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Abstract 

Brain responses vary considerably from moment to moment, even to identical sensory 

stimuli. This has been attributed to changes in instantaneous neuronal states determining the 

system´s excitability. Yet the spatio-temporal organization of these dynamics remains poorly 

understood. Here we test whether variability in stimulus-evoked activity can be interpreted 

within the framework of criticality, which postulates dynamics of neural systems to be tuned 

towards the phase transition between stability and instability as is reflected in scale-free 

fluctuations in spontaneous neural activity. Using a novel non-invasive approach in 33 male 

participants, we tracked instantaneous cortical excitability by inferring the magnitude of 

excitatory post-synaptic currents from the N20 component of the somatosensory evoked 

potential. Fluctuations of cortical excitability demonstrated long-range temporal dependencies 

decaying according to a power law across trials – a hallmark of systems at critical states. As 

these dynamics covaried with changes in pre-stimulus oscillatory activity in the alpha band (8–

13 Hz), we establish a mechanistic link between ongoing and evoked activity through cortical 

excitability and argue that the co-emergence of common temporal power laws may indeed 

originate from neural networks poised close to a critical state. In contrast, no signatures of 

criticality were found in subcortical or peripheral nerve activity. Thus, criticality may represent 

a parsimonious organizing principle of variability in stimulus-related brain processes on a 

cortical level, possibly reflecting a delicate equilibrium between robustness and flexibility of 

neural responses to external stimuli. 

 

Significance Statement 

Variability of neural responses in primary sensory areas is puzzling, as it is detrimental 

to the exact mapping between stimulus features and neural activity. However, such variability 

can be beneficial for information processing in neural networks if it is of a specific nature, 
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namely if dynamics are poised at a so-called critical state characterized by a scale-free spatio-

temporal structure. Here, we demonstrate the existence of a link between signatures of 

criticality in ongoing and evoked activity through cortical excitability, which fills the long-

standing gap between two major directions of research on neural variability: The impact of 

instantaneous brain states on stimulus processing on the one hand and the scale-free 

organization of spatio-temporal network dynamics of spontaneous activity on the other. 
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1 Introduction 

Neural responses are characterized by remarkable variability, even to identical physical 

stimuli. This well-known phenomenon has been attributed to fluctuations of the neuronal 

network´s state (Arieli et al., 1996; Sadaghiani et al., 2010), observable via diverse neuronal 

measures such as EEG (Romei et al., 2008; Vanrullen et al., 2011; Rahn and Basar, 1993; Iemi 

et al., 2019; Forschack et al., 2017), BOLD signal (Fox and Raichle, 2007; Becker et al., 2011), 

local field potentials (Arieli et al., 1996), and single-cell recordings (Azouz and Gray, 1999; 

Churchland et al., 2010). So far, studies on neuronal variability have mainly focused on the 

strength of variability (Dinstein et al., 2015; Garrett et al., 2013; Churchland et al., 2010). The 

dynamics of network states over time, however, have often been neglected despite their ability 

to provide further insights into the underlying spatio-temporal organization principles. 

In this context, a certain type of fluctuation pattern known as power-law dynamics, 

which indicates that a signal possesses scale-free properties, is of particular interest. Such 

power-law relationships represent a hallmark of the (self-)organization of complex systems at 

a critical state (Sethna et al., 2001; Muñoz, 2018), the point of a phase transition between two 

distinct system regimes, such as order and disorder (Beggs and Plenz, 2003; Bak et al., 1987; 

Bak et al., 1988), at which the dynamic range, information processing and capacity of a system 

are maximized (Kinouchi and Copelli, 2006; Shew and Plenz, 2013). Figure 1A visualizes these 

system configurations using the Ising model of ferromagnetism (Ising, 1925). 

Empirically, power-law dynamics have been found in the size and duration of neuronal 

avalanches of various species, such as rats (Beggs and Plenz, 2003; Friedman et al., 2012), 

monkeys (Petermann et al., 2009; Yu et al., 2017), zebrafish larvae (Ponce-Alvarez et al., 2018), 

and humans (Priesemann et al., 2013; Shriki et al., 2013; Arviv et al., 2015). In the temporal 

domain, power-law dynamics can be observed in human resting state fMRI networks 

(Tagliazucchi et al., 2013), as well as in amplitude fluctuations of alpha and beta band activity 

by way of MEG/EEG (Linkenkaer-Hansen et al., 2001; Palva et al., 2013), associated with 
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long-range temporal dependencies. Thus, criticality may represent a general and appealingly 

parsimonious explanation of neuronal variability in the brain. However, the functional link 

between critical dynamics, fluctuations of ongoing neural activity, and cortical excitability 

remains elusive – particularly for the human brain. 

To establish this link, we developed an approach to probe instantaneous cortical 

excitability on a single-trial level using somatosensory evoked potentials (SEP) in EEGs on 

humans in response to electrical median nerve stimuli (Fig. 1B). Specifically, the N20 

component of the SEP is thought to solely reflect excitatory post-synaptic potentials (EPSPs) 

of the first thalamo-cortical volley (Wikström et al., 1996; Nicholson Peterson et al., 1995; 

Bruyns-Haylett et al., 2017), generated in the anterior wall of the postcentral gyrus, Brodmann 

area 3b (Allison et al., 1991). Therefore, the amplitude of this early part of the SEP represents 

a direct measure of the instantaneous excitability of a well-defined neuronal population in the 

primary somatosensory cortex. Additionally, to bridge the gap between evoked and ongoing 

neuronal activity, we evaluated pre-stimulus oscillations in the alpha band (8–13 Hz) of the 

same neuronal sources, a classical index of cortical excitability in ongoing neural activity 

(Klimesch et al., 2007; Romei et al., 2008). 

