are those associated with the largest eigenvalues across all covariance matrices

(Schott, 1999; Crainiceanu et al., 2011). However, common eigenvectors may be associated
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with small eigenvalues, or the corresponding eigenvalue of a common eigenvector ranks

differently across matrices. This question becomes more challenging if the number of common

eigenvectors is unknown or the data is not Gaussian distributed. Regarding these points,

Pepler et al. (2016) developed a non-parametric method to select the common eigenvectors

in the special case of two covariance matrices. With multiple asymmetric matrices as the

response, Lock et al. (2013) proposed a linear model to identify latent factors that explain

the joint and individual data variation (JIVE) and Zhou et al. (2016) generalized JIVE to

a common and individual feature extraction (CIFE) framework. None of these methods,

however, studied the asymptotic properties.

In this paper, we propose a semiparametric PCPCA approach, which can consistently

estimate the common eigenvectors, without making any assumptions on the ranks of eigen-

values that are associated with common eigenvectors. Our method builds on an idea from

Krzanowski (1984), where a semiparametric approach was proposed in the context of CPCA.

We extend this idea to semiparametric PCPCA and provide asymptotic results for our

methods as the number of matrices, or the number of samples to estimate each matrix, goes to

infinity (both with fixed dimension). If the number of samples goes to infinity, our results do

not require the data to be Gaussian distributed. When the number of common eigenvectors is

unknown, we develop a sequential testing procedure, which effectively controls the type I error

for Gaussian distributed data. As shown in the simulation study, our method outperforms

existing methods in estimating the common eigenvectors in a variety of scenarios.

In the next section, we introduce PCPCA. In Section 3, we present our proposed semi-

parametric method to identify the common eigenvectors. We evaluate the performance of our

proposed method through simulation studies in Section 4. An application to an fMRI data

set is provided in Section 5. Section 6 summarises this paper and discusses future directions.
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2. Model and assumptions

We consider a data set, {yit}, for t ∈ {1, . . . , T} and i ∈ {1, . . . , n}, where yit ∈ Rp are

independent and identically distributed random samples from a p-dimensional distribution

with mean zero and covariance matrix Σi. In our application example, yit is a sample of

brain fMRI measurements of p regions from subject i at time point t. We assume that Σi

satisfies the following partial common principal component (PCPC) model:

Σi =
k∑

j=1

λijγjγ
>
j +

p−k∑
l=1

λi(l+k)rilr
>
il , (1)

where {λij}pj=1 are the eigenvalues of covariance matrix Σi and k is the largest integer such

that formulation 1 holds. The γj, for j = 1, . . . , k, are the unit-length common eigenvectors

across subjects. Let Γ = (γ1, . . . ,γk) ∈ Rp×k (k ≤ p) be the orthonormal matrix of

the common eigenvectors. The ril, for l = 1, . . . , p − k, are unit-length individual-specific

eigenvectors of subject i. Let Ri = (ri1, . . . , ri,p−k) ∈ Rp×(p−k) be the orthonormal matrix of

the individual-specific eigenvectors. We assume that Ri is orthogonal to Γ, i.e., Γ>Ri = 0.

Let Λi = diag{λi1, . . . , λik} and Ψi =
∑p−k

l=1 λi(l+k)rilr
>
il . Then, the PCPC model (1) can be

reformulated as:

Σi = ΓΛiΓ
> + Ψi. (2)

First proposed by Flury (1987), the PCPC model has an interpretation analogous to CPCA.

A CPC, defined by γjγ
>
j for j = 1, . . . , k, is shared across all matrices. We emphasize that our

definition of CPC is different from Flury (1984) (or the principal component in PCA) where

a CPC is defined as γ>j yit, since we focus on the shared covariance structure across matrices

instead of individual-specific eigenvalues. For example, in our application, a CPC represents

a functional brain network in the sense that it represents correlations in functional brain

measures consistent across subjects. The corresponding diagonal entry of Λi is interpreted

as the variation of the CPC in subject i. On the other hand, Ψi is the individual-specific
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model component, which varies across subjects. A toy example of the PCPC model with

p = 4 and k = 2 is shown in Figure 1.

[Figure 1 about here.]

Our goal is to both find k and estimate Γ consistently, as either n→∞ or T →∞, with

p fixed. When estimating Γ, existing methods, such as Schott (1999) and Crainiceanu et al.

(2011), assumed that CPCs are associated with the largest eigenvalues across all covariance

matrices. This is a restrictive assumption, since the corresponding eigenvalue of a CPC

may rank consistently low or differently across matrices. For instance, our toy example in

Figure 1 shows that CPCs are associated with small eigenvalues in matrices 1 and 2, but

with large eigenvalues in matrix n. In addition, in many scientific applications, there is no

priori reason to assume that the variation explained by the common components dominates

the variation explained by the individual-specific components. For this reason, we do not

make any assumptions regarding the rank of CPC-related eigenvalues.

