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Abstract 16 

 Recombination is a major force that shapes genetic diversity. Determination of 17 

recombination rate is important and can theoretically be improved by increasing the 18 

sample size. However, it is challenging to estimate recombination rates when the 19 

sample size is extraordinarily large because of computational burden. In this study, we 20 

used a refined artificial intelligence approach to estimate the recombination rate of the 21 

human genome using the UK10K human genomic dataset with 7,562 genomic 22 

sequences and its three subsets with 200, 400 and 2,000 genomic sequences under the 23 

Out-of-Africa demography model. We not only obtained an accurate human genetic 24 

map, but also found that the fluctuation of estimated recombination rate is reduced 25 

along the human genome when the sample size is increased. UK10K recombination 26 

activity is less concentrated than its subsets. Our results demonstrate how the sample 27 

size affects the estimated recombination rate, and analyses of a larger number of 28 

genomes result in a more precise estimation of recombination rate. 29 

 30 

 31 
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Introduction 34 

Recombination is a foundation of evolution
1
. The study of recombination helps to 35 

decipher mechanisms of linkage disequilibrium
2-4

, nucleotide diversity
5;6

, population 36 

admixture and differentiation
7-10

, natural selection
11-14

, and diseases
15;16

. Therefore, 37 

much attention has been paid to the determination of the recombination rates of 38 

various regions and identification of recombination hotspots in the human genome. 39 

Since pedigree studies
17;18

 and sperm-typing studies
19-21

 are technically challenging, 40 

indirect approaches, such as those using population genetic methods
22-26

, are more 41 

commonly used. Population genetic methods estimate recombination rates based on 42 

variations in genomic DNA sequences of a selected population. The rationale behind 43 

these indirect approaches is the assumption that coalescent tree length and the number 44 

of recombination events occurred in the sample during evolution can be (indirectly) 45 

inferred. 46 

 According to the coalescent theory, the expected coalescent tree length and 47 

number of recombination events in the sample increases when the number of genomes 48 

(sample size) analyzed is increased. It has been suggested that the inference accuracy 49 

of recombination rates can be improved by using a larger sample size
27-30

. However, it 50 

is technically challenging to estimate recombination rates when the sample size is 51 

extraordinarily large because of computational burden. In this study, we refined 52 

FastEPRR
27

, an extremely fast artificial-intelligence-based software, to estimate the 53 

recombination rates of various regions in the human genome using the UK10K data 54 

set (n = 7,562 genomic sequences)
31

 and its three subsets with 200, 400 and 2,000 55 

genomic sequences under the Out-of-Africa demographic model
32

. We found the 56 

smaller fluctuation of local recombination rate along the human genome and less 57 

concentrated recombination activity as the sample size was increased. Furthermore, 58 

our findings are robust with the assumption of demographic history since the same 59 

conclusion was made under the constant population size model. Therefore, the large 60 

sample size improves the accuracy of estimated recombination rate, and a fine human 61 

genetic map is obtained. 62 

 63 
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Materials and Methods 64 

Fine-tuning FastEPRR 65 

We have recently developed the software “Fast Estimation of Population 66 

Recombination Rates” (FastEPRR) using an artificial intelligence method to estimate 67 

recombination rate (ρ) based on single nucleotide polymorphism (SNP) data and the 68 

finite-site model
27

. FastEPRR first calculates compact folded site frequency spectrum 69 

(SFS)
33

 and four recombination-related statistics for sliding windows. A training data 70 

set is then generated using a modified version of Hudson’s ms simulator
34

, which 71 

generates samples conditional on the compact folded SFS under neutral models. 72 

Subsequently, the gamboost package
35

 is used to fit the training set and build the 73 

regression model. Recombination rate (ρ) is then inferred by the summary statistics of 74 

the real data. FastEPRR has been implemented in the R software package
36

 and can 75 

estimate recombination rate under different demographic models. 76 

In this study, the FastEPRR software was fine tuned. To optimize speed, for-loops 77 

were replaced by “apply” family of functions because R language is greatly effective 78 

in carrying out vectorized operations. Input and output operations were minimized to 79 

increase the speed. Another modification was to enable the use of different ρ values 80 

to generate training samples, determination of the number of independent training 81 

samples and estimation of confidence interval. All of these improvements and updates 82 

have been incorporated in FastEPRR 2.0. 83 

 84 

Validation of FastEPRR 2.0 with a very large sample size 85 

The neutral data was simulated by using Hudson’s ms simulator
34

, a software 86 

widely used in the studies of humans and other species. It generates simulated 87 

polymorphic data set conditional on mutation and recombination rate under neutral 88 

demographic scenarios, according to Kingman’s coalescent process
37

. The following 89 

parameters were used: 𝜃 (population mutation rate) = 4𝑁𝜇 = 30; 𝜌 (population 90 

recombination rate) = 4𝑁𝑟 = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 91 

