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Figure 4. Control measures. A) Single-trial compound nerve action potentials (CNAP) of the median 
nerve measured on the inner side of the upper arm; depicted for an exemplary subject. B) DFA exponents 
(black) and CNAP (orange) of the median nerve; averaged over all subjects. C) Single-trial SEPs of the 
thalamus-related CCA component of an exemplary subject. D) DFA exponents (black) and SEP (orange) 
of the thalamus-related CCA component; averaged over the 13 subjects in which a peak at around 15 
ms was observed on single-trial level. E) Average spatial pattern of the thalamus-related CCA 
components; averaged over 13 subjects. F) Simulation of the influence of signal-to-noise ratio (SNR) 
on the measurement of DFA exponents. Signals with varying DFA exponents (plotted on vertical axis) 
were mixed with white noise (i.e., DFA exponents of ~0.5) with varying SNR (plotted on horizontal 
axis). The resulting DFA exponents of the mixed signals are color-coded. The red circle indicates the 
region of empirically observed DFA exponents of ~0.57 at an SNR of ~1.68 suggesting an underlying 
DFA exponent of the unmixed source of ~0.63. For visualization purposes, the results of the simulation 
are displayed only for a sub-range of DFA exponents and SNRs here. 
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DFA exponents and SNR 

Since it is known from previous studies that the signal-to-noise ratio (SNR) highly 

affects the measurement of power-law dynamics (Blythe et al., 2014), we investigated the 

relationship between DFA exponents and SNR in single-trial SEPs. On average across all 

participants, the SNR of the tangential CCA component was >RS(STUVWX)
>RS(V=TSY)

= 1.68	(SD = .42), 

and showed a positive rank correlation with DFA exponent increase in the time range from 10 

to 50 ms post-stimulus, r = .36, p = .049. 

Additionally, we further clarified this relationship with simulations: We mixed signals 

expressing different DFA exponents with white noise (DFA exponent α = 0.5), for a range of 

SNRs, and measured the DFA exponent of these mixed signals. As is visible from Figure 4F, 

DFA exponents of the mixed signals are attenuated towards α = 0.5 when lowering the SNR. 

Given an SNR of 1.68 and an empirical DFA exponent of α = 0.575, as was the case for the 

tangential CCA component in the present study, our simulations suggest an underlying source 

with a DFA exponent of α ≈ 0.63. Yet this value most likely still underestimates the “true” 

power-law dynamics of the system as the signal term contained in the empirical estimate of the 

SNR is not noise free but a mixture of both signal and noise. This leads to an overestimation of 

the SNR and in turn to an underestimation of the degrading impact of noise on the scaling 

exponent.  

To relate this simulation also to the others measures for which we calculated DFA 

exponents, we calculated the SNR of the CNAP at the upper arm and thalamic CCA components. 

Here, we found SNRs of 2.20 (SD = .85)  and 1.33 (SD = .11), respectively, suggesting that our 

signal quality was sufficient to detect DFA exponent increases if they had been there since the 

SNR of the CNAP was even higher than that of the SEP and the SNR of the thalamic CCA 

component was just slightly lower. 
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Power-law dynamics in alpha band activity and its relation to the SEP 

Since previous studies on cortical excitability in M/EEG focused on oscillatory activity 

in the alpha band, we investigated both its correspondence to the early part of the SEP as well 

as its DFA exponents. 

To test the relationship between alpha oscillatory activity and SEP amplitude, we 

performed a regression analysis between the mean alpha amplitude in a pre-stimulus window 

from -200 to -10 ms and the peak amplitude of the N20 component. Alpha activity was extracted 

from the same neuronal sources as the SEP by applying the spatial filter of the tangential CCA 

component.  A significant negative relationship was found on group-level using a random-slope 

linear-mixed-effects model, βfixed = -.034, t(25.095) = -4.895, p < .001. Thus, higher pre-

stimulus alpha activity was associated with more negative N20 peak amplitudes (Fig. 5A). 

 
 

 
Figure 5. Relation between pre-stimulus alpha band activity and the early SEP. A) Average SEP 
(tangential CCA component) plotted by quintiles of pre-stimulus alpha band amplitude, demonstrating 
their relationship with the N20 component peak (inlay). B) Correlation between DFA exponents of pre-
stimulus alpha amplitude and DFA exponents of the SEP in the time window from 20 to 25. The DFA 
exponents of the SEP were aggregated over time points using root-mean-square (rms). 

 

To control for spurious covariation caused by the auto-correlated structure of both 

signals, we additionally ran permutation tests using surrogate data with comparable temporal 

structure as suggested in (2015). Aggregated on group-level, these tests confirmed the negative 
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relationship between pre-stimulus alpha activity and N20 peak amplitude, rgroup-level = -.035, p 

< .001. 

Next, we investigated the DFA exponents of mean pre-stimulus alpha amplitude across 

trials. Averaged across subjects, we observed a mean DFA exponent of α = .60, which 

significantly differed from DFA exponents for shuffled trial order, t(30) = 6.627, p < .001. Also, 

DFA exponents in continuous, ongoing alpha activity were significantly increased across 

subjects, α = .66, t(30) = 10.591, p < .001. Thus, power-law dynamics were present in both pre-

stimulus and continuous alpha activity. 

