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Abstract 10 

Cell lines are commonly used as cancer models. Because the tissue and/or cell type of origin 11 

provide important context for understanding mechanisms of cancer, we systematically examined 12 

whether cell lines exhibit features matching the cancer type that supposedly originated them. To 13 

this end, we aligned the mRNA expression and DNA methylation data between ~9,000 solid 14 

tumors and ~600 cell lines to remove the global differences stemming from growth in cell culture. 15 

Next, we created classification models for cancer type and subtype using tumor data, and applied 16 

them to cell line data. Overall, the transcriptomic and epigenomic classifiers consistently identified 17 

35 cell lines which better matched a different tissue or cell type than the one the cell line was 18 

originally annotated with; we recommend caution in using these cell lines in experimental work. 19 

Six cell lines were identified as originating from the skin, of which five were further corroborated 20 

by the presence of a UV-like mutational signature in their genome, strongly suggesting 21 

mislabelling. Overall, genomic evidence additionally supports that 22 (3.6% of all considered) cell 22 

lines may be mislabelled because we predict they originate from a different tissue/cell type. 23 

Finally, we cataloged 366 cell lines in which both transcriptomic and epigenomic profiles strongly 24 

resemble the tumor type of origin, designating them as ‘golden set’ cell lines. We suggest these  25 

cell lines are better suited for experimental work that depends on tissue identity and propose 26 

tentative assignments to cancer subtypes. Finally, we show that accounting for the uncertain 27 

tissue-of-origin labels can change the interpretation of drug sensitivity and CRISPR genetic 28 

screening data. In particular, in brain, lung and pancreatic cancer cell lines, many novel 29 

determinants of drug sensitivity or resistance emerged by focussing on the cell lines that are best 30 

matched to the cancer type of interest. 31 

 32 
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 35 

Introduction 36 

Cell lines are an important research tool, often used in place of primary cells and intact organisms 37 

to study biological processes. Cell lines are used for various applications such as testing drug 38 

metabolism and cytotoxicity, study of gene function, generation of artificial tissues and synthesis 39 

of biological compounds (1). In cancer research, cell lines derived from tumors are commonly 40 

used as models because they are presumed to carry the genomic and epigenomic alterations that 41 

arise in tumors (2). To understand the response of tumors to therapy, many studies have linked 42 

genetic and/or epigenetic alterations with drug response across cell line panels, generating 43 

datasets such as the Genomics of Drug Sensitivity in Cancer (GDSC) (3), the Cancer Cell Line 44 

Encyclopedia (CCLE) (4), the Cancer Therapeutics Response Portal (5) and others. These efforts 45 

have advanced our understanding of tumor biology by generating a massive resource of genomic, 46 

transcriptomic, epigenomic and drug response data for hundreds of cell lines (2).  47 

 48 

As a model for cancer, cell lines are cost effective, convenient and amenable to high-throughput 49 

screening (1,2). However, a major question associated with the use of cell lines is whether they 50 

are representative of the cancer they are meant to model, which may be complicated by issues 51 

of misidentification (1,2,6). 52 

 53 

Misidentified cell lines may lead to inconsistent conclusions across studies using the affected cell 54 

lines. For instance, the cell lines referred to as HEp-2 and INT 407 in the literature are in fact 55 

commonly cross-contaminated with HeLa (cervical cancer) cells, rather than being laryngeal 56 

cancer and normal intestinal epithelium cells, respectively (7,8). Because of this, demonstrating 57 

cell line identity via genetic markers is now a routine quality-control step. Current resources based 58 

on large-scale cancer cell panels are therefore largely unaffected by this issue (4).  59 

 60 

However, even if the identity of the cell line is correct, its properties may not match the cancer 61 

type it is meant to model. One way in which this may happen is that tumors thought to originate 62 

in a certain tissue might in fact be metastatic lesions originating from a distal site (9). Thus, cell 63 

lines derived from such tumors would have a different tissue/cell type identity than that assigned 64 

at isolation, constituting a case of mislabeling. It is conceivable that also in the case of primary 65 
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tumors, ambiguous histological or anatomical features may cause the cancer type or subtype to 66 

be misdiagnosed for that tumor and therefore also for a cell line derived from it. Conceivably, the 67 

process of establishing the culture might select for a rare cell type that is not representative of the 68 

tumor isolate on the whole, meaning that the cell line would again effectively be mislabeled with 69 

a different cell type (10). In addition to the initial changes upon adaptation to culture, cell lines 70 

evolve over time due to selection and due to genetic drift, potentially diverging from the 71 

characteristics of the originating tissue (1). 72 

 73 

Tissue/cell type is a key determinant of response of cultured cells to a variety of experimental 74 

conditions, including drug exposure and genetic perturbation (11,12). Therefore, having accurate 75 

information on the tissue and cell type identity of a tumor cell line is important for interpreting the 76 

experimental results obtained using these cell lines. 77 

 78 

Recent work has examined cell line panels of individual cancer types, showing certain 79 

discrepancies between the features of cell lines and corresponding tumor (sub)types. A gene 80 

expression analysis of lung tumors and cell lines (10) suggested that some lung adenocarcinoma 81 

cell lines did not resemble adenocarcinoma tumors but instead clustered with other lung tumor 82 

subtypes (small-cell and squamous cell). A study of high-grade serous ovarian cancer (HGSOC) 83 

cell lines using gene expression, driver gene mutations and copy number alteration (CNA) data 84 

reported that two frequently used cell lines showed poor genetic similarity to profiles of this ovarian 85 

cancer subtype (13). A study of a panel of renal cancer cell lines compared their CNA to kidney 86 

tumors, finding that some cell lines used as models of the clear-cell carcinoma more closely 87 

resemble papillary renal cancer (14). These examples highlight the need to systematically identify 88 

the cell lines whose genotype and/or molecular phenotypes do not resemble the characteristics 89 

of the matched human tumor type. A major challenge in the use of human tumor data to classify 90 

cell lines are the widespread global changes in gene regulation between cell lines and tumors 91 

that arise in cell culture conditions.  92 

 93 

In this study, we performed a global analysis that aligned mRNA expression and DNA methylation 94 

data between ~600 cancer cell lines and ~9,000 tumors from 22 different cancer types, adjusting 95 

for global differences in transcriptomes and epigenomes. Classifiers trained on human tumor 96 

mRNA and DNA methylation profiles were used to systematically identify those cell lines whose 97 

genomic and epigenomic profiles are highly consistent with human tumors of their declared 98 

cancer type of origin. Conversely, we used the same classifiers to identify those cell lines that 99 
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might be mislabeled with respect to cancer type or that might have diverged from their original 100 

tissue and/or cell type identity. Our data suggests that tens of cell lines might be epigenetically 101 

and/or genetically not consistent with their stated tissue or cell type of origin, which is an important 102 

consideration for experiments that use these cell lines. We demonstrate this by reanalyzing 103 

associations between drug sensitivity and genetic variation in a large panel of cell lines. After 104 

explicitly accounting for putative cases of cell lines with mislabeled tissue identity, many novel 105 

associations of genes with drug sensitivity or resistance were revealed.  106 

 107 

Results 108 

1. Identification of tissue/cell type-of-origin for cell lines by a joint analysis with tumors 109 

During adaptation to cell culture, certain changes in the cell lines’ physiology are inevitable, yet 110 

ideally the cell lines should retain sufficient features of the tumor to be useful as experimental 111 

models of tumor biology. Here, we systematically examined the global features of the 112 

transcriptome and epigenome that reflect the tissue-of-origin of a tumor cell line. The tissue that 113 

originated a tumor is well known to be a major determinant of drug responses -- including drugs 114 

targeted to certain genetic mutations -- both in vitro (11,12) and also in vivo (15,16). Tissue of 115 

origin is an important factor in shaping the networks of genetic interactions in cancer (17) and 116 

also determines the phenotypes resulting from genetic perturbation (18). Therefore ascertaining 117 

the tissue/cell type identity of cell lines is relevant for interpreting results of various experiments.  118 

