# Conserved nuclear receptors controlling a novel trait target fast-evolving genes expressed in a single cell 

```
        Conserved nuclear receptors controlling a novel trait
        target fast-evolving genes expressed in a single cell
```

Bogdan Sieriebriennikov ${ }^{1,2}$, Shuai Sun ${ }^{1}$, James W. Lightfoot ${ }^{1}$, Hanh Witte ${ }^{1}$, Eduardo Moreno ${ }^{1}$, Christian Rödelsperger ${ }^{1}$, Ralf J. Sommer ${ }^{1 *}$

```
\({ }^{1}\) Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
\({ }^{2}\) Current affiliation: Department of Biology, New York University, New York, NY 10003, USA
* corresponding author, ralf.sommer@tuebingen.mpg.de
```


#### Abstract

Environment shapes development through a phenomenon called developmental plasticity. Deciphering its genetic basis has implications for understanding evolution and adaptation to novel environments, yet molecular studies are scarce. Here, we expanded the gene regulatory network controlling predatory vs. non-predatory morphology in the nematode Pristionchus pacificus. First, we isolated a mutant in the nuclear hormone receptor nhr-1 with a previously unseen phenotypic effect. It disrupts mouth-form determination and results in animals combining features of both wild-type morphs. Further, we identified common targets of NHR1 and the previously identified nuclear hormone receptor NHR-40 through transcriptomics. Unlike their highly conserved regulators, the target genes have no orthologs in Caenorhabditis elegans and likely result from lineage-specific expansions. An array of transcriptional reporters revealed co-expression of all tested targets in the same pharyngeal gland cell. The morphological remodeling of this cell accompanied the evolution of teeth and predation, linking rapid gene turnover with morphological innovations.


## Keywords

Developmental plasticity, nuclear hormone receptors, Pristionchus pacificus, gene regulatory networks, switch genes, Astacins, evolutionary novelty.

## Introduction

Developmental plasticity is the ability to generate different phenotypes in response to environmental input ${ }^{1}$. As a result, even genetically identical individuals may develop distinct phenotypes, the most extreme example being castes in social insects ${ }^{2}$. Developmental plasticity is attracting considerable attention in the context of adaptation to climate change ${ }^{3-6}$ and as a facilitator of evolutionary novelty ${ }^{7-11}$. However, the role of plasticity in evolution has been contentious ${ }^{6,12}$ because the genetic and epigenetic underpinnings of plastic traits have long remained elusive. Nonetheless, recent studies have begun to elucidate associated molecular mechanisms in insects and nematodes ${ }^{13-16}$. Ultimately, the identification of gene regulatory networks (GRN) controlling plasticity will provide an understanding of development in novel environments and enable testing theories about the long-term evolutionary significance of plasticity.

The free-living nematode Pristionchus pacificus has recently been established as a model to study plasticity ${ }^{13}$. These worms can develop two alternative mouth forms, called eurystomatous (Eu) and stenostomatous (St) mouth forms, respectively. Eu morphs have a wide buccal cavity and two large opposed teeth enabling predation on other nematodes, while St morphs have a narrow buccal cavity and one tooth limiting their diet to microbial sources ${ }^{17,18}$ (Fig. 1A-C, SFig. 1A). The wild-type P. pacificus strain PS312 preferentially forms Eu morphs in standard culture conditions on agar plates, but becomes predominantly St in liquid culture ${ }^{19}$. Additionally, nematode-derived modular metabolites excreted by adult animals induce the predatory Eu morph ${ }^{20,21}$. A forward genetic screen identified the sulfatase gene eud-1 as a developmental switch confirming long-standing predictions that plastic traits are regulated by binary switches ${ }^{18}$. Subsequent studies implicated several other enzyme-encoding genes, such as nag-1, nag-2, and sult-1/seud-1 in regulating mouth-form plasticity ${ }^{22-25}$. Additionally, the chromatin modifier genes Isy-12 and mbd-2 influence eud-1 expression ${ }^{26}$. In contrast, only one transcription factor, the nuclear hormone receptor (NHR) NHR-40, was so far found to regulate mouth-form fate ${ }^{27}$, and no downstream targets have been identified (Fig. 1D).

Here, we leveraged the power of suppressor screen genetics to identify the conserved nuclear hormone receptor NHR-1 as a second transcription factor controlling mouth-form development. It differs from nhr-40 and all the other genes identified to date in that nhr-1 mutants develop a morphology that combines features of the two morphs, consistent with disrupted mouth-form determination. Furthermore, transcriptomic profiling revealed that NHR40 and NHR-1 share transcriptional targets, which exhibit functional redundancy and are expressed in a single pharyngeal gland cell, g1D. This cell has undergone extreme morphological remodeling in nematode evolution, which is associated with the emergence of teeth and predatory feeding. Interestingly, nhr-1 and nhr-40 are well conserved, whereas all target genes are rapidly evolving and have no orthologs in C. elegans. This study enhances the understanding of the GRN regulating mouth-form plasticity, elucidates the evolutionary dynamics of underlying genes and links morphological innovations with rapid gene evolution.

## Results and Discussion

## Suppressor screen in nhr-40 identifies another NHR gene regulating mouth-form development

While our previous studies have identified various components involved in the regulation of mouth form plasticity, most of these genes are expressed in neurons responsible for environmental sensing and we are yet to find factors acting in the tissues forming the mouth structure. Therefore, we looked for more downstream factors by conducting a suppressor screen in the mutant background of nhr-40. This is the most downstream gene in the current GRN controlling $P$. pacificus mouth-form plasticity and it encodes a transcription factor ${ }^{27}$. We mutagenized nhr-40(tu505) worms, which are all-Eu, and isolated one allele, tu515, that had a no-Eu phenotype (Fig 1E, Table 1). The phenotype was fully penetrant, both in the presence of $n h r-40(t u 505)$ and after outcrossing, i.e. Eu animals were never observed under any culture condition. Thus, tu515 represents a novel factor influencing the mouth-form ratio. Interestingly, however, tu515 mutants also exhibited a non-canonical mouth morphology (Fig. 1A, SFig. 1A, SFig. 3). In contrast to all previously isolated mutants, which either display altered mouth-form frequencies or an aberrant morphology, tu515 individuals develop a morphology that combines normal features of the two morphs with no apparent dimorphism. Specifically, tu515 mutants closely resemble the St morph in that they have a flattened dorsal tooth, lack a fully developed right ventrosublateral tooth, and the anterior tip of the promesostegostom aligns with the anterior tip of the gymnostom plate. However, the width of the mouth and the curvature of the dorsal tooth appear intermediate between Eu and St, and the right ventrosublateral ridge is frequently enlarged and resembles an underdeveloped tooth of the Eu morph (Fig. 1A, SFig. 1A). Therefore, while other known mutants affect mouth-form determination by changing the preferred developmental trajectory, tu515 is the first mutant that disrupts determination, resulting in non-canonical morphology that resembles the St morph but combines features of both morphs.

To map tu515, we performed bulk segregant analysis. We examined the list of nonsynonymous and nonsense mutations within the candidate region on the X chromosome (SFig. 2B, STable 1) and discovered a non-synonymous mutation in another NHR-encoding gene, nhr-1. The substitution changed the sequence of a highly conserved FFRR motif within the DNA recognition helix ${ }^{28}$ to FFRW, which may cause the loss of DNA-binding activity. We performed the following experiments to verify that nhr-1 is the suppressor of nhr-40(tu505). First, we created nhr-1 mutants using CRISPR/Cas9 by generating frameshift mutations at the beginning of the ligand-binding domain (LBD). The resulting alleles tu1163 and tu1164 exhibited a no-Eu phenotype and the same morphological abnormalities as tu515 (Fig. 1A, SFig. 1A, Table 1). Second, we crossed the tu1163 and tu515 mutants and established that tu1163/tu515 trans-heterozygotes were no-Eu showing that the two mutants do not complement each other (Table 1). Third, we overexpressed the complementary DNA (cDNA) of nhr-1 driven by the nhr-1 promoter region in the nhr-1(tu1163) mutant background and obtained an almost complete rescue (Table 1). Fourth, we crossed nhr-1(tu1163) with nhr40(tu505) and observed a highly penetrant no-Eu phenotype in double mutant animals, similar to the phenotype of tu515 nhr-40(tu505) mutants (Table 1). Taken together, frameshift alleles of nhr-1 and the original suppressor allele tu515 exhibit the same phenotype, do not complement each other, and have identical epistatic interactions with nhr-40(tu505). Therefore, we conclude that $n h r-1$ is the suppressor of $n h r-40(t u 505)$.

## Reverse genetic analysis of nhr-40 results in all-stenostomatous mutants

The available alleles of nhr-1 and nhr-40 have different phenotypes with regard to mouth-form frequency and morphology. This is surprising because NHRs often form heterodimers ${ }^{29}$, in which case loss-of-function phenotypes of interacting partners are identical. Two different hypotheses could explain our observations. First, nhr-1 and nhr-40 may indeed have different functions. Second, the three available alleles of nhr-40 (tu505, iub6, iub5), all of which are non-synonymous substitutions outside of the DNA-binding domain (DBD) ${ }^{27}$, may represent gain-of-function alleles. Our previous analysis had suggested that these alleles are
loss-of-function based on the phenotype of nhr-40 overexpression, which resulted in all-St animals ${ }^{27}$. However, we recently realized that in C. elegans, overexpression of Cel-nhr-40 and loss-of-function of Cel-nhr-40 induced by RNAi and a deletion mutation all cause similar developmental defects ${ }^{30}$. This may occur if NHR-40 inhibits its own transcription ${ }^{31}$ or if the concatenated coding sequence of the rescue construct acts as a substrate to induce RNAi ${ }^{30}$. Therefore, we investigated nhr-40 in P. pacificus further, and generated nonsense alleles using CRISPR/Cas9.

We introduced mutations in two different locations in nhr-40 (Fig. 2A). The alleles tu1418 and tu1419 truncate the DBD. The tu1420 allele contains a frameshift at the beginning of the LBD while leaving the DBD intact. We phenotyped the newly obtained mutants in liquid S-medium, which represses the Eu morph, and on agar plates, which induces it ${ }^{19}$. All frameshift alleles had a completely penetrant all-St phenotype in both culture conditions, which is opposite to the original ethyl methanesulfonate (EMS) alleles (Table 1). The newly obtained nhr-40 mutants displayed no morphological abnormalities seen in nhr-1 mutants. Additionally, we created a null allele, tu1423, which contains a 13 kb deletion or rearrangement of the locus (SFig. 2A). This null allele again had a completely penetrant all-St phenotype and showed no morphological abnormalities (Table 1). To eliminate the possibility that the phenotype of the EMS mutants was caused by random mutations outside nhr-40, we introduced a nucleotide substitution identical to iub6 via homology-directed repair (Fig. 2A). Indeed, the two resulting alleles, tu1421 and tu1422, had an all-Eu phenotype, identical to that of iub6 and other EMS alleles, and opposite to that of the frameshift alleles (Table 1). Thus, frameshift mutations in DBD, LBD, and the deletion/rearrangement of the entire gene have an opposite phenotype to that of the three previously isolated non-synonymous substitutions. We conclude that tu505, iub6, iub5, tu1421 and tu1422 are gain-of-function alleles.