The PCPC model shares some common features with existing partial information decom-

position methods, but there exist major differences. Crainiceanu et al. (2011) provided a

population value decomposition (PVD) model where common eigenvectors are extracted

from concatenated individual eigenvectors. This procedure presumes that common inter-

subject components are associated with the largest individual eigenvalues. Moreover, the

approach does not consider group level diagonalization as a goal. Lock et al. (2013) introduced

the JIVE model, which decomposes information from multiple data sources into common

components and individual components. Zhou et al. (2016) generalized the JIVE model by a

CIFE framework, which has the same objective function as JIVE. Unlike the PCPC model,

the common components identified by JIVE and CIFE are not unique, which can make them

hard to interpret in practice. Furthermore, PVD, JIVE and CIFE are empirical methods with

no asymptotic guarantees.
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More recently, Wang et al. (2019) proposed a common reducing subspace model, which

assumes Σi = ΓΩ0Γ
> + Γ̃ΩiΓ̃

>
, where (Γ, Γ̃) ∈ Rp×p forms an eigenbasis and Ω0 ∈

Rk×k,Ωi ∈ R(p−k)×(p−k), i = 1, . . . , n are positive definite matrices. This model can be

reformulated as Σi = ΓΛΓ> + Ψi, where Λ ∈ Rk×k is a positive definite diagonal matrix

shared across i and Ψi ∈ Rp×p is a positive semi-definite matrix orthogonal to Γ with rank

p − k. Compared with the PCPC model (1), this model requires Λi ≡ Λ, and is hence a

special case of the PCPC model.

To achieve the identifiability of Γ and the consistency of our proposed estimator, for the

PCPC model (1), we impose the following assumptions for the asymptotics when n→∞.

Assumption A (for n→∞):

(1) T and p are fixed with T > 0 and p > 1.

(2) Each (λi1, . . . , λik), i ∈ {1, . . . , n}, is an independent and identically distributed random

sample from a distribution with finite mean (λ∗1, . . . , λ
∗
k) and finite variance. Furthermore,

elements of (λi1, . . . , λik) are independent of each other.

(3) Each Ψi, i ∈ {1, . . . , n}, is an independent and identically distributed random sample

from a distribution with finite mean Ψ∗ and finite second-order moment. Both Ψi and

Ψ∗ are symmetric positive semi-definite matrices with rank p− k and are orthogonal to

Γ.

(4) The matrix ΓΛ∗Γ> + Ψ∗ has distinct eigenvalues, where Λ∗ = diag{λ∗1, . . . , λ∗k}.

(5) For each i ∈ {1, . . . , n}, yit is normally distributed given Σi.

To the best of our knowledge, we are the first to provide asymptotic results as the number

of matrices goes to infinity. Different from the literature where n is fixed (Flury, 1987; Boik,

2002; Pepler et al., 2016; Wang et al., 2019), Assumptions A (2) and (3) assume (λi1, . . . , λik)

and Ψi are random variables instead of fixed parameters, since otherwise, the number of

parameters would explode as n increases. Assumption A (4) is required for identifiability of
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Γ in matrix perturbation theory. The Gaussian assumption in Assumption A (5) is made

for convenience and is stronger than required for our results. For the proof, we only need

the fourth-order moment of yit to be the same as the fourth-order moment of a Gaussian

distribution, with mean 0 and covariance Σi.

In some cases, n is small but T is large. For example, in fMRI data analysis, the number

of subjects may be small, but subjects may have long fMRI scans. In other measures with

rapid sampling, such as electroencephalograms, this is frequently the case. For such data

sets, we prove a similar asymptotic theory as T → ∞ with n and p fixed. This asymptotic

theory requires the following assumptions.

Assumption B (for T →∞):

(1) n and p are fixed with n > 1 and p > 1.

(2) For each i ∈ {1, . . . , n}, (λi1, . . . , λik) and Ψi are fixed.

(3) The eigenvalues of
∑n

i=1 Σi/n are distinct.

(4) The fourth-order moment of yit is bounded for i = 1, . . . , n.

Assumption B (2) implies that the asymptotics are conditional on Σi, i = 1, . . . , n. The

reason to pursue conditional asymptotics is that n is fixed and inference on these specific n

distributions is of interest. Unlike Assumption A where a Gaussian distribution is assumed,

Assumption B is semiparametric, since it does not put constraints on higher-order moments,

except that the fourth-order moment is bounded. Compared with existing asymptotic results

for T →∞, Assumption B is weaker. Flury (1987) and Schott (1999) both assumed that {yit}

are normally distributed. Boik (2002) provided asymptotic results for non-normal data, but

modeled eigenvalues as known smooth functions of parameters. Though Pepler et al. (2016)

and Hallin et al. (2010) relaxed Assumptions B (3) and (4), the former work only focused

on the case when n = 2 and the latter was for CPCA.

In addition to Assumption A or Assumption B, we also assume that {yit}, t = 1, . . . , T
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are independent of each other. However, in many real-world applications, such as our fMRI

data example, {yit} can be temporarily correlated. We consider a generic constraint on the

temporal correlation that, for t′ < t, E[yity
>
it′ ] = Dt−t′ where Dt−t′ is a diagonal matrix and

Dt−t′ = 0 if t > t′+c for some constant c. This assumed constraint is satisfied for many time

series models, including Bickel and Gel (2011) and Guo et al. (2016), and approximately

satisfied under the auto-regressive model. Under this assumption, our theoretical results for

n→∞ still hold. Alternatively, when T →∞, under the same assumption, one can adopt an

auto-regressive moving-average (ARMA) model for pre-whitening {yit} to remove temporal

dependence, which is commonly used in fMRI data analysis (Lindquist et al., 2008; Olszowy

et al., 2019).