 119 

During the process of adaptation to cell culture, the cells undergo global changes in gene 120 

regulation that affect many genes (19,20). In particular, the global patterns in transcriptomes and 121 

epigenomes for cultured cells bear many similarities to other cultured cells, irrespective of the 122 

originating tissue. Thus, there are commonalities in how culture affects gene regulation: for 123 

example, proliferation genes in cultured cells have distinct DNA methylation and gene expression 124 

patterns, when compared to tumor and normal tissues (19,20). These global alterations in gene 125 

expression and DNA methylation mean that is not straightforward to directly compare cell line 126 

transcriptomes/epigenomes with data obtained from actual tumors. Therefore, the cell culture-127 

induced shifts need to be carefully adjusted for in order to be able to track down tissue identity of 128 

cell lines. To this end, we introduce a computational framework -- HyperTracker -- which can unify 129 

transcriptome, epigenome and mutational data across tumors and cell lines, and provide robust 130 

predictions of tissue/cell type and subtype identity.  131 
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 132 

In particular, we collected gene expression (RNA-Seq) and DNA methylation data (microarrays) 133 

for 9,681 and 9,039 human tumors, respectively (TCGA), and additionally for 614 cell lines (CL) 134 

of various solid cancer types. For gene expression data (GE), we examined transcript-per-million 135 

(TPM) normalized counts for the 12,419 genes where RNA-Seq data was available for both cell 136 

lines and tumors. For DNA methylation data (MET), we examined beta-values for 10,141 probes 137 

from methylation arrays, after selecting a single probe per gene promoter with the highest 138 

variance across the dataset. To align human tumor and cell line data, we quantile-normalized the 139 

data and applied ComBat, a batch effect correction method (21), which is highly performant 140 

compared to other related methods (22). In brief, ComBat estimates parameters for location and 141 

scale adjustment of each batch (TCGA and CL in our case) for each gene. Then, it removes the 142 

variability which is particular to the CL but not present in TCGA, while retaining the intra-dataset 143 

variability of the tumors, which should presumably be evident in both the tumor and in the cell line 144 

datasets.  145 

 146 

A principal component analysis in the data (pre- and post-adjustment) suggests that there were 147 

indeed strong global differences between TCGA and CL, and that they are largely removed by 148 

our approach (Fig 1a; Fig S1ab). To quantify this, we trained a classification model that predicts 149 

the CL versus TCGA origin of the data points based on GE and MET (Fig 1b). The model is able 150 

to distinguish CL versus TCGA perfectly when using the pre-adjustment datasets (AUC=1), while 151 

the post-adjustment datasets (AUC(GE) = 0.44; AUC(MET) = 0.42) do not perform better than 152 

random (0.5; Fig 1b), suggesting the cell-type specific signal has been largely removed. Finally, 153 

we tested the optimal number of features (genes/probes) using tumor classifiers and calculating 154 

the accuracy in the cell line data (Fig S1c); we selected 5,000 features with the highest standard 155 

deviation for later analyses. 156 

 157 

Once the data was aligned, we set out to determine which cell lines have tissue identity not 158 

matching the declared tissue-of-origin (henceforth: ‘suspect set’), and conversely, which cell lines 159 

have largely retained their tissue identity (henceforth: ‘golden set’), by comparing against a large 160 

set of tumors from 17 tissues in the TCGA (Fig 1c). Using TCGA data, we derived one-versus-161 

rest classification models (using Ridge regression), separately for the GE and the MET data.Some 162 

pairs of cancer types were considered jointly in this analysis, based on their overall similarity, for 163 

example stomach adenocarcinoma (TCGA code: STAD) and esophageal adenocarcinoma 164 

(subset of samples from TCGA code: ESAD); see Methods for a full list. Our study focuses on  165 
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  166 

Fig. 1. Data alignment and methodology for classification. (a) Principal component (PC) 1 and PC2 of a PC analysis, in the gene 
expression (GE) data pre-adjustment for batch effects (raw) and post-adjustment (quantile normalization+COMBAT) (see Fig S1 for DNA 
methylation data (MET)). Colors represent the dataset sources (GDSC and CCLE are two sources for the cell lines, and TCGA is the source 
for the tumors). (b) ROC curves for classifying TCGA versus cell lines in the data pre-adjustment (orange) and post-adjustment (blue) for GE 
and MET. (c) An overview of the HyperTracker methodology applied in the manuscript. First, we systematically identified possible mislabeled 
cell lines using GE and MET data, independantly. Second, we used various types genomic data to corroborate the hits. Third, we further 
validate the cell lines suspected to originate from skin using independent data. 
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solid cancer types and does not examine blood cancers.  In a crossvalidation test, TCGA models 167 

had very high AUPRC scores: 0.98 and 0.97 for GE and MET respectively (average across cancer 168 

types). This means that transcript level data and DNA methylation data are largely sufficient to 169 

accurately distinguish those cancer types.  170 

 171 

Next, we obtained predictions of cancer type identity for each cell line. For every cancer type, we 172 

split TCGA data randomly into training and testing sets, and we used the calculated precision-173 

recall curve of the testing data to obtain the False Discovery Rate (FDR) score for every cell line 174 

(details in Methods; all FDR values are listed in Table S1). The smaller the FDR, the more likely 175 

the cell line is to belong to that particular cancer type. As expected, most of the cancer type labels 176 

of the cell lines match the declared tissue of origin of that cell line -- they tend to cluster at low 177 

FDR values for the cognate cancer type (red dots in Fig 2a, Fig S2). However, among these many 178 

correctly classified cell lines (red dots), there are some with similarly low FDR scores, but which 179 

were originally annotated as belonging to another cancer type (Fig 2a; blue dots with label shown). 180 

A clustering analysis of the GE and MET values for the genes that had the highest weight in the 181 

classification models (Fig 2b, Fig S3) showed that in most cases, the samples clearly cluster by 182 

cancer type, but not by CL versus TCGA label. Moreover, we observed that the suspected cell 183 

lines (cell lines with highly confident FDR scores to a different cancer type) tend to cluster with 184 

the newly-assigned cancer type by the classifier, rather than with the original one (Fig 2b). 185 

 186 

In further analyses, we designated as the ‘golden set’ those cell lines that have FDR <= 0.3 for 187 

both GE and, independently, for MET in their originally declared cancer type (n=366 out of 614 188 

examined cell lines, 60%). For these cell lines, two independent types of evidence -- 189 

transcriptomes and epigenomes -- support that they match their expected cancer type well, 190 

suggesting these cell lines would be preferred as experimental models. Further, we designated 191 

as the ‘silver set’ those cell those cell lines that have  FDR <= 0.3 for only one classifier (either 192 