To further test the relationship between pre-stimulus and SEP dynamics, we correlated 

DFA exponents of pre-stimulus alpha amplitude and DFA exponents of the SEP across 

participants. DFA exponents of the SEP were aggregated (using root-mean-square) in four 

consecutive time windows of 5 ms each, between 20 and 40 ms post-stimulus. DFA exponents 

of alpha activity were correlated with the DFA exponents of the first time window from 20 to 

25 ms, r = .485, p = .025 (Bonferroni-corrected; Fig. 5B). However, this relationship did not 

emerge for any other time window between 25 and 40 ms, ps > .3. Notably, the SNR of the SEP 

cannot explain the relation between DFA exponents of alpha activity and DFA exponents of 

the SEP, as no relationship was found between SNR of the SEP and DFA exponents of pre-

stimulus alpha activity, r = .208, p = .261. 

Taken together, both amplitude and temporal structure of oscillatory activity in the alpha 

band thus relate to the corresponding characteristics of the early SEP responses, establishing a 

link between these two measures of instantaneous cortical excitability. 
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4 Discussion 

In the present study, we investigated the temporal dynamics of neuronal excitability in 

the human primary somatosensory cortex by short-latency somatosensory evoked potentials. 

Fluctuations of excitability demonstrated power-law dynamics across trials, extending the 

previous notion that neuronal systems operate close to a critical state (Beggs and Plenz, 2003; 

Poil et al., 2012; Priesemann et al., 2013; Linkenkaer-Hansen et al., 2001; Palva et al., 2013) to 

variability in stimulus-evoked responses in the human sensory system. In addition, fluctuations 

in pre-stimulus alpha band activity and initial cortical excitation were related through their 

amplitudes as well as their temporal structure. For the first time, these findings thus link critical 

dynamics in ongoing and evoked activity as measured non-invasively in the human EEG, and 

directly associate the observed power-law dynamics with variability in cortical excitability. 

What do temporal dynamics in SEPs tell about the functioning of the neural system? 

Eearly SEP amplitudes demonstrated power-law dynamics persisting for time windows 

up to 50 seconds. Given that the SEP in the time range of the N20 component only reflects 

initial excitatory cortical processes (Bruyns-Haylett et al., 2017; Wikström et al., 1996; 

Nicholson Peterson et al., 1995), instantaneous excitability thus does not seem to vary 

stochastically independently over time (i.e. like white noise) but is characterized by long-range 

temporal dependencies. This means, cortical excitability at a given moment is related to its 

fluctuation history and contains information about subsequent dynamics. 

Such dynamics have often been interpreted within the hypothesis that the underlying 

system is poised at a critical state, that is a phase transition between distinct system regimes 

such as order and disorder (Kitzbichler et al., 2009; Sethna et al., 2001; Bak et al., 1987; Bak 

et al., 1988; Beggs and Plenz, 2003; visualized using the Ising model in Figure 1A). As the 

dynamic range, information processing and memory capacity of a system are maximized at 

such a phase transition (Kinouchi and Copelli, 2006; Shew and Plenz, 2013), it may be 
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beneficial for neural systems to be tuned to this close-to-critical state although the variability 

inherent to it may impair an exact mapping of stimulus features and neuronal activity in sensory 

processing. 

Typically, the power-law relationships in models of complex systems as well as in 

empirical neuronal avalanche recordings have been measured in the spatial domain, such as the 

distribution of size and duration of neuronal avalanches. Yet,  critical systems should also 

express power-law dynamics in the temporal domain as shown for the Ising model (Zhao et al., 

2017). Thus, the observed long-range temporal dependencies in cortical excitability in our data 

might in fact correspond to near-critical dynamics in the spatial domain as observed by Beggs 

and Plenz (2003) in their seminal study on the scale-free behavior of spontaneous neuronal 

avalanches in slices of the rat somatosensory cortex. 

Specifically, the temporal power-law dynamics in our data could reflect that neuronal 

excitability spatially differs across the network, in agreement with the notion of scale-free 

neuronal avalanches, which in turn leads to the observed amplitude fluctuations in the early 

SEP over time. Whereas a recent approach to measure neuronal avalanches from thresholded 

broad-band EEG data supported the notion of critical dynamics also after stimulus presentation 

(Arviv et al., 2015), our findings of power-law dynamics in early SEPs demonstrate near-critical 

dynamics for the first time in primarily stimulus-related processes in the human brain and 

suggest fluctuations of cortical excitability to be the driving underlying mechanism. 

Dissociation of temporal dynamics in the cortex from peripheral and subcortical variability 

To corroborate the notion of the observed power-law dynamics being a cortical 

phenomenon, we examined their origin in more detail. 