## NHR-40 and NHR-1 interact post-transcriptionally

In GRNs, transcription factors may activate or repress each other transcriptionally ${ }^{32-36}$, or alternatively, they may interact at the post-transcriptional level. The latter includes indirect
interactions, such as independent binding to the same promoters ${ }^{37}$, or ligand-mediated interactions ${ }^{38}$. To distinguish if nhr-1 and nhr-40 interact at the transcriptional or posttranscriptional level, we analyzed the transcriptomes of wild type, nhr-1 loss-of-function, nhr40 loss-of-function and nhr-40 gain-of-function mutants at two developmental stages (Fig. 3A). RNA collected from J2-J4 larvae is enriched with transcripts expressed at the time of mouthform determination, as environmental manipulation during this time window affects morph frequency ${ }^{39}$. RNA collected from J4 larvae and adults is enriched with transcripts expressed at the time of mouth-form differentiation, because cuticularized mouthparts that distinguish the two morphs are believed to be secreted during the J 4 -adult molt ${ }^{40}$. We found that at both time points, nhr-40 transcript levels were not affected by loss-of-function of nhr-1. Similarly, nhr-1 transcript levels were not affected by loss-of-function of nhr-40, although they were slightly, but not significantly increased by nhr-40 gain-of-function (Fig. 2B). Thus, at the transcriptional level, both nhr genes remain unaffected by the loss-of-function of the other nhr gene. Therefore, NHR-40 and NHR-1 may interact at the post-transcriptional level, although the possibility remains that their transcriptional interaction in specific cells is masked in wholeanimal transcriptome data. The lack of linear transcriptional regulation is consistent with different phenotypic effects of $n h r-40$ and $n h r-1$.

## nhr-40 and nhr-1 are expressed at the site of polyphenism

Next, we wanted to determine the expression pattern of nhr-1 and nhr-40 and test if they were co-expressed. We took three complementary approaches to establish the expression pattern of nhr-1. First, we created transcriptional reporters comprising the presumptive promoter region upstream of the potential start site in the second exon fused with TurboRFP or Venus. The resulting expression pattern was broad with the strongest expression in the head, including both muscle and gland cells of the pharynx, and what may be the hypodermal and arcade cells (Fig. 2D, SFig. 1B). Second, we performed antibody staining against an HA epitope tag in the nhr-1 rescue line described above. We observed a similar expression pattern that was predictably localized to the nuclei (Fig. 2C). Finally, we used

CRISPR/Cas9 to "knock in" an HA tag in the endogenous nhr-1 locus at the C-terminus of the coding sequence. Antibody staining against HA revealed a similar expression pattern but with a weaker signal due to the lower number of copies of endogenous DNA (SFig. 1C). Together, these results show that NHR-1 localizes to nuclei of multiple cells in the head region, with strong expression in pharyngeal muscle cells, which presumably secrete structural components of the teeth.

To explore whether NHR-40 and NHR-1 are expressed in overlapping tissues, we created a double reporter line, in which the nhr-40 promoter is fused to TurboRFP and the nhr1 promoter to Venus. We observed a strong and consistent expression of nhr-40 in the head. Specifically, it localized to the pharyngeal muscle cells and cells whose cell body position is consistent with them being arcade or hypodermal cells (Fig. 2D, SFig. 1D). nhr-40 and nhr-1 signals co-localized in a subset of presumptive hypodermal and arcade cells, and in the pharyngeal muscles. In contrast, only nhr-1 was expressed in the dorsal pharyngeal gland cell g1D (Fig. 2D, SFig. 1D,E). In summary, while the expression of nhr-40 is more restricted than the expression of nhr-1, the two genes display robust co-localization in several cell types.

## Suppressor screen in nhr-1 failed to identify downstream target genes

The experiments described above established that two NHR-type transcription factors control mouth-form plasticity in P. pacificus. We speculate that NHR-40 and NHR-1 regulate a set of target genes, which execute the developmental decision and generate alternative phenotypes. To identify such downstream target genes, we performed genetic and transcriptomic analyses. In the first attempt, we conducted two suppressor screens in the nhr1(tu1163) mutant background. In total, we screened approximately four times more gametes than in our first suppressor screen, but we isolated no all-Eu lines. There are three explanations for this result. First, functional nhr-1 may be essential for the Eu morph. Second, the number of downstream targets may be small, and a considerably larger screen is required to identify them. Third, the downstream targets may be redundant, and multiple genes may
need to be inactivated to change the phenotype. Therefore, we took an alternative approach and identified targets of NHR-40 and NHR-1 through transcriptomic profiling.

Common transcriptional targets of NHR-40 and NHR-1 encode extracellular proteins expressed during mouth-form differentiation

Since NHR-40 and NHR-1 are co-expressed and regulate the same phenotype, we speculate that they regulate a set of common target genes. We analyzed the full list of genes differentially expressed between the wild type and mutant samples from the experiments described above. Given the pleiotropic action of NHR-40 and NHR-1, we applied the following selection criteria. We only retained genes whose transcript levels at either of the two examined time points were simultaneously altered in nhr-1, nhr-40 loss-of-function, and nhr-40 gain-offunction mutants (Fig. 3A). Only 28 genes satisfied this criterion, and their expression changed in the same direction in the loss-of-function mutants of nhr-1 and nhr-40. We further retained those genes whose expression changed in one direction in the loss-of-function mutants of nhr1 and nhr-40, and in the opposite direction in the gain-of-function mutants of nhr-40 (Fig. 3A), resulting in a list of 24 genes, provided in Table 2, Interestingly, the expression of 23 of them decreased in the loss-of-function mutants (Table 2).

We hypothesized that if the making of cuticularized mouthparts involves these genes, they must encode extracellular proteins, and their expression is likely to be biased towards the time of mouth-form differentiation. To verify the extracellular function of the target proteins, we predicted signal peptides and compared the list of targets with the genome-wide pattern. Indeed, we found that the targets of NHR-40 and NHR-1 are significantly enriched with genes containing signal peptides (Fig. 3B). To examine a potential temporal expression bias, we compared the wild-type transcriptomes at the time of mouth-form determination and mouthform differentiation. While most genes in the genome (51\%) showed uniform expression at the two time points, 23 of the 24 targets of NHR-40 and NHR-1 where more highly expressed at the time of mouth-form differentiation (Fig. 3B). Surprisingly, we also observed a third trend in our data set. While only $12 \%$ of all genes in the genome are located on the X chromosome,

15 of the 24 targets of NHR-40 and NHR-1 were X-linked (Fig. 3B). Previously identified genes associated with mouth-form plasticity are frequently situated on the X -chromosome, including both nhr-40 and nhr-1, and additionally the multigene locus comprising eud-1, nag-1 and nag2. While the exact meaning of this phenomenon remains unclear, the $X$ chromosome in $C$. elegans is enriched with hermaphrodite-biased somatically expressed genes ${ }^{41}$. Accordingly, the incidence of Eu morphs is higher in P. pacificus hermaphrodites than in males ${ }^{39}$, which may be reflected in the chromosomal distributions of the genes associated with the Eu morph. In summary, the downstream targets of NHR-40 and NHR-1 are enriched with genes that are X-linked, encode extracellular proteins, and are more highly expressed at the time of mouthform differentiation.

To explore the potential functions of the NHR-40 and NHR-1 targets, we used information about their annotated protein domains. Surprisingly, 12 of the 24 genes contain an Astacin domain (Table 2). Astacins are secreted or membrane-anchored Zinc-dependent endopeptidases, first described in the crayfish Astacus astacus ${ }^{42}$. Of the 40 genes present in C. elegans, only dpy-31, nas-6 and nas-7 have known functions, whereby mutations in these genes result in abnormal cuticle synthesis ${ }^{43,44}$. Another five of the 24 NHR targets encode a CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1) domain (Table 2), which is contained in extracellular proteins with diverse functions ${ }^{45-47}$, including the proteolytic modification of extracellular matrix ${ }^{48}$. Two genes belong to the glycoside hydrolases family 18 (Table 2), which includes chitinases and chitinase-like proteins ${ }^{49}$ that may modify the cuticle, as chitin is the main component of the cuticle in nematodes ${ }^{50}$. Finally, the NHR target list includes an unannotated protein, PPA30108 (Table 2), which contains multiple GGX repeats, where X is F or R. Intriguingly, a similar sequence repeat has been proposed to facilitate the formation of elastic fibers by structural proteins of spider silk ${ }^{51,52}$. Thus, the examination of the coding sequences and domain composition of the targets of NHR-40 and NHR-1 shows that most encode enzymes that may directly modify the cuticle, and one gene encoding what may be an elastic structural protein.

## A duodecuple Astacin mutant shows no mouth-form abnormalities

Next, we tested if mutations in the identified genes affected mouth-form frequency or morphology. We therefore performed systematic CRISPR/Cas9 knockout experiments of the 23 genes downregulated in the loss-of-function mutants. To compensate for potential redundancy between paralogous genes encoding identical domains, we produced lines in which all such genes are inactivated simultaneously. For example, rather than generating 12 strains with mutations affecting single Astacin-encoding genes, we produced a duodecuple mutant line, in which we sequentially knocked out all 12 genes (Table 1). We phenotyped the mutants both on agar plates and in liquid S-medium. However, we detected no significant change in mouth-form frequencies and no recapitulation of the morphological defects of nhr1. Similarly, we produced a quintuple CAP mutant and double chitinase mutants and observed no change in mouth-form frequency or morphology (Table 1). We speculate that this may be caused by the extreme redundancy in the factors involved. For instance, despite mutagenizing 12 Astacin-encoding genes, there are more than 60 such genes in the genome. Consistent with this, in a phenotypic screen of Astacin genes in C. elegans, the majority showed no detectable phenotypes and the function of one, nas-7, was only elucidated due to its enhancement of a weakly penetrant allele of nas- $\sigma^{44}$. Alternatively, it is also possible that some examined genes function in other tissues unrelated to mouth morphology. Therefore, we next studied the spatial expression of selected downstream target genes.

## Downstream targets genes are expressed in the same pharyngeal gland cell

We selected six of the 12 Astacin genes, one chitinase gene, one CAP gene, and the gene bearing similarity to spider silk proteins, and created transcriptional reporters by fusing their promoters with TurboRFP. Remarkably, all reporter lines showed expression in the same single cell, the dorsal pharyngeal gland cell g1D (Fig. 3C). In contrast, we found no expression in the pharyngeal muscles or other expression foci of nhr-40 and nhr-1. Thus, all analyzed targets are co-expressed with nhr-1 in g1D (Fig. 3C, SFig. 1E). The recent reconstruction of the pharyngeal gland cell system of $P$. pacificus ${ }^{53}$ revealed that the cell body of g1D is located
at the posterior end of the pharynx. It sends a long process through the entire pharynx to the anterior tip where it connects, via a short duct in the cuticle, to a channel in the dorsal tooth which opens into the buccal cavity (Fig. 1B, 3C). Importantly, the process of g1D is surrounded by pharyngeal muscle cells which directly underlie the teeth. Therefore, we hypothesize that the enzymes excreted from g1D act on the structural components that are themselves secreted by the pharyngeal muscles.

