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Abstract 25 

Path integration is thought to rely on vestibular and proprioceptive cues yet most studies 26 

in humans involve primarily visual input, providing limited insight into their 27 

contributions.  We developed a paradigm involving walking in an 28 

omnidirectional treadmill in which participants were guided on two legs of a triangle and 29 

then found their back way to origin.  In Experiment 1, we tested a range of different 30 

triangle types while keeping distance relatively constant to determine the influence of 31 

spatial geometry.  Participants overshot the angle they needed to turn and undershot 32 

the distance they needed to walk, with no consistent effect of triangle type.  In 33 

Experiment 2, we manipulated distance while keeping angle relatively constant to 34 

determine how path integration operated over both shorter and longer 35 

distances.  Participants underestimated the distance they needed to walk to the origin, 36 

with error increasing as a function of the walked distance.  To attempt to account for our 37 

findings, we developed computational models involving vector addition, the second of 38 

which included terms for the influence of past trials on the current one.   We compared 39 

against a previously developed model of human path integration, the Encoding Error 40 

model.  We found that the vector addition models captured the tendency of participants 41 

to under-encode guided legs of the triangles and an influence of past trials on current 42 

trials.   Together, our findings expand our understanding of body-based contributions to 43 

human path integration, further suggesting the value of vector addition models in 44 

understanding these important components of human navigation. 45 

 46 

  47 
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Author Summary 48 

How do we remember where we have been?  One important mechanism for doing so is 49 

called path integration, which refers to the ability to track one’s position in space with 50 

only self-motion cues.  By tracking the direction and distance we have walked, we can 51 

create a mental arrow from the current location to the origin, termed the homing vector. 52 

Previous studies have shown that the homing vector is subject to systematic distortions 53 

depending on previously experienced paths, yet what influences these patterns of 54 

errors, particularly in humans, remains uncertain. In this study, we compare two models 55 

of path integration based on participants walking two legs of a triangle without vision 56 

and then completing the third leg based on their estimate of the homing vector. We 57 

found no effect of triangle shape on systematic errors, while path length scaled the 58 

systematic errors logarithmically, similar to Weber-Fechner law. While we show that 59 

both models captured participant’s behavior, a model based on vector addition best 60 

captured the patterns of error in the homing vector.  Our study therefore has important 61 

implications for how humans track their location, suggesting that vector-based models 62 

provide a reasonable and simple explanation for how we do so.  63 
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Intro  64 

 “Dead reckoning,” first coined by Charles Darwin (Darwin, 1856/1987), described 65 

a process whereby experienced navigators kept course to a particular spot over long 66 

distances and changes in directions, despite being in the featureless arctic tundra.  All 67 

animal species tested show the ability to dead reckon (referred to here as path 68 

integration), including spiders (Görner, 1958), bees (Lindauer, 1963), gerbils (Mittelstaedt 69 

& Mittelstaedt, 1980), hamsters (Etienne, 1987), house mice (Alyan & Jander, 1994), rats 70 

(Tolman, 1948), birds (Mittelstaedt & Mittelstaedt, 1982), ants (Wehner & Srinivasan, 71 

1981), arthropods (Mittelstaedt, 1983), drosophila (Green et al., 2017), dogs (Seguinot, 72 

Cattet, & Benhamou, 1998), cats, and humans (Beritashvili, 1965).  Please see Redish 73 

(1999), Gallistel (1990), and Klatzky, Loomis, and Golledge (1997) for a review of prior 74 

literature.  Because humans employ vision as a primary modality to navigate, however, 75 

research on path integration has often been neglected in favor of situations in which visual 76 

input provides sufficient information to solve most navigational tasks, such as in desktop 77 

virtual reality.  A limitation, however, with this testing modality is that it lacks the enriched 78 

cues and codes that we obtain when we freely move our body throughout space, thought 79 

to be critically important to path integration (Chance, Gaunet, Beall, & Loomis, 1998; 80 

Starrett & Ekstrom, 2018; Taube, Valerio, & Yoder, 2013).   81 

 Past experiments have often involved a path completion task in which the 82 

navigator is guided in physical space and must return using the shortest path back to the 83 

origin (Loomis et al., 1993; Görner, 1958; Müller & Wehner, 1988).  Such work suggests 84 

that the navigator stores a representation of their current position relative to the origin that 85 

is periodically updated, frequently referred to as the homing vector. This in turn led to the 86 
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suggestion that path integration involves vectorized representations of paths that are 87 

manipulated using vector addition, translation, rotation, and other well-established 88 

properties of matrix algebra. Computational modeling studies on path integration in both 89 

vertebrates and invertebrates support the idea of such vector-like representations, further 90 

suggesting that the homing vector is biased by systematic errors which are independent 91 

of random accumulated noise (Cartwright & Collett, 1987; Etienne et al., 1998; Etienne, 92 

Maurer, & Séguinot, 1996; Kubie & Fenton, 2009; Wittmann & Schwegler, 1995). Exactly 93 

how these pattern of systematic errors accumulate, however, is not clear, particularly in 94 

humans. 95 

 In humans, a frequently employed task is the triangle completion task in which the 96 

experimenter guides the participant on two legs of a triangle and then must return, without 97 

guidance, to the origin (Klatzky, 1990; Loomis, 1993).  To model how systematic errors 98 

accumulate when human participants perform path completion tasks and the triangle 99 

completion task more specifically, Fujita et al. 1993 proposed the Encoding Error Model.  100 

This model proposes that the systematic errors in path completion tasks such as triangle 101 

completion task only occur during encoding stage. The model has four assumptions: (1) 102 

the internal representation satisfies Euclidean axioms (2) straight-line segments are 103 

encoded as a single value that represent their length (3) turns are encoded as a single 104 

value that represents the angle (4) there are no systematic errors during computation or 105 

execution of the homeward trajectory.   106 

 In support of their model, Fujita et al. fit data collected in Klatzky et al. 1990 and 107 

Loomis et al. 1993 involving the triangle completion task in the absence of vision. The 108 
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model captured the systematic errors seen in both studies to a relatively high degree (see 109 

Fujita et al. 1993 Table 3).  As predicted, though, the model performed poorly for paths 110 

with more than two sides or paths that crossed each other included in Klatzky et al. 1990. 111 

The Encoding Error model was expanded in Klatzky et al. 1999 to test its generalizability, 112 

who found that systematic errors were context and experience dependent.  They also 113 

found that while partial vision increased path accuracy, it did not change the pattern of 114 

errors.  115 

 Another important finding, supported by the Encoding-Error Model and other 116 

studies (Petzschner & Glasauer, 2011), was that systematic errors in path integration, at 117 

least in small sized environments (≤10m), showed a pattern of regression to the mean.  118 

Specifically, past paths influenced the current paths and therefore, shorter angles and 119 

distances were overestimated and longer angles and distances were underestimated 120 

(Klatzky et al., 1990; Loomis et al., 1993). Petzschner and Glasauer 2011 (using desktop 121 

virtual reality) extended these findings by showing that the same angle or distance value 122 

could be overestimated in some cases and underestimated in others.  The degree of 123 

under/overestimation depended on the distribution of priors, known as range effects, such 124 

that a broader distribution of priors (e.g., distances from 5-100 meters vs. 5-10 meters) 125 

increased the effect of the regression to the mean (Teghtsoonian & Teghtsoonian, 1978). 126 

The issue of how the distribution of priors influences the current trajectories, 127 

however, begs the question of how path configurations affect errors in the triangle 128 

completion task.  Specifically, past work suggests that the geometric properties of shapes 129 

can influence navigation (Cheng, 1986; Landau, Gleitman, & Spelke, 1981).  For 130 

example, shapes like isosceles or equilateral triangles could serve as “templates” for how 131 
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we learn paths (Seguinot et al., 1998) by providing a means for estimating paths that 132 

approximate it.  Grid cells, neurons that fire as animals explore spatial environments, 133 

show 6-fold symmetry, with equilateral triangles composing part of this structure (Hafting, 134 

Fyhn, Molden, Moser, & Moser, 2005).  Given arguments that neural codes might 135 

manifest in spatial representations useful for navigating (Bellmund, Gärdenfors, Moser, & 136 

Doeller, 2018; Milivojevic & Doeller, 2013) and the proposed link between path integration 137 

and grid cells (Chen, He, Kelly, Fiete, & McNamara, 2015; Moser & Moser, 2008), it could 138 

be the case that geometric regularities (equilateral triangles) also influence path 139 

integration.  Indeed, some past studies on the triangle completion task provide support 140 

for the idea that geometric regularities can, in some cases, influence path accuracy 141 