The temporal structure of these two measures of excitability demonstrated power-law 

dynamics over time, which were entirely generated on the cortical level as shown by control 

analyses of subcortical and peripheral signal variability. Furthermore, the SEP-derived measure 

of cortical excitability and pre-stimulus alpha band activity were coupled regarding both their 

amplitudes and power-law exponents. Therefore, variability in both ongoing and evoked neural 

activity is likely to be governed by the same near-critical network dynamics. 
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Figure 1. Types of system dynamics and how to probe them. A) Ising model at different system states: 
ordered, critical, disordered (from left to right). Transferred to a grid of neurons, black and white shades 
reflect firing and non-firing neurons, or, as in the context of our study, neurons that can or cannot be 
recruited by the stimulus. Here, snapshots of the system at a given point in time are shown. In an ordered 
system, local interactions dominate and lead to highly stable neural activity. In contrast, firing patterns 
in a disordered system are highly unstable and quickly change from moment to moment in a 
stochastically independent manner (i.e., white noise). At the critical state, the system resides at the 
border between the tendencies either towards an ordered or towards a disordered system. This is 
reflected by the spatio-temporal dynamics, that is, scale-invariance or power-law dynamics. Scale-
invariance is visible from the middle panel since similar clusters of black pixels occur on all scales. B) 
Experimental paradigm. The instantaneous state of the neuronal system (illustrated here with snapshots 
of the Ising model at the critical state) is probed by somatosensory stimuli. The amplitude of the N20 
component of the SEP is expected to be proportional to the number of neurons that can be recruited by 
the stimulus at a given moment (black pixels in the probed area, which is marked by the red circles), 
therefore reflecting a measure of instantaneous cortical excitability. In a stable system, the number of 
neurons that can be excited would barely change over time, whereas in an unstable system this would 
vary randomly. However, at the critical state configurations would show the largest range of variation 
over time with fluctuations following a temporal power law. 
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2 Materials and Methods 

Participants 

EEG data were recorded from 33 male human subjects. Two subjects were excluded 

because no clear SEPs were visible in the single-trial analysis, probably due to suboptimal 

placement of the stimulation electrodes and a low SNR of the EEG. The remaining sample of 

31 subjects had an average age of M = 26.9 years (SD = 5.0). All participants were right-handed 

(lateralization score, M = +92.9, SD = 11.7), as assessed using the Edinburgh Handedness 

Inventory (Oldfield, 1971), and did not report any neurological or psychiatric disease. All 

participants gave informed consent and were reimbursed monetarily. The study was approved 

by the local ethics committee. 

Stimuli 

Somatosensory stimuli were applied using electrical stimulation of the median nerve. A 

non-invasive bipolar stimulation electrode was positioned on the left wrist (cathode proximal). 

The electrical stimuli were designed as squared pulses of a 20-µs duration. The stimulus 

intensity was set to 1.2 x motor threshold, leading to clearly visible thumb twitches for every 

stimulus, as individually determined by a staircase procedure prior to the experiment. Stimuli 

were applied using a DS-7 constant-current stimulator (Digitimer, Hertfordshire, United 

Kingdom). 

Procedure 

During the experiment, participants were seated comfortably in a chair their hands 

extended in front of them in the supinate position on a pillow. Electrical stimuli were presented 

in a continuous sequence with inter-stimulus intervals (ISI) ranging from 713 to 813 ms 

(randomly drawn from a uniform distribution; ISIaverage = 763 ms). In total, 1000 stimuli were 

applied, divided into two blocks of 500 stimuli each with a short break in between. Participants 
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were instructed to relax and fixate their gaze on a cross on a computer screen in front of them 

while receiving the stimuli. 

Data Acquisition 

EEG data were recorded from 60 Ag/AgCl electrodes at a sampling rate of 5000 Hz 

using an 80-channel EEG system (NeurOne, Bittium, Oulu, Finland) with a bandwidth of 0.16 

to 1250 Hz. Electrodes were mounted in an elastic cap (EasyCap, Herrsching, Germany) at the 

international 10-10 system positions FP1, FPz, FP2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, 

Fz, F2, F4, F6, F8, FT9, FT7, FT8, FT10, FC5, FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, 

C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, T7, T8, TP7, TP8, P7, P5, P3, P1, Pz, P2, P4, 

P6, P8, PO7, PO3, PO4, PO8, O1, and O2. Four additional electrodes were placed at the outer 

canthus and the infraorbital ridge of each eye to record the electro-oculogram (EOG). During 

recording, the EEG signal was referenced to FCz, and POz served as ground. All impedances 

were kept below 10 kΩ. For source reconstruction, EEG electrode positions were measured in 

3D space individually for each subject using Polhemus Patriot (Polhemus, Colchester, 

Vermont). Additionally, the compound nerve action potential (CNAP) of the median nerve was 

measured using two bipolar electrodes, positioned at the inner side of the left upper arm. 

Structural T1-weighted MRI scans (MPRAGE) of each participant were obtained during 

a different testing date prior to the experiment, on a 3T Siemens Verio, Siemens Skyra or 

Siemens Prisma scanner (Siemens, Erlangen, Germany). 

EEG pre-processing 

Stimulation artifacts were cut out and interpolated between -2 to 4 ms relative to 

stimulus onset using Piecewise Cubic Hermite Interpolating Polynomials (PCHIP). The EEG 

data were band-pass filtered between 30 and 200 Hz, sliding a 4th order Butterworth filter 

forwards and backwards over the data to prevent phase shift. With this filter, we specifically 

focused on the N20-P35 complex of the SEP. Furthermore, this filter effectively served as 
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baseline correction of the SEP since it removed slow trends in the data, reaching an attenuation 

of 30 dB at 14 Hz, thus ensuring that fluctuations in the SEP did not arise from fluctuations 

with slower frequencies (e.g., alpha band activity). (The relationship between decibels [dB] and 

magnitude is defined as 𝑑𝐵 = 20 ∗ 𝑙𝑜𝑔*+[𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒] ). Bad segments of the data were 

removed by visual inspection, resulting in 989 trials on average per participant. The data were 

then re-referenced to an average reference. Eye artefacts were removed using independent 

component analysis (ICA). For analysis of SEPs, the data were segmented into epochs from -

100 to 600 ms relative to stimulus onset. EEG pre-processing was performed using EEGLAB 

(Delorme and Makeig, 2004), and custom written scripts in MATLAB (The MathWorks Inc., 

Natick, Massachusetts). 

