-
т

- 2 Large DNA virus promoted the endosymbiotic evolution to make a photosynthetic
- 3 eukaryote
- 4

5 Authors and Affiliations

- 6 Mitsuhiro Matsuo¹, Atsushi Katahata¹, Makoto Tachikawa¹, Yohei Minakuchi², Hideki
- 7 Noguchi^{3,4}, Atsushi Toyoda^{2,4}, Asao Fujiyama⁴, Yutaka Suzuki⁵, Takayuki Hata¹,
- 8 Soichirou Satoh¹, Takuro Nakayama^{6,7}, Ryoma Kamikawa⁸, Mami Nomura^{8,9}, Yuji
- 9 Inagaki⁶, Ken-ichiro Ishida⁹, Junichi Obokata¹
- 10

¹Graduate School of Life and Environmental Science, Kyoto Prefectural University,

12 Kyoto, 606-8522, Japan.

13 ²Department of Genetics and Evolutionary Biology, National Institute of Genetics,

14	Mishima,	Shizuoka,	411-854	0, Japan.
----	----------	-----------	---------	-----------

- 15 ³Center for Genome Informatics, Joint Support-Center for Data Science Research,
- 16 Research Organization of Information and Systems, Mishima, Shizuoka 411-8540,
- 17 Japan.

18	⁴ Advanced	Genomics	Center,	National	Institute	of	Genetics,	Mishima,	Shizuoka
19	411-8540, J	apan.							

- ⁵Graduate school of Frontier Science, University of Tokyo, Kashiwa, Chiba, 272-8562,
- 21 Japan.
- 22 ⁶Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki,

23 305-8577, Japan.

- 24 ⁷Graduate School of Life Sciences, Tohoku University, Sendai 980-8578,
- 25 Japan
- 26 ⁸Graduate Schools Human and Environmental Studies, Kyoto University, Kyoto,
- 27 606-8501, Japan.
- 28 ⁹Graduate School of Life and Environmental Sciences, University of Tsukuba,
- 29 Tsukuba, Ibaraki, 305-8572, Japan.
- 30
- 31
- 32
- 33

34 Abstract

35	Chloroplasts in photosynthetic eukaryotes originated from a cyanobacterial
36	endosymbiosis far more than 1 billion years ago ¹⁻³ . Due to this ancientness, it remains
37	unclear how this evolutionary process proceeded. To unveil this mystery, we analysed
38	the whole genome sequence of a photosynthetic rhizarian amoeba ⁴ , Paulinella
39	micropora ^{5,6} , which has a chloroplast-like organelle that originated from another
40	cyanobacterial endosymbiosis ⁷⁻¹⁰ about 0.1 billion years ago ¹¹ . Here we show that the
41	predacious amoeba that engulfed cyanobacteria evolved into a photosynthetic organism
42	very quickly in the evolutionary time scale, probably aided by the drastic genome
43	reorganization activated by large DNA virus. In the endosymbiotic evolution of
44	eukaryotic cells, gene transfer from the endosymbiont genome to the host nucleus is
45	essential for the evolving host cell to control the endosymbiont-derived organelle ¹² . In P_{1}
46	micropora, we found that the gene transfer from the free-living and endosymbiotic
47	bacteria to the amoeba nucleus was rapidly activated but both simultaneously ceased
48	within the initiation period of the endosymbiotic evolution, suggesting that the genome
49	reorganization drastically proceeded and completed. During this period, large DNA