(Klatzky et al., 1990).  Yet, whether and how different types of triangles (equilateral vs. 142 

isosceles vs. scalene) influence path accuracy and patterns of errors on the unguided leg 143 

in the triangle completion task remains unclear. 144 

Another important yet largely unanswered question about human path integration 145 

regards the accuracy and patterns of errors over longer distances.  The vast majority of 146 

studies in human path integration have involved small-scale environments (<=10 meters) 147 

and consistent with this, computational models of path integration largely base their 148 

predictions on such smaller scales.  For example, Klatzky et al., 1999 suggested that it is 149 

unlikly that same encoding function in their model is used for pathway that are larger than 150 

10 meters1.  A more recent computational model of path integration that employs grid 151 

                                                           
1 Klatzky et al. 199 state: “The assumption of immutable encoding seems, a priori, to be doubtful. 
Encoding of pathways on the scale of tens of meters is unlikely to use the 
same mapping as is used for pathways on the scale of under 10 m (p. 35) 
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cells suggests that, in the absence of specific mnemonic aids, path integration codes may 152 

rapidly degrade in mammals (Cheung, Ball, Milford, Wueth, & Wiles, 2012), consistent 153 

with the idea that path integration could breakdown dramatically over longer distances. 154 

Interestingly, however, other grid cell models assuming leaky integration rather than 155 

single value encoding suggest reliable estimations to up to 100 meters (Burak et al. 2009). 156 

Thus, an important question to test is how well human participants perform at path 157 

integration over longer distances (>=100 meters) and whether the Encoding-Error model 158 

vs. vector addition models most accurately captures such phenomenon in larger scales 159 

of space. 160 

In the current study, we employed an omnidirectional treadmill and somatosensory 161 

input via handheld controllers (Figure 1A) to determine the extent to which manipulating 162 

the angle and distance participants needed to walk affected the accuracy of navigation 163 

without vision. The unique advantage of using the omnidirectional treadmill is it permits 164 

manipulation of infinity large spaces thereby eliminating the need for any boundaries while 165 

preserving the input from walking. The issue of boundaries, perceived or imagined, is a 166 

potential issue because if a participant were to over shoot a distance they would be 167 

stopped before hitting a wall, providing inadvertent feedback on the distances of the room 168 

and potentially affecting subsequent performance.  In addition, the use of handheld 169 

controllers allowed us to carefully manipulate participant trajectories on the guided legs, 170 

an issue we return to in greater depth in the discussion. 171 

Here, we set out to test a simple yet novel model of path integration based on 172 

vector addition (often used to model path integration in other species) to better capture 173 

the pattern of errors in the triangle completion task in human participants (Etienne et al., 174 
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1998; Cartwright & Collett, 1987).  Experiment 1 explicitly manipulated triangle type (while 175 

keeping homing distance constant) to test the extent to which different shapes of triangles 176 

(isosceles, equilateral) influenced how participants learned the homing vector.  In 177 

Experiment 2, we explicitly manipulated the distance participants had to walk to reach the 178 

origin (while keeping triangle type constant) to determine how participants performed over 179 

a range of different distances.  Critically, by manipulating these variables, we were able 180 

to simultaneously test hypotheses related to 1) triangle type and whether some might 181 

perform better than others; 2) homing distance and whether path integration would show 182 

different properties at ~10m vs. ~100m; 3) which model, one based on vector addition or 183 

the Encoding-Error  model, would provide a better account of the pattern of findings.  We 184 

provide a detailed comparison of the assumptions and set-up of the different models in 185 

the Methods section. 186 

 187 

 188 

Results   189 

Experiment 1: Basic behavior  190 

 An example raw trace of a participant’s path overlaid on the vector distances is 191 

shown in Figure 1D (dashed lines) between the points. We defined angle error as β - ϕ, 192 

where a positive number denotes an overshoot and negative an undershoot.  Distance 193 

error is the ratio of leg D (unguided walked distance) over the distance of C (homing 194 

vector from G2); a value greater than 1 is an overshoot and less than 1 an undershoot.  195 

As can be seen in the raw example shown (Figure 1G & H) and others (Supplementary 196 

Figure 1), although participants were often quite accurate at completing the triangle, they 197 
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tended to overestimate the angle and underestimate the distance, regardless of triangle 198 

type. We will compare our finding of systematic errors with prior literature, specifically, 199 

with Klatzky et al.,1999, in the Discussion section. 200 

 201 

Participants overestimate angle and underestimate distance 202 

We next addressed the extent to which this overestimation of angle and underestimation 203 

of distance was true across the group of participants.  As shown in Figure 2A, we found 204 

a tendency for participants to overestimate the angle they needed to turn to reach their 205 

start point (t(21)=3.7,p<0.001, Cohen’s d=0.79,BF10>10), with participants, on average, 206 

tending to turn about 34.71°±9.37° too far when estimating the angle they would need to 207 

turn to reach the origin.  In contrast, we found that participants tended to underestimate 208 

the distance they needed to walk to get back to the start point, with participants 209 

normalized walked distance significantly less than 1 (see Figure 2B, t(21)=16,p<0.001, 210 

Cohen’s d=3.42, BF10>10).  Nonetheless, the average normalized walked distance was 211 

0.87±0.05 (8.70m±0.50m), which was, on average, close to the correct response of 1 212 

(10m). To determine the overall accuracy of the walked distance, we regressed the 213 

homing vector (leg C) onto participants’ unguided walked vector (leg D) using a vector 214 

model described in the methods.  The beta values were positive and well above zero 215 

(t(21)=5.4,p<.001,Cohen’s d= 1.151, BF10>10), demonstrating that participants, despite 216 

underestimating distance, were well above chance in their estimates. 217 

  218 

Results not dependent on the sensory modality of guidance information 219 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


11 
 

To ensure that our results were not due to difficulty with employing the handheld 220 

controllers to navigate the guided legs, we compared against a subset of trials in 221 

Experiment 1 in which the guided legs involved a visual beacon (note that participants 222 

otherwise navigated the unguided legs identically in somatosensory and vision 223 

conditions). During the guided section of the trials, there was no effect of vision 224 

(Supplementary Figure 2A t(21)=1.09, p=0.288, Cohen's d=0.336 and BF01>3), 225 

confirming that the hand-held controller feedback system provides sufficient guidance. 226 

For angle error on the unguided leg, as shown in Supplementary Figure 2B&D, we found 227 

a slight but significant improvement in the vision-on (SD:43.10°) compared to vision-off 228 

(SD:46.51°) condition (F(1, 21)=4.9, p<0.026, η2=0.016 BF10=1.16). For distance error, 229 

as shown in Supplementary Figure 2C&E, we also found a decrease in distance error 230 

during vision-on (SD:0.256) trials compared to vision-off (SD:0.271) (F(1, 21)=8.2, 231 

p<0.004, η2 =0.026 BF10=4).  These findings suggest that providing vision on the guided 232 

legs did improve angle and distance estimates on the unguided leg, but that participants 233 

still tended to overestimate angle and underestimate distance (see Supplementary Figure 234 

2D&H for additional information). Klatzky et al. 1999 also found partial vision to improve 235 

accuracy, though it seemed to have little effect the direction of systematic errors.  Thus, 236 

the overestimation of angle and underestimation of distance that we observed cannot be 237 

accounted for by difficulty in completing the unguided legs using somatosensory input 238 

alone.   239 

 240 

Little to no consistent effect of triangle shape on patterns of error in path integration 241 
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Next, we wished to address the issue of triangle shape and whether this may have 242 

contributed in any way to the patterns of errors for the unguided leg, as this might suggest 243 

participants used geometric features to anchor their path integration knowledge.  For 244 

example, it could be that participants were most accurate for distance and angle on one 245 

triangle type (for example, right or equilateral triangles).  To address this issue, we 246 

compared error on the unguided leg with triangle type as an independent factor.  Overall, 247 

we found only a modest effect of triangle type on angle error (F(6,21)=2.9, p<0.01, η2 248 