140, and 150; and 𝑛 = 8,000; where 𝑁 is effective population size, 𝜇 is mutation 92 

rate per chromosomal region per generation, and 𝑟 is recombination rate per 93 
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chromosomal region per generation. For each 𝜌, the mean and the standard deviation 94 

were determined using 100 simulated data with specific 𝜌 and 𝜃. 95 

To determine the accuracy in the estimation of recombination rates on potential 96 

recombination hotspot regions, the simulated data were established using a set of large 97 

𝜌 values (i.e., 500, 1000, 2000, 3000, 4000, and 5000). The mean and the standard 98 

deviation were determined using 10 simulated data for each 𝜌 value. 99 

 100 

Building the UK10K genetic map 101 

A total of 7,562 genomes (from 3,781 unrelated individuals) in the UK10K data 102 

set were analyzed. To build genetic maps, the window size was set as 10 kb, and the 103 

step length was 5 kb. Indels were removed. Windows were excluded if they 104 

overlapped with known sequencing gaps in the human reference genome (hg19) or the 105 

number of non-singleton polymorphic sites was smaller than 10. The default value set 106 

of ρ (0, 0.5, 1, 2, 5, 10, 20, 40, 70, 110, 170, 180, 190, 200, 220, 250, 300, and 350) 107 

was used to simulate the training sets. 108 

To estimate recombination rates, the Out-of-Africa model was used
32

. To evaluate 109 

the effect of demographic history, the constant size model was also considered. The 110 

linear extrapolation was employed if the estimated value is beyond the training set 111 

boundary. To ensure the accuracy of results, the default training set values of ρ were 112 

adjusted, and FastEPRR was re-ran until the estimated values fell into the range of the 113 

given set of ρ. The previous method in FastEPRR was used to evaluate the effects for 114 

variable recombination rates within windows
28

. Three data sets with 200 115 

(UK10K-sub200), 400 (UK10K-sub400) and 2,000 (UK10K-sub2000) genomes 116 

randomly chosen from the UK10K data set were also analyzed.  117 

 118 

Results 119 

FastEPRR has been shown to perform well with different sample sizes (n = 50, 120 

100, 200 and 1,000 chromosomes), and the standard deviation becomes smaller when 121 

the sample size is increased
27

. However, its effectiveness on the analysis of a large 122 

sample size (e.g., n = 7,562 chromosomes) has not been determined. Therefore, the 123 
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accuracy of recombination rate estimated by FastEPRR was examined when the 124 

sample size is extremely large (Figure 1A and 1B). The FastEPRR estimate is 125 

unbiased, and its standard deviation becomes much smaller. Thus the inference 126 

accuracy of recombination rate is dramatically improved when a greatly large sample 127 

size is available. 128 

We previously examined the cases 20 ≤ ρ ≤ 150 and found that the standard 129 

deviation of estimated ρ̂𝐹𝑎𝑠𝑡𝐸𝑃𝑅𝑅 was smaller than that of ρ̂𝐿𝐷ℎ𝑎𝑡
27

, suggesting that 130 

FastEPRR estimated the recombination rate more precisely than LDhat when 131 

recombination rate was not extremely low. However, it has been shown that certain 132 

chromosomal regions, such as recombination hotspots, have higher recombination 133 

rates than other regions. To assess the effectiveness of FastEPRR on these regions, the 134 

accuracy to infer high recombination rate was re-examined. Analysis of chromosomal 135 

regions with higher recombination rates (ρ ranging from 500 to 5,000) revealed that 136 

FastEPRR were precise and unbiased on potential recombination hotpot regions 137 

(Figure 1C). 138 

FastEPRR provides the ability to infer recombination rate under different 139 

demographic models
27

, and it has been reported that demography affects estimated 140 

recombination rate
38-40

. Thus in this study we estimated the recombination rates of 141 

genomes in UK10K conditional on the Out-of-Africa model
32

. For the i-th 142 

chromosomal region, we need to estimate 𝑁0 first to calculate 𝑟𝑖 from ρ𝑖 (=143 

4𝑁0𝑟𝑖). Therefore, the average ρ (= 4𝑁0𝑟) per Mb of 22 autosomes estimated by 144 