3. Estimation

In this section, we introduce our estimation procedure under two scenarios: (1) the number

of CPCs is known and (2) the number of CPCs is unknown. When the number of CPCs

is known, we prove that our proposed estimator of the common eigenvectors is consistent.

When the number of CPCs is unknown, the estimation procedure has two steps: we first

use a sequential testing procedure to estimate the number of CPCs, and then calculate our

proposed estimator using the estimated number of CPCs.

3.1 The number of CPCs is known

When the number of CPCs is known, we propose to estimate Γ in two steps: first getting p

CPC candidates for Γ, denoted as Γ̂candi ∈ Rp×p, and then selecting k columns from Γ̂candi

as Γ̂ ∈ Rp×k.

In the first step, Γ̂candi is calculated as the eigenvectors of S =
∑n

i=1 Si/n, where Si =∑T
t=1 yity

>
it/T is the sample covariance matrix of subject i. The columns of Γ̂candi are ordered
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in a way that the corresponding eigenvalue of each eigenvector is decreasing. We first define

the consistency of an eigenvector estimator.

Definition 1: Let {xs : s = 1, 2, . . . } denote a series of random vectors in Rp with `2-

norm 1; that is ‖xs‖2 = 1 for all s. Let x be a vector in Rp such that ‖x‖2 = 1. As s→∞,

xs is consistent to x if

|〈xs,x〉|
P−→ 1,

where 〈·, ·〉 is the inner product defined in Rp and
P−→ denotes convergence in probability.

Under Definition 1, the following theorem shows that k out of p columns of Γ̂candi are

consistent estimators of the columns of Γ as n or T goes to infinity, which is a direct

generalization of spectral properties of S.

Theorem 1: Assume the PCPC model (1) holds.

(1) Under Assumption A, for any column γj of Γ (j = 1, . . . , k), there exists a column of

Γ̂candi that is consistent to γj as n→∞. Explicitly, let el ∈ Rp denote a p-dimensional

vector with the l-th entry one and rest zero, then, there exists l(j) ∈ {1, . . . , p}, such that

|〈γj, Γ̂candiel(j)〉|
P−→ 1.

(2) Under Assumption B, for any column γj of Γ (j = 1, . . . , k), there exists a column of

Γ̂candi that is consistent to γj as T →∞.

Theorem 1 implies that, by properly ordering the columns of Γ̂candi, we can achieve that the

j-th column of Γ̂candi converges in probability to γj for j = 1, . . . , k. To find this ordering,

we define a deviation from commonality metric for each column of Γ̂candi:

Dev ({yit}, Γ̂candi, j) =
1

n(p− 1)

p∑
l=1,l 6=j

∑n
i=1(γ̂

>
j Siγ̂ l)

2

(γ̂>j Sγ̂j)(γ̂
>
l Sγ̂ l)

, (3)

where γ̂j is the j-th column of Γ̂candi.

For the deviation from commonality metric, we expect it to be small if γ̂jγ̂
>
j is close to
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a true CPC and large otherwise. For illustration, we assume T is large enough such that

the sample estimates can be replaced by their population targets; that is, γ̂jγ̂
>
j = γ j̃γ

>
j̃

for some j̃ ∈ {1, . . . , k} and Si = Σi. Then the PCPC model (1) implies that γ̂>j Siγ̂ l = 0

for l 6= j and hence Dev ({yit}, Γ̂candi, j) = 0. If γ̂jγ̂
>
j and γ̂ lγ̂

>
l are not close to any CPC,

then γ̂>j Siγ̂ l = γ̂>j Ψiγ̂ l 6= 0 for some i and hence Dev ({yit}, Γ̂candi, j) > 0. In general,

on the right-hand side of Equation (3), the numerator captures the sum of the squared

(j, l) element in Γ̂
>
candiSiΓ̂candi and the denominator is a normalizing term that eliminates

the effect of magnitude difference in the eigenvalues. The following theorem shows that

Dev ({yit}, Γ̂candi, j) can be used to order the columns of Γ̂candi and estimate Γ.

Theorem 2: For all j ∈ {1, . . . , k}, let γ̂jn be the estimate of γj in Γ̂candi, where jn =

arg maxl∈{1,...,p} |〈γ̂ l,γj〉|. Assume the PCPC model (1) holds.

(1) Under Assumption A, as n→∞, we have

Dev ({yit}, Γ̂candi, jn)
P−→ 1

T
.

In addition, let Ln = {1, . . . , p} \ {1n, . . . , kn}, then there exists a positive constant C

independent of n, such that, as n→∞,

min
l∈Ln

Dev ({yit}, Γ̂candi, l)
P−→ 1

T
+ C.

(2) Under Assumption B, as T →∞, we have

Dev ({yit}, Γ̂candi, jn)
a.s.−→ 0 and min

l∈Ln

Dev ({yit}, Γ̂candi, l)
a.s.−→ C̃,

where C̃ is a positive constant independent of T and
a.s.−→ denotes convergence almost

surely.

Given Theorem 2, in practice, we can rank the columns of Γ̂candi in increasing order of

Dev ({yit}, Γ̂candi, j) for j = 1, . . . , p and select the first k columns as Γ̂. If γ̂j is selected, we

call γ̂j a common eigenvector estimate and γ̂jγ̂
>
j a CPC estimate.