=0.058, BF10=1.72).  Distance error, however, showed a fairly robust difference as a 249 

function of triangle type (F(6, 21)=5.7, p<0.1.33e-5, η2=0.109 BF10>10); see Figure 2A 250 

and 2B. Importantly, however, we did not find a consistent effect of triangle type across 251 

angle and distance errors, which might be expected if triangle shape had an influence on 252 

trajectories. For example, the isosceles triangle (30,120,30) showed the lowest mean 253 

angle error (10.96°±9.11°) yet the equilateral triangle demonstrated the lowest mean 254 

distance error (0.985±0.062).  Thus, the inconsistent effects across triangle types and the 255 

small effects sizes we obtained for angle error suggest that participants were unlikely to 256 

be relying on geometric cues from the triangle shapes, which would involve remembering 257 

both the angle and distance for a specific triangle type.  Instead, we attribute the lower 258 

angle and distance errors for isosceles and equilateral triangles, respectively, to the 259 

effects of repeating the same distances two times, an issue we return to in the Discussion. 260 

 As an additional analysis to investigate the use of geometric features of triangles, 261 

if participants were using specific shapes over others to perform the task, we might expect 262 

that both angle and distance errors would be correlated, consistent with using the shape, 263 

rather than individual features, to compute the unguided leg.  Comparing angle and 264 
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distance error is also important to determining the extent to which these two estimates 265 

were stored in a common vs. independent manner.  We found no correlation between 266 

angle and distance error across trials and participants r(579)=0.0035, p=0.933 (Figure 267 

2C), suggesting that angle and distance errors were not related to each other.  We also 268 

observed no clustering of angle and distance error by triangle type (Figure 2C).  Finally, 269 

we looked at the left and right handedness of the triangle and found no difference between 270 

them (Supplementary Figure 3A & B; angle error t(21)=0.7, p=0.485, Cohen's d=0.118, 271 

BF01>3 and distance error t(21)=1.136, p=0.268, Cohen's d=0.103 and BF01=2.53).  272 

Together, these findings suggest that triangle shape and the direction which participants 273 

navigated the triangle (i.e., right or left), contributed minimally, if at all, to performance on 274 

the unguided leg.   275 

 276 

Computational modeling suggests that participants under and unevenly weigh the guided 277 

legs in Experiment 1 278 

To better understand the pattern of errors that participants made in Experiment 1, we built 279 

a computational model to predict the pattern of errors for the unguided legs.  We 280 

combined angle and distance into a single vector value (see Methods) and employed the 281 

vectors for guided leg A and B as predictors for the unguided leg.  Based on previous 282 

findings (Fujita et al., 1993), we would expect the guided legs to strongly predict 283 

performance on the unguided leg.  The modeling approach we employed also allowed us 284 

to compare the relative weighting of leg A vs. leg B and whether past trial history had any 285 

impact on unguided leg performance. 286 
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 The modeling analysis revealed that both guided legs A and B strongly predicted 287 

performance on the unguided leg (mean 𝛽  = 0.3, t(21)=2.86 p<0.0001 BF10>3 and mean 288 

𝛽  =0.813, t(21)=7.41 p<0.0001, BF10>10; Figure 3A). Notably, only A’s beta value was 289 

significantly less than 1 (t(21)=6.6, p<1.299e-6, BF10>10 ), suggesting that participants 290 

underweighted leg A when estimating the return vector, potentially, accounting for the 291 

angle overestimation. In addition, leg B was weighted higher than leg A, (t(21)=3.62, 292 

p<0.002, Cohen’s d=1.02, BF10>10). 293 

For model 2 (equation 5), which included participants’ past trial history, we found 294 

mean 𝛽  = 0.316, t(21)=2.52, p<0.02, BF10=2.75 and mean 𝛽  =0.659, t(21)=5.51,  295 

p<0.0001, BF10>10, suggesting similar results in terms of underweighting the guided legs 296 

as Model 1. However, we found no significant effect of past trials (mean 𝛽  =0.062, 297 

t(21)=1.03, p<0.31, BF01=2.89), suggesting that sequential effects were minimal in 298 

Experiment 1 (Figure 3A).  Because the priors were relatively stable in Experiment 1 (i.e., 299 

distance was not explicitly manipulated), this result is consistent with the idea that the 300 

range of distances tested in Experiment 1 was insufficient to see a regression of to the 301 

mean effect (Teghtsoonian & Teghtsoonian, 1978).  302 

Taken together, these findings suggest that the patterns from Experiment 1, which 303 

involved different triangle types, could be captured by our vector-based models, 304 

particularly Model 1. Participants underweighted both guided legs A and B, with a 305 

tendency to underweight leg A to a greater extent.  We found no evidence for distances 306 

and angles on past trials providing any explanatory power for the unguided leg.  307 

 308 

Model validation 309 
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Next, we simulated Model 1 to determine whether it could account for the trends observed 310 

in the empirical data (Palminteri, Wyart, & Koechlin, 2017; Wilson & Collins, 2019). We 311 

found that Model 1 captured both the angle overestimation (Figure 4A) and distance 312 

underestimation (Figure 4B) in Experiment 1.  The simulation results also supported the 313 

idea that Model 1 provided a better account for the data than Model 2 (Figure 5A-C) and 314 

captured the relevant empirical phenomenon reported here. 315 

 316 

Encoding-Error Model 317 

We fitted and simulated our data using the Encoding-Error Model, and, similar to Model 318 

1 and Model 2, were able to capture the systematic errors in angle overestimation (Figure 319 

6a) and distance underestimation (Figure 6b). Similarly, the Encoding-Error  Model, given 320 

the limited range of triangle distances in Experiment 1, did not show regression to the 321 

mean. When we directly compared the models (Supplementary Figure 6 A-C), however, 322 

we found that Model 1 fit the data fairly decisively, at both subject and group level. While 323 

Model 1 did outperform the other two models in BIC and AIC, the confusion matrix in 324 

Supplementary figure 7 A-C showed that simulated data from Encoding-Error model did 325 

not fit Encoding-Error model best compared to the two vector addition models. This 326 

method of model recovery suggests some limitations with our  model comparison (i.e. 327 

how well our task can distinguish between models) and was likely due to small number 328 

of trials and the fact that the vector addition models involved far fewer free parameters 329 

than the Encoding-Error Model (Wilson & Collins 2019).  We return to a more detailed 330 

comparison between vector addition and Encoding-Error Models in the Discussion. 331 

 332 
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Experiment 2  333 

Basic behavior 334 

In Experiment 2, we manipulated the distance of the triangles (perimeters = 15.19, 335 

25.32, 126.60, 253.20, and 506.42 meters) while keeping triangle geometry relatively 336 

constant.  This involved necessarily manipulating the distance of the guided legs, yet we 337 

overall maintained a scalene triangle shape, thus leaving angle as comparatively constant 338 

as possible.   We implemented the same task structure as Experiment 1 but here we kept 339 

the shape of the guided path the same and varied the scale across trials.  340 

 341 

Participants systematically underestimated distance but accurately estimated angle 342 

For angle error, somewhat in contrast to Experiment 1, we found no significant 343 

overestimation or underestimation of angle, with participant’s showing a mean error of 344 

0.8°±7.44° (t(16)=0.107, p=0.916, Cohen’s d=0.026, BF01>3). We also found no effect of 345 

triangle size on angle error (Figure 2D (F(4,16)=0.609, p=0.658, η2 =0.036,BF01>10). We 346 

attribute this to the fact that triangle configuration was consistent across Experiment 2, as 347 

we primarily manipulated distance.  348 

We found evidence of fairly accurate estimation of distance for smaller triangle 349 

perimeters (15-25m perimeter) and considerable underestimation for larger triangle 350 

perimeters (126m – 500m perimeter).  In fact, we found a trend whereby distance 351 

underestimation increased as a function of the unguided distance (Figure 2E, 352 

F(4,16)=21.107, p<3.913e-11, η2 =0.553 and BF10>10).  This is shown in Figure 7A, 353 

where the dotted line indicates a slope of 1, with the actual slope well below this value. In 354 
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other words, the further that participants walked, the more they tended to underestimate 355 

the unguided leg.   356 

 To better understand this phenomenon, we analyzed the spread of the errors as 357 

participants walked the unguided leg.  We found that distribution of distance error scaled 358 

linearly as a function of the walked distance. As shown in Figure 7B, the standard 359 

deviation of the walked unguided distances increased linearly, as shown by a regression 360 

fit (F(1,3)=557.4, 𝛽 =4.417,r2=0.9929), suggesting that the greater the walked distance, 361 

the proportionately greater the error in distance with variance increasing exponentially. 362 