50	virus appeared to have infected the amoeba, followed by the rapid amplification and
51	diversification of virus-related genes. These findings led us to re-examine the
52	conventional endosymbiotic evolutionary scenario that exclusively deals with the host
53	and the symbiont, and to extend it by incorporating a third critical player, large DNA
54	virus, which activates the drastic gene transfer and genome reorganization between
55	them. This Paulinella version of the evolutionary hypothesis deserves further testing of
56	its generality in evolutionary systems and could shed light on the unknown roles of
57	large DNA viruses ¹³ in the evolution of terrestrial life.
58	
58 59	Main manuscript
58 59 60	Main manuscript Our laboratory culture of <i>P. micropora</i> MYN1 ^{5,6} (Fig. 1a) is not axenic and
58 59 60 61	Main manuscript Our laboratory culture of <i>P. micropora</i> MYN1 ^{5,6} (Fig. 1a) is not axenic and contains bacteria. From this culture, we prepared the chromatins of <i>P. micropora</i> by
5859606162	Main manuscript Our laboratory culture of <i>P. micropora</i> MYN1 ^{5,6} (Fig. 1a) is not axenic and contains bacteria. From this culture, we prepared the chromatins of <i>P. micropora</i> by micromesh-aided cell isolation and chromatin immunoprecipitation using a canonical
 58 59 60 61 62 63 	Main manuscript Our laboratory culture of <i>P. micropora</i> MYN1 ^{5,6} (Fig. 1a) is not axenic and contains bacteria. From this culture, we prepared the chromatins of <i>P. micropora</i> by micromesh-aided cell isolation and chromatin immunoprecipitation using a canonical histone antibody. Shotgun sequencing of this chromatin DNA gave us a high-quality
 58 59 60 61 62 63 64 	Main manuscript Our laboratory culture of <i>P. micropora</i> MYN1 ^{5,6} (Fig. 1a) is not axenic and contains bacteria. From this culture, we prepared the chromatins of <i>P. micropora</i> by micromesh-aided cell isolation and chromatin immunoprecipitation using a canonical histone antibody. Shotgun sequencing of this chromatin DNA gave us a high-quality draft genome assembly of 967 Mb (Fig. 1, Extended Data Fig. 1, Supplementary Table

Fig. 1. An overview of the *P. micropora* **MYN1 draft genome. a**, A SEM image of *P. micropora* MYN1. **b**, The statistics of the draft genome. **c**, The genome composition of *P. micropora* MYN1 analysed by RepeatMasker²⁷. **d**, Simple repeats are extraordinarily rich in *P. micropora* MYN1 compared with other organisms.

bioRxiv preprint doi: https://doi.org/10.1101/809541; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

 $\mathbf{5}$

66	(Extended Data Fig. 1); hence, our draft assembly covered 72% of the whole genome.
67	The genome is largely composed of repeated sequences, with 19.2% unique sequences
68	(Fig. 1c). Simple repeat sequences are extraordinarily rich, amounting to 19.6% (Fig. 1c,
69	1d). As much as simple repeats and transposons, 20.5% of the genome is occupied by
70	unclassified repeat sequences that contain notable amounts of DNA virus-like fragments
71	(Fig. 1c, Supplementary Table 2, 3).
72	A total of 36,763 protein gene models were predicted; on average, they were
73	10.4 kb long and contained eight introns, implying large and complex structures (Fig.
74	1b, Supplementary Table 4). Their gene ontology (GO) term analysis showed that
75	DNA-related metabolism which associated with DNA virus is significantly
76	over-represented compared with that of other rhizarian organisms (Extended Data Fig.
77	1e, Supplementary Table 5).
78	From the above gene set of <i>P. micropora</i> , we attempted to characterize the
79	genes that have been pivotal for the endosymbiotic evolution. We extracted the genes
80	derived from cyanobacteria as well as those derived from the rest of the bacteria; we
81	refer to the former as endosymbiotic gene transfer (EGT) candidates and the latter as

bioRxiv preprint doi: https://doi.org/10.1101/809541; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

82	horizontal gene transfer (HGT) candidates in this study. We obtained 177 EGT and 248
83	HGT candidates (Fig. 2, Supplementary Table 6). Half of the EGT candidates are genes
84	for high light inducible proteins (HLIPs) ¹² , which are involved in the protection against
85	excess light energy. Phylogenetic analysis of these HLIPs showed that they are
86	polyphyletic, suggesting that HLIPs should have been acquired by multiple independent
87	gene transfers from cyanobacteria (Extended Data Fig. 2). Thus, the gain of a light
88	protection system should have been crucial for the predacious amoeba to evolve into a
89	photosynthetic organism.
90	HGT candidates contain genes of diverse functions, including ribosome
91	biogenesis, DNA synthesis and amino acid metabolism. These genes appear to be
92	involved in (1) endosymbiont biogenesis and (2) changes of the cellular nutrient state
93	from heterotrophy to photo-autotrophy. To further examine the genes essential to the
94	evolution of a photosynthetic organism, we compared orthologs among <i>P. micropora</i> ,
95	primary photosynthetic eukaryotes and predaceous eukaryotes (Extended Data Fig. 3a,
96	3b); 12 orthologous groups are conserved in the former two but not in the latter,
97	including the genes for light acclimation, organelle gene expression and changes of the