In Theorem 2, the asymptotic results of n → ∞ and T → ∞ are different, which results
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from the different assumptions made in the two cases. When n → ∞, the deviation from

commonality metric is related to the fourth-order moment of yit, which yields a positive

probability limit for a CPC estimate. When T →∞, we have γ̂>j Siγ̂ l
a.s.−−→ 0 for l 6= j if and

only if γ̂jγ̂
>
j is a CPC estimate, making the deviation from commonality metric converge to

0 only for a CPC estimate. Despite these differences, CPC estimates in both cases have the

least deviation from commonality metric among all columns of Γ̂candi asymptotically, which

is essential for identifying CPC estimates from Γ̂candi.

When n and T are small, some columns of Γ̂ may have a large deviation from commonality

metric and are not “close” to any CPC. This bias, however, will disappear as n → ∞

or T → ∞, as guaranteed by Theorems 1 and 2. While our theorems hold for all k ∈

{0, 1, . . . , p − 2, p}, the convergence rate can be faster for larger k. Under Assumption A,

when k is large, {yit} for different i share more in common, which reduces the variability

of the eigenvectors of S. Under Assumption B, as k increases, the number of parameters in

the PCPC model (1) decreases, and the effective sample size to estimate each parameter

increases. We leave the study of the convergence rate as a function of p and k to future

research. The estimating procedure is summarized in Algorithm 1.

Algorithm 1 An algorithm to estimate CPCs in model (1) when k is known.

Input: A Data set {yit}, t = 1, . . . , T , i = 1, . . . , n, and k ∈ {1, . . . , p− 2, p}.

(1) Calculate the sample covariance matrix Si =
∑T

t=1 yity
>
it/T for each i.

(2) Perform eigendecomposition on S =
∑n

i=1 Si/n and obtain the estimated eigenvectors

denoted as Γ̂candi.

(3) Reorder the columns of Γ̂candi such that Dev ({yit}, Γ̂candi, j) is increasing in j, and let

Γ̂ be the first k columns of Γ̂candi.

Output: A p× k orthonormal matrix Γ̂.

With the number of CPCs given, we generalize the results of Flury (1987) in three
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directions. First, Algorithm 1 can consistently estimate CPCs as n→∞, a case Flury (1987)

did not cover. Second, when T →∞, Theorems 1 and 2 relax the Gaussian assumption made

by Flury (1987). Third, Theorems 1 and 2 guarantee the identification of the CPCs without

making assumptions on the ranks of CPC-related eigenvalues.

Theorems 1 and 2 allow that p > T when n → ∞. When implementing Algorithm 1, the

only condition is that S is positive definite, which is generally true if p < nT . However,

a large p may substantially increase the computational complexity and affect finite-sample

accuracy, as discussed in Sections 3.3 and 4, respectively.

3.2 The number of CPCs is unknown

Based on the idea of Schott (1999), we use a sequential hypothesis testing approach to find

k. For j = 0, 1, . . . , p− 2, we sequentially perform the following testings

H0,j : k = j ↔ H1,j : k ≥ j + 1.

Starting from j = 0, if H0,j is rejected, then we proceed to test H0,j+1; otherwise we estimate

k̂ = j. Before the first test, we order the columns of Γ̂candi such that Dev ({yit}, Γ̂candi, j) is

increasing in j. When testing the j-th hypothesis, we simulate the distribution of

Dev ({yit}, Γ̂candi, j + 1) under H0,j, denoted as F̂j+1, and reject H0,j if Dev ({yit}, Γ̂candi, j + 1)

is smaller than the α-quantile of F̂j+1. The logic of this rejection rule is that Dev ({yit}, Γ̂candi, j + 1)

is small under H1,j, but the α-quantile of F̂j+1 is generally large, since γ̂j+1 is not a common

eigenvector under the null hypothesis. Adjusting for multiple testing is unnecessary here,

since the family-wise type I error is P(k̂ ≥ k0 + 1|k = k0) = α, if the truth is k = k0.

Given Γ and {λi1, . . . , λip}ni=1 defined in the PCPC model (1), we calculate F̂j+1 by

repeating the following steps for m times. In practice, we can approximate Γ using Γ̂

output in Algorithm 1, estimate {λi1, . . . , λij} by diagonal entries of Γ̂SiΓ̂ and estimate

{λi(j+1), . . . , λip} by the non-zero eigenvalues of Si − Γ̂ diag{λi1, . . . , λij}Γ̂
>

. We emphasize
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that, different from Algorithm 1, where p can be larger than T , the above approximations

are valid when p ≤ T .

(1) For each i = 1, . . . , n, independently and uniformly generate R
(sim)
i from the sample

space {R(sim)
i ∈ Rp×(p−j) : R

(sim)
i

>R
(sim)
i = In−j,R

(sim)
i

>Γ = 0}.

(2) Construct Σ
(sim)
i = (Γ,R

(sim)
i ) diag{λi1, . . . , λip}(Γ,R(sim)

i )>. Generate y
(sim)
it , t = 1, . . . , T ,

from multivariate Gaussian distribution with mean 0 and covariance Σ
(sim)
i .

(3) Given the data set {y(sim)
it }, calculate Γ̂

(sim)

candi as described in Algorithm 1 and output

Dev ({y(sim)
it }, Γ̂

(sim)

candi, j + 1).