Note that this phenomenon is distinct from that related to systematic error. Systematic 363 

errors for distance error increased as well, however, this increase was best fit by a 364 

logarithmic function (Figure 7C, t(4)=11.65, p<0.00136) rather than linearly, similar to 365 

Weber–Fechner and Stevens' power law (Stevens,1975). Together, these findings 366 

suggest that as participants walked longer distances, they tended to increase their 367 

underestimation of the distance they would need to walk and scale their errors 368 

logarithmically as a function of distance. 369 

 Similar to Experiment 1, we also found no correlation between angle and distance 370 

error (Figure 2C, t(487)=0.623,p=0.533, BF01>7.8).  We also found no effect of right vs. 371 

left turns on guided legs (angle error: t(16)=1.51, p=0.151, Cohen's d=0.245, BF01=1.55 372 

and distance error: (t(16)=0.724, p=0.4797, Cohen's d=0.176 and BF01=3.188), see 373 

supplementary Figure 3C & D.   374 

 375 

Computational modeling suggests sequential effects of past trials in Experiment 2 376 
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To better understand the effects of the guided legs on the unguided leg estimates in 377 

Experiment 2, we employed the computational model used in Experiment 1 to predict the 378 

pattern of errors for the unguided legs.  The modeling analysis again revealed that both 379 

guided legs A and B strongly predicted performance on the unguided leg (mean 𝛽 =0. 380 

494, t(16)=5.09, p<0.0001, BF10>10 and mean 𝛽 =0. 579, t(16)=9.29, p<0.0001, 381 

BF10>10) (Figure 3B).  Notably, both beta values were less than 1 (𝛽  t(16)=5.22 p<2.24e-382 

5, BF10>10 and 𝛽  t(16)=7.07 p<0.0094, BF10>10), suggesting that participants 383 

underweighted both legs when estimating the return vector.  In addition, unlike 384 

Experiment 1, both legs were weighted evenly (t(16)=0.63,p=0.467, Cohen’s d=0.25, 385 

BF01>3). These findings are perhaps unsurprising because angle was neither under nor 386 

overestimated. 387 

 Comparing model 1 (modeling the distance of the guided legs to predict the 388 

unguided legs) and 2 (using model 1 with an additional term for past trial distances), we 389 

found significant fits for all three beta terms.  In other words, guided legs A & B, as well 390 

as past trial history (mean 𝛽  = 0.466, t(16)=4.42, p<0.001, BF10>10, mean 𝛽  =0.568, 391 

t(16)=9.29,  p<0.001, BF10>10 and mean 𝛽  =0.020, t(16)=3.82, p<0.001, BF10>10), all 392 

predicted errors in walking the unguided leg in Experiment 2.  Thus, in contrast to 393 

Experiment 1, trial history provided a significant explanation of error in Experiment 2. 394 

 395 

Model validation 396 

 397 

Next, we simulated our data in a manner similar to Experiment 1. Simulated data from 398 

Model 1 showed that we were able to capture participant patterns in angle error (Figure 399 
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4D).  While Model 1 captured the distance underestimation (Figure 4E), it did not capture 400 

the trend of increase in underestimation as a function of distance. We hypothesized that 401 

this effect could be an influence of past trials, in other words, a form of regression to the 402 

mean (Klatzky, Beall, Loomis, Golledge, & Philbeck, 1999; Petzschner & Glasauer, 2011).  403 

Figure 5D shows the simulated angle error from Model 2, and we are again able to capture 404 

the accurate angle predictions.  Importantly, however, simulated distance error, as shown 405 

in Figure 5E, better captured the pattern of distance underestimation.  Model 2, in 406 

particular, captured the tendency of participant underestimation of distance to increase 407 

as a function of distance while Model 1 (which did not include trial history) was not able 408 

to capture this effect.  These findings suggest that the increasing underestimation of 409 

distance was influenced, in part, by past trials. 410 

 411 

Encoding-Error Model 412 

The Encoding-Error  Model also captured some of the same patterns in the data as Model 413 

1 and 2. The simulated data from the Encoding-Error  Model showed accurate angle error 414 

and underestimation of distance errors as a function of distance (Figure 6 D&E). We also 415 

considered how well the Encoding-Error Model compared with Model 2 in terms of 416 

capturing the mean systematic error in distance, which was 1- mean distance error  417 

(Figure 7 C-E). While the Encoding-Error Model fit the logarithmic function of systematic 418 

errors, the values were less accurate than Model 2. Similar to Experiment 1, Model 2 best 419 

fit the data but the BIC and AIC favored Model 1 (Supplementary figure 6 D-F). Notably, 420 

though, our analyses (see Figure 4 D-F) suggested that Model 1 did not capture the 421 

pattern of systematic errors and thus we removed it from the model comparison with the 422 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


20 
 

Encoding-Error Model.  As shown in Supplementary Figure 8 A-D, we can see Model 2 423 

fits 11 subject’s data better while Encoding-Error Model fit the other 5 subject data better. 424 

Similar to Experiment 1, the confusion matrix (Supplementary Figure 9 A-C) showed that 425 

Encoding-Error model did not fit its own simulated data well. This was likely due to small 426 

number of trials and the fact that the vector addition models involved fewer free 427 

parameters than the Encoding-Error Model (Appendix A).  We return to a more detailed 428 

comparison of the models in the Discussion. 429 

430 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


21 
 

Discussion 431 

 In two different experiments, participants were guided on two legs of a triangle and 432 

then attempted to return to the origin without any input using a novel interface involving 433 

an omnidirectional treadmill.  In Experiment 1, we manipulated triangle type (equilateral 434 

vs. isosceles vs. right vs. scalene) while holding distance on the unguided leg constant to 435 

minimize prior effects. Consistent with previous work using the triangle completion task 436 

in small-scale room sized environments (Fujita et al., 1993; Klatzky et al., 1997; Loomis 437 

et al., 1993; Philbeck et al., 2001; Yamamoto et al., 2014), we found that participants 438 

underestimated distance and overestimated angle, however these systematic errors did 439 

not show a regression to the mean effect.  In Experiment 1, our computational modeling 440 

results suggested that this pattern could be explained by a model in which participants 441 

underweighted leg A compared to leg B.  In Experiment 2, we found systematic errors in 442 

distance as participants accurately estimated the angle they needed to turn while 443 

increasingly underestimating the unguided leg as a function of distance, consistent with 444 

logarithmic scaling described in the Weber-Fechner law.  Modeling results for Experiment 445 

2 further suggested equal weighting of both encoded legs. We also found no correlation 446 

between angle and distance errors in both experiments, consistent with reports that, at 447 

least in part, we derive angular motion from the semicircular canals and linear motion 448 

through the otoliths (Carriot et al., 2015). Our findings thus suggest that participants used 449 

independent estimates of direction and magnitude to estimate a homing vector, with the 450 

current trial guided legs influencing estimates of the homing vector. 451 

In Experiment 1, we found that triangle type had little influence on participants’ 452 

performance on the unguided leg.  For example, it might be possible to predict that 453 

equilateral triangles or right triangles would be overall more accurate than scalene 454 
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triangles.  This is because these geometries are far more regular and potentially easier 455 

to encode holistically, particularly given their influence on visually guided navigation (Moar 456 

& Bower, 1983).  While we did find that the equilateral triangle showed significantly lower 457 

distance error, we attribute this to a working memory effect based on the equivalence of 458 

all three leg distances.  Similarly, we found a weak tendency for the isosceles triangle 459 

angles (30,120,30) to show lower angle overestimation. One might expect, though, that if 460 

participants, or a subset of them, used a template (i.e., fit the guided legs to an equilateral 461 

or right triangle and estimated the return vector from there), we would also find that they 462 

would also be more accurate on that particular triangle.  While we did not find this over 463 

our group of participants, we did find two participants who showed a high degree of 464 

accuracy on equilateral and right isosceles triangles (Supplementary Figure 4C). Thus, 465 

while it is possible a small subset of a participants employed triangle “templates,” our 466 

findings suggest that the majority of participants did not.  Overall, the lack of any 467 

consistent effects in angle and/or distance for specific triangle types in terms of accuracy 468 

and the lack of a correlation between angle and distance representations suggests that 469 

the geometric properties of specific triangles played little, if any, role in solving the triangle 470 

completion task.  Instead, these findings thus suggest that path integration mechanisms 471 

in humans are based on continuous encoding of heading direction and magnitude during 472 

the guided legs, after which vector addition is used to construct a homing vector. 473 