Fig. 2. *P. micropora* **nuclear genes acquired by EGT/HGT. a, b**, A functional classification of the *P. micropora* **nuclear** genes derived from cyanobacteria (EGT candidates) (**a**), and those from other bacteria (HGT candidates) (**b**). **c, d**, The amino acid sequence identity of EGT candidates against *P. micropora* MYN1 plastid genes (**c**) and that of HGT candidates against bacterial genes of the NCBI nr database (**d**). **e, f**, An estimation of the gene transfer age for EGT candidates (**e**) and HGT candidates (**f**). The endosymbiosis initiation period is green-highlighted. The ages of gene transfer in (**e**) and (**f**) were calculated based on the divergent time points (45.7–64.7 MYA) of two *Paulinella* species; thus, a gene transfer age younger than 60 MYA (striped phase) could not be estimated.

98	cellular nutrient state. Some of them were obtained horizontally from eukaryotes
99	(Extended Data Figs. 3b-d). Therefore, P. micropora utilized the genes of diverse
100	origins for endosymbiotic evolution.
101	The biggest challenge of this study is to elucidate the temporal sequence of
102	the events that occurred at the birth of photosynthetic eukaryotes. To solve this puzzle,
103	we first estimated how and when EGT occurred, based upon the sequence similarity
104	between the EGT candidates and organelle-encoded genes. The results were surprising.
105	We could not find any case with more than 80% amino acid sequence identity
106	conserved between them (Fig. 2c), suggesting that plastidial EGT did not occur in a
107	recent time period (Fig. 2e). We further searched for nuclear-localized plastid DNAs
108	and nuclear-localized mitochondria DNAs ^{15,16} in the genome and found the latter but
109	not the former. Therefore, it is likely that plastidial EGT rapidly activated and then
110	ceased early in the endosymbiotic evolution in <i>P. micropora</i> , while this cool down was
111	not found for mitochondrial EGT (Extended Data Fig. 4).
112	We confirmed this hypothesis from the different angle. Phylogenetic tree
113	analysis of the EGT candidates showed that most of them already lost their counterparts

	-	
)
2	e	4
c		
	-	~

114	in the plastid genome, except for four genes; hence, we reckon that these four genes
115	were transferred from the plastid to the nucleus relatively recently. The divergences of
116	the four genes between their nuclear and plastid counterparts were estimated to have
117	occurred 319.8 to 98.6 million years ago (MYA) (Extended Data Fig. 5). Considering
118	that the photosynthetic Paulinella species have diverged from the heterotrophic species
119	141.4 to 93.6 MYA ¹¹ , even the latest EGT at 98.6 MYA had occurred within the
120	initiation period of the endosymbiotic evolution. Taken together, the results of this
121	study strongly suggest that EGT rapidly activated and ceased within the initial period of
122	the endosymbiotic evolution (Fig. 2e), and a similar time course was also found for
123	HGT (Fig. 2d, 2f).
124	What does this rapid and simultaneous cool-down of EGT and HGT (Figs.
125	2c-2f) mean? The most simple and likely explanation is that the predaceous Paulinella
126	shrank and lost phagocytic activity at this time to become a photosynthetic organism,
127	accompanied by the shut-down of phagocytosis-aided EGT/HGT. In reality, HGT from
128	prey cyanobacteria occurred in the predaceous <i>Paulinella</i> species ¹⁷ . If our assumption is
129	correct, the predaceous Paulinella should have changed its cellular, genomic and

