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Abstract: 
Polygenic risk models have led to significant advances in understanding complex diseases and 
their clinical presentation. While traditional models of genetic risk like polygenic risk scores 
(PRS) can effectively predict outcomes, they do not generally account for disease subtypes or 
pathways which underlie within-trait diversity. Here, we introduce a latent factor model of 
genetic risk based on components from Decomposition of Genetic Associations (DeGAs), which 
we call the DeGAs polygenic risk score (dPRS). We compute DeGAs on associations from 
1,905 traits in the UK Biobank and find that dPRS performs comparably to standard PRS while 
offering greater interpretability. We highlight results for body mass index (BMI), myocardial 
infarction (heart attack), and gout in 337,151 white British individuals (spilt 70/10/20 for training, 
validation, and testing), with replication in a further set of 25,486 non-British whites from the 
Biobank. We show how to decompose an individual’s genetic risk for a trait across these latent 
components. For example, we find that BMI polygenic risk factorizes into distinct components 
relating to fat-free mass, fat mass, and overall health indicators like sleep duration and alcohol 
and water intake. Most individuals with high dPRS for BMI have strong contributions from both a 
fat mass component and a fat-free mass component, whereas a few ‘outlier’ individuals have 
strong contributions from only one of the two components. Our methods enable fine-scale 
interpretation of the drivers of genetic risk for complex traits. 
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Introduction: 
Common diseases like diabetes and heart disease are leading causes of death and financial 
burden in the developed world ​1​. Polygenic risk scores (PRS), which sum the contributions of 
multiple risk loci toward phenotypes of interest, have been used with some success to identify 
individuals at high risk for diseases like cancer​2–4​, diabetes​5,6​, heart disease ​7,8​, and obesity​9​,​10​. 
Although many versions of PRS can be used to estimate risk​11–13​, previous work suggests that a 
“palette” model which decomposes genetic risk into its constituent pathways may more faithfully 
describe the clinical manifestations of complex disease ​14​.  
 
Here, we present a polygenic model based on latent trait-related genetic components identified 
using Decomposition of Genetic Associations (DeGAs)​15​. Rather than modeling genetic risk for 
a trait as a sum of effects from contributing genetic variants, the DeGAs polygenic risk score 
(dPRS) models genetic risk for traits as a sum of contributions from DeGAs components​15​, each 
consisting of a set of variants with consistent effects on a subset of the traits being modeled 
(​Figure 1 ​). Genetic risk for an individual DeGAs component can be expressed as a component 
PRS (cPRS) that approximates risk for a weighted combination of relevant traits. We then use 
these scores to estimate personalized genetic risk profiles that inform genetic subtyping of 
disease. 
 
As proof of concept, we compute DeGAs​15​ using summary statistics generated from 
genome-wide associations between 1,905 traits and 454,565 independent common variants in a 
subset of unrelated white British individuals (​n​=236,005) in the UK Biobank​16​ (​Methods ​). We 
then develop a series of dPRS models and evaluate their performance in independent samples 
of unrelated individuals in the same population (​n​=33,716 validation set;​ n​=67,430 test set), and 
in UK Biobank non-British whites (​n​=25,486 additional test set). We highlight results for body 
mass index (BMI), myocardial infarction (MI/heart attack), and gout, motivated by their high 
prevalence (obesity, in the case of BMI) among older individuals in this cohort​17​.  

Results:  