 In Experiment 2, we tested homing behavior over distances much longer than 474 

those typically employed in past human studies.  Almost all of our current knowledge base 475 

about path integration mechanisms in humans derive from testing in room-sized 476 

environments, and therefore, in contrast to what is known about other species, the extent 477 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


23 
 

to which path integration mechanisms operate accurately over distances greater than 10 478 

meters remains unclear.  We found that participants were fairly accurate in their ability to 479 

complete the third leg of a triangle, even for triangle perimeters as long as 500 meters.  480 

Although we found a systematic increase in error and underestimation as a function of 481 

longer distances, these biases increased logarithmically, suggesting that the basic 482 

mechanisms underlying path integration were not substantially different at 500 meters 483 

compared to 25 meters.  In contrast to Experiment 1, we found that both legs A and B 484 

contributed equally to errors in unguided leg C, although we attribute this effect to the fact 485 

that we did not manipulate angle in Experiment 2.  We did find, however, that past trial 486 

history contributed significantly to the pattern of errors at longer distances.  These findings 487 

suggest that in fact some of the properties of path integration do change somewhat over 488 

longer distances, particularly the tendency to erroneously weight past trials to estimate 489 

the current ones.  Given that our two models, however, involved the same basic 490 

conceptual set-up (leg A+B=C), these results suggest that the basic mechanism of adding 491 

vector values for the guided legs to compute a homing vector held constant across 492 

experiments. 493 

 In one previous study, participants were blindfolded and attempted to walk in a 494 

straight line for several hundred meters in a desert environment.  In contrast to our 495 

findings, this study found that participants tended to walk in circles, even as early as 10 496 

meters into their 1 kilometer leg (Souman et al., 2009).  This, in turn, might suggest that 497 

path integration mechanisms in humans undergo a form of catastrophic breakdown at 498 

longer distances.  There are several key differences between our study and that of 499 

Souman et al., however.  Perhaps most importantly, our study involved participants 500 
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encoding distances and angles they had turned to estimate a new vector back to the 501 

origin.  Goal directed navigation involves fundamental differences from simply walking in 502 

a straight line (Klatzky et al., 1997), and it is possible that having a specific goal location 503 

in our task (return to the origin) reduced the tendency to walk in circles.  Another important 504 

difference between our studies is that participants navigated on an omnidirectional 505 

treadmill while in the Souman et al. study, they navigated in the real-world (desert 506 

environment).  Could our treadmill have prevented participants from taking circuitous 507 

paths?  We analyzed all paths in the treadmill and did indeed find some examples of 508 

circuitous paths, suggesting that the treadmill interface itself did not preclude participants 509 

from employing this (Supplementary Figure 5).  We also note that another study from the 510 

same group employed an omnidirectional treadmill interface, finding that participants 511 

walked in largely comparable ways to how they might in the real world (Souman et al., 512 

2011).  While we cannot rule out other differences between our experiments, we note that 513 

we found similar results for the triangle completion task in small-scale space as previously 514 

reported in room-sized environments, and thus we believe that the interface itself is 515 

unlikely to account for the differences in our findings.  Instead, we favor an account based 516 

on the importance of using path integration mechanisms to find the origin. 517 

 Our computational modeling results indicated an effect of past trials on participant 518 

error patterns in Experiment 2 but not Experiment 1.  In other words, for the longer 519 

distance triangles, we found a weak, but significant bias for past trials to influence the 520 

extent to which participants underestimated the amount they needed to walk on the 521 

current triangle.  For large triangles, therefore, shorter past trials would result in a greater 522 

tendency to underestimate distance.  Notably, including the history term in our model 523 
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significantly increased our ability to account for the increasing tendency of participants to 524 

undershoot the distance they needed to walk on the unguided leg.  These findings support 525 

the idea that for particularly long distances, path integration is also influenced by a form 526 

of regression to the mean from past trials, thus explaining why undershoot increased with 527 

longer distances. These findings, which, to the best of our knowledge, have not been 528 

demonstrated previously at such long distances in humans, suggest that path integration 529 

is not merely a function of the current walked triangle, but is also influenced by the 530 

memories and experiences of past trajectories. 531 

 Because of our strong reliance on visual input, testing humans in the absence of 532 

vision is challenging, particular due the possibility of trip hazards and collisions.  Thus, 533 

many researchers have chosen to investigate path integration using desktop VR, which 534 

also allows simultaneous brain imaging, for example, using fMRI (Chadwick, Jolly, Amos, 535 

Hassabis, & Spiers, 2015; Chrastil, Sherrill, Hasselmo, & Stern, 2015).  One limitation 536 

with desktop VR, however, is that it lacks the rich cues that one obtains from freely moving 537 

the body in space (Starrett & Ekstrom, 2018).  These include vestibular information from 538 

head turns, proprioceptive information about body position, efferent copy from motor 539 

movements, and somatosensory input from the feet as they move over the surface 540 

(Gallistel, 1990; Lackner & DiZio, 2005; Loomis & Beall, 1998; Matthis, Yates, & Hayhoe, 541 

2018; Visell, Giordano, Millet, & Cooperstock, 2011; Waller, Loomis, & Haun, 2004).  Our 542 

novel interface was able to reproduce many of these cues, particularly those that would 543 

be expected from turning and shuffling the legs and feet.  As such, we were able to 544 

capture novel aspects about non-visual navigation otherwise difficult to observe.  545 

Additionally, participants in our study generated their linear and angular motion, while 546 
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non-VR versions of the triangle completion task used in the past relied on the 547 

experimenter physically guiding the participant’s movements.  Previous versions of path 548 

completion task have used an object (rod or rope) in which the experimenter guides the 549 

participants by pulling or lowering for turning (Klatzky et al., 1990, Loomis et al. 1993, 550 

Klatzky et al., 1999).  In contrast, in our design, participants received feedback from hand-551 

held controllers indicating which way to go.  We believe that the use of feedback via 552 

handheld controllers, rather than external forces to guide subjects, better approximates 553 

active walking.  Specifically, active walking requires one to initiate the movement while 554 

outside forces that initiate or guide the movement would typically be referred to as 555 

passive. We believe by controlling for active walking during the guided portion, we have 556 

better controlled for differences between guided and unguided conditions. While the 557 

distinction between active and passive movement is a subtle one, recent work suggests 558 

important differences between these two forms of walking in terms of their neural bases 559 

(Carriot, Jamali, Brooks, & Cullen, 2015).  560 

 561 

Model comparisons: Vector addition models more plausible then Encoding-Error Model 562 

 Vector addition has long been assumed to be the functioning principle for path 563 

integration (Cartwright & Collett, 1987; Etienne et al., 1998; Kubie & Fenton, 2009). The 564 

vector addition models proposed in this paper (Models 1&2) assume that the homing 565 

vector is updated by summing vector representations of legs A and B. In contrast, the 566 

Encoding-Error Model assumes that the homing vector is created using the distance and 567 

angle values experienced during the entire guided portion. While both models are similar 568 

in aim, we believe the computational principles for the vector model may be more 569 
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plausible. To employ the Encoding-Error Model, participants must form a representation 570 

of the linear relationship between distance guided and distance walked (distance 571 

representation) as well as for turns, for each path configuration across all subjects and 572 

trials. In addition, it is not clear whether the parameters of these linear functions 573 

generalize across studies and participants (Klatzky 1999). In contrast the Vector Addition 574 

Models assume a linear relationship between the guided leg and encoded vector, with 575 

the possibility of prior encoded vector values influencing the current trajectory. 576 

As mentioned in the introduction, there are other reasons to think that vector 577 

addition models confer advantages, particularly in accounting for human path integration 578 

findings from the triangle completion task. The Encoding-Error Model has four 579 

requirements, with one important assumption being that the internal representations must 580 

obey Euclidean axioms. Recent papers, however, suggest that human spatial navigation, 581 

in some instances, may be better characterized by representations based on non-582 

Euclidean labeled graphs (Warren, 2019).  Specifically, Warren et al 2019 described path 583 

integration using simple vector manipulations with such manipulations preserved in non-584 

Euclidean spaces.  Our model, which can be readily adapted to non-Euclidean 585 

geometries, would therefore also provide greater flexibility than the Encoding-Error Model 586 

in terms of fitting violations of Euclidean axioms.  587 

Another requirement of the Encoding-Error Model is the assumption that all 588 

systematic errors occur during encoding rather than during spatial reasoning or execution. 589 