130	metabolic systems very quickly in terms of the evolutionary time scale. How was this
131	drastic change possible? To examine this, we re-focused this study on DNA virus-like
132	fragments frequently found in the P. micropora genome.
133	Fig. 3a shows a genomic scaffold containing putative virus fragments that are
134	characterized by having from a dozen to a hundred copies, high GC content, ORFs
135	similar to eukaryotic virus genes, and many intron-less genes of heterogeneous origins
136	with unknown functions (Extended Data Fig. 6, Supplementary Table 3). In addition,
137	they are often intermingled with simple repeats and mobile genetic elements, i.e.,
138	Maverick/Polinton-type giant transposons ^{18,19} and retrotransposons. Most notably, the
139	maximum fragment size reaches 300 kb (Extended Data Fig. 6). These structural
140	features of the DNA virus-like fragments resemble those of nucleocytoplasmic large
141	DNA viruses (NCLDV) ²⁰ whose genome size ranges from 100 kbp to 2.5 Mbp and who
142	have many genes of heterogenous origins with unknown functions. However, a
143	phylogenetic analysis based on DNA polymerases shows that those genes, encoded by
144	the putative viral fragments, form a monophyletic clade distant from the genes of
145	eukaryotes, prokaryotes and known NCLDVs (Fig. 3b). Therefore, we assume that they

bioRxiv preprint doi: https://doi.org/10.1101/809541; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 3. Putative DNA virus and mobile elements in *P. micropora* **MYN1. a**, A schematic view of DNA virus-like fragments and mobile elements in the *P. micropora* draft genome (Scaffold 1104). The genomic regions were coloured according to the sequence characteristics; putative dsDNA virus (pink), Polinton (light blue), retrotransposon (brass yellow) and simple repeat-rich region (grey). The copy number of the interspersed repeat elements was analysed by BLASTN against the simple-repeat-masked *P. micropora* draft genome. **b**, ML phylogenetic tree of DNA polymerases of viruses, eukaryotes and prokaryotes. **c**, Divergent time analysis of the virus-type GPCR in *Paulinella*'s lineage. **d**, **e**, Divergent time analysis of DNA polymerase genes of metazoa-type (**d**) and rhizarian-type (**e**) Polintons. Asterisks: the branch point of *P. micropora* and *P. chromatophora* set at 45.7–64.7 MYA. Green bands: initiation periods of endosymbiosis with cyanobacteria (93.6–141.4 MYA). *P. micropora*; *Paulinella micropora* MYN1, *P. chromatophora*; *Paulinella chromatophora* CCAC0185, *P. brassicae*; *Plasmodiophora brassicae*, *R. filosa*; *Reticulomyxa filosa*, *S. purpurgus*; *Strongylocentrotus purpuratus*.

146	are from a novel large DNA virus but share several properties with known NCLDVs.
147	Our next question was when the putative virus infected the <i>Paulinella</i> lineage.
148	Although ancient infection hallmarks were already smeared, we found a suggestive case
149	in a Paulinella-specific gene family (Fig. 3c, Extended Data Fig. 7). The G-protein
150	coupled receptor (GPCR) genes rapidly expanded and diversified within a short
151	evolutionary period around the endosymbiosis initiation point. Noteworthily, two genes
152	of this family were found only in the putative viral fragment regions (yellow squares in
153	Fig. 3c and Extended Data Fig. 7). This suggests that these two genes diverged from the
154	rest of the family around the endosymbiosis initiation point and have been inherited
155	from the virus genome. This indicates that the putative virus has infected the Paulinella
156	lineage around the endosymbiosis initiation point or earlier.
157	To further prove this, we investigated the Maverick/Polinton-type transposons
158	derived from a virophage ²¹ , which parasitizes giant viruses (extremely large NCLDVs)
159	with its propagation depending on the host virus ^{21,22} . Virophages are also integrated into
160	the nuclear genome and could function as an anti-DNA virus system to protect
161	eukaryotic cells from the DNA virus ^{23,24} . Therefore, we hypothesized that the