Single-trial extraction using CCA 

Single-trial SEPs were extracted by applying a variant of Canonical Correlation 

Analysis (CCA), as previously proposed by Waterstraat et al.. CCA is used for finding weights 

wx and wy that mutually maximize the correlation between two signals X and Y, so that: 

𝑋 ∗	𝑤8 	
9:; <=>>
?⎯⎯⎯⎯A 	𝑌 ∗ 𝑤C  

For extracting single-trial SEPs, we constructed X as a two-dimensional matrix (time by 

channel) containing all single-trial epochs (concatenated in the time domain), whereas Y 

contained the average SEP, concatenated as often as there were epochs (also concatenated in 

the time domain). The resulting weight matrix wx represents spatial filters that, in combination 

with wy, maximize the correlation between single-trial activity (X) and the average SEP (Y). To 

particularly focus on the early portion of the SEP, the spatial filters wx were trained using shorter 

segments from 5 to 80 ms post-stimulus but applied to the entire epochs from -100 to 600 ms. 

We derived a number of spatially distinct components by applying the spatial filters to the 

single-trial matrix, here denoted as CCA components: 

𝑋DDE = 𝑋 ∗ 𝑤8 . 
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To characterize the CCA components in more detail, their spatial patterns were 

computed as 

𝐴DDE = 𝑐𝑜𝑣(𝑋) ∗ 𝑤8 , 

and components were visually identified that showed a tangential spatial pattern over the central 

sulcus as is typical for the N20-P35 complex (referred to as tangential CCA components). 

Furthermore, components were identified that showed a peak in the activity time course at 

15 ms (referred to as thalamic CCA components; only in a subset of the sample). This procedure 

was performed individually for every subject for the first four CCA components, as sorted by 

their canonical correlation coefficients. Since CCA is insensitive to the polarity of the signal, 

the resulting tangential CCA components were standardized so that the N20 always appeared 

as a negative peak in the SEP (i.e., by inverting their spatial filters wx, if necessary). Furthermore, 

CCA is insensitive to the order of trials. Thus, the same spatial filters wx are obtained when 

permuting the order of single-trial SEPs and it is therefore not possible that CCA influences the 

temporal structure of SEP amplitudes across trials. 

SEP peak amplitudes and pre-stimulus oscillatory activity 

N20 peak amplitudes were defined as the minimum value in single-trial SEPs of the 

tangential CCA components ±2 ms around the latency of the N20 in the within-subject average 

SEP. P35 peak amplitudes were defined accordingly as the maximum around the latency of the 

P35 in the within-subject average SEP. 

Pre-stimulus alpha band activity was obtained from data segments between 

-200 to -10 ms relative to stimulus onset, band-pass filtered between 8 and 13 Hz (4th order 

Butterworth filter forwards and backwards applied), after mirroring the pre-stimulus segments 

to both sides in order to reduce filter-related edge effects. To make a direct comparison with 

the SEP possible, we applied the spatial filter corresponding to the tangential CCA component 

to the pre-stimulus data. Subsequently, the pre-stimulus alpha envelope was measured by taking 
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the absolute values of the signals processed with the Hilbert transform. To derive one pre-

stimulus alpha metric for every trial, amplitudes of the alpha envelope were averaged across 

the whole pre-stimulus time window. 

EEG source reconstruction 

To reconstruct the sources of the EEG signal, we estimated lead field matrices based on 

individual brain anatomies and individually measured electrode positions. The structural T1-

weighted MRI images (MPRAGE) were segmented using the Freesurfer software 

(http://surfer.nmr.mgh.harvard.edu/), and a 3-shell boundary element model (BEM) was 

constructed which was used to compute the lead field matrix with OpenMEEG (Gramfort et al., 

2010; Kybic et al., 2005). For two subjects, a template brain anatomy (ICBM152; Fonov et al., 

2009) was used as no individual MRI scans were available. For one subject, standard electrode 

positions were used instead of individually measured positions. The lead field matrices were 

inverted using eLORETA (Pascual-Marqui, 2007), and sources were reconstructed for the 

spatial patterns of the tangential CCA component of every subject. Next, individual source 

spaces were transformed into a common source space based on the ICBM152 template using 

the spherical co-registration with the FSAverage atlas (Fischl et al., 1999) derived from 

Freesurfer, in order to average the obtained sources of the CCA components across subjects. 

The calculation of the individual head models and visualization of the sources was performed 

using Brainstorm (Tadel et al., 2011). The MATLAB implementation of the eLORETA 

algorithm was derived from the MEG/EEG Toolbox of Hamburg (METH). 

Processing of peripheral electrophysiological data (median nerve CNAP) 

Analogously to the EEG data, stimulation artifacts were cut out and interpolated 

between -2 to 4 ms relative to stimulus-onset using Piecewise Cubic Hermite Interpolating 

Polynomials (PCHIP). Next, the data were high-pass filtered at 70 Hz, sliding a 4th order 

Butterworth filter forwards and backwards over the data to prevent phase shift. Additionally, 
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notch filters (4th order Butterworth) were applied from 48 to 52 Hz and 148 to 152 Hz, 

respectively. epochs were extracted from -100 to 600 ms relative to stimulus onset. 

Detrended Fluctuation Analysis (DFA) 

Power-law dynamics in the fluctuations of early SEPs as well as of pre-stimulus alpha 

band activity were quantified using Detrended Fluctuation Analysis (DFA; Kantelhardt et al., 

2001; Hardstone et al., 2012). DFA calculates the fluctuation (i.e., standard deviation) of a 

cumulative signal on different time scales and tests whether its distribution follows a power-

law: 𝐹(𝜏)	~	𝜏N, where 𝐹 denotes the fluctuation function, 𝜏 the signal length (or window size), 

and α the power-law exponent. The DFA exponent α quantifies the extent of power-law 

dynamics of a signal, with α > 0.5 indicating persistent auto-correlations; whereas α = 0.5 is 

expected for a signal without a correlated temporal structure (i.e., white noise). We analyzed 

power-law dynamics in the fluctuation of SEP and pre-stimulus alpha amplitudes across trials 

with window sizes ranging from 7 to 70 trials, which correspond to time windows of 5.3 to 53.4 

seconds. The same temporal window sizes were selected for the DFA of continuous alpha band 

activity. 