## Expansion of the pharyngeal gland cells is concomitant with the emergence of teeth

The expression of the targets of NHR-40 and NHR-1 in g1D is remarkable, because g1D is the site of a major evolutionary innovation in the family Diplogastridae, to which $P$. pacificus belongs. The pharynx in free-living nematodes of the order Rhabditida and the outgroup ${ }^{54}$ family Teratocephalidae is divided into two parts. The anterior part, called the corpus, is muscular, and in some lineages ends with a dilation, called the median bulb. The posterior part, called the postcorpus, is divided into a narrow isthmus and a dilation, called the terminal bulb, which contains muscle cells and three to five gland cells. The terminal bulb contains muscular valves that form a specialized cuticular structure, the grinder, which helps fragment food particles ${ }^{55}$ (Fig. 4). Phylogenetic reconstruction indicates that the outgroup Teratocephalidae, and the rhabditid families Cephalobidae and Rhabditidae retained the ancestral character states, whereby they have a grinder, but no teeth ${ }^{56-58}$. In contrast, Diplogastridae have no grinder, but they have concomitantly gained teeth at the base of the family ${ }^{7,59}$. The acquisition of teeth and the loss of the grinder were accompanied by the reduction of the muscle cells in the postcorpus, and an expansion of three gland cells g1D, g1VL, and g1VR, one in each sector of the trilaterally symmetrical pharynx ${ }^{53,59}$ (Fig. 4). While the exact role of pharyngeal gland cells in C. elegans and other nematodes has remained elusive ${ }^{55}$, we speculate that the functional remodeling of g1D, in which the target genes of NHR-40 and NHR-1 are expressed, may be a prerequisite for the formation of teeth and the evolution of predation. Therefore, we investigated the evolutionary dynamics of the identified genes expressed in this cell.

## Conserved transcription factors regulate fast-evolving target genes

To investigate if the morphological lineage-specific evolutionary innovation in $P$. pacificus and Diplogastridae is associated with taxonomically restricted genes, we reconstructed the phylogeny of NHR genes and their identified targets. This is an important evolutionary question as recent genomic studies involving deep taxon sampling revealed high evolutionary dynamics of novel gene families in Pristionchus, with only one third of all genes having 1:1 orthologs between P. pacificus and C. elegans ${ }^{60,61}$. First, we reconstructed the phylogeny of NHR genes. We identified similar numbers of NHR genes in the genomes of $P$. pacificus and C. elegans - 254 and 266 genes, respectively. In the phylogenetic tree (Fig. 5A), most clades contained genes from predominantly or exclusively one of the two species. These genes likely result from lineage-specific duplications and losses, a phenomenon commonly seen in nematode gene families ${ }^{62}$. nhr- 40 and nhr-1, however, belonged to one of the few clades that contained a mixture of genes from both species, with many genes displaying a 1:1 orthology relationship. Indeed, the P. pacificus and C. elegans copies of nhr-40 and nhr-1 showed 1:1 orthology with 100\% bootstrap support (Fig. 5A). Importantly, nhr-40 and nhr-1 are also extremely closely related to each other (Fig. 5A). Thus, in the overall context of NHR evolution, $n h r-40$ and nhr-1 are closely related duplicates that have been conserved since the divergence of $P$. pacificus and C. elegans.

The conservation of nhr-40 and nhr-1 is in stark contrast to the evolutionary history of their downstream targets. To reconstruct the phylogenies of the Astacin, CAP and chitinase genes (Fig. 5B-D), we used functional domains rather than complete genes to facilitate the alignment of genes with different domain architectures. Similar to the case of NHRs, all three gene families exhibit strong signatures of lineage-specific expansions. Furthermore, all target genes containing Astacin, CAP and chitinase domains belonged to such lineage-specific clades (Fig. 5B-D). These findings suggest that the targets of NHR-40 and NHR-1 undergo rapid turnover. This is further supported by the phylogeny of CAP genes within the genus Pristionchus. Specifically, the five targets identified in P. pacificus clustered separately from the homologs in the early branching species P. fissidentatus with 94\% bootstrap support (Fig.

5E). Thus, two conserved NHRs target rapidly evolving downstream genes of multiple gene families. We speculate that the striking co-expression of the target genes results from an ancient regulatory linkage between the NHRs and the promoters of the ancestral target genes. Such divergent evolutionary dynamics of transcription factors and their downstream targets might represent general features of GRNs.

## Conclusions

In this study, we expanded the GRN controlling predatory vs. non-predatory plasticity in $P$. pacificus, thereby enhancing the molecular understanding of plasticity. We uncovered novel genetic factors and genomic features at two regulatory levels, which allowed linking rapid gene evolution with morphological innovations associated with plasticity. First, we identified a mutation in the nuclear receptor gene nhr-1, which disrupts mouth-form determination. Most previously identified genes, such as eud-1 or sult-1/seud-1, influence the determination process by affecting the preferred developmental trajectory, but the resulting morphology exhibits no observable differences to the corresponding wild-type morphology ${ }^{18,23,24}$. On the other hand, interfering with heat shock protein activity, including a mutation in daf-21/Hsp90, produces aberrant morphologies while maintaining the dimorphism ${ }^{63}$. In contrast to both classes of genetic interventions, mutations in nhr-1 lead to a morphology that combines features of normal Eu and St morphs, with no apparent dimorphism. Therefore, we speculate that NHR-1 is required for mouth-form determination and the specification of both morphs. On the contrary, we identified that gain- and loss-offunction mutations in nhr-40 result in all-Eu and all-St phenotypes, respectively, reminiscent of the role of daf-12, another nhr gene, in controlling dauer plasticity in C. elegans ${ }^{64}$. Different phenotypic effects of nhr-1 and nhr-40 are also consistent with the lack of evidence of transcriptional regulation of one factor by the other. Except for DAF-12 in C. elegans, no single nematode NHR has been de-orphanized. Therefore, the identification of the potential ligands of NHR-1 and NHR-40 may reveal additional layers of regulation and elucidate their crosstalk. Indeed, recent studies suggested that cytosolic sulfotransferases, including sult-1/seud1 in P. pacificus and its homolog ssu-1 in C. elegans, may regulate NHRs by modifying their ligands ${ }^{23,24,65}$.

Second, the transcriptomic analysis of nhr-1 and nhr-40 mutants revealed an unexpectedly small number of downstream targets. While cell-specific signals may be masked in whole-animal transcriptome data, and our selection criteria excluded genes affected by the
gain-of-function of nhr-40 in other ways than by exhibiting increased transcript levels, having a small list of target genes enabled a systematic analysis of their function and expression. Both the absence of phenotypes in duodecuple and quintuple mutants, and the restricted expression of all tested genes in the same cell g1D are compatible with extreme redundancy. Such redundancy might result from features of genome evolution that are common to nematodes and other animals. Studies over the last decade revealed that nematode genomes are gene-rich and exhibit high rates of gene birth and death ${ }^{60,66,67}$. In particular, enzymeencoding genes are subject to high evolutionary dynamics ${ }^{62}$. Therefore, the position of genes in GRNs may determine the speed and direction of their evolution. Consistent with this idea, many genes encoding proteins of signal transduction and their terminal transcription factors are highly conserved across animals ${ }^{68-70}$. In this study, we complement this knowledge by showing that the downstream targets of conserved transcription factors are indeed fast evolving genes. Importantly, their expression focus, the g1D cell, also underwent a major evolutionary change, whereby its structural and functional remodeling accompanied the emergence of teeth in the family Diplogastridae. Thus, our study demonstrates that fastevolving genes are expressed in a fast-evolving cell, linking morphological innovations with rapid gene evolution.

## Methods

## Maintenance of worm cultures and genetic crosses

Stock cultures of all strains used in this study were reared at room temperature (20$25^{\circ} \mathrm{C}$ ) on nematode growth medium (NGM) (1.7\% agar, $2.5 \mathrm{~g} / \mathrm{L}$ tryptone, $3 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}, 1 \mathrm{mM}$ $\mathrm{CaCl}_{2}, 1 \mathrm{mM} \mathrm{MgSO} 4,5 \mathrm{mg} / \mathrm{L}$ cholesterol, $25 \mathrm{mM} \mathrm{KPO}_{4}$ buffer at pH 6.0 ) in 6 cm Petri dishes, as outlined in the $C$. elegans maintenance protocol ${ }^{71}$. Escherichia coli OP50 was used as food source. Bacteria were grown overnight at $37^{\circ} \mathrm{C}$ in L Broth ( $10 \mathrm{~g} / \mathrm{L}$ tryptone, $5 \mathrm{~g} / \mathrm{L}$ yeast extract, $5 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}, \mathrm{pH}$ adjusted to 7.0 ), and $400 \mu \mathrm{~L}$ of the overnight culture was pipetted on NGM agar plates and left for several days at room temperature to grow bacterial lawns. P. pacificus were passed on these lawns and propagated by passing various numbers of mixed developmental stages. To cross worms, agar plates were spotted with $10 \mu \mathrm{~L}$ of the E. coli culture, and five to six males and one or two hermaphrodites were transferred to the plate and allowed to mate. Males were removed after two days of mating.