Then F̂j+1 =
∑m

l=1 δl/m, where δl denotes a point mass at Dev ({y(sim)
it }, Γ̂

(sim)

candi, j + 1) output

by the l-th simulation. The following theorem shows that the type I error rate for each test

is bounded by α under regularity assumptions.

Theorem 3: Assume the PCPC model (1) holds, {yit|Σi} follows a multivariate Gaus-

sian distribution with mean 0 and covariance Σi, and Ri follows a uniform distribution on its

sample space defined in Section 2. Then under H0,j, as m→∞, F̂j+1 converges in distribution

to the true distribution of Dev ({yit}, Γ̂candi, j + 1) given Γ and {λi1, . . . , λip}, i = 1, . . . , n.

A key assumption in Theorem 3 is that data are Gaussian distributed. When this as-

sumption does not hold, the sequential testing procedure tends to be conservative, i.e.

k̂ < k, since the F̂j+1 is likely to underestimate the mean and deviation of the distribution

of Dev ({yit}, Γ̂candi, j + 1). In practice, an ad hoc solution is to let k̂ be the smallest j

such that Em[F̂j] −
√
V arm(F̂j) is smaller than Dev ({yit}, Γ̂candi, j), where Em and V arm

represent sample average and variance respectively. This solution shares the central idea of

gap statistics in Tibshirani et al. (2001), which is used to determine the number of clusters

in clustering. The procedure of finding k and estimating Γ is described in Algorithm 2.

Another method to find k is to use the hierarchy of partial chi-squared statistics proposed
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Algorithm 2 A two-step algorithm to estimate CPCs in model (1) when k is unknown.

Input: A Data set {yit}, t = 1, . . . , T , i = 1, . . . , n.

Step 1: Get candidates Γ̂candi for Γ.

(1) Calculate the sample covariance matrix Si =
∑T

t=1 yity
>
it/T for each i.

(2) Perform eigendecomposition on S =
∑n

i=1 Si/n and obtain the estimated eigenvectors

Γ̂candi.

(3) Reorder the columns of Γ̂candi such that Dev ({yit}, Γ̂candi, j) is increasing in j.

Step 2: Identify Γ̂ from Γ̂candi.

(1) Initialize k̂ = 0.

(2) Test the hypothesis H0,k̂ : k = k̂ ↔ H1,k̂ : k ≥ k̂ + 1 by a simulation test described in

Section 3.2 with significance level α = 0.05 and 1,000 simulations.

(3) Based on the testing result: if H0,k̂ is not rejected, return k̂ and Γ̂ as the first k̂ columns

of Γ̂candi; if k̂ = p − 2 and H0,k̂ is rejected, return k̂ = p and Γ̂ = Γ̂candi; otherwise,

increase k̂ by 1 and repeat Step 2 (2).

Output: k̂ ∈ {0, 1, . . . , p− 2, p} and a p× k̂ orthonormal matrix Γ̂.

by Flury (1987, 1988). A nice summary of these statistics can be found in Pepler et al.

(2016). The relevant application of this hierarchy in PCPCA is testing k = k1 ↔ k = k2.

However, this approach has two limitations. First, a set of common eigenvector estimates

must be prespecified to implement the test, which is unknown under our setting since CPCs

can rank differently among matrices. Second, the chi-squared test is valid only as T → ∞,

which is a case where our approach also applies. Hence, we do not consider this method to

find k in the simulation studies and data application.

3.3 Computational complexity

Given parameters k,m, n, T and p, the computational complexity is O{np2(p+T )} for Algo-

rithm 1 and O{4k̂mnp2(p+ T )} for Algorithm 2, where k̂ is the estimate of k by Algorithm
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2. It is straightforward to see that the dimension of matrices p drives the computational

complexity at a rate of p3, if T is not too large. Furthermore, finding k can dramatically

increase the run time if k and m are large.

As a benchmark for actual run time, we set k = p = 20,m = n = T = 100 and ran both

algorithms on an Intel I5-8259U 2.3GHz processor in R software for 10 times. On average,

Algorithm 1 took 0.04 seconds and Algorithm 2 took 453.01 seconds, where the difference is

the run time due to the iterations for estimating k. In comparison, Flury’s algorithm (Flury

and Gautschi, 1986) for CPCA, which assumes k is known, took 5.23 seconds under the same

setting, which is roughly 100 times slower than Algorithm 1. In practice, one could reduce

the run time of Algorithm 2 by parallel programming and improving code efficiency.

4. Simulation study

In this section, we perform three simulation studies. The first confirms the asymptotic results

given by Theorem 2. The second tests the performance of Algorithms 1 and 2 under various

settings. The last compares our proposed method with existing approaches under different

scenarios.

4.1 Design and data generating mechanism

In the first simulation, we let p = 20 and k = 10. Define λj = e0.5(p−j) for j = 1, . . . , p, and

assume that {yit} follows a multivariate Gaussian distribution and CPCs rank randomly in

each covariance matrix. For the study of the asymptotics as n → ∞, we set T = 50 and

n = 50, 100, 500, 1000; and for the study of the asymptotics as T → ∞, we set n = 50 and

T = 50, 100, 500, 1000. For each combination of n and T , we simulate data and compare the

distribution of the k-th smallest deviation from commonality metric, which is the largest

metric of CPC estimates, with the distribution of the (k + 1)-th smallest deviation from

commonality metric, which is the smallest metric of non-CPC estimates.
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The second simulation is the same as the first one, except that we consider combinations

of different settings: (1) n = T = 15, 30, 100, (2) k = 1, 10, 20 and (3) {yit} follows a

multivariate Gaussian distribution versus Gamma distribution. For each combination, we

simulate data for 1000 times, run Algorithm 1 to get Γ̂, and run Algorithm 2 to get k̂ for each

simulated data set. To measure the performance of Algorithm 1, we define
∑k

j=1 max |γ>j Γ̂|/k

as the accuracy metric of Γ̂. This metric lies in [0, 1] with larger values indicating better

accuracy. To evaluate the sequential testing procedure, we report k̂ and compare it with the

true k.