Evaluation of SNR 

The signal-to-noise ratio of the single-trial SEP, as measured by the tangential CCA 

component, was quantified as the quotient of  the root-mean-square signal in the time range of 

the SEP (10 to 50 ms)  and a pre-stimulus baseline (-50 to -10 ms), so that 𝑆𝑁𝑅 = 	 >RS(STUVWX)
>RS(V=TSY)

.  

The same procedure was applied to estimate the SNR of the CNAP and of the thalamic 

CCA component. For the CNAP we chose time windows from 5 to 8 ms and -8 to -5 ms, and 

for thalamic activity 12 to 18 ms and -18 to -12 ms, to estimate signal and noise, respectively. 
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Simulation of the relationship between SNR and DFA exponent 

Signals with DFA exponents systematically varying in the range from α = 0.5 to  

α = 0.8 were generated by filtering white noise with IIR filters whose coefficients depended on 

the desired DFA exponents as described in Schaworonkow et al. according to the algorithm of 

Kasdin. The length of these time series was set to 1000 data points corresponding to our 

empirical data from the SEP fluctuation across trials. These time series were mixed with white 

noise, that is, stochastically independent time series with DFA exponents of α = 0.5. The time 

series with varying DFA exponents were mixed with the noise at varying SNRs ranging from 

0.001 to 6, defined as 𝑆𝑁𝑅 = 	 >RS(STUVWX)
>RS(V=TSY)

. This procedure was repeated 100 times to account 

for the variance in the generation of random time series. Subsequently, DFA exponents of the 

mixed time series were measured and the average DFA exponent of the simulated signal was 

identified for which the SNR and DFA exponent of the mixed time series corresponded to our 

empirical analysis of SEP fluctuations. 

Simulation of the influence of temporal filtering on DFA exponents 

To confirm that our temporal filtering did not cause the DFA exponent increases in the 

early SEP, we applied the same filtering to surrogate data with stochastically independent SEP 

fluctuations. SEP fluctuations across trials were simulated by decreasing or increasing an 

average SEP time course by a randomly generated factor for every trial. These signals were 

superimposed on continuous pink noise which was band-pass filtered between 30 and 200 Hz 

(4th order Butterworth filter applied forwards and backwards), using a signal-to-noise ratio of 

2, a typical value for empirical data. Subsequently, DFA was applied across trials for every time 

sample of the simulated SEP, corresponding to above described DFA analyses of the empirical 

SEPs. 
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Statistical analyses 

We compared the empirical DFA exponent time courses to surrogate data and applied 

cluster-based permutation tests to assess whether, and at which latencies, DFA exponents were 

significantly higher than it would be expected for stochastically independent fluctuation (i.e., 

white noise). First, we determined the expected DFA exponents for stochastically independent 

fluctuation by shuffling the trial order of our data and applying DFA to it. To account for 

variability due to random shuffling, this step was repeated 1000 times, and DFA exponents of 

these iterations were averaged, yielding an average surrogate DFA exponent time course for 

every subject. (Averaged across all samples and subjects, the mean DFA exponent was α = .512, 

thus slightly increased as compared to the theoretical DFA exponent of white noise of α = .5. 

This small empirical deviation may have been caused by the asymptotic behavior of DFA for 

small window sizes.) Next, the DFA exponents of the data with intact trial order were compared 

to the average DFA exponents of the surrogate data, using a two-sample t-test, resulting in a t 

value for every comparison over the time course of the SEP. To obtain clusters of increased 

DFA exponents, t values were thresholded at ppre = .001. Within clusters, t values were summed 

up to cluster t values tcluster,empirical. The same procedure was repeated 1000 times for the 

surrogate data, always comparing one surrogate dataset to the average surrogate data, which 

provided us with the distribution of cluster t values under the null hypothesis.  Next, a cut-off 

value tcluster,crit was defined at the 99.9th percentile corresponding to a cluster threshold of 

pcluster = .001. Finally, tcluster,empirical of all clusters in the empirical DFA exponent time course 

were compared to tcluster,crit to identify clusters of significantly increased DFA exponents. With 

this procedure, we controlled for the number of samples over the SEP time course, inter-subject 

variability, and the distribution of amplitude values of the SEP from which DFA exponents 

were derived. 

Analogously, DFA exponents of pre-stimulus alpha band activity were statistically 

tested using a t-test on group-level comparing them to the average DFA exponents of the null 
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distribution, which was calculated from 1000 surrogate datasets with shuffled trial order. 

Similarly, the statistical significance of the DFA exponents of continuous alpha band activity 

was tested, however shuffling samples instead of trials to obtain DFA exponents under the null 

hypothesis. 

To test the relationship of SNR and DFA exponents, we correlated the average SNR of 

single-trial SEPs with the area-under-the-curve (AUC) of DFA exponents between 10 and 

50 ms post-stimulus, across participants using Spearman correlation. 

Furthermore, we assessed the relationship between single-trial N20 peak amplitudes and 

pre-stimulus alpha amplitudes using a linear-mixed-effects model with subject as random factor, 

estimating the fixed effect as well as the random slope of the predictor pre-stimulus alpha 

amplitude with the dependent variable N20 peak amplitude (intercepts were included both for 

the fixed and random effects). Additionally, the relationship between N20 peak amplitudes and 

pre-stimulus alpha amplitudes was assessed with a permutation-based approach in which we 

compared their Spearman correlation coefficients with those from surrogate pre-stimulus alpha 

amplitudes with the same auto-correlated structure but shuffled phases generated by Adjusted 

Amplitude Fourier Transform (Theiler et al., 1992), as suggested in Schaworonkow et al.. 

Empirical correlation coefficients were averaged across subjects after Fisher´s Z transformation 

and compared with the null distribution of 10000 averaged correlation coefficients from the 

surrogate analyses to obtain the corresponding p value. 

The covariation of N20 and P35 peak amplitudes was tested using a random-slope 

linear-mixed-effects model with P35 peak amplitude as dependent variable, N20 peak 

amplitude as independent variable and subject as random factor. 