## Mouth form phenotyping

We phenotyped worms in two culture conditions. Rearing P. pacificus on solid NGM induces the Eu morph and facilitates identification of Eu-deficient (all-St) phenotypes. Conversely, growing worms in liquid S-medium ( $5.85 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}, 1 \mathrm{~g} / \mathrm{L} \mathrm{K}{ }_{2} \mathrm{HPO}_{4}, 6 \mathrm{~g} / \mathrm{L} \mathrm{KH} \mathrm{KPO}_{4}$, $5 \mathrm{mg} / \mathrm{L}$ cholesterol, $3 \mathrm{mM} \mathrm{CaCl} 2,3 \mathrm{mM} \mathrm{MgSO} 4,18.6 \mathrm{mg} / \mathrm{L}$ disodium EDTA, $6.9 \mathrm{mg} / \mathrm{L}$ $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{mg} / \mathrm{L} \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 2.9 \mathrm{mg} / \mathrm{L} \mathrm{ZnSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.25 \mathrm{mg} / \mathrm{LCuSO} 4 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and 10 mM Potassium citrate buffer at pH 6.0 ) represses the Eu morph and facilitates identification of Eu-constitutive (all-Eu) phenotypes ${ }^{19,71}$. As food source, S-medium contained E. coli OP50 in the amount corresponding to 100 mL of an overnight culture with $\mathrm{OD}_{600} 0.5$ per 10 mL of medium. We started phenotyping by isolating eggs from stock culture plates, which contained large numbers of gravid hermaphrodites and eggs deposited on the agar surface ${ }^{71}$. To isolate eggs, we washed worms and eggs from plates with water, and incubated them in a mixture of 0.5 M NaOH and household bleach at 1:5 final dilution for 10 min with regular vortexing to
disintegrate vermiform stages. Remaining eggs were pelleted at $1,300 \mathrm{~g}$ for 30 sec , washed with 5 mL of water, pelleted again, resuspended in water and pipetted on agar plates or into S-medium. Agar plates were left at room temperature $\left(20-25^{\circ} \mathrm{C}\right)$ for $3-5$ days and 25 mL Erlenmeyer flasks with liquid medium were shaken at $22^{\circ} \mathrm{C}$, 180 rpm for $4-6$ days. Adult hermaphrodites were immobilized on $5 \%$ Noble Agar pads with $0.3 \% \mathrm{NaN}_{3}$ added as an anesthetic, and examined using differential interference contrast (DIC) microscopy. Animals that had a large right ventrosublateral tooth, curved dorsal tooth, and the anterior tip of the promesostegostom posterior to the anterior tip of the gymnostom plate were classified as Eu morphs. Animals that did not exhibit these three characters simultaneously were classified as St morphs, although there was a distinction between the morphology of nhr-1 mutants and of other all-St mutants (SFig. 1A).

## Geometric morphometric analysis

We reused the published ${ }^{63}$ landmark data for the wild-type strain RS2333 and the daf21(tu519) mutant. We complemented this data set with newly collected data for the nhr1(tu1163) mutant, whereby we imaged young adults mounted on microscope slides on $5 \%$ Noble agar pads containing $0.3 \% \mathrm{NaN}_{3}$ as an anesthetic. Only individuals with their right body side facing upwards were imaged. We took stack images of the anterior tip of the head, and recorded X and Y coordinates of 20 landmarks identical to the ones used in the previous study ${ }^{63}$ using FIJI ${ }^{72}$. Procrustes alignment and PCA were done in R (ver. 3.4.4) ${ }^{73}$ using geomorph package ${ }^{74}$.

## CRISPR/Cas9 mutagenesis

We followed the previously published protocol for P. pacificus ${ }^{75}$ with subsequently introduced modifications ${ }^{76}$. All target-specific CRISPR RNAs (crRNAs) were designed to target 20 bp upstream of the protospacer adjacent motifs (PAMs). We purchased crRNAs and universal trans-activating CRISPR RNA (tracrRNA) from Integrated DNA Technologies (Alt-R product line). $10 \mu \mathrm{~L}$ of the 100 uM stock of crRNA was combined with $10 \mu \mathrm{~L}$ of the 100 uM
stock of tracrRNA, denatured at $95^{\circ} \mathrm{C}$ for 5 min , and allowed to cool down to room temperature and anneal. The hybridization product was combined with Cas9 protein (purchased from New England Biolabs or Integrated DNA Technologies) and incubated at room temperature for 5 min . The mix was diluted with Tris-EDTA buffer to a final concentration of $18.1 \mu \mathrm{M}$ for the RNA hybrid and $2.5 \mu \mathrm{M}$ for Cas9. When site-directed mutations were introduced via homologydirected repair, a ssDNA oligo template designed on the same strand as the gRNA was included in the mix at a final concentration of $4 \mu \mathrm{M}$. The diluted mixture was injected in the gonad rachis of approximately one day old adult hermaphrodites. Eggs laid by injected animals within a 12-16 h period post injection were recovered, and the F1 progeny were singled out upon reaching maturity. After F1 animals have laid eggs, they were placed in $10 \mu \mathrm{~L}$ of single worm lysis buffer ( 10 mM Tris- HCl at $\mathrm{pH} 8.3,50 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{MgCl} 2,0.45 \%$ NP-40, $0.45 \%$ Tween 20, $120 \mu \mathrm{~g} / \mathrm{ml}$ Proteinase K), frozen and thawed once, and incubated in a thermocycler at $65^{\circ} \mathrm{C}$ for 1 h , followed by heat deactivation of the proteinase at $95^{\circ} \mathrm{C}$ for 10 min . The resulting lysate was used as a template in subsequent PCR steps. Where possible, molecular lesions at the crRNA target sites were detected by melting curve analysis on a LightCycler 480 Instrument II (Roche) of PCR amplicons obtained using LightCycler 480 High Resolution Melting Master (Roche). Presence of mutations in candidate amplicons was further verified by Sanger sequencing. Alternatively, PCR was done using Taq PCR Master Mix (Qiagen) and all the F1 were Sanger sequenced. To detect large rearrangements, we conducted whole genome re-sequencing of lines for which no PCR amplicon containing the crRNA target site could be obtained. For most such lines, we extracted genomic DNA using GenElute Mammalian Genomic DNA Miniprep Kit (Merck), whereby we modified the tissue digestion step by raising the Proteinase K concentration to $2 \mathrm{mg} / \mathrm{mL}$, and prepared next-generation sequencing (NGS) libraries using Nextera DNA Flex Library Prep Kit (Illumina). For the nhr40 null mutant line, we followed a recently introduced cost-effective alternative procedure ${ }^{77}$ with several modifications. Single worms were placed in $10 \mu \mathrm{~L}$ water, and frozen and thawed 3 times in liquid nitrogen. Then, we added $10 \mu \mathrm{~L} 2 \mathrm{x}$ single worm lysis buffer ( 20 mM Tris-HCl at pH 8.3, $100 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,0.9 \% ~ N P-40,0.9 \% ~ T w e e n ~ 20, ~ 240 ~ \mu \mathrm{~g} / \mathrm{ml}$ Proteinase K)
and incubated the tubes in a thermocycler at $65^{\circ} \mathrm{C}$ for 1 h . After a clean-up using HighPrep beads (MagBio Genomics), DNA was eluted in $7 \mu \mathrm{~L}$ Tris buffer at pH 8.0. Then, 100 pg of DNA was diluted with water to the total volume of $9 \mu \mathrm{~L}$, mixed with $2 \mu \mathrm{~L} 5 \mathrm{X}$ TAPS-DMF buffer ( 50 mM TAPS at $\mathrm{pH} 8.5,25 \mathrm{mM} \mathrm{MgCl} 2,50 \%$ DMF) and $1 \mu \mathrm{~L} \mathrm{Tn} 5$ transposase from Nextera DNA Library Prep Kit (Illumina) diluted beforehand 1:25 in dialysis buffer ( 100 mM HEPES at pH 7.2, $0.2 \mathrm{M} \mathrm{NaCl}, 0.2 \mathrm{mM}$ EDTA, $0.2 \%$ Triton X-100, $20 \%$ glycerol). The mixture was incubated for 14 min at $55^{\circ} \mathrm{C}$. Tagmented DNA was amplified using Q5 HotStart High-Fidelity DNA Polymerase (New England Biolabs) for 14 cycles, whereby adapters and indices were added as primer overhangs, and size-selected for 250-550 bp fragments using HighPrep beads (MagBio Genomics). NGS libraries prepared using both methods were sequenced in a paired-end run of a HiSeq 3000 machine (Illumina). Reads were mapped to the El Paco assembly of the $P$. pacificus genome ${ }^{78}$ using Bowtie 2 (ver. 2.3.4.1) $)^{79}$. We visually inspected read coverage in the loci of interest using $\mathrm{IGV}^{80}$ to identify the precise regions in which coverage was close to zero.

## EMS mutagenesis

To induce heritable mutations in $P$. pacificus, we incubated a mixture of J 4 larvae and young adults in M9 buffer ( $3 \mathrm{~g} / \mathrm{L} \mathrm{KH}_{2} \mathrm{PO}_{4}, 6 \mathrm{~g} / \mathrm{L} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 5 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{MgSO} 4$ ) with 47 $m$ ethyl methanesulfonate (EMS) for $4 \mathrm{~h}^{81}$. Subsequently, the worms were allowed to recover on agar plates with bacteria (see above), and 40-120 actively moving J4 larvae were singled out. After the animals have laid approximately 20 eggs, they were killed, and F1 progeny were allowed to develop and reach maturity. F1 animals (which contained heterozygous mutants) were then singled out, and F2 progeny (which contained a mixture of genotypes, including homozygous mutants) were allowed to develop until adulthood. In each F1 plate, we determined the mouth form in 5-10 F2 individuals using Discovery V20 stereomicroscope (Zeiss). If at least one individual appeared to have a mouth form different from that of the background strain, such an animal was transferred to a fresh plate and its progeny was screened again using DIC until we gained confidence that a homozygous line was isolated. In
the screen for suppressors of $n h r-40$, we mutagenized $n h r-40$ (tu505) worms, which are all-Eu, screened approximately 1,000 F1 plates, and isolated one no-Eu allele, tu515. In an attempt to identify further downstream target genes, we conducted two suppressor screens in the nhr1(tu1163) mutant background and screened approximately 3,800 F1 plates in total, but found no Eu individuals.

## Mapping of tu515

We crossed the tu515 mutant, produced in the background of the RS2333 strain (a derivative of the PS312 strain), to a highly-Eu wild type strain PS1843. The resulting males were crossed to a strain RS2089, which is a derivative of PS1843 containing a morphological marker mutation causing the Dumpy phenotype. The progeny were allowed to segregate and 100 no-Eu lines were established. Four individuals from each line were pooled and genomic DNA was extracted from the pool using the MasterPure Complete DNA and RNA Purification Kit (Epicentre). Additionally, genomic DNA was extracted from the tu515 line. NGS libraries were prepared using Low Input Library Prep kit (Clontech) and sequenced on Illumina HiSeq3000. Raw Illumina reads of the tu515 mutant and of a mapping panel were aligned to the El Paco assembly of the P. pacificus genome (strain PS312) ${ }^{78}$ by the aln and sampe programs of the BWA software package (ver. 0.7.17-r1188) ${ }^{82}$. Initial mutations were called with the samtools (ver. 1.7) mpileup command ${ }^{83}$. The same program was used to measure PS312 allele frequencies in the mapping panel at variant positions with regard to whole genome sequencing data of the PS1843 strain ${ }^{78}$. SFig. 2B shows that large regions between the positions 5 Mb and 16 Mb of the $P$. pacificus chromosome X exhibit high frequency of the PS312 alleles (the mutant background) in the mapping panel. In total, 28 nonsynonymous/nonsense mutations (STable 1) in annotated genes (El Paco gene annotations v1, Wormbase release WS268) were identified in the candidate interval by a previously described custom variant classification software ${ }^{84}$.