GE or MET but not both) (n=131 out of 614 examined cell lines, 21%). From the remaining 117 193 

cell lines, we selected as ‘suspect set’ those CL which exhibit an FDR <= 30% for both GE and 194 

for MET, but in a different cancer type than declared for that cell line (n=43 out of 614, 7% of 195 

analyzed cell lines) (Fig 1c). This set of cell lines may consist either of mislabeled cell lines, where 196 

the cancer type of origin is different than it was thought, or of heavily diverged cell lines, where 197 

the genomic and/or epigenomic alterations accumulating during cell culture have overridden the 198 

original cancer type identity. Of note, cell line cross-contamination issues (23) cannot underlie the 199 

trends we observe, because the repositories that provided GE and MET data have used genetic  200 
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  201 

Fig. 2. Detection of cell lines mislabelled to a different cancer type. (a) False Discovery Rate (FDR) scores for 614 cell lines were calculated in MET 
and GE cancer type classifiers (one-versus-rest). The lower the FDR, the higher the confidence that the sample belongs to that particular cancer type (here, 
to SKCM, KIRC and CRAD from left to right, see Fig S2 for the other cancer types). The cell lines that were originally annotated as the cancer type that is 
being tested are shown in red, the rest in blue. (b) Heatmap for the 25 genes (GE) and CpG probes (MET) whose Ridge regression coefficients had the 
highest absolute values for SKCM (skin cancer) versus rest classifiers. The suspected skin cell lines are labeled in the right side of the heatmap. The cancer 
types shown are the suspected one (SKCM in this case) and additionally the originally declared cancer types of the suspected cell lines (here, ESTAD, 
SARC, CRAD and GYNE). See Fig S3 for the Heatmaps for the rest of the suspected cell lines. (c) Overview of the results from the systematic mislabelling 
testing of all cell lines. Cell lines with an FDR<=0.3 to its original cancer type in (i) GE and MET are assigned to the ‘golden set’ group and (ii) either GE or 
MET are assigned to the ‘silver set’. If however the FDR<=0.3 to a different cancer type in GE and in MET, the cell line is assigned to the suspected set. 
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markers to ascertain the identity of the cell lines (4). The fact that two classifiers based on 202 

independent data types -- one genomic and one epigenomic -- reached the same predictions 203 

adds confidence that these are bona fide cases of mistaken tissue/cell-type identity. 204 

 205 

2. Validation of individual examples of suspected mislabeled cell lines using genomic 206 

classifiers 207 

We detected 43 cell lines that bear transcriptomic and also epigenomic features of a different 208 

cancer type than the one they were originally annotated to. We next turned to support individual 209 

examples of cell lines with reassigned tissue identity by analyzing independent data. In particular, 210 

we used genomic sequence-based classifiers, which are able to predict the tissue of origin based 211 

on mutation patterns (24,25). As in our recent work (24), we used the trinucleotide mutation 212 

spectra and the oncogenic mutations. In this validation setting, we applied such genomic 213 

classifiers to a problem of ‘one-versus-one’ classification, where we contrasted the originally 214 

assigned cancer type versus the newly-proposed cancer type for each reassignment. We found 215 

that such one-versus-one classifiers based on genomic data had satisfactory accuracy with our 216 

whole-exome sequencing data sets (Fig S4; our past work (24) suggests whole genome 217 

sequences are more powerful). Finally, we included an additional classifier based on copy number 218 

alteration (CNA) profiles, which were also shown to yield accurate predictive models of tissue 219 

specificity (24,25).  220 

 221 

For the 43 examples of suspected cell lines tissue identity, we first derived one-versus-one 222 

classification models separately for GE and MET. If a cell line is truly mislabelled when testing 223 

the original versus the suspected cancer type, we should observe the same reassignment of the 224 

cell line to be robustly observed across multiple runs of the classification algorithm, which use 225 

different random initializations. Out of 20 iterations of the algorithm, a score of 20 indicates that 226 

the cell line is consistently predicted as the suspected cancer type, and a score of 0 means that 227 

the cell line is consistently assigned to the original cancer type. We randomized the labels to 228 

obtain a background model of expected values (Fig 3b; Fig S5a). From the 43 suspected cell 229 

lines, 35 are consistently reassigned to the other tissue (score>10), irrespective of the variability 230 

in the predictive models introduced by resampling the data (Fig 3a; Fig S5b). Next, we calculated 231 

the same score for the genomic classifiers (based on mutations and CNA, as described above) 232 

on these 35 suspected cell lines (Fig 3a). 233 

 234 
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Of these, approximately two-thirds (n=22 cell lines) received high support for the new tissue label 235 

by one or more genomic classifiers (Fig 3a; score>=15, corresponding to FDRs of 0%, 0% and 236 

18% for the CNA, OGM and MS96 respectively, based on randomized data; Fig 3b). This data 237 

suggests 22 cell lines are candidates for assignment to another cancer type, based on converging 238 

evidence from the levels of the genome, epigenome and transcriptome, which provides 239 

confidence. Reassuringly, this list contains two cell lines which have been previously shown to be 240 

misclassified: SW626 which was initially annotated as ovarian cancer but later discovered to be 241 

derived from colon cancer (26), and COLO741 which was originally thought to be a colon 242 

adenocarcinoma cell line but later shown to originate from a melanoma (27). The fact that these 243 

two known examples were detected and reassigned to the correct cancer type provides evidence 244 

that our method is overall reliable.  245 

 246 

The two plausible reasons why a cell line thought to originate from one cell type would need to be 247 

reassigned to a different cell type are (i) that at the time of isolation, the cell line was not of the 248 

type that it was thought to be (mislabeling), or (ii) that during prolonged cell culture, the cell line 249 

diverged greatly and now resembles another cell type (transdifferentiation). Our data allows to 250 

examine how prevalent each case is: mislabelling is expected to be reflected equally in both the 251 

epigenome and the genome, while transdifferentiation is expected to be reflected more strongly 252 

in the (presumably more malleable) epigenome, and less so in the genome, which retains the 253 

mutations from the original tumor. We suggest that mislabelling at isolation is a much more 254 

common scenario (Fig 3c, many reassigned cell lines are in the upper-right corner).  However, it 255 

is possible that there exist individual examples of cell lines that have effectively transdifferentiated 256 

during culture, because their genomic features are consistent with the original tissue identity while 257 

the epigenomic features are consistent with another tissue (Fig 3c, lower left corner, e.g. the 258 

RPMI2650 and OACM51 cell lines are possible candidates).  259 

 260 

4. Validation of cell lines suspected to originate from the skin  261 

From the previous analysis, we identified a total of six cell lines which are reassigned from various 262 

cancer types to skin cancer. We note that, of skin cancers, the TCGA study contains only 263 

melanoma but not the non-melanoma skin cancers, so we are currently not able to distinguish 264 

between cell type identities of different types of skin cancer.   265 

 266 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/809400doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?FIIiaP
https://www.zotero.org/google-docs/?v8mHN2
https://doi.org/10.1101/809400
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

To further support that these cells are indeed skin cancer cells, we performed an independent 267 

analysis based on mutational signatures to confirm the mislabelling. Large-scale analyses of 268 

trinucleotide mutation spectra across human tumors have revealed at least 30 different types of 269 

mutational signatures (28). Of these, Signature 7 (C>T changes in CC and TC contexts) was 270 

associated with exposure to UV light and is highly abundant in sun-exposed melanoma tumors 271 

(29). The same signatures were recently estimated in cancer cell lines by two related methods 272 