Evaluating the DeGAs Polygenic Risk Score (dPRS): 
Genome-wide associations between ​n=​1,905 traits and ​m​=454,565 independent human 
leukocyte antigen (HLA) allelotypes, copy-number variants​18​, and array-genotyped variants were 
computed in a population of 236,005 unrelated white British individuals from the UK Biobank 
study​16​ (​Methods ​). We applied DeGAs​15​ to beta- or ​z ​-statistics from these GWAS with varying 
p​-value thresholds for input (​Figure 1a​). We then defined polygenic risk scores for each DeGAs 
component (cPRS, ​Figure 1b​) and used them to build the DeGAs polygenic risk score (dPRS; 
Figure 1c ​). The model with optimal out of sample prediction (​Supplementary Figure 1​) 
corresponded to DeGAs on ​z​-statistics with nominally significant (​p​ < 0.01) associations.  
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Figure 1: Study overview. (A) Matrix Decomposition of Genetic Associations (DeGAs) ​ is 
performed by taking the truncated singular value decomposition (TSVD) of a matrix ​W 
containing summary statistics from GWAS of ​n​=1,905 traits over ​m​=454,565 variants from the 
UK Biobank. The squared columns of the resulting singular matrices ​U ​(​n x c ​) and ​V​ (​m x c ​) 
measure the importance of traits (variants) to each component; the rows map traits (variants) 
back to components. The squared cosine score (a unit-normalized row of ​US​) for some 
hypothetical trait indicates high contribution from PC1, PC4, and PC5. ​(B)​ ​Component 
polygenic risk scores (cPRS)​ for the ​i ​th component is defined as ​s​i ​V​T​i,* ​G ​(​i​-th singular value 
in ​S​ and ​i​-th row in ​V​T​), for an individual with genotypes ​G​. ​(C) DeGAs polygenic risk scores 
(dPRS)​ for trait ​j ​ are recovered by taking a weighted sum of cPRS​i ​, with weights from ​U​ (​j,i ​-th 
entry). We also compute DeGAs risk profiles for each individual (​Methods​), which measure 
the relative contribution of each component to genetic risk. We “paint” the dPRS high risk 
individuals with these profiles and label them “typical” or “outliers” based on similarity to the 
mean risk profile (driven by PC1, in blue). Outliers are clustered on their profiles to find 
additional genetic subtypes: this identifies “Type 2” and “Type 3”, with risk driven by PC4 (red) 
and PC5 (tan). Clusters visually separate each subtype along relevant cPRS (below). Image 
credit: ​VectorStock.com/1143365 ​. 
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To validate this model, we estimated disease prevalence (or, for BMI, mean BMI) at several 
quantiles of risk in a held-out test set of white British individuals in the UK Biobank (​n​=67,430). 
For all traits we observed increasing severity (quantitative) or prevalence (binary) at increasing 
quantiles of dPRS (​Figure 2a-c​) adjusted for age, sex, and the first 4 genotype principal 
components from UK Biobank’s PCA calculation ​16​. This trend was most pronounced at the 
highest risk quantile (2%) for each trait. At this stratum we observed 2.47 kg/m​2​ higher BMI 
(95% CI: 2.21-2.74); 1.47-fold increased odds of MI (CI: 1.14-1.89); and 3.10-fold increased 
odds of gout (CI: 2.35-4.09) over the population average in the test set.  
 
Further, we found dPRS to be comparable to prune- and threshold-based PRS using the same 
input data (​Supplementary Figure 2​). Although there was some discrepancy between the 
individuals considered high risk by each model (​Supplementary Figure 3, Supplementary 
Table 1 ​) we observe similar effects at the extreme tail of PRS as with dPRS. The top 2% of risk 
of PRS for each trait had 2.48 kg/m​2​ higher BMI; 1.63-fold increased odds of MI (CI: 1.27-2.08); 
and 2.22-fold odds of gout (CI: 1.64-2.99) (​Figure 2a-c​) using the same covariate adjustment as 
dPRS. Population-wide predictive measures were also similar, with BMI residual ​r​=0.205, and 
PRS AUC (not adjusted for covariates) 0.561 for MI and 0.605 for gout (​Figure 2d-f​). Despite 
the reduced rank of the DeGAs risk models — the input matrix ​W​ is reduced from ~1,900 traits 
to a 300-dimensional representation — we achieve performance equivalent to full rank PRS for 
these traits, and note a similar trend for the other DeGAs traits (​Supplementary Figure 2, 
Supplementary Data 1​). 
 
However, we note that dPRS and PRS add comparatively little population-wide predictive value 
over factors such as age, sex, and demographic effects that are captured by genomic PCs 
(​Figure 2d-f ​). At the population level, we found ​r​=0.207 between covariate-adjusted dPRS and 
residual BMI. For binary traits we estimated an area-under receiver operating curve (AUC) of 
0.560 for MI and 0.645 for gout, using unadjusted dPRS as the classifying score. After 
adjustment for covariates, the marginal increase in AUC is modest: 0.005 for MI and 0.035 for 
gout. 

Characterizing DeGAs Components: 
We describe the latent structure identified through DeGAs by annotating each component with 
its contributing traits (​Figure 3​) and variants, aggregated by gene (​Supplementary Data 2,3​). 
The relative importance of traits to components is measured using the trait contribution score ​15​, 
which corresponds to a squared column of the trait singular matrix ​U​. The relative importance of 
components to each trait is measured using the trait squared cosine score ​15​, which is taken from 
a normalized squared row of ​US​. These scores are defined for variants and genes using the 
variant singular matrix ​V​. 
 
Body mass index is a highly polygenic trait with associated genetic variation relevant to 
adipogenesis, insulin secretion, energy metabolism, and synaptic function ​15​,​19​. Here, the DeGAs 
trait squared cosine score (​Figure 3a​) indicates strong contribution from components related to  
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Figure 2: ​ Performance of dPRS. (A-C)​ Effect of increased risk (dPRS or PRS) on BMI, MI, 
and gout. Beta/OR (left axis) were estimated by comparing the quantile of interest (x-axis) with 
a middle quantile (40-60%), adjusted for these covariates: age, sex, 4PCs (​Methods​). Trait 
mean or prevalence (right axis) was computed within each quantile; error bars denote the 95% 
confidence interval of each estimate. ​(D) ​Correlation between dPRS or PRS and covariate 
adjusted BMI. Receiver operating curves with area under curve (AUC) values for MI ​(E)​ or 
gout ​(F)​ for dPRS, PRS, covariates, and a joint model with covariates and dPRS. Models with 
covariates were fit in the validation set; all evaluation was in the test set. (​Methods​). 
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body size and fat-free mass (PC1 - 42.8%), fat mass (PC3 - 37.9%), and overall health 
indicators like sleep duration and alcohol and water intake (PC169 - 1.8%). Genic variation 
proximal to ​FTO​ and ​DLEU1​ had the highest contribution to PC1 (​Supplementary Data 3​). 
Variants proximal to both genes are strongly associated with traits affecting body size in 
adults​20​,​21​. The former is an alpha-ketoglutarate dependent dioxygenase whose causal role in 
BMI has been questioned ​22​; the latter is a tumor-suppressing lncRNA named for its frequent 
deletion in patients with chronic lymphocytic leukemia ​23​. Genetic variants proximal to ​DLEU1 ​are 
also significant contributors to PC3 along with ​TSBP1​ (or ​C6orf10​), an open reading frame in 
the human leukocyte antigen (HLA) region. 
  