## Transgenesis

To identify putative promoter regions, which included 5' untranslated regions (UTR) and may have included the beginning of coding sequences, we manually re-annotated the 5 ' ends of predicted genes of interest using RNA-seq data and the information about predicted signal peptides. The ATG codon preceding the signal peptide or the last ATG codon in the second exon was designated as the putative start codon. As a general rule, the promoter region included a sequence spanning from the 3 ' end of the closest upstream gene on the same strand to the start codon, but if the upstream neighbor gene was located further than 2 kb away, a $1.5-2 \mathrm{~kb}$ region upstream of the identified start codon was designated as the putative promoter. In the case of inverted tandem duplicates in the head-to-head orientation, the $5^{\prime}$ end of the promoter region was approximately in the middle between the start codons of the two genes. For the reporter constructs, we used the previously published coding sequences of TurboRFP ${ }^{85}$ and Venus ${ }^{27}$ fused with the 3 ' UTR of the ribosomal gene rpl-23 ${ }^{85}$. For the nhr-1 rescue construct, we used the native coding sequence, in which we replaced native introns with synthetic introns, fused with the native 3' UTR. As the latter fragment could not be amplified from genomic or complementary DNA in one piece, we purchased a corresponding gBlocks fragments (Integrated DNA Technologies). FASTA sequences of all promoter regions, coding sequences and 3 ' UTRs are provided in SData 1.

Plasmids carrying reporter and rescue constructs, listed in STable 2, were created by Gibson assembly using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) or a homemade master mix ${ }^{86}$. Small modifications, such as deletions and insertions under 70 bp , were introduced using Q5 Site-Directed Mutagenesis kit (New England Biolabs). Injection mix for transformation was created by digesting the plasmid of interest, the marker plasmid carrying a tail-bound reporter egl-20p::TurboRFP (if applicable), and genomic DNA with FastDigest restriction enzymes (Thermo Fisher Scientific), whereby genomic DNA was cut with an enzyme(s) that had the same cutting site(s) as the enzyme(s) used to digest the plasmids. Digested DNA was purified using Wizard SV Gel and PCR Clean-Up system (Promega), and the components were mixed in the following ratios. Injection mixes with rescue
constructs contained $1 \mathrm{ng} / \mu \mathrm{L}$ rescue construct, $10 \mathrm{ng} / \mu \mathrm{L}$ marker, and $50 \mathrm{ng} / \mu \mathrm{L}$ genomic DNA. Injection mixes with reporter constructs contained $10 \mathrm{ng} / \mu \mathrm{L}$ reporter construct, $10 \mathrm{ng} / \mu \mathrm{L}$ marker, and $60 \mathrm{ng} / \mu \mathrm{L}$ genomic DNA. The mix was injected in the gonad rachis of approximately 1 day old hermaphrodites, and their progeny was screened for fluorescent animals ${ }^{85}$.

## Antibody staining

We followed a previously published protocol ${ }^{87}$ with minor modifications. Animals were washed from mature plates with phosphate-buffered saline (PBS) ( $137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}$, $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 1.8 \mathrm{mM} \mathrm{KH} \mathrm{KO}_{4}$ at pH 7.4 ), passed over a $5-20 \mu \mathrm{~m}$ nylon filter, concentrated at the bottom of a 2 mL tube and chilled on ice. We then added chilled fixative ( 15 mM Na PIPES at $\mathrm{pH} 7.4,80 \mathrm{mM} \mathrm{KCl}, 20 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{Na} 2$ EGTA, 5 mM Spermidine- $\mathrm{HCl}, 2 \%$ paraformaldehyde, $40 \% \mathrm{MeOH}$ ), froze the worms in liquid nitrogen and thawed them on ice for 1-2 h with occasional inversion. Subsequently, the animals were washed twice with TrisTriton buffer ( 100 mM Tris-HCI at pH 7.4, 1 mM EDTA, $1 \%$ Triton X-100), incubated in TrisTriton buffer with $1 \% \beta$-mercaptoethanol in a thermomixer at 600 rpm for 2 h at $37^{\circ} \mathrm{C}$, washed once in borate buffer ( $25 \mathrm{mM} \mathrm{H}_{3} \mathrm{BO}_{3}, 12.5 \mathrm{mM} \mathrm{NaOH}$ ), incubated in borate buffer with 10 mM dithiothreitol in a thermomixer at 600 rpm for 15 min at room temperature, washed once in borate buffer, incubated in borate buffer with $\sim 0.3 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in a thermomixer at 600 rpm for 15 min at room temperature, and washed once more in borate buffer. Next, the worms were washed three times with antibody buffer B ( $0.1 \%$ bovine serum albumin, $0.5 \%$ Triton X-100, $0.05 \% \mathrm{NaN}_{3}, 1 \mathrm{mM}$ EDTA in PBS) on a rocking wheel, incubated with a dye-conjugated antibody (Thermo Fisher Scientific, cat .\# 26183-D550 and cat. \# 26183-D488) diluted 1:25 in antibody buffer A (1\% bovine serum albumin, $0.5 \%$ Triton X-100, $0.05 \% \mathrm{NaN}_{3}, 1 \mathrm{mM}$ EDTA in PBS) on a rocking wheel in the dark for 3 h at room temperature or overnight at $4^{\circ} \mathrm{C}$, washed three times with antibody buffer B and mounted on slides in a $1: 1$ mixture of PBS and Vectashield (Vector Laboratories) with $1 \mu \mathrm{~g} / \mathrm{mL}$ DAPI added. Slides were imaged using a Leica SP8 confocal microscope.

## RNA-seq analysis

To obtain a sufficient number of eggs, we passed young adult hermaphrodites to new agar plates with 5-10 animals per plate. After their F1 progeny have laid eggs ( $5-6$ days), they were bleached (see above), then resuspended in $400 \mu \mathrm{~L}$ water per starting plate, pipetted onto multiple fresh plates with $100 \mu \mathrm{~L}$ suspension per fresh plate and placed at $20^{\circ} \mathrm{C}$. Animals were collected at 24 h (corresponding to J2 and J3 larvae), 48 h (J3 and J4 larvae) and 68 h (J4 instar larvae and young adults) post-bleaching by adding some water to the plates, scraping off the bacterial lawns with worms in them using disposable cell spreaders and passing the resulting suspension through a $5 \mu \mathrm{~m}$ nylon filter, which efficiently separated worms from bacteria. Worms were washed from the filter into 1.5 mL tubes, pelleted in a table-top centrifuge at the maximum speed setting, after which the supernatant was removed and 1 mL TRIzol (Invitrogen) was added to the worm pellets. Tubes were flash-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ for up to a month. To extract RNA, worms suspended in TRIzol were frozen and thawed three times in liquid nitrogen, debris were pelleted for 10-15 min at 14,000 rpm at $4^{\circ} \mathrm{C}$, and $200 \mu \mathrm{~L}$ of chloroform was added to the supernatant. After vigorous vortexing and incubation at room temperature $\left(20-25^{\circ} \mathrm{C}\right)$ for 5 min , tubes were rotated for 15 min at $14,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$. The aqueous phase was combined with an equal volume of $100 \%$ ethanol, RNA was purified using RNA Clean \& Concentrator Kit (Zymo Research) and its integrity was verified using RNA Nano chips on the Bioanalyzer 2100 instrument (Agilent). To analyze the transcriptome at the time of mouth form determination, we combined 500 ng RNA isolated at 24 h with 500 ng RNA isolated at 48 h post-bleaching, and proceeded to make libraries using NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (New England Biolabs). To analyze the transcriptome at the time of mouth form differentiation, we prepared libraries from $1 \mu \mathrm{~g}$ of RNA isolated at 68 h post-bleaching. For wild type strain PS312, four biological replicates were collected at different time points. For the mutants, two replicates of two independent alleles were collected at two different time points, and these were treated as four biological replicates. Specifically, we sequenced the following alleles: nhr-1(tu1163) loss-of-
function, nhr-1(tu1164) loss-of-function, nhr-40(tu505) gain-of-function, nhr-40(iub6) gain-offunction, nhr-40(tu1418) loss-of-function, nhr-40(tu1423) null.

Libraries were sequenced in two paired-end runs of a HiSeq 3000 machine, whereby we aimed at 10-20 mln reads per library. Raw sequences have been deposited in the European Nucleotide Archive with the study accession number PRJEB34615, and will be made available upon acceptance. The fourth biological replicate of wild-type PS312 and all replicates of the nhr-40 loss-of-function/null mutants were sequenced in a different run than the other samples. To ensure that batch effects were negligible, we additionally re-sequenced the first three replicates of wild-type PS312 in the same run and verified that coordinates in PCA conducted using complete transcriptomes were minimally altered when comparing the same samples sequenced in the two runs. Reads were mapped to the El Paco assembly of the $P$. pacificus genome ${ }^{78}$ using STAR (ver. 020201) ${ }^{88}$. Differential expression analysis was carried out in R (ver. 3.4.4) ${ }^{73}$ using Bioconductor (ver. 3.6) ${ }^{89}$ and DESeq2 (ver. 1.18.1) ${ }^{90}$, whereby we counted reads mapping to El Paco v1 gene predictions ${ }^{78}$. We applied an adjusted p-value cutoff of 0.05 and no fold change cutoff. Alignments and coverage were visualized in IGV ${ }^{80}$. To examine the transcript levels of nhr-1 and nhr-40, we repeated differential expression analysis, whereby we counted reads mapping to Trinity-assembled transcripts generated from previously published RNA-seq data ${ }^{26}$ because the El Paco v1 gene prediction for nhr-1 was incorrect in that it was a fusion of multiple neighboring genes. To test the differences in FPKM values for nhr-1 and nhr-40 in different mutants at each of the two time points, we performed t-test as implemented in the t.test function in $R(\text { ver. 3.4.4) })^{73}$ and applied false discovery rate (FDR) correction to the p -values obtained. Prior to conducting the t -test, we verified the assumptions for parametric statistics by performing Shapiro-Wilk test for normality (shapiro.test function) and Levene test for homoscedasticity (levene.test function of the car package ${ }^{91}$ ). Signal peptides were predicted using SignalP (ver. 4.1 ${ }^{922}$. To compare relative numbers of genes in different categories listed in Fig. 3B, we used chi-squared test as implemented in the chisq.test function in R (ver. 3.4.4) ${ }^{73}$.