(30,31), which enabled us to use existence UV-linked Signature 7 to examine whether these cell 273 

lines originated from the skin. Based on mutational burden of Signature 7, the known melanoma 274 

cell lines (turquoise dots) are clearly separated from the rest (Fig 3e), meaning the approach can 275 

distinguish skin-derived cells. Among the melanoma cell lines with high mutational burden of 276 

Signature 7, we found four out of five of the suspected cell lines (Fig 3e), in particular  GCT, 277 

SW684, ES2 and MDST8 are very likely skin cells, and not sarcoma, sarcoma, ovarian cancer or 278 

colorectal cancer, respectively, as originally thought. For the sixth suspected cell line COLO741, 279 

the mutational signature data is not available, however COLO741 has been previously reported 280 

of being melanoma based on the expression of skin-specific genes (27).  281 

 282 

The RF48 cell line (originally considered stomach, here putatively reassigned to skin) does not 283 

exhibit the UV signature nor the DNA methylation patterns of skin, therefore a highly confident 284 

call cannot be made. Nonetheless, a pattern of cancer driver mutations in RF48 suggests it is 285 

indeed not a stomach cell line (Fig 3a). Past work based on gene expression suggested that RF48 286 

is indeed not representative of stomach -- instead, a lymphoid origin was proposed for RF48 (32). 287 

 288 

Next, we sought to substantiate these findings using drug sensitivity data. In particular, two drugs 289 

(dabrafenib and trametinib) that target mutant BRAF are approved for treating melanoma in the 290 

clinic. These drugs are known to have poor efficacy in other cancer types bearing BRAF 291 

mutations, such as in colon cancers (33) and therefore sensitivity to these drugs adds confidence 292 

we are in fact looking at a melanoma cell line; (note that the converse does not necessarily hold 293 

here: resistance does not imply it is not a melanoma). Therefore, we compared the IC50 of these 294 

two drugs for all cell lines (Fig 3d). As expected, many melanoma cell lines cluster at low values 295 

of IC50 for the two drugs, meaning these cells are sensitive to the drugs. Among this cluster we 296 

observed two out of five of our suspected cell lines (ES2 and MDST8) providing further supporting 297 

evidence these are of skin, likely melanoma skin cancer origin.  298 

 299 

 300 
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  301 

Fig. 3. Further evidence supporting tissue identity of the suspected cell lines. (a) Prediction score (0-20) for each suspected cell line for 20 runs of 
one-versus-one classifiers that predicted suspected versus original cancer type in GE, MET, copy number alteration (CNA), mutational spectrum (MS96) 
and oncogenic mutations (OGM). A value of 20 means that the cell line is predicted as suspected consistently in the 20 runs of the algorithm, and a value 
of 0 means it is predicted as original cancer type the 20 runs. (b) Histograms of the prediction scores for CNA and MS96 for the models based on actual 
data, and a baseline  on randomized data ( shuffling the labels). (c) Prediction scores for MS96 and CNA for the suspected cell lines. Colors represent the 
suspected cancer type (see column “new_ct” in panel a). Grey dots represent the random values. (d) Drug sensitivity (IC50) for mutant BRAF inhibitors 
dabrafenib and trametinib for 614 cell lines. Cell lines originally labelled as skin cancer shown in red, and skin-suspected cell lines are marked with a square 
and their sample id. (e) Burden of UV-associated mutation Signature 7 (estimated from two different sources) in 614 cell lines. Cell lines originally labelled 
as skin cancer are shown in red and skin-suspected cell lines are marked with a square and the sample id. 
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In conclusion, from the six cell lines suspected of originating from skin, four of them are confirmed 302 

by the UV mutational signatures and two of those are additionally confirmed by the drug sensitivity 303 

to BRAF inhibitors. This striking example demonstrates how the transcriptome and epigenome-304 

based tissue/cell type classifiers are able to link cultured human cell lines with their correct cancer 305 

type of origin. 306 

 307 

In addition to these examples of skin cell lines, we have further supported several other cancer 308 

type reassignments using drug sensitivity data (34) (results summarized in Table S2). This 309 

provided evidence that the DANG cell line is consistent with squamous cell carcinoma of the lung 310 

or of the head and neck (SCC), rather than with its original assignment of pancreatic 311 

adenocarcinoma (this reassignment is also observed with multiple genomic classifiers; (Fig 3a). 312 

Similarly, SW1710 may be a kidney, rather than a bladder cell line, based on the original 313 

reassignment via transcriptome and epigenome, based on mutational patterns (Fig 3a) and 314 

additionally supported in the global analysis of drug responses (Table S2). We note that such 315 

analyses of drug screening data can be applied to distinguish only certain pairs of tissues and not 316 

all reassignments can be reliably validated in this test (see AUC scores in Table S2). 317 

 318 

5. Identification of subtypes for cell lines using multi-omics analyses 319 

Tumors are heterogeneous and major differences exist between tumor samples of the same 320 

cancer type. To manage this variability, researchers have attempted to subdivide each cancer 321 

type based on their molecular characteristics, including global patterns in gene expression and 322 

DNA methylation (35–37). However, with the exception of a few tumor types, in particular breast 323 

cancer, molecular subtypes are still being established or refined, in order to better predict disease 324 

progression in response to particular treatments. 325 

Since drug screens and genetic screens performed in cell lines have the intent of serving as 326 

models for actual tumors, it is important to establish a method that can transfer the subtype 327 

assignments from tumors to cell lines, thereby establishing which cell line(s) are the most 328 

appropriate model for which cancer subtype.  329 

Previously, molecular subtypes from tumors have been transferred to cell lines using different 330 

strategies. For breast cancer, cell lines subtypes have been assigned mainly using Prediction 331 

Analysis for Microarrays (PAM) analysis, which is based on a restricted set of gene expression 332 

markers (38). For colorectal cancer, the cell lines were stratified into the consensus molecular 333 
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subtypes (CMS) integrating transcriptomic and genomic data (39). For renal cancer, subtypes 334 

were assigned to the cell lines using gene expression data (14). In a recent pan-cancer study, 335 

subtypes have been assigned to a set of 600 cell lines (40). It has been proposed that the cell 336 

lines do not usually represent all subtypes of a particular cancer type, possibly due to a bias 337 

introduced during the process of immortalization (38,40). 338 

Our approach to assign subtypes to cell lines herein is to apply the same strategies that have 339 

allowed us to get accurate cancer type classifiers: first, the integration of transcriptomic and 340 

epigenomic data to boost confidence in the predictions, and second, careful adjustment of the 341 

two data types to make them comparable between TCGA tumors and cell lines (Fig S1).  342 

An important consideration in the task of inferring the cell lines’ subtypes is the absence of true 343 

labels needed for systematic validation, thus assignments should be treated as tentative. 344 

However, for breast cancer cell lines the subtype labels are available (38) and can be used as a 345 

benchmark of our multi-omics based methodology. 346 

We examined proposed subtypes for 15 cancer types in TCGA and generated subtype classifiers 347 

(Methods) for each cancer type. The combination of both data types (GE and MET) achieved a 348 

higher cross-validation accuracy in the TCGA (median AUPRC across cancer types: 0.81) than 349 

GE (0.76) or MET (0.72) separately. Therefore, we used the combined datasets to generate 350 

subtypes classifiers and propose assignments of the cell lines to cancer subtypes. Since we are 351 

using one-versus-rest classifiers each cell line can be assigned to more than one subtype. 352 

However, the majority of them are assigned to only one subtype (Fig S6a); we used only those in 353 

further analysis. As a benchmark, we calculated the accuracy for the breast cancer cell lines with 354 

subtypes available (Fig S6b): the median AUPRC (across breast cancer subtypes) for CL is 0.83. 355 