 

Figure 3: ​ ​Top five DeGAs components for each trait. (A) ​ Top five DeGAs components for 
body mass index, as ranked by the trait squared cosine score. Each component is labeled 
with its top ten traits, as determined by the contribution score (squared column of ​U​), and with 
the fraction of variance in genetic associations it explains (squared cosine score). Traits are 
displayed for a component if their contribution score for the component exceeds 0.02. Top five 
components for ​(B)​ myocardial infarction and ​(C) ​gout. 

 
Myocardial infarction is similarly a polygenic outcome with well-established risk factors 
attributable to common and rare genetic variation ​8​, age, sex, and lifestyle attributes like diet and 
smoking. DeGAs components important to this trait are related to an array of covariate- and 
statin-adjusted blood and urine biomarkers​24​ (​Figure 3b ​). These include phosphate (PC142 and 
PC133 — 6.3% and 3.9% — these components also have contribution from cholesterol 
medications) as well as urea and gamma glutamyltransferase (PC135 - 4.2%). Another relevant 
component (PC147 - 3.8%) has contribution from phosphate and hair color. All components 
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have contribution from variation proximal to the lipoprotein genes ​LPA​ and ​APOC1​, along with 
variants at the ​9p21.3​ susceptibility locus (​CDKN2B​) and in the brain-expressed solute carrier 
SLC22A3​25​ (​Supplementary Data 3​). 
 
Gout is a heritable (​h​2​=17.0-35.1%) common complex form of arthritis characterized by severe 
sudden onset joint pain and tenderness, believed to arise due to excessive blood uric acid 
which crystallizes and forms deposits in the joints​26​. The top three components (​Figure 3c​) for 
gout share strong contribution from covariate-adjusted blood urate ​24​. One component (PC94 - 
7.3%) is further driven by intraocular pressure and fat percentage; another (PC108 - 7.7%) is 
related to visual acuity (logMAR test results); and the third (PC117 - 5.9%) is driven mainly by 
covariate- and statin-adjusted cystatin C and abdominal fat. Shared among all components is 
genetic variation in ​SLC2A9​, which is involved in uric acid transport and has been associated 
with gout​27​. The transporter protein ​ABCG2​ is also key to both PC94 and PC108, and has been 
shown to play a role in renal urate transport​28​. PC117 is primarily driven by the cystatin gene 
family members ​CST9​, ​CST4 ​, and ​CST1​, which are adjacent to one another on chromosome 20 
and associate with renal function and chronic kidney disease ​29​. 

Painting DeGAs Risk Profiles: 
To further characterize the architecture of genetic risk for these traits, we “painted” the profiles 
of each high-genetic-risk individual (top 5% of dPRS), plotting a breakdown of each person’s 
genetic risk across DeGAs components​15​ which we call the DeGAs risk profile (​Methods​). This 
measure captures relevant underlying genetic diversity among high risk individuals (​Figure 
4a-c​) in a way which complements the population-level scores from DeGAs. For example, the 
trait squared cosine score for BMI suggests that PC1, PC3, and PC169 are the top 3 
components; but the DeGAs risk profile further implicates PC6 (with strong contribution from 
autoimmune traits) and PC7 (with strong contribution from standing height and body 
impedance) in genetic risk at the extreme tail of dPRS for BMI (​Figure 4a​).  
 
We therefore investigated the diversity of driving components among high-risk individuals using 
their DeGAs risk profile. We used the Mahalanobis criterion (​Methods​) to find individuals in the 
entire test population whose risk profiles significantly differed from average. We then intersected 
these outliers (​z​-scored Mahalanobis distance > 1) with the high-risk individuals (top 5% of 
dPRS) to identify “high-risk outliers”. This group (​Figure 4d-f​) has similar contributing 
components as the high-risk individuals (​Figure 4a-c​), but their relative importance to each of 
the individuals is quite different. This suggests that the DeGAs risk profile, as a personalized 
measure, can identify individuals with high genetic risk who are poorly described by “typical” trait 
pathology. 
 