## Phylogenetic reconstructions

To identify NHR, CAP, and chitinase genes in the C. elegans genome, we retrieved the current version (PRJNA13758) of predicted proteins and domains from the http://wormbase.org website and selected genes that contained "IPR001628", "CAP domain", and "IPR001223" as predicted InterPro domains, respectively. The list of Astacin genes was taken from an earlier study ${ }^{93}$ and the corresponding gene predictions were manually retrieved from the http://wormbase.org website. To identify NHR, Astacin, CAP, and chitinase genes in the $P$. pacificus genome, we predicted domains in the El Paco v1 version of gene predictions ${ }^{78}$ using HMMER (ver. 3.1b2) software in conjunction with the PFAM profile database ${ }^{94}$ and selected genes that contained "PF00105", "Astacin", "CAP", and "PF00704" as predicted PFAM domains, respectively. Manual inspection of the retrieved NHR genes in P. pacificus revealed that many of the gene predictions represent fusion of multiple neighboring genes. Therefore, we used the information about the predicted domains, RNA-seq data generated in this study, and Illumina and PacBio RNA-seq datasets generated earlier ${ }^{26,95,96}$ to manually reannotate the NHR gene predictions in P. pacificus. We submitted the improved annotations to http://wormbase.org and they will be released in due course. For the tree of CAP domains in $P$. pacificus and $P$. fissidentatus, we predicted domains in the Pinocchio versions of gene predictions for both genomes ${ }^{60}$ and selected genes that contained "PF00188" as a predicted PFAM domain. In the case of NHR genes, complete sequences were aligned, while in the case of other gene families, functional domains extracted using HMMER (ver. 3.1b2) were aligned to facilitate the alignment of genes with divergent domain architecture. Alignments were done in MAFFT (ver. 7.310 ) ${ }^{97}$ and maximum likelihood trees were built using RAxML (ver. 8.2.11) ${ }^{98}$. Protein-based trees were generated with the following parameters: -f a -m PROTGAMMAAUTO -N 100. In the case of CAP domains in P. pacificus and P. fissidentatus, we first generated a protein-based tree and identified a poorly resolved subtree containing the genes of interest. To increase the number of informative sites, we extracted corresponding nucleotide sequences, aligned them in MAFFT and built a tree in RAxML with the following parameters: -f a -m GTRCAT -N 100. Obtained phylogenetic trees were visualized using

FigTree (ver. 1.4.2). All phylogenetic trees and corresponding alignments are provided in 686 SData 2.

## References

1. West-Eberhard, M. J. Developmental plasticity and evolution. (Oxford University Press, 2003).
2. Corona, M., Libbrecht, R. \& Wheeler, D. E. Molecular mechanisms of phenotypic plasticity in social insects. Curr Opin Insect Sci 13, 55-60 (2016).
3. Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684-692 (2010).
4. Seebacher, F., White, C. R. \& Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61 (2014).
5. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800-803 (2008).
6. Oostra, V., Saastamoinen, M., Zwaan, B. J. \& Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).
7. Susoy, V., Ragsdale, E. J., Kanzaki, N. \& Sommer, R. J. Rapid diversification associated with a macroevolutionary pulse of developmental plasticity. Elife 4, e05463 (2015).
8. West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl. Acad. Sci. U. S. A. 102 Suppl 1, 6543-6549 (2005).
9. Corl, A. et al. The Genetic Basis of Adaptation following Plastic Changes in Coloration in a Novel Environment. Curr. Biol. 28, 2970-2977.e7 (2018).
10. Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. \& Foster, S. A. A test of the 'flexible stem' model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449462 (2008).
11. Levis, N. A. \& Pfennig, D. W. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin. Cell Dev. Biol. 88, 80-90
(2019).
12. Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372-375 (2015).
13. Sommer, R. J. et al. The genetics of phenotypic plasticity in nematode feeding structures. Open Biol. 7, 160332 (2017).
14. Projecto-Garcia, J., Biddle, J. F. \& Ragsdale, E. J. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr. Opin. Genet. Dev. 47, 1-8 (2017).
15. Opachaloemphan, C., Yan, H., Leibholz, A., Desplan, C. \& Reinberg, D. Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annu. Rev. Genet. 52, 489510 (2018).
16. Moczek, A. P. et al. The role of developmental plasticity in evolutionary innovation. Proc. Biol. Sci. 278, 2705-2713 (2011).
17. Bento, G., Ogawa, A. \& Sommer, R. J. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466, 494-499 (2010).
18. Ragsdale, E. J., Müller, M. R., Rödelsperger, C. \& Sommer, R. J. A Developmental Switch Coupled to the Evolution of Plasticity Acts through a Sulfatase. Cell 155, 922933 (2013).
19. Werner, M. S. et al. Environmental influence on Pristionchus pacificus mouth form through different culture methods. Sci. Rep. 7, 7207 (2017).
20. Bose, N. et al. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. Int. Ed Engl. 51, 12438-12443 (2012).
21. Werner, M. S., Claaßen, M. H., Renahan, T., Dardiry, M. \& Sommer, R. J. Adult Influence on Juvenile Phenotypes by Stage-Specific Pheromone Production. iScience 10, 123-134 (2018).
22. Sieriebriennikov, B. et al. A Developmental Switch Generating Phenotypic Plasticity Is Part of a Conserved Multi-gene Locus. Cell Rep. 23, 2835-2843.e4 (2018).
23. Namdeo, S. et al. Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus. Development 145, dev166272 (2018).
24. Bui, L. T., Ivers, N. A. \& Ragsdale, E. J. A sulfotransferase dosage-dependently regulates mouthpart polyphenism in the nematode Pristionchus pacificus. Nat. Commun. 9, 4119 (2018).
25. Bui, L. T. \& Ragsdale, E. J. Multiple plasticity regulators reveal targets specifying an induced predatory form in nematodes. Molecular Biology and Evolution (2019). doi:10.1093/molbev/msz171
26. Serobyan, V. et al. Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity. Nat. Commun. 7, 12337 (2016).
27. Kieninger, M. R. et al. The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus. Curr. Biol. 26, 2174-2179 (2016).
28. Sluder, A. E., Mathews, S. W., Hough, D., Yin, V. P. \& Maina, C. V. The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. Genome Res. 9, 103-120 (1999).
29. Evans, R. M. \& Mangelsdorf, D. J. Nuclear Receptors, RXR, and the Big Bang. Cell 157, 255-266 (2014).
30. Brozová, E., Simecková, K., Kostrouch, Z., Rall, J. E. \& Kostrouchová, M. NHR-40, a Caenorhabditis elegans supplementary nuclear receptor, regulates embryonic and early larval development. Mech. Dev. 123, 689-701 (2006).
31. Crews, S. T. \& Pearson, J. C. Transcriptional autoregulation in development. Curr. Biol. 19, R241-6 (2009).
32. Mangan, S. \& Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. U. S. A. 100, 11980-11985 (2003).
33. Macneil, L. T. \& Walhout, A. J. M. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21, 645-657 (2011).
34. Bulcha, J. T. et al. A Persistence Detector for Metabolic Network Rewiring in an Animal. Cell Rep. 26, 460-468.e4 (2019).
35. Abdusselamoglu, M. D., Eroglu, E., Burkard, T. R. \& Knoblich, J. A. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. Elife 8, e46566 (2019).
36. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571-575 (2015).
37. Jaumouillé, E., Machado Almeida, P., Stähli, P., Koch, R. \& Nagoshi, E. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock. Curr. Biol. 25, 1502-1508 (2015).
38. Anbalagan, M., Huderson, B., Murphy, L. \& Rowan, B. G. Post-translationa modifications of nuclear receptors and human disease. Nucl. Recept. Signal. 10, e001 (2012).
39. Serobyan, V., Ragsdale, E. J., Müller, M. R. \& Sommer, R. J. Feeding plasticity in the nematode Pristionchus pacificus is influenced by sex and social context and is linked to developmental speed. Evol. Dev. 15, 161-170 (2013).
40. Hirschmann, H. Über das Vorkommen zweier Mundhöhlentypen bei Diplogaster Iheritieri Maupas und Diplogaster biformis n . sp. und die Entstehung dieser hermaphroditischen Art aus Diplogaster Iheritieri. Zool. Jb., Abt. System., Ökol. u. Geogr 80, 132-170 (1951).
41. Reinke, V., Gil, I. S., Ward, S. \& Kazmer, K. Genome-wide germline-enriched and sexbiased expression profiles in Caenorhabditis elegans. Development 131, 311-323 (2004).
42. Gomis-Rüth, F. X., Trillo-Muyo, S. \& Stöcker, W. Functional and structural insights into astacin metallopeptidases. Biol. Chem. 393, 1027-1041 (2012).
43. Novelli, J., Ahmed, S. \& Hodgkin, J. Gene interactions in Caenorhabditis elegans define DPY-31 as a candidate procollagen C-proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 168, 1259-1273 (2004).
44. Park, J.-O. et al. Characterization of the astacin family of metalloproteases in $C$. elegans. BMC Dev. Biol. 10, 14 (2010)
45. Li, Y. et al. Structural insights into the interaction of the conserved mammalian proteins GAPR-1 and Beclin 1, a key autophagy protein. Acta Crystallogr D Struct Biol 73, 775792 (2017).
46. Darwiche, R., Kelleher, A., Hudspeth, E. M., Schneiter, R. \& Asojo, O. A. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein. Sci. Rep. 6, 28838 (2016).
47. Choudhary, V. \& Schneiter, R. Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 109, 16882-16887 (2012).
48. Gibbs, G. M., Roelants, K. \& O'Bryan, M. K. The CAP superfamily: cysteine-rich secretory proteins, antigen 5 , and pathogenesis-related 1 proteins - roles in reproduction, cancer, and immune defense. Endocr. Rev. 29, 865-897 (2008).
49. Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. U. S. A. 92, 70907094 (1995).
50. Lints, R. \& Hall, D. H. The cuticle. in WormAtlas (2009).
51. Tokareva, O., Jacobsen, M., Buehler, M., Wong, J. \& Kaplan, D. L. Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater. 10, 1612-1626 (2014).
52. Guan, J., Vollrath, F. \& Porter, D. Two mechanisms for supercontraction in Nephila spider dragline silk. Biomacromolecules 12, 4030-4035 (2011).
53. Riebesell, M. \& Sommer, R. J. Three-dimensional reconstruction of the pharyngeal gland cells in the predatory nematode Pristionchus pacificus. Journal of Morphology 278, 1656-1666 (2017).
54. van Megen, H. et al. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11, 927-950 (2009).
55. Altun, Z. F. \& Hall, D. H. Alimentary System, Pharynx. in WormAtlas (2009).
56. Zhang, Y. C. \& Baldwin, J. G. Ultrastructure of the postcorpus of the esophagus of