This suggests acceptable performance in obtaining tentative subtype assignments for cell lines in 356 

all 15 cancer types, which we provide as a resource in Table S3. This resource is complementary 357 

to a recent set of subtype predictions for 9 cancer types based on transcriptomes (40).  358 

Next, we examined if the relative prevalence of subtypes is similar between tumors and cell line 359 

panels of the same cancer type. Cell line panels of some cancer types have good representation 360 

of subtypes, for instance lung squamous cell cancer, head and neck squamous cell cancer, lung 361 

adenocarcinoma, and gastric/esophageal cancers (Fig S6c). However, the converse is the case 362 

for liver, skin and thyroid cancer cell lines, in which a single subtype predominates in cell line 363 

panels but not in tumors (statistics listed in Supplementary Table 4). Additionally, we observe 364 

suboptimal representation (where half of the tumor subtypes are not represented) in the kidney, 365 
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bladder and brain cancer cell line panels, when considering the 463 cell lines we analyzed. This 366 

suggests that -- in some cancer types more than others -- the commonly used cell line panels do 367 

not represent the diversity of molecular subtypes in tumors, which should be taken into account 368 

when interpreting experimental data. One possible reason is the relative ease of culturing certain 369 

subtypes, compared to others (2). 370 

 371 

6. Accounting for mislabelled cell lines reveals new associations in drug screening data 372 

We detected 35 cell lines that may have a tissue or cell type identity different than the one 373 

originally assigned to them. Because the cell type is an important determinant of drug response 374 

in cancer cell lines and in tumors (11), we hypothesized that the inclusion of this new tissue 375 

information into analyses of genetic determinants of drug sensitivity may change the results. In a 376 

comprehensive study, Iorio et al. searched for associations between drug response and Cancer 377 

Functional Events (CFEs): the recurrent mutations, CNA and hypermethylation events present in 378 

human tumors (11). Here, we used GDCSTools (27) to reproduce the results of that study, 379 

however after filtering the cell lines to those that better represent the cancer type in question. In 380 

particular, we repeated the same analysis using for each tissue (i) all the cell lines; (ii) only the 381 

cell lines in the ‘golden set’ (G); (iii) as a less stringent filtering criterion, only the cell lines in the 382 

‘golden and silver set’ (G&S). Additionally, as controls we included a random subset of cell lines 383 

that  matches (iv) the number of cell lines in ‘golden set’ (r_G) and (v) the number in ‘golden and 384 

silver set’ combined (r_G&S).  385 

 386 

For the majority of the cancer types, we observed that one of the filtered subsets recovered a 387 

higher number of significant (at FDR<= 25%) associations of CFE with drug sensitivity or 388 

resistance, than were recovered using all cell lines (Fig S7). For instance, for glioblastoma, using 389 

the ‘golden set’ cell lines we found 23 new associations, which were not recovered from the entire 390 

cell line panel nor from the random-subset controls (Fig 4b). For example, this recovers the 391 

positive association of CDKN2A loss with camptothecin sensitivity (Fig 4c), which was previously 392 

reported in an independent analysis of the NCI-60 cell line panel screening data (41). Similarly, 393 

for pancreatic adenocarcinoma, benefits were observed by focusing on cell lines that resemble 394 

the corresponding cancer type better: using only the ‘golden set’ plus ‘silver set’ cell lines, 10 new 395 

significant associations were found (Fig 4b). For instance, we detected that SMAD4-mutant cell 396 

lines are more resistant to piperlongumine, a natural product claimed to have antitumor properties  397 
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  398 

Fig. 4. Drug sensitivity association testing using high-confidence sets of cell lines. (a) Drug sensitivity (IC50) to dabrafenib in all CRAD cell lines (left) 
and all CRAD cell lines except MDST8, which is suspected of being skin cancer (right). Two groups are compared: cell lines with BRAF mutation and without 
(wild-type). ANOVA FDR for this association (dabrafenib and BRAF mutation) shown in blue for both datasets. Horizontal line is shown at 0, because score 
<0 implies sensitivity to the drug. (b) Number of significant associations between Cancer Functional Events (CFEs) and drugs detected in the ANOVA test for 
all cell lines (ALL), cell lines in the golden set (G), cell lines in the golden plus silver set (G&S), random subset of cell lines that match the number of cell lines 
in the golden set (r_G) and in the golden plus silver set (r_G&S). For the random subsets, the number of significant associations is calculated 10 times (with 
different random selection) and the median of the 10 runs is shown.  P-values for a sign test (one-tailed, alternative = “less”) between the number of associations 
in the G/G&S versus  the number of associations in r_G/r_G&S are shown. See Fig S7 for remaining cancer types. (c) Differential sensitivity of drugs were 
analysed by ANOVA for all brain cancer cell lines (left) and the brain cancer cell lines in the golden set only (right). Each point is an association between the 
sensitivity of a drug and a genetic feature (CFE). (d) Differential sensitivity of drugs were analysed by ANOVA for all pancreatic (PAAD) cell lines (left) and 
PAAD cell lines in the golden and silver set only (right). Each point is an association between the sensitivity of a drug and a genetic feature (CFE). 
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exerted via multiple pathways (42,43). Mutations of the tumor suppressor gene EP300 were 399 

associated with higher sensitivity to three drugs in pancreatic cancer cell lines (Fig 4d). 400 

 401 

The observation that more associations were found despite using a somewhat lower number of 402 

cell lines (thus less statistical power) emphasizes the importance of using the cell lines that more 403 

closely model the tissue and/or cell type-of-origin of the cognate tumor. 404 

 405 

Colorectal cancers provides an illustrative example of how important is to remove 406 

nonrepresenative cell lines from drug screening efforts. In the Iorio et al. (2016) study, 50 407 

colorectal adenocarcinoma (CRAD) cell lines were tested. Of those, we strongly suspected that 408 

MDST8 derives from skin. To test the influence of this individual mislabelled cell line we have 409 

performed association testing with all CRAD cell lines, and after excluding MDST8. For the 410 

association of the drug dabrafenib with BRAF mutation status, we observed that all CRAD cell 411 

lines (irrespective of BRAF mutation) are not sensitive, except for MDST8 which is strongly 412 

sensitive (Fig 4a). The FDR of the ANOVA analysis when using all cell lines is 6%, while when 413 

removing MDST8 the FDR is 45%. Therefore, in this case, the presence of a single mislabelled 414 

cell line is sufficient to cause the appearance of a false association between a drug and a feature. 415 

This is fully consistent with clinical responses: in contrast to the good response of patients with 416 

BRAF-mutant melanoma to dabrafenib, colorectal tumors with the same BRAF V600 mutation are 417 

not  sensitive to BRAF or MEK inhibitor monotherapy (33). 418 

 419 

7. Accounting for mislabelled cell lines reveals new associations in genetic screening data 420 

Motivated by the many novel associations revealed by reanalyzing the drug screening data, we 421 

asked if the same extends to genetic screening data in cancer cell lines, because results in genetic 422 

screens may also depend on cell lineage (12). To further investigate, we analyzed CRISPR 423 

screening data from Project Score and Project Achilles (see Methods), from which 347 cell lines 424 

overlap our tested cell lines. Then, we applied the same association testing method, which was 425 

however underpowered because the number of available overlapping cell lines was smaller. 426 