Finally, we correlated DFA exponents of pre-stimulus alpha activity and DFA 

exponents of the SEP. To account for the variability in the DFA exponent time course in the 

early SEP, we calculated the root-mean-square of DFA exponents in four subsequent time 

windows, 20 to 25, 25 to 30, 30 to 35, and 35 to 40 ms, and computed their Spearman correlation 
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coefficients with the DFA exponents of pre-stimulus alpha activity, respectively. To control for 

the resulting multiple testing, we applied Bonferroni correction. 

For all statistical analyses the significance level was set to p = .05. Correlation analyses 

as well as permutation-based statistics were performed in MATLAB (version 2017b, The 

MathWorks Inc., Natick, Massachusetts). The linear-mixed-effects models were calculated in 

R (version 3.5.1, R Core Team, 2018) using the lme4 (Bates et al., 2015) and denominator 

degrees of freedom were adjusted using Satterthwaite´s method (Satterthwaite, 1946) to derive 

a p value for the fixed effects as implemented in the R package lmerTest (Kuznetsova et al., 

2017).   

Data and code availability 

The data that supports the findings of this study are available upon request from the 

corresponding author (T.S.; stephani@cbs.mpg.de). The data cannot be made publicly available 

due to the privacy policies for human biometric data according to the European General Data 

Protection Regulation (GDPR). 

The custom-written code that was used for data processing and statistical analyses is 

publicly available at https://osf.io/jzqdt/?view_only=dcb94617841445859adc5496d33c3cee. 

 

3 Results 

SEPs and neuronal generators 

The SEPs, averaged across all participants and trials, are shown in Figure 2A. The N20 

component is visible as a negative peak at around 20 ms at electrodes contralateral to the 

stimulation site and posterior to the central sulcus. Furthermore, the scalp topography at 20 ms 

shows a tangential dipole centered over the central sulcus (Fig. 2B), consistent with the 

assumption of neuronal generators located in the anterior wall of the postcentral gyrus. 
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Figure 2. Grand average of the somatosensory evoked potential (SEP) across all subjects in sensor, CCA, 
and source space. A) SEP at electrodes F4, CP4, and P4, as well as its representation in the tangential 
CCA component. B) Scalp topography in sensor space at 20 ms post-stimulus. C) Activation pattern of 
the tangential CCA component. D) Sources (absolute values) underlying the spatial patterns of the 
tangential CCA component, reconstructed using eLoreta based on individual head models. E) Same as 
D but applying an amplitude threshold of 95% in order to find the strongest generators (displayed on a 
smoothed cortex surface). 
 
 

To extract single-trial SEPs we used a variant of Canonical Correlation Analysis (CCA) 

in which spatial filters were trained based on a pattern matching between average SEP and 

single trials (Waterstraat et al., 2015; Fedele et al., 2013). With this method, we obtained a set 

of spatially distinct CCA components for every individual subject. In all subjects, a prominent 

CCA component was identified that displayed the pattern of the typical N20 tangential dipole 

(Fig. 2C) and showed a clear peak at around 20 ms post-stimulus (Fig. 2A). Furthermore, 

subsequent source reconstruction of the spatial pattern revealed that the strongest generators 

were located in the anterior wall of the postcentral gyrus (Fig. 2D & 2E). We focus on this CCA 

component in the following analyses and refer to it as the tangential CCA component. 
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Single-trial SEPs retrieved from the tangential CCA component are displayed in Figure 

3A for an exemplary subject. It is apparent that the amplitude of the early SEP fluctuates over 

trials, however without a clear deterministic trend (Figure 3B). 

Temporal dynamics in single-trial SEP amplitude fluctuations 

To evaluate the characteristics of SEP fluctuations across trials, we applied Detrended 

Fluctuation Analysis (DFA; Hardstone et al., 2012; Kantelhardt et al., 2001). The DFA 

exponent α quantifies the extent of power-law dynamics of a signal, with α > 0.5 indicating 

persistent auto-correlations; whereas α = 0.5 would suggest a signal without a temporal 

structure (i.e., white noise). DFA was performed on the amplitudes at every latency relative to 

the stimulus onset, across time windows of 7 to 70 trials (i.e., equivalent to around 5 to 50 

seconds; exemplarily illustrated in Fig. 3B & 3C). Applying DFA at all latencies provided a 

DFA exponent time course for every subject (Fig. 3D) that indicates which portions of the early 

SEP show power-law dynamics (i.e., DFA exponents > 0.5). Subsequently, DFA exponent time 

courses were averaged across participants (Fig. 3E). The average explained variance of the 

power-law relationships at all latencies of the time range between 10 and 50 ms was R2 > .99, 

indicating a near-perfect fit of the DFA method for this data. 
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Figure 3. Analysis of power-law dynamics in SEP amplitude fluctuations. A) Single-trial SEPs as 
measured by the tangential CCA component for an exemplary subject. B) SEP amplitude fluctuations 
across trials for exemplary latencies (20 ms, 25 ms, and 29 ms post-stimulus). C) Detrended Fluctuation 
Analysis (DFA) for amplitude fluctuations depicted in B. The DFA exponent α is measured as the slope 
of a regression line fitted to the log-log relationship between window size τ and the fluctuation in each 
window size, quantifying the power-law dynamics of the signal. Note that both axes are scaled 
logarithmically. D) Time course of DFA exponents for an exemplary subject; blue, cyan, and yellow 
arrows mark the latencies which are displayed in B and C. E) DFA exponent time course averaged across 
all subjects (depicted in black) plotted along with the average SEP of the tangential CCA component 
(depicted in red). Grey boxes indicate significant clusters of DFA exponents differing from surrogate 
data with shuffled trial order. 
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Increased DFA exponents were observed particularly in the early part of the SEP with 

an onset around the latency of the N20 component, whereas surrogate data generated by 

shuffling the trial order yielded DFA exponents close to α = 0.5. Two prominent peaks in the 

DFA exponent time course are visible from Figure 3E, with DFA exponents of α = .575 and α 

= .577, at latencies of 25 and 33 ms post-stimulus, respectively. Note, however, that the absolute 

value of DFA exponents highly depends on the signal-to-noise ratio (SNR) of the signal, as is 

further examined in simulations below which suggest DFA exponents of at least α = .63 when 

the SNR bias is taken into account. The observation of two prominent DFA exponent peaks 

was statistically confirmed as two main clusters were found around these two peaks by cluster-

based permutation tests (pscluster < .001). The DFA exponents were characterized by a similar 

yet not identical time course as compared to the magnitude of the SEP (Fig. 3E). Although the 

first significant DFA exponent cluster emerged together with the peak of the N20 component, 

the first DFA exponent peak appeared slightly later. This suggests that long-range temporal 

dependencies were not most pronounced at the N20 peak but rather while the potential returned 

back to baseline. Yet, this is not contradicting the notion of power-law dynamics in fluctuations 

of cortical excitability since recent evidence from pharmacological studies suggests that 

excitatory processes of the N20 component dominate even until the rising flank of the P35, the 

next component after the N20 in the SEP (Bruyns-Haylett et al., 2017). 