162	emergence of Mavericks/Polintons and their amplifications have occurred concomitant
163	with the DNA virus infection. In the P. micropora genome, two distinct
164	Mavericks/Polintons, metazoan- and rhizaria-type, were detected in abundance
165	(Extended Data Fig. 8, Supplementary Table 7). The divergent time analysis showed
166	that both started amplification in the endosymbiosis initiation period (Fig. 3d, 3e).
167	These results of the Maverick/Polinton-type transposons support the hypothesis that the
168	large DNA virus infected the Paulinella lineage around the endosymbiosis initiation
169	period.
170	Recent studies of NCLDV and giant DNA virus have drastically changed our
171	conventional view of viruses ¹³ , especially their huge potential to incorporate diverse
172	genetic materials of heterogenous origins ^{25,26} and to mediate their shuffling.
173	Considering these properties of large DNA virus and the results of this study, we could
174	reconstruct the initial evolutionary process of the photosynthetic Paulinella species as
175	shown in Fig. 4. In this hypothetical model, large DNA virus contributed to the
176	
	endosymbiotic evolution as a critical player, in addition to the original players of the

organelle per cell, hence, release of the organelle DNA hardly occurred without losing photosynthetic activity. In this final stage, virus-mediated gene transfer continued at trace level.

178	hallmarks of large DNA virus seems difficult because (1) it could be easily lost due to
179	its harmful and undesirable effects on host proliferation, (2) of poor information of the
180	virus sequences and (3) of repeated sequences that are apt to be omitted in the assembly
181	process of the genomic sequencing projects. This Paulinella version of the
182	endosymbiotic evolution hypothesis deserves further examination to test its generality
183	in many evolutionary systems.
184	
185	Methods
186	Data availability
187	The sequences of the <i>P. micropora</i> draft genome, plastid (chromatophore) genome,
188	mitochondria genome and the raw reads data set were deposited to the DDBJ
189	(Accession No. are shown in Supplemental Table 8) and DDBJ reads archives (DRA
190	Accession No. DRA003059, DRA003106, DRA008524).
191	
192	P. micropora culture and cell isolation. The P. micropora MYN1 strain (NIES
193	Collection, Tsukuba, JAPAN, NIES-4060) was cultured according to Nomura et al.

194	$(2014)^5$ and harvested by low-speed centrifugation (500 × g, 2 min) at 4 °C. The
195	harvested cells were resuspended in the culture medium and filtrated through a 20 μm
196	mesh nylon filter (HD-20, Nippon Rikagaku Kikai Co., Ltd., Tokyo, Japan) to remove
197	dead cell aggregates with high bacterial contamination. Recovered healthy cells were
198	repeatedly washed with culture medium and subjected to RNA extraction. For
199	extraction of chromatin DNA, the cells were subsequently washed three times with 10
200	mM Tris-HCL (pH 8.0), six times with 10 mM Tris-HCL (pH 8.0) plus 10 mM EDTA,
201	and recovered by a 5 μ m mesh nylon filter (PP-5n, Kyoshin Rikoh Inc., Tokyo, Japan)
202	to give clean cells largely free of bacterial contamination.
203	
204	Chromatin and genomic DNA extraction. Genomic DNA used for paired-end (300 b,
205	500 b) and mate-pair (3 kb, 5 kb) libraries for HiSeq sequencing were purified by
206	chromatin immunoprecipitation (ChIP) as follows. Ten milligrams of <i>P. micropora</i> cells
207	were homogenized in 500 μl homogenizing buffer (20 mM Tris-HCl (pH 7.6), 10 mM
208	NaCl, 10 mM KCl, 2.5 mM EDTA, 250 mM sucrose, 0.1 mM spermine, 0.5 mM