Nonetheless, in colorectal and ovarian cancer, we observed that  focussing only on the ‘golden 427 

set’ and/or ‘silver set’, the number of associations recovered increased (as a control, there were 428 

no increases in the random cell line subsets of the same size; Fig 5a, Fig S8).  429 

 430 
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To illustrate the importance of removing suspect cell lines in gene dependency screenings, we 431 

provide two examples of associations that were originally not detected as significant due to the 432 

presence of a mislabelled cell line. For ovarian cancer, the presence of SW626 (mislabelled cell 433 

line confirmed by the literature (26)) prevents finding the association between MED8 dependency 434 

and a copy number gain in the region containing ASXL1 (cnaOV72) as significant (Fig 5b). 435 

Similarly, for colorectal cancer the presence of MDST8 (mislabelled cell line confirmed by the UV 436 

mutational signature) prevents finding the association between TUBB4B dependency and a copy 437 

number gain in STK4 (cnaCOREAD32) (Fig 5c). Finally, a significant association between WRN 438 

dependency and MLL2 (also known as KMT2D) gene mutation is recovered only with the filtered 439 

cell lines in ovarian cancer (Fig 5d). This WRN-MLL2 association has been recently reported 440 

using a somewhat different set of cell lines (from Project Score) (44) that partially overlap our set. 441 

 442 

Finally, our re-analyses of drug screening and genetic screening data revealed an interesting 443 

association independently supported in both drug and genetic data. The drug afatinib inhibits the 444 

EGFR protein and is clinically indicated for EGFR-mutated lung cancer, however in EGFR-altered 445 

glioblastoma afatinib is generally not considered to elicit a response (45). Consistently, afatinib 446 

sensitivity was associated with EGFR alterations in lung cancer previously (11), as well as in our 447 

re-analysis (FDR G&S = 0.6%), but not in the brain cell line panel (all FDR ≥ 25%). However, 448 

using the focussed (golden set) of brain cancer cell lines revealed a significant association 449 

(ANOVA FDR = 15%, Fig S9a) between afatinib sensitivity and a different genetic alteration: copy 450 

number loss in a region at 1p32.3 containing the CDKN2C and FAF1 genes (id: cnaGBM68). 451 

Remarkably, the same loss at 1p32.3 is associated with sensitivity to genetic knockout of EGFR 452 

in brain cell line panels in two independent large-scale genetic screens (Project Scores and 453 

Project Achilles, Fig S9cd) and another drug screen (PRISM, Fig S9b). The meta-analysis of the 454 

two drug screens and two genetic screens suggests high strength of combined evidence 455 

(p=0.00094, Fisher’s method of combining p-values) linking the loss at 1p32.3 (chr1: 51169045-456 

51472178) with sensitivity to pharmacological or genetic EGFR inhibition in brain cells, suggesting 457 

a strong candidate for follow-up work.  458 

 459 

In summary, the presence of cell lines with dubious or incorrect labels of tissue identity may 460 

strongly impact association studies of drug or CRISPR screening data in two different ways. First, 461 

the presence of mislabelled cell lines can cause the appearance of spurious associations that do 462 

not reflect the biology of the cancer type of interest. Second, the presence of mislabelled or 463 

divergent cell lines can prevent the recovery of true associations.  464 
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 465 

  466 

Fig. 5. Analysis of genetic screening data using high-confidence cell lines. (a) Number of significant associations between Cancer Functional Events 
(CFEs) and gene dependencies (in CRISPR knockout screens) detected in the ANOVA test for all cell lines (ALL), cell lines in the golden set (G), cell lines in 
the golden and silver set (G&S), random subset of cell lines that match the number of cell lines in the golden set (r_G) and in the golden and silver set (r_G&S). 
For the random subsets, the number of significant associations is calculated 10 times and median.  P-value for a sign test (one-tailed) between the associations 
in the G/G&S and the associations in the 10 runs of r_G/r_G&S are shown. See Fig S8 for remaining cancer types. (b) Fitness effect (fold change) for MED8 
k.o. in all OV cell lines (left) and all OV cell lines except SW626, which is suspected of originating from CRAD (right). Two groups are compared: cell lines with 
copy number gain in a region containing ASXL1 (gain_cnaOV72), and without (wild-type). ANOVA FDR for this association (MED8 k.o. and gain_cnaOV72) is 
shown in blue for both datasets. (c) Fitness effect (fold change) for TUBB4B k.o. in all CRAD cell lines (left) and all CRAD cell lines except MDST8, which 
is  suspected to originate from skin (right). Two groups are compared: cell lines with copy number gain in region containing STK4 (gain_cnaCOREAD32) and 
without (wild-type). ANOVA FDR for this association (TUBB4B k.o. and gain_cnaCOREAD32) shown in blue for both datasets. (d) Differential dependency 
biomarkers were analysed by ANOVA for all ovarian cancer (OV) cell lines (left) and OV cell lines in the golden and silver set only (right). Each point is an 
association between the fitness effect of a gene and a genetic feature (CFE). 
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Discussion 467 

Cell lines are commonly used as models for tumors, however it is an open question how to best 468 

apply the available cell line panels to learn about cancer biology. The availability of genomic data 469 

from large tumor cohorts and from cell line panels has spurred multiple efforts to find which cell 470 

line(s) are closer to tumors by their transcriptomic (10,39,40,46) and/or genomic features (13,14), 471 

presumably making better models, and which are more distant from examples of actual tumors, 472 

presumably making less good models of tumor biology.  473 

 474 

Our work addresses a different question: we attempt to detect the cancer type (i.e. tissue and/or 475 

cell type) that originated the cell line, in order to ascertain if this matches the declared origin of 476 

the cell line. A mismatch may conceivably stem from the sampling step, for instance a metastasis 477 

might have a different tissue-of-origin than thought at time collection. The work-up after collecting 478 

the tumor sample may have inaccurately assigned the cancer type based on unclear histological 479 

or anatomical features. Another possibility is that the mismatch might stem from the step of 480 

adaptation to cell culture, where a minority cell type not representative of the tumor prevails over 481 

other tumoral cells. We consider these to be cases of cell line mislabeling during isolation. In 482 

addition, we would also detect cases where the cell line might have acquired some properties of 483 

a different tissue/cell type during culture, however our analyses (Fig 3c) suggest this is a less 484 

common occurrence, although individual examples of this cannot be ruled out.  485 

 486 

Importantly, this phenomenon of tissue / cell type mislabeling is distinct from well-known and 487 

widespread cell line misidentification issues (23,47), where one cell line (often HeLa) was 488 

mistakenly used in place of another cell line, commonly due to cross-contamination. The cell line 489 

panels that provided data used in our analyses (GDSC and CCLE) have authenticated their cell 490 

lines (4,44), thus misidentification/cross-contamination cannot underlie our observation that the 491 

mislabeling of the cancer type of origin is not uncommon. (We note there were rare cases of 492 

misidentified cells reported in these panels (44) however these do not overlap our results.) 493 

 494 

Methodologically improving over previous work, we introduce the HyperTracker framework that 495 

performs global analyses that independently examine transcriptomic, epigenomic and several 496 

types of mutational features. Additionally, while carefully adjusting for the known bulk differences 497 

between cell lines and tumors, which might have resulted e.g. from impurities in tumors, or from 498 

altered expression of cell-cycle-related genes in cell lines (40,48). Parallel analyses of different 499 
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omics data provides increased confidence in our inferences, which suggested, remarkably, that 500 