The second DFA time course peak co-occurred with the second prominent peak of the 

SEP, the P35 component. This second DFA peak most likely reflects activity propagated from 

the N20 component to the P35 as these two components moderately covaried in our data, 

βfixed = -.378, t(29.800) = -9.342, p < .001, as tested by a random-slope linear-mixed-effects 

model with P35 peak amplitude as dependent variable, N20 peak amplitude as independent 

variable and subject as random factor. Similarly, the two smaller clusters of increased DFA 

exponents at around 44 and 68 ms (Fig. 3E) may reflect the propagation of dynamics in earlier 

SEP components to later processing stages.  
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Temporal filtering in the preprocessing of the data cannot have caused these long-range 

temporal dependencies since (1) no DFA exponent increases were observed during the pre-

stimulus baseline of the SEP and (2) additional control analyses did not show increased DFA 

exponents when applying the same preprocessing to stochastically independent SEP 

fluctuations (as tested with simulated data). 

Do power-law dynamics originate from the neuronal fluctuations in the periphery or at the 

thalamic level?  

To investigate whether the observed temporal dynamics in cortical SEPs may arise from 

fluctuations in peripheral nerve excitability, we applied the same procedure as described above 

to the compound nerve action potential (CNAP) of the median nerve measured at the inner side 

of the upper arm. As expected, the nerve potential peaked at around 6 ms post-stimulus and 

fluctuated over trials (Fig. 4A). However, no increased DFA exponents were observed (Fig. 

4B). 

In addition, a CCA component was identified in 13 out of the 31 participants that 

contained SEP activity already at 15 ms (Fig. 4C & 4D), most likely reflecting the P15 

component of the SEP which is thought to represent thalamus-related activity (Albe-Fessard et 

al., 1986). Also, the spatial pattern of this CCA component suggested a deeper and more medial 

source than the tangential CCA component (Fig. 4E). Importantly, the DFA exponents of this 

subcortical activity did not show any increase in the range of the P15 component (Fig. 4D) thus 

being in contrast with the DFA exponent increase for early cortical potentials. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2020. ; https://doi.org/10.1101/809285doi: bioRxiv preprint 

https://doi.org/10.1101/809285
http://creativecommons.org/licenses/by-nc-nd/4.0/


SIGNATURES OF CRITICALITY IN CORTICAL EXCITABILITY 
 

22 
 

 

Figure 4. Control measures. A) Single-trial compound nerve action potentials (CNAP) of the median 
nerve measured on the inner side of the upper arm; depicted for an exemplary subject. B) DFA exponents 
(black) and CNAP (orange) of the median nerve; averaged over all subjects. C) Single-trial SEPs of the 
thalamus-related CCA component of an exemplary subject. D) DFA exponents (black) and SEP (orange) 
of the thalamus-related CCA component; averaged over the 13 subjects in which a peak at around 15 
ms was observed on single-trial level. E) Average spatial pattern of the thalamus-related CCA 
components; averaged over 13 subjects. F) Simulation of the influence of signal-to-noise ratio (SNR) 
on the measurement of DFA exponents. Signals with varying DFA exponents (plotted on vertical axis) 
were mixed with white noise (i.e., DFA exponents of ~0.5) with varying SNR (plotted on horizontal 
axis). The resulting DFA exponents of the mixed signals are color-coded. The red circle indicates the 
region of empirically observed DFA exponents of ~0.57 at an SNR of ~1.68 suggesting an underlying 
DFA exponent of the unmixed source of ~0.63. For visualization purposes, the results of the simulation 
are displayed only for a sub-range of DFA exponents and SNRs here. 
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DFA exponents and SNR 

Since it is known from previous studies that the signal-to-noise ratio (SNR) highly 

affects the measurement of power-law dynamics (Blythe et al., 2014), we investigated the 

relationship between DFA exponents and SNR in single-trial SEPs. On average across all 

participants, the SNR of the tangential CCA component was >RS(STUVWX)
>RS(V=TSY)

= 1.68	(SD = .42), 

and showed a positive rank correlation with DFA exponent increase in the time range from 10 

to 50 ms post-stimulus, r = .36, p = .049. 

Additionally, we further clarified this relationship with simulations: We mixed signals 

expressing different DFA exponents with white noise (DFA exponent α = 0.5), for a range of 

SNRs, and measured the DFA exponent of these mixed signals. As is visible from Figure 4F, 

DFA exponents of the mixed signals are attenuated towards α = 0.5 when lowering the SNR. 

Given an SNR of 1.68 and an empirical DFA exponent of α = 0.575, as was the case for the 

tangential CCA component in the present study, our simulations suggest an underlying source 

with a DFA exponent of α ≈ 0.63. Yet this value most likely still underestimates the “true” 

power-law dynamics of the system as the signal term contained in the empirical estimate of the 

SNR is not noise free but a mixture of both signal and noise. This leads to an overestimation of 

the SNR and in turn to an underestimation of the degrading impact of noise on the scaling 

exponent.  

To relate this simulation also to the others measures for which we calculated DFA 

exponents, we calculated the SNR of the CNAP at the upper arm and thalamic CCA components. 