spermidine and 1 mM DTT) using a 30µm clearance glass homogenizer (RD440911,

210	Teraoka Co., Ltd., Osaka, Japan). After centrifugation ($1000 \times g$, $10 \min$, $4 \circ C$), the
211	pellets were resuspended in 300 µl ChIP buffer (50 mM Tris-HCl (pH 8.0), 500 mM
212	NaCl, 10 mM EDTA, 0.1% SDS, 0.5% Na-deoxycholate, 1% Triton X-100, 1 mM DTT
213	and 10% glycerol) with 20 µl Dynabeads protein G (Thermo Fisher Scientific, MA,
214	U.S.A.) charged with 1 μ g anti-histone H3 antibody (Ab1791) (Abcam plc, Cambridge,
215	UK) and incubated at 4 °C for 20 min. Dynabeads were then washed twice with ChIP
216	buffer, twice with glycerol-free ChIP buffer and finally suspended in DNA extraction
217	buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA and 1% SDS). After RNase A (10
218	$\mu g/ml)$ and proteinase K (200 $\mu g/ml)$ treatment, DNAs were purified by using Plant
219	DNeasy Mini Kit (Qiagen, Hilden, Germany). For the construction of the long mate-pair
220	libraries (12 kb, 15 kb, 18 kb and 20 kb), the total <i>P. micropora</i> genome was extracted
221	without ChIP purification.
222	

Genome sequencing and assembly. Sequencing libraries were prepared using a
TruSeq DNA PCR-Free Library Preparation Kit and a Nextera Mate Pair
Library Prep Kit (Illumina, San Diego, CA). Two paired-end libraries with

226	300 and 500bp inserts and six mate pair libraries (3kb, 5kb, 12kb, 15kb,
227	18kb, and 20kb) were constructed and sequenced on the Illumina HiSeq
228	2500 sequencers with 151 cycles per run. The nuclear draft genome was
229	assembled by SOAPdenovo v2.04-r240 ²⁸ with a k-mer size of 121 after removing the
230	sequence reads of the plastid (chromatophore) and mitochondria genomes, and those of
231	two contaminating bacteria genomes. After the genome assembly, we checked for the
232	contamination of the organelle genome and the bacteria genomes again, and we
233	removed the contaminants from the draft genome. K-mer frequency analysis was
234	performed by Jellyfish ²⁹ . Genome scaffolds longer than 1 kb were analysed in this
235	study.
236	
237	RNA-seq and Iso-Seq analysis. RNAs were extracted from <i>P. micropora</i> cells at 0, 4,
238	8, 12, 16 and 20 hr of 14L/10D photoperiod by Trizol® reagent (Thermo Fisher
239	Scientific), and further purified using Plant RNeasy Mini Kit (Qiagen) with RNase-free
240	DNase I treatment (Qiagen). Samples of the above time points were equally mixed and
241	subjected to RNA-seq analysis using Agilent Strand Specific RNA Library Preparation

242	Kit (Agilent Technologies, CA, U.S.A) and Illumina HiSeq 2500 (Illumina). The paired
243	end reads of RNA-seq were <i>de novo</i> assembled by Trinity ³⁰ with the default setting or
244	by CLC Genomics Workbench 7.0.3 (Qiagen) using a K-mer value of 54. The RNA-seq
245	reads were mapped on the genome with Tophat ³¹ and assembled with Cufflinks ³² or
246	Trinity ³⁰ . For isoform-sequencing (Iso-Seq) of full-length transcripts, cDNAs were
247	prepared from polyA+RNA using SMARTer® PCR cDNA Synthesis Kit (Takara Bio
248	Inc., Shiga, Japan). The cDNA samples were size-fractionated with the BluePippin [™]
249	system (Sage Science, MA, USA) and 700-1500 bp, 1500-3000 bp and 3000-6000 bp
250	fractions were analysed with a PacBio®RSII sequencer (Pacific Biosciences, CA,
251	U.S.A.). Iso-Seq-contigs were constructed using the RS_IsoSeq protocol in SMRT
252	Analysis (v2.3.0) with the parameter of estimated cDNA size. The <i>de novo</i> assembled
253	RNA-seq-contigs and Iso-Seq-contigs were mapped to the genome by BLAT ³³ , and
254	each contig was annotated when at least 80% of its sequence was mapped. The mapped
255	transcript data were used to make longer transcript models with PASA2 v. $2.0.2^{34}$.
256	