The last simulation compares our proposed method (with or without k known, i.e., Algo-

rithm 1 or Algorithm 2) with Flury’s method (Flury, 1987) and the PVD method (Crainiceanu

et al., 2011) through 4 scenarios below. By “Flury’s method”, we mean first running the

algorithm given by Flury and Gautschi (1986) to estimate Γ̂candi in CPCA and then selecting

k columns associated with the largest eigenvalues of S. Although Flury (1987, 1988) proposed

a method to estimate k in PCPCA, we do not implement it here, because the order of CPCs

is unknown, as discussed in Section 3.2. For the PVD, we use the default setting; that is,

first calculating the top k eigenvectors of Si (denoted as Ui) and then estimating Γ as the

top k eigenvectors of U = (U1, . . . ,Un). There are other partial information decomposition

methods, such as JIVE and CIFE described in Section 2, but they do not have unique CPC

estimates, which makes the comparison with these methods via simulation infeasible.

Scenario 1: {yit} follows a Gaussian distribution with large n and T . CPCs are associated

with the largest eigenvalues in each covariance matrix.

Scenario 2: {yit} follows a Gaussian distribution with large n and T . The CPC-associated

eigenvalues rank randomly in each covariance matrix.

Scenario 3: {yit} follows a Gamma distribution with large n and T . CPCs are associated

with the largest eigenvalues in each covariance matrix.
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Scenario 4: {yit} follows a Gaussian distribution with small n and T . CPCs are associated

with the largest eigenvalues in each covariance matrix.

Scenario 1 serves as the reference case, where the underlying assumptions of all 4 methods

are satisfied. Different from Scenario 1, Scenario 2 has randomly ranked CPC-associated

eigenvalues, Scenario 3 has Gamma data generating distribution and Scenario 4 has small

sample size. For each of the 4 scenarios, we consider two cases: p = 20 with k = 10 and

p = 100 with k = 20, which represent small-scale and large-scale problem, respectively.

When p = 20, we set n = T = 100 for Scenarios 1-3 and n = T = 30 for Scenario 4 and

define λj = e0.5(p−j) for j = 1, . . . , p. When p = 100, we set n = T = 1000 for Scenarios

1-3 and n = T = 150 for Scenario 4 and define λj = e0.1(p−j) for j = 1, . . . , p. Similar to

simulation 2, we use
∑k

j=1 max |γ>j Γ̂|/k as the accuracy metric of Γ̂.

For all simulations, if {yit} follows a Gaussian distribution and CPC-associated eigenvalues

rank randomly, we simulate the data as follows for 1000 replications. Given p, n, T, k and

{λj}pj=1, we sample one Γ from the space {Γ : Γ>Γ = Ik} as the common eigenvectors,

and randomly partition {λj}pj=1 into two parts: one with k elements as the eigenvalues

corresponding to common eigenvectors (denoted as {λ∗j}kj=1) and the other one consisting

of p − k elements (denoted as {λ∗j}
p
j=k+1). For i = 1, . . . , n, we independently sample λij

from a chi-squared distribution with degrees of freedom λ∗j and construct Ψi = UiDiU
>
i ,

where Ui is an independent sample from the space {U : U>U = In−k,U
>Γ = 0(n−k)×k}

and Di = diag{λi(k+1), . . . , λip}. Then we construct Σi = Γ diag{λi1, . . . , λik}Γ> + Ψi and

{yit, t = 1, . . . , T} are independently sampled from N (0,Σi). If {yit} are not Gaussian

distributed, we modify the above procedure by letting yit = Σ
− 1

2
i ỹit, where {ỹit, t = 1, . . . , T}

are independently sampled from a multivariate-Gamma distribution with mean 0, variance

Ip and skewness 10Ip. If CPC-associated eigenvalues are the largest k eigenvalues across

matrices, we set {λ∗j}kj=1 to be the largest k numbers in {λj}pj=1.
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4.2 Simulation results

Simulation results are summarized in Figure 2 and Tables 1 and 2 for simulations 1, 2 and

3 respectively.

Figure 2 shows that the deviation from commonality metric converges to its limit when

T is fixed and n → ∞, and when n is fixed and T → ∞. This confirms the results of

Theorem 2 and indicates that this metric can be used to distinguish CPC estimates and

non-CPC estimates when either n or T is large.