To better describe genetic diversity among these atypical individuals, we attempted to identify 
genetic subtypes of each trait in the high-risk outlier population. We performed a ​k​-means 
clustering of this group using DeGAs risk profiles as the input; ​k​ was chosen using an iterative 
approach based on the marginal increase in variance explained resulting from incrementing the 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808675doi: bioRxiv preprint 

https://paperpile.com/c/DPzUiB/Ri6L
https://paperpile.com/c/DPzUiB/e5bF
https://paperpile.com/c/DPzUiB/LQ4J
https://paperpile.com/c/DPzUiB/ftWM
https://paperpile.com/c/DPzUiB/mt3h
https://paperpile.com/c/DPzUiB/qRaI
https://paperpile.com/c/DPzUiB/S9iT
https://doi.org/10.1101/808675
http://creativecommons.org/licenses/by/4.0/


8 

number of clusters (​Methods​). We described each cluster using its mean risk profile (​Figure 
4a-c​) and noticed that cluster membership divides individuals based on cPRS for relevant 
components (​Figure 4d-f​).  
 

 

Figure 4: ​ ​Painting components of genetic risk. (A-C) ​ Component-painted risk for the 50 
individuals or ​(D-F) ​outliers with highest dPRS for each trait in the test set. Each bar 
represents one individual; the height of the bar is the covariate-adjusted dPRS, and the 
colored components of the plot are the individual’s DeGAs risk profile, scaled to fit bar height. 
Colors for the five most represented components in each box are shown in its legend in rank 
order. ​(G-I) ​Mean DeGAs risk profiles from ​k​-means clustering of high risk outlier risk profiles, 
annotated with cluster size (​n​). Phenotype groups for selected components in this figure 
include: PC1 (Fat free mass); PC3 (Fat mass); PC142 (Phosphate and Hair color); PC133 
(Phosphate and HCMV antigens); PC117 (Cystatin C and Urate); and PC108 (Urate and 
Visual acuity). 

 
For body mass index, we identify two risk clusters (​Figure 4g​): one driven by the fat mass 
component (PC3 - 59.0%, ​n​=264) and the other by the fat-free mass component (PC1 - 70.4%, 
n​=20). Most outlying individuals at risk for high BMI have genetic contribution from the near 
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exclusively fat-related component (PC3), hence their deviation from “typical”. However, a 
minority of outliers display the opposite. Genetic risk from this cluster comes mainly from variant 
loadings related to fat-free mass-related traits like whole-body water and fat-free mass. While 
smaller in number, the existence of this cluster and its wide separation from other outliers at risk 
for high BMI suggest alternative preventative and therapeutic approaches. 
 
We find one cluster of risk for myocardial infarction, driven by components which all have strong 
contribution from blood phosphate and cholesterol lowering medications (​Figure 4h​). One 
component (PC142 - 5.4%) is further characterized by hair color, number of illnesses, and sitting 
height. In addition to genetic contribution from ​LPA​ and ​APOC1​, this component has high 
loading from variation in the Fanconi anemia complement group gene ​FANCA​ and the 
melanocyte-specific transport gene ​OCA2​. The other cluster’s components (PC133 and PC135 
- 4.0% and 3.4%) have contribution from blood (gamma glutamyltransferase, aurea) and urine 
(enzymatic creatinine, sodium) biomarkers​24​, as well as markers of cardiac output like pulse 
wave stiffness and amplitude. Relevant genes for these components include ​APOB​ and the 
lipoprotein (a) associated transporter ​SLC22A2​30​.  
 
There is also only one cluster of outliers for gout (​Figure 4i​), and the mean risk profile closely 
mirrors the driving components as ordered by the trait squared cosine score (PC94, PC108, and 
PC117). Of note is the increased importance of PC109, which is driven by platelet 
(thrombocyte) volume and width, covariate-adjusted blood urate ​24​, and brain MRI measures 
(T2-star) which can capture hemorrhaging phenotypes. Increased serum uric acid has been 
associated with cerebral microbleeds in stroke patients​31​, which suggests this component 
captures shared biology related to the biomarker. While dPRS is highly predictive for gout 
(​Figure 2c,f ​), there appears to be insufficient diversity of genetic risk for clusters of DeGAs risk 
profiles to emerge.  

Discussion: 
In this study, we describe a novel approach (dPRS) to model polygenic traits using components 
of genetic associations. We build an example model using data from unrelated white British 
individuals in the UK Biobank to show that our method adds an interpretable dimension to 
traditional polygenic risk models by expressing disease, lifestyle, and biomarker-level elements 
in trait-related genetic components. Predicting genetic risk with these components led us to infer 
disease pathology beyond variant-trait associations with no loss of predictive power from 
reducing model rank (​Supplementary Figure 2​).  
 
For three phenotypes of interest (BMI, MI, and gout) we showed that the DeGAs risk profile 
offers meaningful insight into the genetic drivers of trait risk for an individual. We then used this 
measure to identify clusters of high risk individuals with similar genetic load for each of the traits. 
We find, as in previous work​15​, that genetic risk for BMI can be decomposed into fat-mass and 
fat-free mass related components. We also show that while many individuals have risk for BMI 
driven by a combination of the two components, there exist “outlier” individuals who have strong 
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contributions from only one of them. Our results further indicate that this diversity of contributory 
genetic risk is not limited to BMI, but extracting biological insights for other traits will likely 
require deeper phenotyping or other rich resources like single cell data.  
 