FastEPRR was 12,098.2, where 𝑁0 is the effective population size at present. As the 145 

average 𝑟 of the same chromosomal regions in the 2019 deCODE family-based 146 

genetic map has been determined to be 1.2806 cM/Mb
18

, 𝑁0 was estimated as 147 

235,186 for the UK10K data set under the Out-of-Africa model, in the range of 148 

estimated value in previous studies
32;41-43

. This value is 20.55 larger than the value 149 

previously estimated for the CEU population based on 1000 genomes in the OMNI 150 

CEU data set
44

 by LDhat
25

. This difference is reasonable because the current analysis 151 

was based on the Out-of-Africa model, whereas the previous one was based on the 152 

constant size model. 153 
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To compare the newly established genetic map with others, the Pairwise Pearson 154 

correlation coefficients between the UK10K map and 2019 deCODE family-based 155 

genetic map and the map of 1000 Genomes in the OMNI CEU data set were 156 

calculated at the 5-Mb and 1-Mb scales (Figure 2 and 3). The correlation coefficients 157 

were determined to be 0.8413 and 0.7256 at the 5-Mb scale, and 0.7308 and 0.5267 at 158 

the 1-Mb scale, indicating that the UK10K map is highly similar to the other two 159 

genetic maps. 160 

Genetic maps were also constructed under the Out-of-Africa model for the three 161 

subsets (UK10K-sub200, UK10K-sub400 and UK10K-sub2000) with 200, 400 and 162 

2,000 genomes randomly selected from UK10K. The Pearson correlation coefficients 163 

between the UK10K and UK10K-sub200 maps were determined to be 0.9266 and 164 

0.8216 at the 5- and 1-Mb scales, respectively, and those between the UK10K and 165 

UK10K-sub400 and UK10K-sub2000 maps were 0.9393 and 0.9658 at the 5-Mb scale, 166 

and 0.8501 and 0.9097 at the 1-Mb scale, respectively (Figure 2 and 3). These results 167 

indicate that the UK10K map and the maps of the three subsets are highly correlated 168 

with each other. 169 

Recombination rates over different physical scales show that smaller scale has 170 

higher resolution (Figure 4), consistent with the previous finding
1
. To compare the 171 

distribution of recombination activities in different genetic maps, the recombination 172 

rate at the 5-kb scale was used. The recombination rates in chromosome 1 are shown 173 

as an example in Figure 5. Two regions (chr1:15,425,001-15,430,000 and 174 

chr1:236,680,001-236,685,000) were found to have higher recombination rates with 175 

seven PRDM9 (PR domain zinc finger protein 9) binding peaks
45

, indicative of the 176 

ability of FastEPRR to detect potential recombination hotspots. Since the human 177 

leukocyte antigen (HLA) region is one of the most polymorphic and recombined 178 

regions in human genome
46-49

, it was analyzed and multiple recombination hotspot 179 

candidates, hotter than the previous studies, were detected (Figure 6). 180 

Although recombination hotspots candidates are revealed in the UK10K genetic 181 

map, the distribution of recombination events is generally less zigzag than other 182 

human genetic maps (Figure 5). The variance of recombination rate was then 183 
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determined and found to be 3.4477 cM
2
/Mb

2
 in UK10K, 4.7224 cM

2
/Mb

2
 in 184 

UK10K-sub2000, 7.3097 cM
2
/Mb

2
 in UK10K-sub400, 7.9453 cM

2
/Mb

2
 in 185 

UK10K-sub200, 17.9188 cM
2
/Mb

2
 in OMNI CEU LDhat, and 25.7734 cM

2
/Mb

2
 in 186 

deCODE (calculated at the 5-kb scale). The variance of recombination rate in the 187 

UK10K genomes is the smallest. The proportion of total recombination in various 188 

percentages of the human genome was plotted and analyzed (Figure 7A). Overall, 189 

recombination activity in the UK10K genomes is much less concentrated than those 190 

of the genomes in other data sets. When the sample size was smaller than or equal to 191 

400 chromosomes, 54.88-82.59% of crossover events were observed in 10% of the 192 

human genome. This observation is consistent with previous findings
18;27;50

. Only 193 

33.82% of crossover events were detected in 10% of the human genome in UK10K. 194 