Table 1 displays the performance of Algorithms 1 and 2 under the different simulation

settings. When data are Gaussian distributed, both algorithms have high accuracy whenever

k, n, T are small, medium or large. As n and T increases, the performance of both algorithms

improves. When the sample size is small, Algorithm 1 still has a high accuracy in estimating

Γ, even under the non-Gaussian distribution setting. In particular, when n = T = 15 < p,

Algorithm 1 remains valid and has good accuracy, which demonstrates an advantage with

small data. Since implementing Algorithm 2 requires p ≤ T , k̂ is not estimated when n =

T = 15. As k increases, the accuracy of Algorithm 1 slightly increases, which confirms our

discussion in Section 3.1. Under the Gamma data generating distribution, the algorithm to

find k likely underestimates k when k is large. The reason for this is twofold. First, this

algorithm is conservative for non-Gaussian data (as discussed in Section 3.2); second, when

k is large, the number of null hypotheses to reject is large, which reduces the overall power.

As a result, we recommend using Algorithm 2 for Gaussian distributed data. If k is large,

one may not find all CPCs, but the identified ones are accurate.

Table 2 gives the comparison of our proposed method with k known or unknown to Flury’s

method and PVD. In the first scenario, all methods perform well, as expected. In the other

scenarios, our proposed method performs as good as or better than Flury’s method and

PVD, even when the true number of CPCs is unknown. In Scenario 2, since both Flury’s
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method and PVD assume CPCs are associated with the largest eigenvalues for each matrix,

their accuracy is much lower than our proposed method. In Scenario 3, all four methods

have modest accuracy, but our proposed method with k unknown, Flury’s method and PVD

have lower accuracy due to the non-Gaussian distribution. In contrast, our proposed method

with k known remains highly accurate, since it is semiparametric. In Scenario 4, the size

of data is limited compared to the dimension of matrices, resulting in small accuracy drops

of all methods. However, our proposed method still has the least accuracy drop among all

methods. In all scenarios, our proposed method outperforms Flury’s method and PVD, even

when the true number of CPCs is unknown.

[Figure 2 about here.]

[Table 1 about here.]

[Table 2 about here.]

5. Task fMRI data example

We apply the proposed semiparametric PCPC method to the Human Connectome Project

(HCP) motor-task fMRI data. The HCP project studies the brain connectome, both struc-

tural and functional, of healthy adults. The data set includes n = 136 healthy young adults

from the most recent S1200 release. Adapted from the experimental design in Buckner et al.

(2011) and Thomas Yeo et al. (2011), the task fMRI consists of ten task blocks including

two tongue movement blocks, four hand movement blocks (two left and two right) and

four foot movement blocks (two left and two right), as well as three 15-second fixation

blocks. In each movement task block, a three-second visual cue was first presented followed

by a 12-second movement. Participants were instructed to follow the visual cue to either

move their tongue, or tap their left/right fingers, or squeeze their left/right toes to map

the corresponding motor areas. The tasks were randomly intermixed. Once the ordering
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was fixed, the task onsets are nearly consistent across participants. The fMRI data were

collected for T = 284 time points (with repetition time = 0.72 seconds) and 264 brain

regions and preprocessed following the HCP minimal preprocessing pipeline (Glasser et al.,

2013). Furthermore, we fit an ARMA(1,1) model (Lindquist et al., 2008) for each brain

region to remove temporal correlation. We extracted blood-oxygen-level dependent (BOLD)

signals from p = 35 functional brain regions in the sensorimotor network (Power et al., 2011)

and averaged over voxels within the 5 mm radius. According to the Doornik-Hansen test

for multivariate normality by Doornik and Hansen (2008), there is no sufficient evidence to

reject the null hypothesis that data are normally distributed (p-value 0.12). Since Flury’s

method and PVD are not able to identify the CPCs associated with small eigenvalues and

require prespecified k, we present the result from the proposed semiparametric method only.

Results of Flury’s method and PVD letting k = p are given in the Supplementary Material,

which differ from the results of the semiparametric method.

Among 35 CPC candidates, Algorithm 2 identifies 30 as CPCs, which explain 80% of the

total variance of the average covariance matrix. Figure 1 in the Supplementary Material

summarises the results of sequential testings. To explore the relationship between the iden-

tified CPCs and the motor tasks, we plot the average time course of each CPC estimate

(i.e.,
∑n

i=1 γ
>
j yit/n for j = 1, . . . , 30) and compare it with task time bins. We also visualize

brain regions with loading magnitude greater than 0.15 in a brain map. As a result, at

least ten of the identified CPCs are related to tasks (no statistical test is performed) and

a list of identified brain networks is provided in Table 3. Figure 3(A) presents an example

of task-related CPC (CPC 18). In Figure 3(A), the average time course suggests a brain

network of right hand movement and left foot movement, which is confirmed by the brain

map. In this component, brain areas associated with motor control of the right hand yield

high negative loadings (blue regions on the left hemisphere of the brain in Figure 3(A)); and
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regions associated with motor control of the left foot yield high positive loadings (red regions

on the right hemisphere of the brain in Figure 3(A)). The lateral separation of the brain in

terms of the loading sign suggests that during these motor tasks, the associated left and

right hemispheres are functionally negatively correlated. Figure 3(B) presents an example of

the CPC that is not related to the tasks. Even though the time course does not show a clear

pattern, this CPC is concentrated in a region of the brain, which is modularized as a tongue

region by Power et al. (2011). For the five components that are not identified as CPCs, two

appear task-related and three do not. Since Algorithm 2 can be conservative when the true

number of CPCs is large and the distribution is non-Gaussian based on simulation, some

of these four CPC candidates may be CPCs. For all 35 CPC candidates, the average time

course and the brain maps are provided in the Supplementary Material.