Vector Addition Models are more flexible, assuming systematic errors can aggregate at 590 

different stages, whether it is during encoding, retrieval or computation of homing vector. 591 
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The Encoding Error Model, however, is limited in that leg A and B derive from the same 592 

linear function, such that leg A cannot be underestimated more than leg B. There may be 593 

instances, however, in which a leg is weighted differently in a path with 2 segments 594 

compared to 5 segments (Wan, Wang, & Crowell, 2013). In addition, the Encoding-Error 595 

Model is limited to 2 segmented triangular paths, based on the law of cosines (Appendix 596 

A), and does not perform well with 3 segmented paths (Fujita, Klatzky, Loomis, & 597 

Golledge, 1993). In contrast, vector addition models can readily be extended to n paths 598 

with the caveat of adding a free parameter with each segment. Notably, the vector 599 

addition models we employed here provided an overall better fit of the actual data 600 

(Supplementary figure 6 A&D), however the Encoding-Error model cannot be fully 601 

distinguished during model recovery (Supplementary figure 7).  The likely reason for this 602 

is the small number of trials our task. While both Model 2 and Encoding-Error model can 603 

account for some patterns in the data, including systematic errors, importantly, Model 2 604 

has the best log-likelihood fit (supplementary figure 6 A & D), despite the Encoding-Error 605 

model having more free-parameter.  Overall, therefore, we think the vector addition 606 

models provide a better fit of our data and are parsimonious although more work is 607 

needed to allow a detailed and formal model comparison. 608 

 609 

Limitations of the Vector Model 610 

While the vector addition models employed here do a fairly good job of capturing the 611 

patterns of our findings in the two experiments in this study, they are not without certain 612 

limitations. One issue is that the model in its current form assumes that Leg A and Leg 613 

B are encoded with similar directions (i.e. 𝛽 𝑥  has the same direction as 𝑥 ) or 614 
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opposite directions and only the vector magnitudes affect systematic errors. We hope to 615 

address the issue of vector directions in more detail in future models. 616 

 617 

Methods  618 

Training and the triangle completion task 619 

 All studies were approved by the UC Davis Institutional Review Board (IRB) with 620 

participants in some cases receiving class credit for their involvement.  We employed a 621 

task used previously to investigate human path integration termed the triangle completion 622 

task (e.g., Loomis et al., 1993).  Briefly, the task involves guiding participants on two legs 623 

of a triangle and then completing the third leg without guidance or feedback.  Based on 624 

our goal of studying a variety of different triangle types and sizes, we adapted the task to 625 

an omnidirectional treadmill, the Cyberith Virtualizer treadmill.  The task involved 626 

participants walking on the treadmill, with guidance on two of the legs provided by 627 

somatosensory feedback from HTC VIVE hand-held controllers.  Participants wore the 628 

HTC VIVE headmounted headset to allow us to track head and body position, as well as 629 

to limit visual input. 630 

 To first ensure that participants could walk comfortably in the treadmill, we 631 

employed a pre-experimental training session.  We employed an HTC VIVE head-632 

mounted display to give visual feedback to ensure balance and comfort on the treadmill. 633 

In the first part of the training, we included a 3-stage puzzle game created in Unity 634 

2017.1.1f1 in which participants had to explore an environment to find an object. Once 635 

participants completed the 3-stage puzzle game, reported no cybersickness, and the 636 

experimenter determined that their walking technique was adequate, they advanced to 637 
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the next level. At this point, we introduced the HTC VIVE hand-held controllers feedback 638 

system (Figure 1B) and had subjects walk straight lines with no visual information while 639 

receiving feedback from the hand-held controllers. This insured that they could accurately 640 

perform the guided legs.  Following this, they performed a small number of practice 641 

triangles.  After practicing the triangle completion task on 6 unique triangles, which were 642 

not included in the experiment, the experiment started. The training period ranged from 643 

30-60 min. To ensure participant safety, we occasionally questioned them about how they 644 

were feeling to guard against issues with cybersickness. 645 

 Participants then proceeded to the main experiment.  The first experiment involved 646 

manipulating triangle geometry (i.e., primarily the angles they turned) and Experiment 2 647 

involved manipulating triangle size (i.e., we manipulated the distance they walked on the 648 

third / unguided leg). Trial sequences were randomly chosen from 5 pseudorandomized 649 

configurations. In both experiments, we guided participants along the first two legs of the 650 

triangle using the hand-held controller feedback system (Figure 1B). The feedback 651 

system was designed such that if the participants strayed from their path, the controller 652 

vibrated accordingly to help guide them in walking in a straight line. When participants 653 

walked in the correct direction, the controller did not send feedback, allowing for active 654 

walking (passive guidance). Participants were guided along leg A’ and then along leg B’ 655 

by controller feedback (Figure 1C). At G2’, the hand-held controller feedback system 656 

turned off and participants were instructed to find their way to the start point.  Participants 657 

pressed the trigger on the handheld controllers once they believed that they reached the 658 

start point. We constructed trial specific vectors to capture the performance variability 659 

during guided legs (see Figure 1E). We manually inspected these trials, and those which 660 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


31 
 

showed a clear deviation from linearity were excluded, which resulted in approximately 661 

16.5% ( ) of removal of trials from Experiment 1 and 6.88% ( ) from Experiment 2 662 

across participants.  Participant data that exceeded 25% removed trials were excluded 663 

from the analysis. We redid the analysis by including all trials and participants and 664 

obtained similar results to what are reported here. 665 

 666 

Modeling 667 

Description of models 668 

 To further understand how the guided legs contributed to the angle and distance 669 

errors of the unguided leg, we created a vector model of path integration. In this model, 670 

we assume that participants estimate a “homing vector”, 𝑥 , by combining the vectors 671 

corresponding to each of the guided legs for that trial (t), 𝑥  and 𝑥 . If path integration 672 

were optimal, people would combine these vectors in the following way 673 

1. 𝑥  = −(𝑥  + 𝑥 ) 674 

and would return perfectly to the point of origin by walking along the vector 𝑥 .   675 

We assumed that people could over, or underweight, a given leg when computing the 676 

sum – perhaps because they integrate evidence unevenly over time (Keung, Hagen, & 677 

Wilson, 2019). To model this suboptimality, we allowed 𝑥  to be a weighted sum of the 678 

vectors from the first two legs: 679 

2. 𝑥  = −(𝛽 𝑥  + 𝛽 𝑥 ) 680 

Where 𝛽  and 𝛽  denote the weights given to leg A and leg B respectively (Figure 1D).  681 

Combining the first two suboptimalities gives us Model 1, which includes noise and the 682 

possibility of over and underweighting the legs. 683 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


32 
 

Of course, real participants are suboptimal and we modeled these suboptimalities 684 

in a number of different ways.  First, people may not perfectly encode the vectors from 685 

the guided legs and/or may not perfectly implement the desired action, adding noise to 686 

the sum in equation 1. Thus, we assumed that the vector they actually walked 𝑥  was 687 

sampled from a Gaussian distribution centered on 𝑥 , i.e. 688 

3. P(𝑥  | 𝑥 ) = 
√

𝑒𝑥𝑝 (− )  689 

Where 𝜎  is the variance of the noise. Consistent with Weber’s law, we assumed this 690 

variance increased with the distance walked to match our finding of increased variance 691 

as a factor of distance walked in Experiment 2 (see Results, Figure 7B). 692 

4. 𝜎 = 𝜎 ∗ 𝑥 + 𝑥  693 

 Finally, we allowed for the possibility that there may be sequential effects in our 694 

paradigm, i.e. there was an influence of previous trials on the current response. We 695 

modeled these sequential effects by including the vectors walked (𝑥 , 𝑥  and 𝑥 ) 696 

from past trials.  For simplicity, we assumed that the effect of past trials decayed 697 

exponentially into the past (Lau & Glimcher, 2005), thus writing 𝑥  as  698 

5. 𝑥 = −(𝛽 𝑥  + 𝛽 𝑥 + 𝛽 [𝜒 + 𝜒 − 𝜒 ]) 699 

6. 𝜒 = 𝑥 + 𝛼𝜒  700 

Where 𝜒  is a linear combination of the previous vectors, fitted with 𝛼, which ranges 701 

between 0 to 1, to capture the impact of prior trials. Thus, including the possible effect of 702 

past trials gave us Model 2. 703 

Fitting the model 704 
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We fit the model using a maximum likelihood approach. In particular, we computed the 705 

log likelihood of the responses for each subject, as a function of model parameters: 706 