This percentage is strikingly lower than that of previous studies
18;27;50

. This difference 195 

is likely due to the more precise estimation of recombination rates with an 196 

extraordinarily large sample size. 197 

To valid our conclusions, the recombination rates were also estimated conditional 198 

on the constant size model. The Pearson correlation coefficient between the estimated 199 

recombination rate under the Out-of-Africa model and that under the constant model 200 

was only 0.7893 at the 5-kb scale, indicating that demography affects the estimation 201 

of recombination rates
27;38-40

. However, the newly estimated recombination rates are 202 

still less variable with larger sample size (Figure 7B), indicating that our conclusion is 203 

robust with the assumption of demography. 204 

The reason why large sample yielded more accurate results was investigated. As 205 

more recombination events and mutations (equivalent to SNPs) occur on a tree with a 206 

longer tree length, both factors may affect the determination of recombination rates. 207 

To determine the effect of SNP numbers, two cases were investigated. In the first case 208 

(Case01), 200 genomes were selected from the samples in UK10K-sub400. In the 209 

second case (Case02), all 400 genomes in UK10K-sub400 were considered, however, 210 

only the SNPs in the Case01 were analyzed. In other words, these two cases had the 211 

same number of SNPs but had different sample sizes as well as different 212 

recombination events. Results showed that the estimated recombination rate of 213 
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Case02 is slightly more similar to that of UK10K-sub400 than that of the Case01 214 

(Correlation coefficient 0.9770 vs 0.9609 at the 5-kb scale). The variance of 215 

recombination rate of Case02 is also slightly smaller than that of Case01 (7.2850 216 

cM
2
/Mb

2 
vs 7.5130 cM

2
/Mb

2
, calculated at the 5-kb scale). Similar results were 217 

obtained with the constant size model (Correlation coefficient 0.9692 vs 0.9562, and 218 

variance 10.5054 cM
2
/Mb

2 
vs 14.9622 cM

2
/Mb

2
, calculated at 5-kb scale). Therefore, 219 

more recombination events observed in data set with large sample size, rather than 220 

more SNPs, result in a more precise estimate of recombination rate. 221 

 222 

Discussion 223 

In this study, we employed the software FastEPRR to estimate the recombination 224 

rate of various regions of the human genome using datasets with different sample 225 

sizes. These datasets included UK10K, UK10K-sub2000, UK10K-sub400 and 226 

UK10K-sub200 with 7,562, 2,000, 400, and 200 genomes, respectively. The mean 227 

recombination rate in these four datasets is determined to be the same but their 228 

standard deviation increases when the sample size is reduced. This result showed that 229 

the larger the sample size for the analysis, the smaller fluctuation of estimated 230 

recombination rate, and the less concentrated recombination activities of the human 231 

genome.  232 

These findings are robust with the assumption of demographic models. Under the 233 

constant population size and the Out-of-Africa models, the same conclusions were 234 

made. These findings are also consistent with the expectation of coalescent theory, 235 

which indicates that the coalescent tree length of a larger sample is longer than that of 236 

a smaller sample. The genomes of the former thus contain more recombination events 237 

than those of the latter, leading a more precise estimate of recombination rate. In our 238 

study, the sample size is not very small comparing with the long-term human effective 239 

population size (~10,000). Although Hudson’s ms simulator requires that the sample 240 

size is much smaller than the effective population size
37

, our findings are robust with 241 

this assumption. For the exact coalescent
51

 and the Moran model
52

, given a true tree 242 

with the sample size (𝑛 − 1), the tree with the sample 𝑛 can be obtained by adding 243 
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a tip with a non-zero length, and thus the tree length increases. The same conclusion 244 

can be made under different demographic histories. Since FastEPRR is currently the 245 

only method which is fast enough to handle a super-large dataset, we cannot confirm 246 

the findings by using alternative methods. However, it has been shown that when the 247 

sample size was increased from 50 to 200 
27;28

, the variance of recombination rate 248 

estimated by LDhat
25

, summary statistic likelihood (SSL)
53

 and product of 249 

approximate conditionals (PAC)
54

 was reduced. As our results generated by FastEPRR 250 

resemble those of these alternative methods, it is conceivable our findings represent a 251 

general phenomenon in humans and other sexually reproduced species. 252 

This study is the first attempt to estimate recombination rate using an 253 

extraordinarily large population genetic data set. By processing genomes with a 254 

sample size of four orders of magnitude, we demonstrated that artificial intelligence 255 

approaches
28;55-57

 are effective for population genetic analysis. The results suggest that 256 

the fluctuation of recombination rate of human genome may be overestimated in 257 

previous studies.  258 

 259 

Data and Code Availability 260 

 The datasets used in this study are available at the UK10K Project Consortium
31

. 261 

The genetic maps of OMNI data set built by LDhat
25

 were downloaded from the 1000 262 

Genomes Project. FastEPRR 2.0 is written in R and integrated on the eGPS cloud
58