First, we measured power-law dynamics at the onset of the N20 component (not earlier), 

giving no cause to assume generators of power-law dynamics in stimulus processing up-stream 

of the primary somatosensory cortex. Second, source reconstruction confirmed that the 
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strongest generators of the N20 lay in the anterior wall of the post-central gyrus (Fig. 2E) as is 

expected from the literature for the N20 component (Allison et al., 1991). Third, no power-law 

dynamics were present in peripheral variability as measured from the compound nerve action 

potential (CNAP) of the median nerve. Fourth, thalamus-related activity reflected in the P15 

component of the SEP in a subsample of 13 subjects did not show any power-law dynamics 

either, suggesting that neuronal variability is stochastically independent even at final 

subcortical processing stages. 

Hence, we conclude that the observed power-law dynamics most likely are of cortical 

origin. 

Underestimation of power-law dynamics due to signal-to-noise ratio 

It is known that the signal-to-noise ratio (SNR) has an impact on the estimation of DFA 

exponents (Blythe et al., 2014), that is, even a signal with an exponent of α ≈ 1.0 would result 

in lower DFA exponents when being contaminated with strong noise characterized by 

exponents of α ≈ 0.5. Given our empirical single-trial SNR, simulated scenarios with varying 

SNRs and DFA exponents suggested a lower bound for the underlying DFA exponent of 

α ≈ 0.63, which is in the range of temporal power-law dynamics reported in previous 

MEG/EEG studies for ongoing alpha band activity (Linkenkaer-Hansen et al., 2001; Palva et 

al., 2013).  

Relationship between pre-stimulus alpha activity and initial cortex excitation 

Following the idea that oscillatory activity in the alpha band reflects cortical excitability 

(Romei et al., 2008; Klimesch et al., 2007; Zrenner et al., 2017; Sauseng et al., 2009), we tested 

whether this measure in a pre-stimulus window was related to the initial cortex excitation as 

assessed by the N20 amplitude. In our data, lower amplitudes of alpha band activity, 

hypothesized to reflect a state of increased excitability, were associated with smaller (less 

negative) N20 amplitudes. Although at a first glance this finding seems to contradict the 
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hypothesis of low alpha activity being associated with higher excitability  (Jensen and Mazaheri, 

2010; Klimesch et al., 2007) it may be explained in a straightforward manner by the 

neurophysiological basis of EEG generation. 

The scalp EEG reflects relative changes in collective charge distributions resulting from 

neuronal activation manifested in primary post-synaptic currents (PSCs; Lopes da Silva, 2004; 

Kandel et al., 2000; Ilmoniemi and Sarvas, 2019). The magnitude of an EEG potential U 

emerging through synchronous activity of a well-specified neuron population, as is assumed for 

the N20 component of the SEP, should follow the general relationship 

𝑈	~	𝐼 ∗ 𝑁VYc>=VS ∗ 𝐿𝐹 

where 𝐼  denotes the sum of local primary post-synaptic currents, 𝑁VYc>=VS  the number of 

involved neurons, and 𝐿𝐹 the lead field coefficient projecting source activity to the electrodes 

on the scalp. Since 𝑁VYc>=VS and LF can be assumed to be constant for the N20 component in 

a sequence of unchanging median nerve stimuli, we believe that primarily 𝐼 , reflecting 

excitatory PSCs, contributed to the amplitude variability of the early part of the SEP.  

Now, assuming that states of higher neuronal excitability are associated with membrane 

depolarization on a cellular level, the electrical driving force for further depolarizing inward 

trans-membrane currents is decreased and less current is needed to reach the threshold potential 

for excitatory responses (Castro-Alamancos, 2009). This leads to decreased PSCs at high 

excitability states (Deisz et al., 1991) and would result in lower amplitudes in the EEG. Hence, 

one should rather expect decreased N20 components following low pre-stimulus alpha activity, 

as was the case in our data. 

The relationship between pre-stimulus alpha activity and early SEP amplitudes is further 

corroborated by their corresponding degree of power-law dynamics in the time range of the 

SEP from 20 to 25 ms post-stimulus (Fig. 5B). Intriguingly, the idea that this link is established 

via cortical excitability manifested in pre-stimulus membrane potentials is consistent with a 
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recent study which indeed demonstrated near-critical dynamics in membrane potential 

fluctuations in the turtle visual cortex (Johnson et al., 2019). 

Although this notion should be treated with some caution as it is based on the strong 

assumption that mechanisms observed in single-cell recordings (in animals) can be generalized 

to cell populations in the human cortex, the present findings could represent the missing link 

between power-law dynamics on micro (single-cell) and macro (cell population) scale and 

would relate findings of criticality in neuronal avalanches to non-invasively measured EEG 

potentials in humans. 

Implications for the perspective on neural variability 

Why neuronal systems express large variability, particularly in perceptual processes, 

has been an enduring question for many years. The perspective on the temporal structure of 

variability in neural responses now extends our understanding of the underlying organizing 

principles. Not only is stimulus-evoked activity dependent on pre-stimulus network states but 

even the network states themselves seem to fluctuate in a structured manner – in our data 

manifested in near-critical dynamics in instantaneous cortical excitability. These dynamics are 

poised just at the border between deterministic and indeterministic behavior, which may enable 

neural networks to adaptively adjust during stimulus processing. Criticality may thus represent 

a compellingly parsimonious explanation of moment-to-moment fluctuations in neural 

responses and why they can actually be beneficial for neural systems. 
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