7. 𝐿𝐿(𝜎, 𝛽, 𝛼) =   
( )

 707 

We then found the parameters that maximized the likelihood using Matlab’s fmincon 708 

function. 709 

 710 

Simulating the models 711 

To simulate the model, we used the parameter values fit for each subject to compute the 712 

mean 𝑥  for each trial. To model the noise in each person’s choice, we perturbed the 713 

estimate of 𝑥  by isotropic Gaussian noise of mean 0 and variance 𝜎 .  714 

 715 

Encoding-Error Model 716 

We recreated the Encoding-Error Model from Fujita et al. 1993. See Appendix A for more 717 

details.  We used the same fitting and simulation method used for Model 1 and Model 2 718 

with the exception of dividing the data for left and right-handed triangle to better 719 

accommodate the parameters of the Encoding-Error  Model (see Klatzky et al. 1999). 720 

 721 

Model Comparison Methods 722 

We used two methods of model comparisons: 1) Penalized-Log-likelihood criteria’s Bayes 723 

Information Criterion (BIC) (Schwarz et al., 1978) and Akaike information criterion (AIC) 724 

(Akaike, 1974). Both express similar information about the generalizability of the model 725 

by penalizing for the number of free parameters. To test how meaningful our model 726 

comparisons results are in our task we also tested for model recovery. We did this by 727 
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simulating each model with randomized parameter values and then fitting the models to 728 

the simulated data, allowing comparison of the AIC and BIC (see Wilson & Collins 2019 729 

section 6 and Appendix B).  We performed each simulation at the participant level and 730 

then subsequently compared BIC values by calculating exceedance probabilities, which 731 

measured how likely it is that the given model fits all of the data (Rigoux et al., 2014). This 732 

group level statistic is similar to AIC and BIC. Computed exceedance probabilities on our 733 

data as well as each model by simulating 100 times and comparing with the methods 734 

mentioned above.  These methods are illustrated in Supplementary Figure 6 where the 735 

probability of the model fit for the simulated data ranges from 0 to1. The Exceedance 736 

Probability is calculated using SPM 12 spm_BMS function.  737 

 738 

Bayes Factor Analyses 739 

We included a Bayes Factor analysis for all statistical analyses (Rouder, Speckman, Sun, 740 

Morey, & Iverson, 2009).  For results below our significance threshold (p<0.05), we used 741 

a Bayes Factor BF10 to indicate the degree of favorability toward the alternative 742 

hypothesis.  For results that were not below our significance threshold, we employed the 743 

Bayes Null factor, BF01.  Note that the larger the Bayes Factor, regardless of whether in 744 

favor of the alternative or null, the greater the evidence. 745 

 746 

Experiment 1 747 

Participants 748 

We tested a total of 26 participants (12m,14f), 4 (1m, 3f) of which were removed due to 749 

exceeding 25% of trials removed (see methods), Participants were tested on 7 different 750 
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triangles described in detail in the methods (i.e., scalene, isosceles, right, equilateral, and 751 

isosceles-right).  Estimates of sample size were based on the 12 participants used in 752 

Loomis et al. 1993 and in subsequent studies by Yamamoto 2013 et al. that employed a 753 

similar experimental design: as we were additionally testing a larger range of triangles, 754 

we thus approximately doubled the sample size.   755 

 756 

Procedure 757 

We outline the basic set up for triangle geometry in Figure 1E, which shows the stacked 758 

triangle templets, with a constant 10m leg C’ (unguided leg), while manipulating the angle. 759 

The 7 triangle configurations are shown in Supplementary Table 1A, with 3 scalene, 1 760 

isosceles, 1 right, 1 equilateral, and 1 isosceles-right. To keep leg C’ at 10m across all 7 761 

triangles, we employed different leg A’ and leg B’ sizes to accommodate the different 762 

angles. There were 28 trials, in which 14 of them were left-handed (subjects only made 763 

left turn) and 14 right handed (subject only made right turns). We did this to avoid any 764 

advantages for right vs. left turns during the task.  765 

 In Experiment 1, as part of ensuring the compliance and efficacy of the hand-held 766 

controllers in following the guided legs, we compared with a condition in which 767 

participants walked the guided legs on half the trials using a visual beacon. In this 768 

situation, participants saw a large red monolith that they walked to while receiving 769 

feedback from the handheld controllers.  It is important to emphasize that the vision-770 

guided trials were only present for the guided legs and were simply to ensure that 771 

participants accurately encoded the guided legs before performing the unguided legs.  772 

 773 
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Experiment 2:   774 

Participants 775 

We tested a total of 21 participants (9m,11f), 3 (1m 2f) of which did not complete the 776 

experiment, with additional 1 female participant removed from the analysis for exceeding 777 

25% trials below criterial performance. Given the longer distances in Experiment 2, 778 

participants were allowed to take a break, but only at the end of a trial. About 50% of 779 

participants took a break at some point during the experiment. 780 

 781 

Procedure 782 

Here, we employed scalene triangles with different length perimeters to allow us to 783 

manipulate distance while keeping angle relatively constant, testing 5 different triangle 784 

sizes.  Figure 1F shows the stacked triangle templates we employed with constant 785 

internal angles but varying in size. The triangle configurations are shown in 786 

Supplementary Table 1B, with 15m, 25m, 127m, 253m, and 506m perimeters. There were 787 

30 trials, with 15 of them left-handed (participants only made left turn) and 15 right-handed 788 

(participants only made right turns). Unlike Experiment 1, there were no vision trials.  Due 789 

to testing longer distances and wanting to avoid fatigue, we limited the number of trials 790 

for the longest distance triangles.  The distributions of trials were 10 for the15m triangle, 791 

10 for the 25m triangle, 8 for the 127m triangle, 4 for the 253m triangle, and 2 for the 792 

506m triangle.    793 

All data files are available at: github.com/sharootonian/PA-TCT  794 
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 979 

Figure 1 (A) HTC VIVE head set along with the handheld controllers using in the experiments, combined with Cyberith 980 
Virtualizer treadmill system to track participants in a much larger virtual environment while in stationary 981 
ambulation.(B)Visualization of HTC VIVE hand-held controllers feedback intensity based on the deviation of the angle. 982 
(C) Depiction of an equilateral triangle used in experiment 1. (D) Raw trace of participant’s path overlaid on the vector 983 
distances (dashed lines) between the points. The blue denotes the G1’ and G2’ locations that subject is being guided 984 
to and the red points are the subject’s unique G1 and G2 locations for that trial. (E) Triangle templets used in experiment 985 
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1 overlaid on top of each other and the legend denoting the internal angles. (F) Triangle templets used in experiment 986 
1 overlaid on top of each other and the legend denoting the length of side C. (G) Raw trial where the participant over 987 
estimated distance and the angle. (H) Raw trial where the participant underestimated the distance and the angle 988 
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 989 

Figure 2:White triangles represent the mean while the median is shown as a black bar.  (A)Circular mean of angle 990 
error for the 7 triangle types from experiment 1 (F(6,21)=2.9, p<0.01, η2 =0.058 BF10=1.72). (B)Mean distance error 991 
for the unguided walk from experiment 1 (F(6, 21)=2.1, p<0.1.33e-5, η2=0.109 BF10>10). (C) Angle error and 992 
Distance error of all trials from experiment 1 showing no correlation (t(579)=0.084,p=0.933, BF01>10 ). (D)Circular 993 
mean of angle error for the 5 triangle sizes (F(4,16)=0.609, p=0.658, η2 =0.036,BF01>10). (E) Mean distance error for 994 
the unguided walk from experiment 2 (F(4,16)=21.107, p<3.913e-11, η2 =0.553 and BF10>10). (F) Angle error and 995 
Distance error of all trials from experiment 2 showing no correlation (t(487)=0.623,p=0.533, BF01>7.8 ). 996 
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 998 

Figure 3 Mean Beta values from the vector model for (A): experiment 1 and (B): experiment 2.  999 
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 1001 

Figure 4: White triangles represent the mean while the median is shown as a black bar. Simulated data from Model 1 1002 
(A)Circular mean of angle error for the 7 triangle types from experiment 1. (B)Mean distance error for the unguided 1003 
walk from experiment 1. (C) Angle error and Distance error of all trials from experiment 1 showing no correlation. 1004 
(D)Circular mean of angle error for the 5 triangle sizes. (E) Mean distance error for the unguided walk from 1005 
experiment 2. (F) Angle error and Distance error of all trials from experiment 2 showing no correlation. 1006 
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 1008 