We further demonstrated the generalizability of dPRS by assessing its performance in 
independent test sets of white British and non-British white individuals (​Supplementary Figure 
4​; all traits in ​Supplementary Table 1 ​) from the UK Biobank. Although we show dPRS is 
predictive in independent samples with some variability in ethnic composition, concerns about 
the generalizability of traditional clump-and-threshold PRS across groups also apply to our 
method. Though methods exist to identify suspected causal variants via fine-mapping, we 
decided to LD-prune variants prior to analysis with DeGAs. This approach is agnostic to 
patterns of association observed for particular phenotypes. However, this may leave dPRS 
slightly more vulnerable to overfitting patterns of LD in the GWAS population compared to other 
approaches, and may be worth revisiting in future work.  
 
We also note that our analysis of subtypes may not be robust to different choices of input traits 
or study population. Taking gout as an example, our study finds only one cluster of outliers 
(​Figure 4c ​) whose mean DeGAs risk profile mirrors its trait squared cosine score (​Figure 3i​). 
This absence of clusters may be due to urate acting by similar mechanisms to influence risk for 
gout across our cohort, but this may not be the case in other groups. Here, we excluded traits 
which may have noisy or confounded patterns of genetic associations: specifically, rare 
conditions (​n < ​100 in the UK Biobank) or traits which correlate with social measures like 
socioeconomic status. We encourage replication efforts using similar methods, and have made 
all DeGAs risk models from this work available on the Global Biobank Engine ​32​ (​Resources​). 
 
We anticipate many potential applications of component-aware polygenic risk models like 
dPRS. Heritable conditions with known or putative biomarkers would be good candidates for 
follow-up studies that investigate an outcome jointly with its related quantitative features. For 
example, brain and liver images, metabolomics, and serum and urine biomarkers have been 
collected in resources like the UK Biobank, and may be of interest for future work​33,34​. Since 
DeGAs requires only summary-level data, it is possible to build a component model of genetic 
risk in one cohort (or across several) and use it to profile genetic risk and identify trait subtypes 
in another. Such analyses will help elucidate the diversity of polygenic risk for complex traits 
across individuals and populations. 
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Methods: 

Study populations 
The UK Biobank is a large longitudinal cohort study consisting of 502,560 individuals aged 
37-73 at recruitment during 2006-2010 ​16​. The data acquisition and study development protocols 
are online (​http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf​). 
In short, participants visited a nearby center for an in-person baseline assessment where 
various anthropometric data, blood samples, and survey questionnaire responses were 
collected. Additional data were linked from registries and collected during follow-up visits. 
 
We used a subsample consisting of 337,151 unrelated individuals of white British ancestry for 
genetic analysis. We split this cohort at random into three groups: a 70% training population 
(​n​=236,005), a 10% validation population (​n​=33,716), and a 20% test population (​n​=67,430). 
We use the training population to conduct genome-wide association studies for DeGAs, and the 
validation population to evaluate model performance for selecting DeGAs hyperparameters. We 
report final associations and performance measures in the test population. An additional cohort 
of unrelated non-British Whites​24​ (​n=​25,486) is used as an additional independent evaluation 
set. The “white British” and “non-British white” populations were defined using a combination of 
genotype PCs from UK Biobank’s PCA calculation ​16​ and self-reported ancestry (UK Biobank 
Field 21000) as a reference ​24​. 

Genome-wide association studies in the UK Biobank:  
PLINK v2.00a ​35​ [2 April 2019] was used for genome-wide associations of 805,426 directly 
genotyped variants, 362 HLA allelotypes, and 1,815 non-rare (AF > 0.01%) copy number 
variants​18​ (CNV) in the UKB training population. We used the --glm Firth-fallback option to apply 
an additive-effect model across all sites. Quantitative trait values were inverse-transformed by 
rank to a normal distribution using the --pheno-quantile-normalize flag. The following covariates 
were used: age, sex, the first four genetic principal components, and, for variants present on 
both of the UK Biobank’s genotyping arrays, the array which was used for each sample.  
 