Besides the analysis of the sensorimotor network, we ran Algorithm 2 on all brain regions

(p = 264) and got 190 CPC estimates, which explain 50% of the total variance of the average

covariance matrix. Among the 190 CPC estimates, 66 are associated with the default mode

network, 15 are associated with the visual network, 12 are associated with the sensorimotor

network and, 5 are associated with the frontoparietal network. Here we classify a CPC

estimate as associated with a brain network if, among the regions with loadings greater than

0.1 in this CPC estimate, at least 25% come from the corresponding network. To compare

the results from the sensorimotor-network analysis and whole-brain analysis, we extracted

loadings corresponding to the sensorimotor network for each common eigenvector estimate in

the whole-brain analysis. Among 30 CPC estimates of sensorimotor-network analysis, 12 are

highly correlated (absolute value of inner product larger than 0.7) with some CPC candidates

of whole-brain analysis, suggesting that the brain networks encoded by these CPCs retain

when taking into account regions outside of the sensorimotor network.

[Table 3 about here.]
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[Figure 3 about here.]

6. Discussion

In this paper, we propose a semiparametric PCPC model and provide algorithms to identify

CPCs with or without knowing the true number of CPCs. Furthermore, we prove the asymp-

totic consistency of our proposed estimators, even when the data generating distribution is

non-Gaussian. In simulation studies, our estimator consistently outperforms Flury’s method

and PVD and shows high accuracy if the number of CPCs is known. Applied to the motor-

task fMRI data, our method identifies meaningful brain networks that match the current

findings.

In PCPCA, a CPC may not be associated with the largest eigenvalues across all covariance

matrices. For this reason, our proposed method allows for an arbitrary association between

CPC and eigenvalues, which makes the model more flexible. One challenge resulting from

this flexibility is to find k, the number of CPCs, since the signal of CPCs can be weak or

inseparable from non-common principal components. Our proposed algorithm for finding

k performs well under Gaussian distribution, but can be conservative if the underlying

distribution is non-Gaussian or k is large. Furthermore, sequential hypothesis testing usually

requires huge computational resources and can be slow for high-dimensional matrices. Hence,

an efficient and robust method for finding k will be one future direction.

Our proposed method, as well as the literature, assumes p, the dimension of covariance

matrices, is fixed. One exciting future direction could be finding solutions to handle data

with large p but small n and T .
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Supporting Information
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tion 5 are available with this paper at the Biometrics website on Wiley Online Library.

The R code and data to reproduce the simulations and data application are available at

https://github.com/BingkaiWang/Semi-parametric-PCPCA.
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Figure 1. An example of the PCPC model. Each covariance matrix consists of two CPCs
and an individual structure. Each CPC has rank 1 and norm 1.
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Figure 2. Distribution of the “Deviation from commonality” metric (3) as n (left panel) or
T (right panel) goes to infinity for the last CPC estimate and the first non-CPC estimate. The
solid line is the probability limit for the CPC estimate and the dashed line is the probability
limit for the non-CPC estimate calculated from Theorem 2. The left panel demonstrates that
the metric converges in probability to its limit, while the right panel shows that the metric
converges almost surely.
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Figure 3. Average time course (left panel) and brain regions (right panel) of CPC 18
(upper panel) and CPC 9 (lower panel). In the left panel, each bin represents the time
period of a task. In the right panel, each node is a brain region, with size standing for the
absolute loading and color representing the sign of the loading (blue for negative and red for
positive). Brain regions with absolute loading smaller than 0.1 are not shown in the figure.
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Table 1
The accuracy of Algorithm 1 and the sequential testing procedure under different settings with p = 20.

Average accuracy of Γ̂ Average k̂
Distribution k = 1 k = 10 k = 20 k = 1 k = 10 k = 20

n = T = 15
Gaussian 0.81 0.91 0.93 - - -
Gamma 0.67 0.71 0.83 - - -

n = T = 30
Gaussian 0.95 0.97 0.95 1.20 9.68 18.92
Gamma 0.70 0.86 0.92 0.65 4.04 4.02

n = T = 100
Gaussian 0.98 0.99 0.95 1.26 10.02 20.00
Gamma 0.96 0.98 0.95 1.01 9.50 13.73
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Table 2
The accuracy of methods in estimating CPC under different scenarios. Semi-1: the proposed semiparametric method

with k known. Semi-2: the proposed semiparametric method with k unknown. Flury: the Flury’s method. PVD:
population value decomposition.

Semi-1 Semi-2 Flury PVD

Scenario 1
p = 20 1.00 1.00 1.00 0.99
p = 100 1.00 1.00 1.00 0.99

Scenario 2
p = 20 0.99 0.96 0.26 0.50
p = 100 0.99 0.93 0.24 0.20

Scenario 3
p = 20 0.98 0.95 0.88 0.94
p = 100 1.00 0.95 0.91 0.95

Scenario 4
p = 20 0.99 0.99 0.99 0.95
p = 100 0.99 0.99 0.97 0.96
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Table 3
Task-related brain networks identified by Algorithm 2.

CPC No. Variance explained Brain network

3 2.0% Hands, feet
4 2.2% Feet
5 2.1% Right hand

10 2.3% Right foot
11 2.7% Feet
15 2.0% Hands
16 2.2% Left hand
18 2.1% Right hand, left foot
23 1.8% Tongue, feet
24 2.1% Hands, feet
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