 263 

(http://www.egps-software.net). The desktop version and the genetic maps established 264 

in this study are freely available on the institute website 265 

(https://www.picb.ac.cn/evolgen/). The genetic maps are also available as 266 

supplemental materials. 267 

 268 

Web Resources 269 

FastEPRR 2.0 and UK10K genetic map, https://www.picb.ac.cn/evolgen/softwares/ 270 

UK10K Project Consortium, https://www.uk10k.org/ 271 

Genetic map of OMNI data set, 272 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombi273 
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nation_rates 274 

eGPS software, http://www.egps-software.net 275 
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 456 

Figure 1. Comparison between estimated ρ (𝝆𝑭𝒂𝒔𝒕𝑬𝑷𝑹𝑹 ) and real ρ under 457 

different conditions. 458 

(A) ρ ≤ 150, n = 8,000. 459 

(B) ρ ≤ 150, n = 200. 460 

(C) ρ ≥ 500, n = 8,000. 461 

The mean and the standard deviation of 𝜌̂ in (A) and (B) were calculated from 100 462 

simulated data sets, and those in (C) were calculated from 10 simulated data sets. 463 

Error bars represent the standard deviation of 𝜌̂. 464 
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 466 

Figure 2. Correlation between the UK10K genetic map and five other maps at 467 

the 5-Mb scale. 468 

The recombination rates of UK10K, UK10K-sub2000, UK10K-sub400 and 469 

UK10K-sub200 were estimated by FastEPRR under the Out-of-Africa model, while 470 

those of OMNI CEU genomes were estimated previously by LDhat under the constant 471 

size model
44

. Each black dot represents two recombination rates of a window 472 

estimated by two different methods. 473 
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 475 

Figure 3. Correlation between the UK10K genetic map and five other maps at 476 

the 1-Mb scale. 477 

The recombination rates of UK10K, UK10K-sub2000, UK10K-sub400 and 478 

UK10K-sub200 were estimated by FastEPRR under the Out-of-Africa model, while 479 

those of OMNI CEU genomes were estimated previously by LDhat under the constant 480 

size model
44

. Each black dot represents two recombination rates of a window 481 

estimated by two different methods. 482 
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 484 

Figure 4. Recombination rates of the human genome at various physical scales. 485 

The skewed distribution indicates that the most of chromosomal regions have low 486 

recombination rate. 487 
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 490 

Figure 5. Recombination rates of various regions of human chromosome 1 491 

obtained from six different genetic maps at the 5-kb scale.  492 

The height of each spike on the maps represents the average recombination rate of a 493 

5-kb region in chromosome 1. The recombination rates of various regions in 494 

chromosome 1 shown in the maps of UK10K, UK10K-sub2000, UK10K-sub400 and 495 

UK10K-sub200 were estimated by FastEPRR with the Out-of-Africa model. The 496 

recombination rates of chromosome 1 in deCODE 2019 and the OMNI CEU data set 497 

estimated by LDhat
44

 with the constant size model are shown for comparison.   498 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2021. ; https://doi.org/10.1101/809020doi: bioRxiv preprint 

https://doi.org/10.1101/809020
http://creativecommons.org/licenses/by/4.0/


21 
 

 499 

Figure 6. Recombination rates of various regions of the human HLA locus region 500 

estimated from three genetic maps at 5-kb scale. 501 

The height of each spike on the maps represents the average recombination rate of a 502 

5-kb region in the HLA locus. The recombination rates of various regions shown in 503 

the maps of UK10K were estimated by FastEPRR with the Out-of-Africa model. The 504 

recombination rates of deCODE 2019 and the OMNI CEU data set estimated by 505 

LDhat
44

 with the constant size model are shown for comparison.  506 
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 509 

Figure 7. Proportion of recombination in different fractions of the sequence. 510 

(A) Recombination rates of genomes in various datasets estimated using the 511 

Out-of-Africa model. 512 

(B) Recombination rates of genomes in various datasets estimated using the constant 513 

size model. 514 

(C) Proportion of recombination in different fractions of the sequence of 22 autosomes 515 

compared to that of the whole genome. The recombination rates of various 516 

chromosomes were estimated using the Out-of-Africa model. 517 
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