Prior to public release, genotyped sites and samples were subject to rigorous quality control by 
the UK Biobank​16​. In brief, markers were subject to outlier-based filtration on effects due to 
batch, plate, sex, array, as well as discordance across control replicates. Samples with excess 
heterozygosity (thresholds varied by ancestry) or missingness (> 5%) were excluded from the 
data release. Prior to use in downstream methods, we performed additional variant quality 
control on array-genotyped variants, including more stringent filters on missingness (> 1%), 
gross departures (p < 10 ​-7​) from Hardy-Weinberg Equilibrium, and other indicators of unreliable 
genotyping ​36​.  As with previous versions of by DeGAs, we further filtered variants by minor allele 
frequency (MAF > 0.01%) and LD-independence ​15​. The LD independent set was computed with 
--indep 50 5 2 in PLINK​37​ v1.90b4.4 [21 May 2017]. In total, this resulted in a set of 454,565 
variants (452,639 genotyped variants, 130 HLA allelotypes, and 1,796 CNVs) for analysis.  
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Binary disease outcomes were defined from UK Biobank resources using a previously 
described method which combines self-reported questionnaire data and diagnostic codes from 
hospital inpatient data ​36,38​. Additional traits like biomarkers, environmental variables, and 
self-reported questionnaire data like health outcomes and lifestyle measures, were collected 
from fields curated by the UK Biobank and processed using in-house methods​15​,​24​. Multiple 
observations were processed by taking the median of quantitative values, or by defining an 
individual as a binary case if any recorded instance met the trait’s defining criteria. In all, we 
collected 1,905 traits with at least 100 observations (quantitative measures) or cases (binary 
traits); a full list of traits and their Global Biobank Engine phenotype IDs is in ​Supplementary 
Table 1 ​. Summary statistics from all GWAS described here are publicly available on the Global 
Biobank Engine ​32​ (​Resources​). In this work, we highlight results for body mass index (GBE ID: 
INI21001), myocardial infarction (HC326), and gout (HC328). 

Risk modeling using Decomposition of Genetic Associations (DeGAs): 
Given summary statistics from GWAS computed using the above methods, we performed matrix 
Decomposition of Genetic Associations (DeGAs), as previously described ​15​. First, a sparse 
matrix of genetic associations ​W ​(​n ​⨉​ m​) was assembled using effect size estimates (or 
z​-statistics) between ​n​=1,905 traits and ​m​=454,565 non-rare variants (MAF > 0.01%). Only 
variants with at least 2 nominally significant associations were used (​p < ​0.01; ​Supplementary 
Figure 1 ​ has additional cutoffs). After filtration, input statistics were standardized to zero mean 
and unit variance within each trait so as to weight them equally relative to one another.  
 
We then performed a truncated singular value decomposition (TSVD) on ​W​ using the 
TruncatedSVD function in the scikit-learn python module ​39​,​40​ to identify the top ​c ​=500 
trait-related genetic components. This factorization results in three matrices whose product 
approximates ​W​: a trait singular matrix ​U ​(​n ​⨉​ c ​), a variant singular matrix ​V ​(​m ​⨉​ c ​), and a 
diagonal matrix ​S ​(​c ​⨉​ c ​) of singular values, which we denote by ​s​i​ for the ​i ​-th component 
(Figure 1a).  
 
The matrices ​U, S, ​and ​V ​were then used to compute component polygenic risk scores (cPRS). 
The component PRS for the ​i-​th DeGAs component can be written as 

cPRS​i​ = S​i,*​V​T​G 

for an individual with genotype vector ​G​ (​m​ ⨉ 1) over the variants used in DeGAs. Here, ​S​i,* 
denotes the ​i-​th row of ​S ​. Using the cPRS for each component, we define the DeGAs polygenic 
risk score (dPRS) for the ​j-​th trait as 

dPRS​j​ = ​𝝨​i ​U​j,i ​cPRS​i  

where ​U​j,i​ ​is the (j,i)’th entry of ​U​. In terms of the matrices ​U ​, ​S ​, and ​V​, this can be expressed as  
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dPRS​j​ = U​j,*​SV​T​G 

For interpretability, the population distribution of dPRS for each trait ​j​ is scaled to zero mean and 
unit variance, independent of the distributions of dPRS for other traits. 
 
We further relate individuals to traits via components using a measure we call the DeGAs risk 
profile (dRP). An individual’s profile for a given phenotype ​j ​is a vector over the ​c​ DeGAs 
components, where the value for the ​i-​th component is proportional to 

dRP​j,i​ ~ ​max(0, ​dPRS​j  ​⨉ ​cPRS​i​) 

with a denominator introduced for normalization so that these values sum to one. To estimate 
the contribution of each component to an individual’s overall genetic risk, we only consider 
component scores which have the same sign as the overall risk score (hence the max operator). 
This gives normalized risk profiles consisting of driving components for high-risk individuals with 
positive dPRS and protective components for low risk individuals with negative dPRS.  

Computing polygenic risk scores: 
As a baseline model for dPRS, we computed single-trait polygenic risk scores (PRS) with a 
pruning and thresholding approach using the same summary statistics used as input to DeGAs. 
These variants were already filtered on LD independence and filtered according to ​p​ < ​p* ​for 
some critical value ​p*​ (see above), so no further processing was required. For a given DeGAs 
instance, the weights for prune- and threshold PRS for trait ​j​ were taken from the ​j​-th row of ​W​. 
The PRS was then computed with PLINK v1.90b4.4 [21 May 2017] using the --score flag, with 
the following modifiers: sum center double-dosage. These correspond to the assumptions that 
variants make additive contributions across sites, the mean distribution of risk is taken to be 
zero, and that the effect alleles have additive effects; these are also the same assumptions 
used in the input GWAS. 
 