Teratocephalus lirellus (Teratocephalida) and its use for interpreting character evolution in Secernentea (Nematoda). Can. J. Zool. 79, 16-25 (2001).
57. Zhang Y. C. \& Baldwin J. G. Ultrastructure of the post-corpus of Zeldia punctata (Cephalobina) for analysis of the evolutionary framework of nematodes related to Caenorhabditis elegans (Rhabditina). Proceedings of the Royal Society of London. Series B: Biological Sciences 267, 1229-1238 (2000).
58. Chiang, J.-T. A., Steciuk, M., Shtonda, B. \& Avery, L. Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. J. Exp. Biol. 209, 1859-1873 (2006).
59. Zhang, Y. C. \& Baldwin, J. G. Ultrastructure of the Esophagus of Diplenteron sp. (Diplogasterida) to Test Hypotheses of Homology with Rhabditida and Tylenchida. J. Nematol. 31, 1-19 (1999).
60. Prabh, N. et al. Deep taxon sampling reveals the evolutionary dynamics of novel gene families in Pristionchus nematodes. Genome Res. 28, 1664-1674 (2018).
61. Dieterich, C. et al. The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat. Genet. 40, 1193-1198 (2008).
62. Markov, G. V., Baskaran, P. \& Sommer, R. J. The same or not the same: lineagespecific gene expansions and homology relationships in multigene families in nematodes. J. Mol. Evol. 80, 18-36 (2015).
63. Sieriebriennikov, B., Markov, G. V., Witte, H. \& Sommer, R. J. The Role of DAF21/Hsp90 in Mouth-Form Plasticity in Pristionchus pacificus. Mol. Biol. Evol. 34, 16441653 (2017).
64. Antebi, A., Yeh, W. H., Tait, D., Hedgecock, E. M. \& Riddle, D. L. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in $C$. elegans. Genes Dev. 14, 1512-1527 (2000).
65. Burton, N. O. et al. Neurohormonal signaling via a sulfotransferase antagonizes insulinlike signaling to regulate a Caenorhabditis elegans stress response. Nat. Commun. 9, 5152 (2018).
66. Rödelsperger, C., Streit, A. \& Sommer, R. J. Structure, Function and Evolution of The Nematode Genome. in eLS 26, (John Wiley \& Sons, Ltd, 2013).
67. Mitreva, M., Blaxter, M. L., Bird, D. M. \& McCarter, J. P. Comparative genomics of nematodes. Trends Genet. 21, 573-581 (2005).
68. Manning, G., Plowman, G. D., Hunter, T. \& Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514-520 (2002).
69. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. \& Scott, M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301-312 (1996).
70. Logan, C. Y. \& Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781-810 (2004).
71. Stiernagle, T. Maintenance of C. elegans (February 11, 2006). in WormBook (ed. The C. elegans research community) (2016).
72. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682 (2012).
73. R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2016).
74. Adams, D. C. \& Otarola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393-399 (2013).
75. Witte, H. et al. Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Dev. Genes Evol. 225, 55-62 (2015).
76. Lightfoot, J. W. et al. Small peptide-mediated self-recognition prevents cannibalism in predatory nematodes. Science 364, 86-89 (2019).
77. Zhou, S. et al. Characterization of a non-sexual population of Strongyloides stercoralis with hybrid 18S rDNA haplotypes in Guangxi, Southern China. PLoS Negl. Trop. Dis. 13, e0007396 (2019).
78. Rödelsperger, C. et al. Single-Molecule Sequencing Reveals the Chromosome-Scale

Genomic Architecture of the Nematode Model Organism Pristionchus pacificus. Cell Rep. 21, 834-844 (2017).
79. Langmead, B. \& Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).
80. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).
81. Pires-daSilva, A. Pristionchus pacificus protocols (March 14, 2013). in WormBook (ed. The C. elegans research community) (2013).
82. Li, H. \& Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).
83. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
84. Rae, R., Witte, H., Rödelsperger, C. \& Sommer, R. J. The importance of being regular: Caenorhabditis elegans and Pristionchus pacificus defecation mutants are hypersusceptible to bacterial pathogens. Int. J. Parasitol. 42, 747-753 (2012).
85. Schlager, B., Wang, X., Braach, G. \& Sommer, R. J. Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode Pristionchus pacificus. Genesis 47, 300-304 (2009).
86. OpenWetWare contributors. Gibson Assembly. OpenWetWare (2018). Available at: https://openwetware.org/mediawiki/index.php?title=Gibson_Assembly\&oldid=1043969.
(Accessed: 25th July 2018)
87. Bettinger, J. C., Lee, K. \& Rougvie, A. E. Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development 122, 2517-2527 (1996).
88. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
89. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
90. Love, M. I., Huber, W. \& Anders, S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
91. Fox, J. \& Weisberg, S. An R Companion to Applied Regression. (2019).
92. Nielsen, H. Predicting Secretory Proteins with SignalP. Methods Mol. Biol. 1611, 59-73 (2017).
93. Möhrlen, F., Hutter, H. \& Zwilling, R. The astacin protein family in Caenorhabditis elegans. Eur. J. Biochem. 270, 4909-4920 (2003).
94. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279-85 (2016).
95. Sinha, A., Langnick, C., Sommer, R. J. \& Dieterich, C. Genome-wide analysis of transsplicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons. RNA 20, 1386-1397 (2014).
96. Werner, M. S. et al. Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome Res. 28, 1675-1687 (2018).
97. Katoh, K. \& Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780 (2013).
98. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313 (2014).

## Acknowledgments

We are grateful to Gabi Eberhardt and Tobias Loschko for their assistance with the mutagenesis screens and Jürgen Berger for taking the SEM image of the $P$. pacificus mouth. We thank Dr. Michael Werner, Dr. Neel Prabh, Dr. Adrian Streit, and Metta Riebesell for the discussion. The study was funded by the Max Planck Society, and S.S. was supported by the China Scholarship Council.

## Author contributions

B.S. designed and performed all experiments with help from other authors, analyzed the data, and wrote the manuscript together with R.J.S. and J.W.L.; S.S. designed and created reporter lines for Astacin genes, performed a suppressor screen in the nhr-1 mutant background, and participated in mouth-form phenotyping; J.W.L. and E.M. generated nhr-40 mutations using CRISPR/Cas9, J.W.L. additionally generated mutations in the downstream targets of NHR-1 and NHR-40 and wrote the manuscript together with B.S. and R.J.S.; C.R. performed bulk segregant analysis; H.W. generated CRISPR/Cas9 mutants and transgenes; R.J.S. designed and supervised the study, and wrote the manuscript together with B.S. and J.W.L.

## Competing interests

The authors are not aware of any competing interests.

## Materials \& Correspondence

Correspondence and requests for materials should be addressed to R.J.S.

Figure legends

Fig. 1. Mouth-form plasticity in P. pacificus. (A) Mouth structure of wild-type eurystomatous (Eu) morph, wild-type stenostomatous (St) morph, nhr-1 mutant, and nhr-40 mutant. Unlabeled images in two focal planes are shown in SFig. 1A. (B) Scanning electron microscopy image of the mouth opening of the Eu morph. (C) The Eu morph devouring its prey. (D) Putative gene regulatory network controlling mouth-form plasticity in P. pacificus. (E) Design of the suppressor screen. $\mathrm{D}=$ dorsal, $\mathrm{V}=$ ventral, $\mathrm{A}=$ anterior, $\mathrm{P}=$ posterior, $\mathrm{DT}=$ dorsal tooth, RVSLT = right ventrosublateral tooth, RVSLR $=$ right ventrosublateral ridge, $E M S=$ ethyl methanesulfonate.

Fig. 2. Reverse genetics, transcriptomics and expression patterns of nhr-40 and nhr-1. (A) Protein structure of NHR-40 in wild-type and mutant animals. (B) Expression levels of nhr-40 and nhr-1 in wild type and mutants as revealed by transcriptomic profiling. (C) Antibody staining against the HA epitope in an nhr-1 rescue line. (D) Expression patterns of nhr-40 and $n h r-1$ transcriptional reporters in a double reporter line. TurboRFP (magenta) and Venus (green) channels are presented as maximum intensity projections. Co-expression results in white color. $\mathrm{D}=$ dorsal, $\mathrm{V}=$ ventral, $\mathrm{A}=$ anterior, $\mathrm{P}=$ posterior, $\mathrm{N} . \mathrm{S} .=$ not significant.

Fig. 3. Target genes of NHR-40 and NHR-1. (A) Experimental setup of transcriptomics experiment and selection criteria to identify target genes. (B) Trends among target genes compared to genome-wide pattern. (C) Transmission electron microscopy reconstruction of the dorsal pharyngeal gland cell (g1D) ${ }^{53}$ and expression patterns of transcriptional reporters for nine selected targets of NHR-40 and NHR-1. TurboRFP channel is presented as standard deviation projections. lof = loss-of-function, gof = gain-of-function, ${ }^{* * *}=\mathrm{p}<0.001, \mathrm{D}$ $=$ dorsal, $\mathrm{V}=$ ventral, $\mathrm{A}=$ anterior, $\mathrm{P}=$ posterior.

Fig. 4. Evolution of pharynx morphology in the order Rhabditida.

Fig. 5. Evolution of nhr-40, nhr-1, and their target genes. Arrowheads point at the genes of interest. Protein-based trees of NHR genes (A), Astacin domains (B), chitinase domains (C), and CAP domains (D) in P. pacificus and C. elegans. (E) Nucleotide-based tree of the CAP domains from a poorly-resolved protein-based subtree of all predicted CAP domains in $P$. pacificus and $P$. fissidentatus.

Table 1. Mouth-form frequencies in wild type and mutant lines. The genotype of the duodecuple Astacin mutant is PPA03932(tu1259) PPA32730(tu1503);PPA05669(tu1316) PPA05618(tu1317) PPA21987(tu1329) PPA16331(tu1339) PPA27985(tu1340) PPA34430(tu1341) PPA20266(tu1385) PPA42924(tu1386);PPA05955(tu1481) PPA42525(tu1482). The genotype of the quintuple CAP mutant is tuDf6[PPA21912 PPA29522 PPA21910] tuDf7[PPA05611 PPA39470] tuDf8[PPA13058 PPA39735].

Table 2. List of targets of NHR-40 and NHR-1.


D


Fig. 1. Mouth-form plasticity in P. pacificus. (A) Mouth structure of wild-type eurystomatous (Eu) morph, wild-type stenostomatous (St) morph, nhr-1 mutant, and nhr-40 mutant. Unlabeled images in two focal planes are shown in SFig. 1A. (B) Scanning electron microscopy image of the mouth opening of the Eu morph. (C) The Eu morph devouring its prey. (D) Putative gene regulatory network controlling mouth-form plasticity in P. pacificus. (E) Design of the suppressor screen.
$\mathrm{D}=$ dorsal, $\mathrm{V}=$ ventral, $\mathrm{A}=$ anterior, $\mathrm{P}=$ posterior, $\mathrm{DT}=$ dorsal tooth, RVSLT = right ventrosublateral tooth, RVSLR = right ventrosublateral ridge, EMS = ethyl methanesulfonate.


Fig. 2. Reverse genetics, transcriptomics and expression patterns of $n h r-40$ and $n h r-1$. (A) Protein structure of NHR-40 in wild-type and mutant animals. (B) Expression levels of $n h r-40$ and $n h r-1$ in wild type and mutants as revealed by transcriptomic profiling. (C) Antibody staining against the HA epitope in an nhr-1 rescue line. (D) Expression patterns of $n h r-40$ and $n h r-1$ transcriptional reporters in a double reporter line. TurboRFP (magenta) and Venus (green) channels are presented as maximum intensity projections. Co-expression results in white color.
$\mathrm{D}=$ dorsal, $\mathrm{V}=$ ventral, $\mathrm{A}=$ anterior, $\mathrm{P}=$ posterior, $\mathrm{N} . \mathrm{S} .=$ not significant.