Here, we found SNRs of 2.20 (SD = .85)  and 1.33 (SD = .11), respectively, suggesting that our 

signal quality was sufficient to detect DFA exponent increases if they had been there since the 

SNR of the CNAP was even higher than that of the SEP and the SNR of the thalamic CCA 

component was just slightly lower. 
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Power-law dynamics in alpha band activity and its relation to the SEP 

Since previous studies on cortical excitability in M/EEG focused on oscillatory activity 

in the alpha band, we investigated both its correspondence to the early part of the SEP as well 

as its DFA exponents. 

To test the relationship between alpha oscillatory activity and SEP amplitude, we 

performed a regression analysis between the mean alpha amplitude in a pre-stimulus window 

from -200 to -10 ms and the peak amplitude of the N20 component. Alpha activity was extracted 

from the same neuronal sources as the SEP by applying the spatial filter of the tangential CCA 

component.  A significant negative relationship was found on group-level using a random-slope 

linear-mixed-effects model, βfixed = -.034, t(25.095) = -4.895, p < .001. Thus, higher pre-

stimulus alpha activity was associated with more negative N20 peak amplitudes (Fig. 5A). 

 
 

 
Figure 5. Relation between pre-stimulus alpha band activity and the early SEP. A) Average SEP 
(tangential CCA component) plotted by quintiles of pre-stimulus alpha band amplitude, demonstrating 
their relationship with the N20 component peak (inlay). B) Correlation between DFA exponents of pre-
stimulus alpha amplitude and DFA exponents of the SEP in the time window from 20 to 25. The DFA 
exponents of the SEP were aggregated over time points using root-mean-square (rms). 

 

To control for spurious covariation caused by the auto-correlated structure of both 

signals, we additionally ran permutation tests using surrogate data with comparable temporal 

structure as suggested in (2015). Aggregated on group-level, these tests confirmed the negative 
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relationship between pre-stimulus alpha activity and N20 peak amplitude, rgroup-level = -.035, p 

< .001. 

Next, we investigated the DFA exponents of mean pre-stimulus alpha amplitude across 

trials. Averaged across subjects, we observed a mean DFA exponent of α = .60, which 

significantly differed from DFA exponents for shuffled trial order, t(30) = 6.627, p < .001. Also, 

DFA exponents in continuous, ongoing alpha activity were significantly increased across 

subjects, α = .66, t(30) = 10.591, p < .001. Thus, power-law dynamics were present in both pre-

stimulus and continuous alpha activity. 

To further test the relationship between pre-stimulus and SEP dynamics, we correlated 

DFA exponents of pre-stimulus alpha amplitude and DFA exponents of the SEP across 

participants. DFA exponents of the SEP were aggregated (using root-mean-square) in four 

consecutive time windows of 5 ms each, between 20 and 40 ms post-stimulus. DFA exponents 

of alpha activity were correlated with the DFA exponents of the first time window from 20 to 

25 ms, r = .485, p = .025 (Bonferroni-corrected; Fig. 5B). However, this relationship did not 

emerge for any other time window between 25 and 40 ms, ps > .3. Notably, the SNR of the SEP 

cannot explain the relation between DFA exponents of alpha activity and DFA exponents of 

the SEP, as no relationship was found between SNR of the SEP and DFA exponents of pre-

stimulus alpha activity, r = .208, p = .261. 

Taken together, both amplitude and temporal structure of oscillatory activity in the alpha 

band thus relate to the corresponding characteristics of the early SEP responses, establishing a 

link between these two measures of instantaneous cortical excitability. 
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4 Discussion 

In the present study, we investigated the temporal dynamics of neuronal excitability in 

the human primary somatosensory cortex by short-latency somatosensory evoked potentials. 

Fluctuations of excitability demonstrated power-law dynamics across trials, extending the 

previous notion that neuronal systems operate close to a critical state (Beggs and Plenz, 2003; 

Poil et al., 2012; Priesemann et al., 2013; Linkenkaer-Hansen et al., 2001; Palva et al., 2013) to 

variability in stimulus-evoked responses in the human sensory system. In addition, fluctuations 

in pre-stimulus alpha band activity and initial cortical excitation were related through their 

amplitudes as well as their temporal structure. For the first time, these findings thus link critical 

dynamics in ongoing and evoked activity as measured non-invasively in the human EEG, and 

directly associate the observed power-law dynamics with variability in cortical excitability. 

What do temporal dynamics in SEPs tell about the functioning of the neural system? 

Eearly SEP amplitudes demonstrated power-law dynamics persisting for time windows 

up to 50 seconds. Given that the SEP in the time range of the N20 component only reflects 

initial excitatory cortical processes (Bruyns-Haylett et al., 2017; Wikström et al., 1996; 

Nicholson Peterson et al., 1995), instantaneous excitability thus does not seem to vary 

stochastically independently over time (i.e. like white noise) but is characterized by long-range 

temporal dependencies. This means, cortical excitability at a given moment is related to its 

fluctuation history and contains information about subsequent dynamics. 

Such dynamics have often been interpreted within the hypothesis that the underlying 

system is poised at a critical state, that is a phase transition between distinct system regimes 

such as order and disorder (Kitzbichler et al., 2009; Sethna et al., 2001; Bak et al., 1987; Bak 

et al., 1988; Beggs and Plenz, 2003; visualized using the Ising model in Figure 1A). As the 

dynamic range, information processing and memory capacity of a system are maximized at 

such a phase transition (Kinouchi and Copelli, 2006; Shew and Plenz, 2013), it may be 
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beneficial for neural systems to be tuned to this close-to-critical state although the variability 

inherent to it may impair an exact mapping of stimulus features and neuronal activity in sensory 

processing. 

Typically, the power-law relationships in models of complex systems as well as in 

empirical neuronal avalanche recordings have been measured in the spatial domain, such as the 

distribution of size and duration of neuronal avalanches. Yet,  critical systems should also 

express power-law dynamics in the temporal domain as shown for the Ising model (Zhao et al., 

2017). Thus, the observed long-range temporal dependencies in cortical excitability in our data 

might in fact correspond to near-critical dynamics in the spatial domain as observed by Beggs 

and Plenz (2003) in their seminal study on the scale-free behavior of spontaneous neuronal 

avalanches in slices of the rat somatosensory cortex. 