In a similar fashion, polygenic scores (cPRS) for all DeGAs components were computed with 
PLINK2 v2.00a2 (2 Apr 2019) --score center cols=scoresums. These modifiers correspond to 
the same assumptions as in the PRS: that genetic effects are additive across sites (this is the 
default genotype model for --score), each component is zero-centered, and alleles make 
additive contributions. Given population-wide estimates of cPRS for every component, we 
computed dPRS and DeGAs risk profiles for each trait using the above formulas.  
 
Optionally, PRS and dPRS were adjusted by the following covariates: age, sex, and four genetic 
principal components from UK Biobank’s PCA calculation. Adjustment was performed by fitting 
a multiple regression model with (d)PRS and covariates in the 10% validation population. We 
also fit a covariate-only model using the same procedure (without either polygenic score), and 
use its performance as baseline for the joint models (​Figure 2​). 
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Model validation: 
To select DeGAs hyperparameters — the input ​p​-value filter, and whether to use GWAS betas 
or ​z​-statistics as weights — we performed a grid search over a range of filtering ​p​-values for 
both betas and ​z​-statistics. Performance of a DeGAs instance was assessed using the average 
correlation between its resulting set of dPRS models and their respective traits. For all traits 
used in the decomposition, we computed Spearman’s rho ​ ​(rank correlation) between dPRS and 
covariate-adjusted trait residuals in the validation population. Residual traits are the result of 
regressing out the following covariates: age, sex, and four genetic principal components. We 
find optimal performance in the validation population using ​z​-statistics, a ​p ​-value cutoff of 0.01, 
and 300 components (​Supplementary Figure 1​).  
 
For this final DeGAs instance, we present several assessment metrics for each polygenic score 
— dPRS and PRS with DeGAs data — within each study population (​Figure 2​). For each score 
and population, we estimated disease prevalence and mean quantitative trait values at various 
population risk strata. We also estimated the effect of (d)PRS quantiles on traits using a two 
step approach. First, in the training set we compute: 

sex age PC  Y ~ β0 + β1 + β2 + ∑
4

i=1
βi+2 i  

Then, in the test/validation set we estimate the effect β due to PRS quantile using the above 
parameters like so: 

sex age PC 1  Y ~ β̂0 + β̂1 + β̂2 + ∑
4

i=1
β̂ i+2 i + β PRS(q)  

where ​1​PRS(q)​ ​ ​is an indicator function which is 1 if an individual is in the quantile of interest ​q 
(e.g. 0-2%) and 0 if the individual is in the baseline group (40-60% quantile of (d)PRS). 
Individuals in neither the quantile of interest nor the baseline group were excluded; if individuals 
were in both ​q​ and the baseline group (e.g. if ​q​ were 45-40%) they were counted in ​q​ and 
removed from baseline. 
 
We further assessed the scores’ ability to predict quantitative trait values and perform binary 
classification on disease status. For quantitative traits, we report Pearson’s ​r​ between score and 
trait residuals, as defined above. For binary traits, we report the area under the receiver 
operating curve (AUROC/AUC) with dPRS as the classifying score, both alone and in a joint 
model with covariates. As baseline, we also report AUC for a covariate-only model (see above).  

Classifying genetic risk profiles from DeGAs components: 
In order to assess whether our method could identify subtypes of genetic risk, we analyzed the 
DeGAs risk profiles of high-risk individuals whose dPRS is driven by an “atypical” combination of 
DeGAs components. We used the Mahalanobis criterion (D​M​) to identify outlier individuals 
whose ​z​-scored distance from the mean DeGAs risk profile exceeded 1:  
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 DM = √(x )S (x )− μ −1 − μ T  
where ​x​ is the DeGAs risk profile; 𝜇 is the mean profile; and ​S​ is the identity matrix. Traditionally 
S​ is taken to be the covariance matrix for each of the features across all ​x​’s: we model each of 
the components as having equal variance so as to identify “atypical” individuals rather than 
statistical outliers. We note that this formula reduces to the Euclidean distance between a 
DeGAs risk profile ​x​ and the mean profile 𝜇. 
 
We then intersected this set with the top 5% of dPRS values to create the “high risk outlier” 
group. Here, we define the mean risk profile for a trait as the component-wise mean across all 
individuals’ DeGAs risk profiles in high risk set (top 5% of dPRS).  
 
To identify subtypes among high risk outliers, we performed a ​k​-means clustering of their 
DeGAs risk profiles using the KMeans function from the python scikit-learn module ​39​. The 
number of clusters ​k​ was determined iteratively using proportional reduction in error. We 
iteratively incremented ​k​ and recomputed the clustering, arriving at the final ​k​ when the 
reduction in within-cluster error — that is, the sum of Mahalanobis distances for all samples in 
each cluster, across all clusters — failed to exceed 25% on the ​k+​1st clustering. We then 
evaluated which components drove risk in each cluster by computing a mean risk profile for the 
group (defined as above), and renormalized it to one for visualization (​Figure 4g-i​). 
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Resources: 
Supplementary data, including weights for the final DeGAs model, are available on the Global 
Biobank Engine ​32​: ​https://biobankengine.stanford.edu/downloads​. 
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Supplementary Information: 

Figure S1: DeGAs hyperparameter optimization and train/validation set performance. 
 