Figure 5: White triangles represent the mean while the median is shown as a black bar. Simulated data from Model 2 1009 
(A)Circular mean of angle error for the 7 triangle types from experiment 1. (B)Mean distance error for the unguided 1010 
walk from experiment 1. (C) Angle error and Distance error of all trials from experiment 1 showing no correlation. 1011 
(D)Circular mean of angle error for the 5 triangle sizes. (E) Mean distance error for the unguided walk from 1012 
experiment 2. (F) Angle error and Distance error of all trials from experiment 2 showing no correlation. 1013 
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 1015 

Figure 6: White triangles represent the mean while the median is shown as a black bar. Simulated data from 1016 
Encoding-Error Model (A)Circular mean of angle error for the 7 triangle types from experiment 1. (B)Mean distance 1017 
error for the unguided walk from experiment 1. (C) Angle error and Distance error of all trials from experiment 1 1018 
showing no correlation. (D)Circular mean of angle error for the 5 triangle sizes. (E) Mean distance error for the 1019 
unguided walk from experiment 2. (F) Angle error and Distance error of all trials from experiment 2 showing no 1020 
correlation. 1021 
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 1023 

Figure 7: Results from Experiment 2, (A)showing the distribution of the Unguided walked distances for each triangle 1024 
size with y=x plotted at the dotted line. (B) Standard deviation of the Unguided walked distances show a linear 1025 
increase (t(4)=23.6, p<0.0001) (C) showing mean systematic errors of distance (1- distance error) increases 1026 
logarithmically (t(4)=11.65, p<0.001). (D)showing mean systematic errors of distance of the simulated data from 1027 
model 2 increasing logarithmically (t(4)=3.187, p<0.05). (E)showing mean systematic errors of distance of the 1028 
simulated data from Encoding-Error Model increasing logarithmically (t(4)=4.407, p<0.022). 1029 
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Supplementary 1033 

Figures  1034 
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Supplementary Table 1 1036 

  

Experiment 1  

     

<BC <AB <CA Side A (m) Side B (m) Side C (m) Perimeter (m) Type 

60 100 20 8.793852 3.472964 10 22.267 scalene 
30 120 30 5.773503 5.773503 10 21.547 isosceles 
45 105 30 7.320508 5.176381 10 22.497 scalene 
60 90 30 8.660254 5 10 23.660 right 
60 75 45 8.965755 7.320508 10 26.286 scalene 
45 90 45 7.071068 7.071068 10 24.142 isosceles-

right 
60 60 60 10 10 10 30.000 equilateral 

Supplementary Table  1A: Showing the configuration of each triangle using in experiment 1. 1037 

  

Experiment 2  

     

<BC <AB <CA Side A (m) Side B (m) Side C (m) Perimeter (m) Type 

40 80 60 4.042 5.299 6 15.193 scalene 

40 80 60 6.736 8.832 10 25.321 scalene 
40 80 60 33.682 44.163 50 126.604 scalene 
40 80 60 67.365 88.327 100 253.209 scalene 
40 80 60 134.73 176.653 200 506.418 scalene 

Supplementary Table  1B: Showing the configuration of each triangle using in experiment 2. 1038 

1039 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809012doi: bioRxiv preprint 

https://doi.org/10.1101/809012
http://creativecommons.org/licenses/by/4.0/


52 
 

 1040 

Supplementary Figure 1: Raw trials from experiment 1 (top 8) and experiment 2 (bottom 8). 1041 
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Supplementary Figure  2: (A) Combined distance walked during guided legs during vision on and vision off trial, 1043 
showing now differences (t(21)=1.09, p=0.288, Cohen's d=0.336 and BF01>3)   (B) Angle error from experiment 1, 1044 
showing a small but significant difference between vision on and off condition (t(21)=2.46, p<0.022, Cohen's d=0.248 1045 
and BF10=2.54) (C) Distance error from experiment 1, showing a significant difference between vision on and off 1046 
condition (t(21)=2.71, p<0.013, Cohen's d=0.232 and BF10=3.94). (D) Angle error from experiment 1, ANOVA 1047 
significant for triangle type F(6,21)=2.9, p<0.01, η2 =0.058 BF10=1.72. and Vision F(1, 21)=4.9, p<0.026, η2=0.016 1048 
BF10=1.16, but not for the interaction between Type and Vision F(6, 21)=1.454, p=0.194, η2 =0.029 BF10=0.432. (E) 1049 
Distance error from experiment 1, ANOVA significant for triangle type F(6, 21)=5.7, p<0.1.33e-5, η2=0.109 BF10>10 1050 
and r Vision  F(1, 21)=8.2, p<0.004, η2 =0.026 BF10>4, but not for the interaction between Type and Vision F(6, 1051 
21)=0.199, p=0.976, η2=0.004 BF10>10. 1052 
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 1054 

Supplementary Figure  3: (A) Angle error from experiment 1 which showed no difference between left and right-1055 
handed triangles (t(21)=0.7, p=0.485, Cohen's d=0.118 and BF01>3). (B) Distance error from experiment 1, which 1056 
showed  no difference between left and right-handed triangle (t(21)=1.136, p=0.268, Cohen's d=0.103 and 1057 
BF01=2.53). (C) Angle error from experiment 2, again showing no difference between left and right-handed triangle 1058 
(t(16)=1.51, p=0.151, Cohen's d=0.245 and BF01=1.55). (D) Distance error from experiment 2, which showed no 1059 
difference between left and right-handed triangle (t(16)=0.724, p=0.4797, Cohen's d=0.176 and BF01=3.188). 1060 
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 1062 

Supplementary Figure 4: Raster plot (A) showing the percentage of responses with less than 15% angle error (ranging 1063 
from -27° to 27°) for triangle type (x-axis) and participants (y-axis). Participants are 281.39% more likely to have <15% 1064 
angle error in their unguided leg then <15% total error (angle and distance). (B) percentage of responses with less than 1065 
15% distance error (8.5m to 11.5m). Participants are 208.14% more likely to have <15% distance error in there 1066 
unguided leg then <15% total error (angle and distance). (C) percentage of responses with less than 15% angle error 1067 
(ranging from -27° to 27°) and 10% distance error (8.5m to 11.5m). In (C) we can see that all of participant AT03’s 1068 
responses for triangle 45-90-45 are less then 15% error for both angle and distance error. And 80% for equilateral 1069 
triangle (60-60-60) for participant AT11.   1070 
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 1071 

 1072 

Supplementary Figure 5: Raw trials that were removed due to circular pathing.  1073 
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 1075 
Supplementary Figure 6: Comparing model fitting of the individual participant’s data. A) Shows best model fit (highest 1076 
loglikelihood values) for each subject in experiment 1. B&C) Lowest AIC and BIC values across the 3 models for each 1077 
subject in experiment 2. D) Shows best model fit (highest loglikelihood values) for each subject in experiment 2. E&F) 1078 
Lowest AIC and BIC values across the 3 models for each subject in experiment 2  1079 
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 1080 

Supplementary Figure 7: Model recovery confusion matrices where 1 in column and row represents Model 1, 2 1081 
represents Model 2 and 3 represents Encoding-Error Model. Probability ranges from 0 to 1. (A & B) Show best AIC 1082 
and BIC for Experiment 1 respectively. The higher value in the diagonal shows better model recovery from this 1083 
experiment. We see that the Encoding-Error does not fit its own simulated data well. (C)The Exceedance Probability 1084 
for Experiment 1. (D & E) Show best AIC and BIC for Experiment 2 respectively. Again, we see Encoding-Error does 1085 
not fit its simulated data well. (C)The Exceedance Probability for Experiment 2.  1086 
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 1087 
Supplementary Figure 8: Comparing model fitting of the individual participant’s data. A) Shows best model fit (highest 1088 
loglikelihood values) for each subject in experiment 2. B&C) Lowest AIC and BIC values across the 3 models for each 1089 
subject in experiment 2. D) Shows the exceedance probability of each model for experiment 2. 1090 
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 1092 

Supplementary Figure 9: Model recovery confusion matrices where 1 in column and row represents Model 2 and 2 1093 
represents Encoding-Error Model. Probability ranges from 0 to 1. (A & B) Show best AIC and BIC for Experiment 2 1094 
respectively. We see Encoding-Error does not fit its own simulated data well. (C)The Exceedance Probability for 1095 
Experiment 2. 1096 
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