Fig. 3. Target genes of NHR-40 and NHR-1. (A) Experimental setup of transcriptomics experiment and selection criteria to identify target genes. (B) Trends among target genes compared to genome-wide pattern. (C) Transmission electron microscopy reconstruction of the dorsal pharyngeal gland cell (g1D) ${ }^{52}$ and expression patterns of transcriptional reporters for nine selected targets of NHR-40 and NHR-1. TurboRFP channel is presented as standard deviation projections. lof = loss of function, gof $=$ gain of function, ${ }^{* * *}=\mathrm{p}<0.001, \mathrm{D}=$ dorsal, $\mathrm{V}=$ ventral, $\mathrm{A}=$ anterior, $\mathrm{P}=$ posterior.
bioRxiv preprint doi: https://doi.org/10.1101/809350; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


Fig. 4. Evolution of pharynx morphology in the order Rhabditida.


Fig. 5. Evolution of $n h r-40, n h r-1$, and their target genes. Arrowheads point at the genes of interest. Protein-based trees of NHR genes (A), Astacin domains (B), chitinase domains (C), and CAP domains (D) in P. pacificus and C. elegans. (E) Nucleo-tide-based tree of the CAP domains from a poorly-resolved protein-based subtree of all predicted CAP domains in P. pacificus and $P$. fissidentatus.

Table 1

| Medium | Genotype | Eu, \% | N |
| :---: | :---: | :---: | :---: |
| NGM agar | wild type PS312 | 98 | 650 |
| NGM agar | nhr-40(tu505) | 100 | 100 |
| NGM agar | nhr-40(tu505) tu515 | 0 | 136 |
| NGM agar | tu515 | 0 | 136 |
| NGM agar | nhr-1 (tu1163) | 0 | 133 |
| NGM agar | nhr-1(tu1164) | 0 | 140 |
| NGM agar | nhr-1(tu1163)/tu515 | 0 | 70 |
| NGM agar | nhr-1(tu1163);tuEx305[nhr-1(+);egl-20p::TurboRFP] | 85 | 110 |
| NGM agar | nhr-1(tu1163);tuEx310[nhr-1(+);egl-20p::TurboRFP] | 86 | 112 |
| NGM agar | nhr-1(tu1163);tuEx328[nhr-1(+)::HA;egl-20p::TurboRFP] | 86 | 150 |
| NGM agar | nhr-40(tu505) nhr-1 (tu1163) | 2 | 134 |
| NGM agar | nhr-40(tu1418) | 0 | 150 |
| NGM agar | nhr-40(tu1419) | 0 | 150 |
| NGM agar | nhr-40(tu1420) | 0 | 150 |
| NGM agar | nhr-40(tu1423) | 0 | 150 |
| NGM agar | nhr-40(iub6) | 100 | 100 |
| NGM agar | nhr-40(tu1421) | 100 | 150 |
| NGM agar | nhr-40(tu1422) | 100 | 100 |
| NGM agar | duodecuple Astacin mutant | 98 | 55 |
| NGM agar | quintuple CAP mutant | 94 | 50 |
| NGM agar | PPA04200(tu1213) PPA39293(tu1214) | 100 | 50 |
| NGM agar | PPA04200(tu1216) PPA39293(tu1217) | 100 | 50 |
| NGM agar | PPA27560(tu1475) | 100 | 51 |
| NGM agar | PPA27560(tu1476) | 100 | 53 |
| NGM agar | PPA30108(tu1230) | 100 | 50 |
| NGM agar | PPA30108(tu1231) | 100 | 50 |
| NGM agar | PPA30435(tu1477) | 100 | 48 |
| NGM agar | PPA30435(tu1478) | 98 | 54 |
| NGM agar | PPA38892(tu1473) | 100 | 50 |
| NGM agar | PPA38892(tu1474) | 100 | 50 |
| S-medium | wild type PS312 | 5 | 850 |
| S-medium | nhr-40(tu505) | 100 | 150 |
| S-medium | nhr-40(tu1418) | 0 | 150 |
| S-medium | nhr-40(tu1419) | 0 | 150 |
| S-medium | nhr-40(tu1420) | 0 | 150 |
| S-medium | nhr-40(tu1423) | 0 | 150 |
| S-medium | nhr-40(iub6) | 100 | 150 |
| S-medium | nhr-40(tu1421) | 100 | 150 |
| S-medium | nhr-40(tu1422) | 100 | 150 |

Table 2

|  |  |  |  |  |  | $\left\|\begin{array}{c} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \\ \vdots \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$ |  |  |  |  |  | $\left(\left.\begin{array}{l} \stackrel{1}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \stackrel{\rightharpoonup}{c} \end{array} \right\rvert\,\right.$ | $\left(\left.\begin{array}{l} \stackrel{1}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \stackrel{\rightharpoonup}{c} \end{array} \right\rvert\,\right.$ | － | － |  |  | － |  | $\left\|\begin{array}{\|c} \stackrel{\rightharpoonup}{\tilde{0}} \\ \stackrel{0}{2} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$ | $\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\tilde{0}} \\ \stackrel{0}{2} \\ \stackrel{0}{0} \\ \stackrel{0}{⿹} \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$ | 䓂 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\stackrel{\substack{e \\ \hline \\ \hline}}{ }$ | $\begin{array}{\|l\|l} \hline 0 \\ 0 \\ \\ \\ \\ \end{array}$ |  |  |  |  |  |  |  |  |  | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$ | ¢ | － | － |  | － |  |  | $\left\|\begin{array}{c} \hat{\infty} \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ - \\ \hline \end{array}\right\|$ |  |  | N |
|  |  |  |  |  |  |  | $\begin{array}{ll} \dot{c} \\ 0 & 0 \\ \hline \end{array}$ |  |  |  |  |  |  | 董 |  |  |  | $\xrightarrow{\text { N }}$ |  |  |  | $\left\|\begin{array}{c} \stackrel{g}{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{0} \\ \underset{N}{\mathrm{~N}} \end{array}\right\|$ |  | － |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | ¢ |  |  |  | ¢ |  | $\left\|\begin{array}{\|c} \stackrel{\ddot{0}}{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{0} \\ \vdots \\ \vdots \end{array}\right\|$ |  |  |  | 䓂 |
|  |  | $\left\|\begin{array}{c} \bar{N} \\ \stackrel{y}{0} \\ \bar{\Sigma} \\ \underset{O}{\dot{T}} \end{array}\right\|$ |  |  |  |  |  |  |  |  | $\left\|\begin{array}{l} \ddot{0} \\ \stackrel{0}{N} \\ \underset{\sim}{N} \\ \underset{\sim}{n} \\ \hline \end{array}\right\|$ |  |  |  |  | $\left\|\begin{array}{c} \stackrel{0}{0} \\ \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{N} \\ \stackrel{\rightharpoonup}{9} \end{array}\right\|$ |  | － |  |  |  |  |  | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \underset{\sim}{c} \\ \end{array}\right\|$ |
|  |  |  |  |  |  | $\begin{array}{ll} 0 \\ \hline \end{array}$ |  |  | $\left\|\begin{array}{c} \mathscr{\infty} \\ \underset{\infty}{\infty} \\ \underset{\infty}{\infty} \\ \stackrel{0}{0} \\ \vdots \end{array}\right\|$ |  |  |  |  |  |  |  |  | 免 |  | $\left\|\begin{array}{\|c} \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{0}{⿹} \\ \stackrel{\rightharpoonup}{5} \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$ | $\left\|\begin{array}{l} \stackrel{1}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$ |  |  | 䓂 |
|  |  | $\begin{aligned} & \frac{c}{c} \\ & \frac{0}{2} \\ & \frac{\ddot{x}}{6} \end{aligned}$ |  |  |  | $\frac{0}{8}$ |  | $\left\lvert\, \frac{0}{d}\right.$ |  |  | 宕 | ¢ |  |  |  | $\begin{aligned} & 0 \\ & \stackrel{0}{\mathrm{O}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{\circ}{C} \end{aligned}$ | （ | $\begin{aligned} & \frac{c}{c} \\ & \frac{c}{0} \\ & \frac{0}{2} \end{aligned}$ | $\left\|\frac{\check{x}}{\omega}\right\|$ | $\left\|\begin{array}{l} \frac{c}{c} \\ \stackrel{\rightharpoonup}{0} \\ \frac{0}{6} \end{array}\right\|$ | $\left\|\begin{array}{l} \frac{c}{c} \\ \frac{0}{6} \\ \frac{0}{6} \end{array}\right\|$ |  |  |
|  |  |  |  |  |  |  |  | UMM－S328－10．78－mRNA－1 |  |  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |
|  | $\left\|\begin{array}{l} 0 \\ \hline 0.0 \\ 0 \\ \frac{1}{2} \\ 0 \end{array}\right\|$ |  |  |  |  |  | $\begin{aligned} & 2 \\ & \hline \end{aligned}$ |  |  | N N N a a a | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \mathbf{o} \\ \frac{d}{2} \\ 0 \end{array}\right\|$ | 0 <br> $\frac{9}{y}$ <br> $\frac{2}{2}$ |  |  | $\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \\ & \\ & \\ & \hline \end{aligned}\right.$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ 0 \\ \\ 0 \\ 2 \end{array}\right\|$ | $\left\|\begin{array}{l} \stackrel{0}{0} \\ \tilde{\sim} \\ \text { d } \\ \text { a } \end{array}\right\|$ | 通 |  |  | $\begin{aligned} & \circ \\ & 0 \\ & \tilde{0} \\ & \text { d } \\ & \text { a } \end{aligned}$ | $\left\|\begin{array}{c} \underset{\sim}{2} \\ \underset{y}{y} \\ \frac{d}{d} \\ d \end{array}\right\|$ | $\left\lvert\, \begin{gathered} 2 \\ 0 \\ 0 \\ \substack{a \\ 2 \\ 2} \end{gathered}\right.$ | H |
|  | $\left\lvert\, \begin{aligned} & \frac{x}{5} \\ & \frac{1}{5} \end{aligned}\right.$ | $\begin{aligned} & \geq \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ |  | $\stackrel{\rightharpoonup}{\text { 를 }}$ | $\begin{array}{l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \end{array}$ | $\left\lvert\, \begin{aligned} & \text { x } \\ & \hline \mathrm{J} \end{aligned}\right.$ | 든 | $\left\lvert\, \begin{aligned} & \times \sqrt{5} \\ & \hline \end{aligned}\right.$ | 充 | 즏 | 질 | 진 | 充 | 这 | $\left\|\begin{array}{l\|} \times \frac{x}{5} \\ \hline \end{array}\right\|$ | 질 | 츨 | ¢ | 辰 | $\left\lvert\, \begin{array}{\|l\|} \times \frac{1}{5} \\ \hline \end{array}\right.$ | $\left\lvert\, \begin{aligned} & \times \times \\ & \frac{1}{5} \end{aligned}\right.$ | 즐 | 등 | 立 |