Figure S2: Summary of final DeGAs instance — validation versus test R; scree plot 
 
Figure S3: Individual-level concordance of dPRS and PRS for BMI, MI, and gout. 
 
Figure S4: dPRS performance for BMI, MI, and gout in UK Biobank non-British white 
individuals. 
 
 
Table S1: Counts of individuals at intersecting quantiles of risk by PRS and dPRS for 
BMI, MI, and gout. 
 
 
Data S1: List of phenotypes and (d)PRS performance metrics across population 
groupings. ​This includes N, adjusted beta for the 2% strata of risk (BETA2), AUC of 
covariate-adjusted (d)PRS (binary only), Pearson correlation between (d)PRS and quantitative 
trait values (PEARSON_R), and Spearman rank-correlation between (d)PRS and trait value 
(SPEARMAN_R). Details on the computation of these measures and descriptions for each of 
the analysis populations are described in the main text (​Methods​). 
 
Data S2: Phenotype contribution scores for all 300 DeGAs components. 
 
Data S3: Gene contribution scores for all 300 DeGAs components. ​ For these plots, we use 
the gene contribution score as previously defined ​15​. Briefly, the contribution score a gene is 
considered to be the sum of contribution scores for each variant present in the gene. Noncoding 
variant are treated as singular “gene” entities. 
 
 
Note:​ ​Supplementary Data are available on the Global Biobank Engine (​Resources​). 
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Figure S1: Hyperparameter optimization. ​ Distribution of Spearman’s rho between trait 
dPRS and trait values (top, in the training set; bottom, in the validation set) for all traits in 
several DeGAs models. We computed DeGAs across an array of parameters, varying input 
statistics (betas or z-statistics) from GWAS; minimum p-value filters (p=1e-2, 1e-3, 1e-4, 1e-5, 
1e-6); and the number of components to compute (c=100,300,500). The model with optimal 
performance was chosen by maximizing mean rho between dPRS and trait in the validation 
set (bottom). It used z-statistics from associations with p<1e-2 and 300 components, and is 
labeled with two stars (**). 
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Figure S2: ​ Performance of the final DeGAs model with optimized hyperparameters. ​ We 
plot squared rank correlation (Spearman’s rho) between dPRS and trait values across all 
traits in the test (top left) and validation sets (top left), or between dPRS and PRS in the test 
set (top right). The fraction of variance explained by each DeGAs component is shown in a 
scree plot (bottom). The grey dashed line is at the final ​c​=300 components, which collectively 
explain ~47.4% of variance in the original input matrix. 
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Figure S3: ​ Correlation between dPRS and PRS. ​ For BMI (A), MI (B), and gout (C), dPRS 
(x-axis) and PRS (y-axis) for all individuals in the test set are shown alongside rank 
correlation (Spearman’s ⍴) between the two. The gray diagonal line is y = x. Color represents 
whether the individuals are identified as high-risk (top 5%) or low risk (bottom 5%) by dPRS, 
PRS, or both (Supplementary Table X). 
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Figure S4: ​ (d)PRS performance in non-British whites. ​ Analog of ​Figure 2 ​ in a population 
of non-British white individuals (​n​=24,908) from UK Biobank. The second percentile of risk for 
dPRS (PRS) has: 2.06 kg/m​2​ (2.06) higher BMI, 1.83-fold (2.09) increased odds for MI, and 
3.37-fold (2.83) increased odds of gout, adjusted for age, sex, and 4 genetic PCs. Overall 
model performance of (d)PRS adjusted for these covariantes is measured by Pearson’s ​r​ for 
BMI (D) or AUC for dPRS versus PRS alone, or dPRS + covariates versus a covariate model 
for the binary traits (E,F). 
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Supplementary Table 1 ​. Comparison of risk stratification by dPRS and PRS. For the three 
traits we highlight in our study, we count the number of individuals in the same (or different) risk 
strata under each model. Binary cases and controls are further split (“phenotype” column) within 
each bin of risk for dPRS and PRS. Counts are shown for the top 5% (A) and bottom 5% (B). 
 
A 

dPRS PRS BMI MI Gout Phenotype 

Top 5% Top 5% 2830 46 48 Case 

829 840 Control 

Bottom 95% 531 134 105 Case 

2362 2378 Control 

Bottom 95% Top 5% 531 120 83 Case 

2376 2400 Control 

Bottom 95% 63346 2148 1084 Case 

59414 60491 Control 

 
B 

dPRS PRS BMI MI Gout Phenotype 

Bottom 5% Bottom 5% 2799 16 4 Case 

803 1224 Control 

Top 95% 563 66 5 Case 

2487 2139 Control 

Top 95% Bottom 5% 563 68 30 Case 

2485 2114 Control 

Top 95% 63313 2298 1281 Case 

59206 60632 Control 
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