5.7% (35 of total 614 considered cell lines) exhibit significant transcriptomic and epigenomic 501 

features of a different tissue/cell type than the declared cell type of origin. For 3.6% (22 cell lines) 502 

these reassignments to a different cancer type were additionally supported in at least one type of 503 

genomic evidence. This increased confidence that these were indeed examples of cell lines with 504 

mislabeled (or, less likely, diverged) tissue/cell-type identity. A striking example are cell lines GCT, 505 

SW684, ES2 and MDST8 that we predict to originate from the skin, based on the presence of the 506 

UV mutational signature, in addition to transcriptome/epigenome data. These cases are 507 

reminiscent of the recent reports of UV mutational signatures found in some cases of presumed 508 

lung cancers, suggesting they may instead be metastases originating from a sun-exposed area 509 

of skin (49).    510 

 511 

In interpreting our data, an important consideration is that the cancer samples types in TCGA may 512 

not necessarily reflect the full diversity of rarer subtypes within a cancer type, which may cause 513 

some ambiguous predictions. For instance, the ECC10 and ECC12 cell lines are assigned to 514 

STAD cancer type (stomach adenocarcinoma) when matched with TCGA tumors. However, these 515 

cell lines originate from gastric small cell neuroendocrine carcinomas. This may explain why, in 516 

our analysis, gene expression patterns point towards brain tissues, while mutational features 517 

suggest stomach cancer. In such cases of disagreement between different types of features, a 518 

future use of a more exhaustive set of reference tumor data may help resolve the ambiguity and 519 

improve confidence in predictions. 520 

 521 

The genomic classifiers we employed here were based on whole-exome sequences and were 522 

overall less powerful than the transcriptome/DNA methylation classifiers in our data (Fig S4). 523 

Recent work by us and others (24,25) suggests that analyzing whole-genome sequences of these 524 

cell lines would permit use of additional, highly predictive features based on regional mutation 525 

density of chromosomal domains. This may provide further genomic evidence for the identity of 526 

the cell-of-origin for the 35 suspected cell lines. Experimental work on these cell lines will provide 527 

further  evidence to support or refute our predictions based on global analyses of omics data. 528 

 529 

Knowing the correct tissue-of-origin label for a cell line is important, because this has a strong 530 

bearing on the response of the cell line to drug treatment and to genetic perturbation. We 531 

demonstrate the implications of this general principle to analyses of drug and genetic screening 532 

data: by accounting for suspect cell lines, the power to discover new determinants of sensitivity 533 
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to drug/genetic perturbation may increase substantially for some cancer types, such as brain, lung 534 

and pancreatic cancers. Therefore, when designing future screening efforts, it is not only 535 

important to increase the number of cell lines to gain more power, but it is also important to focus 536 

on the cell lines that are most consistent with the tissue and/or cell type of interest. 537 

 538 

 539 

Methods 540 

Omics data collection and preparation 541 

DNA methylation data, We downloaded DNA methylation data as beta values (platform Illumina 542 

Human Methylation 450) from GDC Data Portal (50) for TCGA samples and from Genomics of 543 

Drug Sensitivity in Cancer (GDSC) (3) for CL samples. We filtered out all probes outside promoter 544 

regions and probes with NA values in more than 100 samples. For the probes in promoter regions, 545 

we selected only one probe per gene, keeping the probe with the highest standard deviation (sd) 546 

across samples. We transformed the beta-values to m-values (log2 ratio of the intensities of 547 

methylated probe versus unmethylated probe). In total, we have 10,141 features for 942 CL 548 

samples and 8,453 TCGA samples.  549 

 550 

Gene expression data. We downloaded gene expression data as transcripts per million (TPM) 551 

from GDC Data Portal (50) for TCGA samples and from GDSC (3) and the Cancer Cell Line 552 

Encyclopedia (CCLE) (4) for CL samples. We filtered out genes with NA values in more than 100 553 

samples and selected the overlapping genes between the 3 sources. We removed low expressed 554 

genes (TMP<1 in 90% of the samples). We applied square root transformation to the data. In 555 

total, we have 12,419 features for 942 CL samples and 9,149 TCGA samples.  556 

 557 

Finally, for both DNA methylation (MET) and gene expression (GE), we created datasets of 558 

different sizes: 1,000; 2,000; 3,000; 5,000; and 8,000 features by selecting the genes/probes with 559 

the highest standard deviation across TCGA samples only. 560 

 561 

Copy Number Alteration data. We downloaded Copy Number Alteration data (computed by gene) 562 

from GDC Data Portal (50) for TCGA samples and from DepMap (51) for CL samples. In total, we 563 

have 20,491 features for 942 CL samples and 9,188 TCGA samples. To reduce the dataset, we 564 

selected 299 cancer driver genes (52) and filtered out the rest.  565 
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 566 

Mutation data. For human tumors, we downloaded mutation data as whole exome sequencing 567 

(WES) MC3 dataset (53) from the GDC Data Portal for TCGA samples. For cell lines, bam files 568 

were obtained from European Genome-phenome Archive (EGA) (ID number: 569 

EGAD00001001039). Variant calling was performed using Strelka (version 2.8.4) with default 570 

parameters. Variant annotation was performed using ANNOVAR (version 2017-07-16). In 571 

samples where Strelka was unable to run, a re-alignment was performed using Picard tools 572 

(version 2.18.7) to convert the bams to FASTQ and, following that, the alignment was perfomed 573 

by executing bwa sampe (version 0.7.16a) with default parameters. The resulting bam files were 574 

sorted and indexed using Picard tools. To account for germline variants, we removed all mutations 575 

that were present in the gnomAD database (54) at an allele frequency >= 0.001 in any of the 576 

populations. Finally, using the filtered somatic mutations we calculated three set of mutational 577 

features: Regional Mutation Density (RMD), Mutation Spectra (MS96) and Oncogenic Mutations 578 

(OGM) as described in Salvadores et. al (24). RMD features did not exhibit high accuracy when 579 

applied to exome-sequencing data and so were not considered further in this analysis. 580 

 581 

For the cell line samples, we matched their cancer types to the TCGA cancer types using the cell 582 

line metadata from GDSC (3) and manually annotated those that did not have TCGA label using 583 

cellosaurus (55). Next, we selected the cell lines from solid tumor that had a matching cancer type 584 

in TCGA, ending up with a total of 614 cell lines from 22 cancer types. Blood cancers (LAML and 585 

DLBC) are not tested because they are commonly growth in suspension, therefore their confusion 586 

with solid tumors is less likely to occur.  For further analysis, we merged the cancer types that 587 

were overall similar: HNSC with LUSC and ESCC (SCC), GBM with LGG (LGGBM), STAD with 588 

ESAD (ESTAD) and OV with UCEC (GYNE). 589 

 590 

The identification of the cell line samples were performed by the databases providing the data 591 

using short tandem repeat (STR) analysis (4,44). Of note, they reported a few commonly 592 

misidentified cell lines: Ca9-22, RIKEN, MKN28, KP-1N, OVMIU and SK-MG-1 (44). These cell 593 

lines do not overlap with our suspected samples and additionally the misidentification does not 594 

impact tissue or cancer type of origin.  595 

 596 

Data alignment between tumors and cell lines 597 
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For the alignment of TCGA and CL data we first applied quantile normalization (R package 598 

preprocessCore 1.46.0) and second applied ComBat (R package sva 3.32.1), a batch effect 599 

correction method. We used ComBat as if our dataset was the TCGA and CL data combined, and 600 

the batch effects were whether a sample belongs to TCGA or CL (for MET) or a sample belongs 601 

to TCGA, GDSC or CLLE (for GE). We applied this method for GE, MET, CNA, MS96 and RMD. 602 