Specifically, the temporal power-law dynamics in our data could reflect that neuronal 

excitability spatially differs across the network, in agreement with the notion of scale-free 

neuronal avalanches, which in turn leads to the observed amplitude fluctuations in the early 

SEP over time. Whereas a recent approach to measure neuronal avalanches from thresholded 

broad-band EEG data supported the notion of critical dynamics also after stimulus presentation 

(Arviv et al., 2015), our findings of power-law dynamics in early SEPs demonstrate near-critical 

dynamics for the first time in primarily stimulus-related processes in the human brain and 

suggest fluctuations of cortical excitability to be the driving underlying mechanism. 

Dissociation of temporal dynamics in the cortex from peripheral and subcortical variability 

To corroborate the notion of the observed power-law dynamics being a cortical 

phenomenon, we examined their origin in more detail. 

First, we measured power-law dynamics at the onset of the N20 component (not earlier), 

giving no cause to assume generators of power-law dynamics in stimulus processing up-stream 

of the primary somatosensory cortex. Second, source reconstruction confirmed that the 
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strongest generators of the N20 lay in the anterior wall of the post-central gyrus (Fig. 2E) as is 

expected from the literature for the N20 component (Allison et al., 1991). Third, no power-law 

dynamics were present in peripheral variability as measured from the compound nerve action 

potential (CNAP) of the median nerve. Fourth, thalamus-related activity reflected in the P15 

component of the SEP in a subsample of 13 subjects did not show any power-law dynamics 

either, suggesting that neuronal variability is stochastically independent even at final 

subcortical processing stages. 

Hence, we conclude that the observed power-law dynamics most likely are of cortical 

origin. 

Underestimation of power-law dynamics due to signal-to-noise ratio 

It is known that the signal-to-noise ratio (SNR) has an impact on the estimation of DFA 

exponents (Blythe et al., 2014), that is, even a signal with an exponent of α ≈ 1.0 would result 

in lower DFA exponents when being contaminated with strong noise characterized by 

exponents of α ≈ 0.5. Given our empirical single-trial SNR, simulated scenarios with varying 

SNRs and DFA exponents suggested a lower bound for the underlying DFA exponent of 

α ≈ 0.63, which is in the range of temporal power-law dynamics reported in previous 

MEG/EEG studies for ongoing alpha band activity (Linkenkaer-Hansen et al., 2001; Palva et 

al., 2013).  

Relationship between pre-stimulus alpha activity and initial cortex excitation 

Following the idea that oscillatory activity in the alpha band reflects cortical excitability 

(Romei et al., 2008; Klimesch et al., 2007; Zrenner et al., 2017; Sauseng et al., 2009), we tested 

whether this measure in a pre-stimulus window was related to the initial cortex excitation as 

assessed by the N20 amplitude. In our data, lower amplitudes of alpha band activity, 

hypothesized to reflect a state of increased excitability, were associated with smaller (less 

negative) N20 amplitudes. Although at a first glance this finding seems to contradict the 
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hypothesis of low alpha activity being associated with higher excitability  (Jensen and Mazaheri, 

2010; Klimesch et al., 2007) it may be explained in a straightforward manner by the 

neurophysiological basis of EEG generation. 

The scalp EEG reflects relative changes in collective charge distributions resulting from 

neuronal activation manifested in primary post-synaptic currents (PSCs; Lopes da Silva, 2004; 

Kandel et al., 2000; Ilmoniemi and Sarvas, 2019). The magnitude of an EEG potential U 

emerging through synchronous activity of a well-specified neuron population, as is assumed for 

the N20 component of the SEP, should follow the general relationship 

𝑈	~	𝐼 ∗ 𝑁VYc>=VS ∗ 𝐿𝐹 

where 𝐼  denotes the sum of local primary post-synaptic currents, 𝑁VYc>=VS  the number of 

involved neurons, and 𝐿𝐹 the lead field coefficient projecting source activity to the electrodes 

on the scalp. Since 𝑁VYc>=VS and LF can be assumed to be constant for the N20 component in 

a sequence of unchanging median nerve stimuli, we believe that primarily 𝐼 , reflecting 

excitatory PSCs, contributed to the amplitude variability of the early part of the SEP.  

Now, assuming that states of higher neuronal excitability are associated with membrane 

depolarization on a cellular level, the electrical driving force for further depolarizing inward 

trans-membrane currents is decreased and less current is needed to reach the threshold potential 

for excitatory responses (Castro-Alamancos, 2009). This leads to decreased PSCs at high 

excitability states (Deisz et al., 1991) and would result in lower amplitudes in the EEG. Hence, 

one should rather expect decreased N20 components following low pre-stimulus alpha activity, 

as was the case in our data. 

The relationship between pre-stimulus alpha activity and early SEP amplitudes is further 

corroborated by their corresponding degree of power-law dynamics in the time range of the 

SEP from 20 to 25 ms post-stimulus (Fig. 5B). Intriguingly, the idea that this link is established 

via cortical excitability manifested in pre-stimulus membrane potentials is consistent with a 
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recent study which indeed demonstrated near-critical dynamics in membrane potential 

fluctuations in the turtle visual cortex (Johnson et al., 2019). 

Although this notion should be treated with some caution as it is based on the strong 

assumption that mechanisms observed in single-cell recordings (in animals) can be generalized 

to cell populations in the human cortex, the present findings could represent the missing link 

between power-law dynamics on micro (single-cell) and macro (cell population) scale and 

would relate findings of criticality in neuronal avalanches to non-invasively measured EEG 

potentials in humans. 

Implications for the perspective on neural variability 

Why neuronal systems express large variability, particularly in perceptual processes, 

has been an enduring question for many years. The perspective on the temporal structure of 

variability in neural responses now extends our understanding of the underlying organizing 

principles. Not only is stimulus-evoked activity dependent on pre-stimulus network states but 

even the network states themselves seem to fluctuate in a structured manner – in our data 

manifested in near-critical dynamics in instantaneous cortical excitability. These dynamics are 

poised just at the border between deterministic and indeterministic behavior, which may enable 

neural networks to adaptively adjust during stimulus processing. Criticality may thus represent 

a compellingly parsimonious explanation of moment-to-moment fluctuations in neural 

responses and why they can actually be beneficial for neural systems. 
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