For validation, we calculated a principal component analysis (PCA) subsampling TCGA data to 603 

match the CL samples (stratified by cancer types). Additionally, we calculated Elastic Net (EN) 604 

classifiers to predict (in the processed dataset) TCGA versus CL and calculated the AUC and 605 

AUPRC to check whether the process of alignment is being successful or not.  606 

 607 

In addition to the chosen adjustment method, we tested other approaches based on Canonical 608 

Correlation Analysis, Partial Least Squares and principal component analysis, which did not 609 

exceed accuracy of ComBat (data not shown) and therefore were not examined further. 610 

 611 

Cancer type classifiers 612 

For the TCGA dataset we generated Ridge regression model for predicting the cancer type in a 613 

One-vs-Rest manner (using cv.glmnet function with alpha=0 and family = binomial, R package 614 

glmnet 2.0.18). To calculate the accuracy, we trained classifiers in the TCGA dataset and tested 615 

in the CL dataset. In particular, we calculated the Area Under the Receiver Operating 616 

Characteristic curves (AUC) and the Area Under the Precision Recall curve (AUPRC) for each 617 

cancer type vs the rest (all the rest of cancer types combined).  618 

 619 

FDR Score. For each cell line, we calculated an FDR score of belonging to a particular cancer 620 

type. For this, we divided the TCGA data into two datasets (training and testing) of the same size 621 

keeping the cancer type proportions. For each cancer type, we trained classifiers in the TCGA 622 

training dataset and we introduced the cell lines one by one with the testing data and calculated 623 

the precision recall (PR) curve (TCGA testing + 1CL). We set the cell line FDR score for that 624 

specific cancer type as (1 - precision) at the threshold where the cell line is situated in the PR 625 

curve. Overall, for every cell line we obtained 17 FDR scores, 1 for each possible cancer type. 626 

We repeated this procedure 5 times and calculated the median FDR for every case to get more 627 

robust values. In addition, when training for 1 cancer type (label = 1) versus the rest of cancer 628 

types combined (label = 0) we made some exceptions and removed those cancer types which 629 

are similar and therefore the classifier is not good at separating them (e.g. when we calculated 630 
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FDR for ESTAD, we removed from the rest CRAD and PAAD, all hidden cases in Table S7). This 631 

is conservative with respect to reassigning cell lines to another cancer type, however some 632 

resolution is traded off because the more closely related cancer types are, by design, not 633 

distinguished. We have further attempted to reclassify cell lines within these hidden tissues and 634 

the combined ones. However, when using One-vs-One classifiers the accuracy is not good 635 

enough for distinguishing the two cancer types in the cell lines (data not shown). 636 

 637 

Once we have a list of suspected cell lines, we have an “original” cancer type and a “suspected” 638 

cancer type. Therefore, we generated One-vs-One classifiers (original versus suspected) using 639 

TCGA dataset (balancing the classes) and for each suspected cell line we checked if it is predicted 640 

as “original” or “suspected”. We repeated this prediction 20 times and counted the number of 641 

times a cell line is predicted as suspected. Therefore,  we defined a prediction score (range 642 

between 0 and 20) for every cell line, where 0 means never predicted as suspected and 20 always 643 

predicted as suspected. As a control, we repeated the same procedure with randomized cancer 644 

type labels. We calculated this prediction score for GE, MET, CNA, OGM and MS96 datasets. 645 

For calculating the FDR at a score ≥15, we applied this formula: FDR = FP/(FP+TP) where FP 646 

was the number of cell lines with score ≥15 in the randomized data and TP the number of cell 647 

lines with score ≥15 in the actual data. 648 

 649 

Independent validation  650 

We downloaded drug sensitivity for the CL from GDSC (3). From all the drugs we selected 651 

trametinib and dabrafenib, FDA-approved drugs for melanoma treatment. We compared IC50 652 

values for these two drugs for all cancer types.  653 

 654 

We downloaded mutational signatures from cell lines available in Jarvis et al (31) and Petljak et 655 

al (30) and we compared the exposures of all cell lines for Signature 7 (UV light). In Petljak et al 656 

dataset the signature 7 is divided into Signature 7a, b, c and d. Therefore, we used the sum of 657 

exposures across all four subtypes of Signature 7. 658 

 659 

We downloaded another set of drug screening data (PRISM 19Q3) (34) for the CL dataset. For 660 

the suspected cell lines, we generated One-vs-One classifiers (using cv.glmnet function with 661 

alpha=1 and family = binomial, R package glmnet 2.0.18) for predicting original versus suspected 662 

cancer type based on the drug sensitivity data. We performed 20 runs of each case and count 663 
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how many times it is predicted as suspected (prediction score 0-20). Additionally, we calculated 664 

the AUC for each classifier. 665 

 666 

Subtype classifiers 667 

We downloaded cancer subtypes for the TCGA samples from the R package TCGAbiolinks 2.12.6 668 

(56). We combined the GE and MET datasets. For this data, we generated Ridge regression 669 

model for predicting the subtypes in a One-vs-Rest manner (using cv.glmnet function with alpha=0 670 

and family = binomial, R package glmnet 2.0.18) within each cancer type. We trained models in 671 

TCGA and we predicted subtypes for the cell lines. Additionally, we used cell line’s subtypes for 672 

breast cancer from a previous paper (38) to calculate the confusion matrix and the AUPRC. 673 

 674 

We performed a chi-square test (R package stats 3.6.0) and calculated the cramer’s V statistic 675 

(R package lsr 0.5) for checking whether the proportion of subtypes between TCGA and CL is 676 

maintained for each cancer type.  677 

 678 

Drug and CRISPR screening data  679 

We downloaded drug sensitivity and cancer funcional event (CFE) data from the Iorio et al. study 680 

(11). Cancer Functional Events (CFEs) are a collection of recurrent mutations, CNA and 681 

hypermethylation events present in human tumors (11). We used GDSCTools (57) to search for 682 

associations between the drugs and the CFEs in every cancer as they did. In particular, we 683 

performed this analysis using for each tissue (i) all the cell lines; (ii) only the cell lines in the golden 684 

set (G); (iii) only the cell lines in the golden and silver set (G&S). Additionally, as controls we 685 

included  a random subset of all cell lines matching (iv) the number of cell lines in goldenset (r_G) 686 

and (v) the number in golden and silver set combined (r_G&S). We counted the number of 687 

significant hits (FDR≤25%) for each of the cancer types. For the controls, we repeated the 688 

subsampling 10 times and took the median of significant hits. We compared the number of hits 689 

for all the cell lines (same as in Iorio et al study) with the number of hits for the different subsets 690 

of cell lines according to our grouping. Additionally, we performed a sign test (R package BSDA 691 

1.2.0) comparing the significant hits in the G/G&S subsets versus the significant hits over 10 runs 692 

in the random G/ random G&S and calculated the p-value for all cancer types (alternative = “less”). 693 

 694 

Similarly, we downloaded gene dependency data from Project Score (44) and Project Achilles 695 

(58) processed with the Project Score pipeline and combined them. From a total of uniquely 696 696 
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cell lines, 357 overlap with the 600 cell lines tested with our method. For those 357 tested cell 697 

lines, we repeated the same procedure as described above for the drug sensitivity data. 698 

 699 
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