257 Annotation of repeat sequences. Repeat sequences of *P. micropora* were identified

258	using the RepeatModeller package (v. open-1-0-8, http://www.repeatmasker.org) and
259	masked by RepeatMasker v. 4.0^{27} , using the identified-model repeat sequences and the
260	repeat sequences of Repbase (ver. 20150807) ³⁵ (https://www.girinst.org/repbase/). The
261	model repeat sequences were annotated based on the sequence homology search against
262	the NCBI nr database by BLASTX ³⁶ . Representative Polintons and retrotransposons in
263	Supplementary Table 3 were identified by manual inspection of the <i>P. micropora</i> draft
264	genome aided by a sequence similarity search using BLAST software ³⁶ .
265	
266	Gene annotation. Protein genes of <i>P. micropora</i> were annotated by a combination of
267	transcriptome-based gene modelling, ab initio gene prediction and protein
268	homology-based gene prediction. In the transcriptome-based gene modelling, the
269	transcripts were masked first by RepeatMasker because many spurious repetitive
270	sequences, which were not removed by genome-repeat-masking, were detected. We
271	discarded the transcript models when more than 80% of the region was masked by
272	RepeatMasker. Exceptions were made when ORFs (> 50 aa) were predicted from the
273	unmasked region. The ORFs and coding sequences of transcripts were predicted with

274	the Transdecoder Utility of Trinity ³⁷ . Ab initio gene prediction was performed by
275	Augustus ³⁸ , whose training was performed using Iso-Seq data. Since <i>P. micropora</i>
276	protein genes often contain simple repeat sequences in the exon regions, we avoided
277	masking them for the <i>ab initio</i> gene prediction. The protein homology-based gene
278	prediction was performed by Exonerate ³⁹ after masking both the simple repeat and the
279	interspersed repeat sequences, because the homology search in the presence of simple
280	repeat sequences generated an extraordinary number of meaningless candidates (data
281	not shown). In the Exonerate analysis, we used the protein sequences that passed the
282	prescreening by BLASTX search (P. micropora genome vs. a local protein database
283	composed of Uniprot and 4 rhizarian organisms, B. natans, P. brassicae, P.
284	chromatophore and R. filosa). All gene models described above were combined, and the
285	best one for each gene locus was chosen according to the bit score of the BLAST search,
286	the presence/absence of transcript and ORF length. The quality of the genome assembly
287	and the annotation was assessed by BUSCO v. 1^{40} .
288	

289 Detection of DNA virus-like fragments. Genomic segments with discernible

290	boundaries and distinct from the rest of the genome by the following four criteria were
291	denoted as DNA virus-like fragments or putative DNA virus fragments: 1) repeat
292	sequences detected by RepeatModeller but distinct from retrotransposons and the
293	Maverick/Polinton-type transposons, 2) higher GC content, 3) large heterogeneous
294	intron-less gene clusters and 4) ORFs similar to DNA virus proteins are encoded; DNA
295	virus genes are found within the top 100 by BLASTP search against the NCBI nr
296	database. The detailed procedure is as follows. Genomic scaffolds containing repeat
297	sequences of the unknown class ²⁷ were subjected to ORFfinder ⁴¹ , and ORFs detected
298	were annotated by BLASTP ³⁶ search against the NCBI nr database. The GC%
299	distribution was analysed with CLC genomic workbench 7.0.3 (Qiagen). The virus copy
300	number was analysed using the BLASTN ³⁶ program searching the simple
301	repeat-masked draft genome for virus coding sequences (Supplementary Table 3) or 100
302	b fragments generated by slicing the virus-containing scaffolds (Fig. 3, Extended Data
303	Fig. 6). BLASTN-redundant hits were manually removed.
304	

305 GO-term-, metabolism-pathway-, orthogroup- and protein-domain analysis.

306	GO-terms were acquired by InterproScan 5 ⁴² , and the enrichment analysis was
307	performed by web-based GOstat ⁴³ (http://gostat.wehi.edu.au/) using 27,653 GO-terms
308	of 12,007 P. micropora genes and 88,634 GO-terms of 39,773 genes of 4 rhizarian
309	organisms (B. natans, P. brassicae, R. filosa and P.micropora,). Metabolism-pathways
310	were analysed using KAAS of KEGG ⁴⁴ (https://www.genome.jp/kegg/kaas/).
311	Orthogroup-analysis of Extended Data Fig. 3 was performed by Orthofinder ⁴⁵ using a
312	local protein database (Supplementary Table 10). Protein domain information in
313	Extended Data Fig. 7 was acquired by NCBI conserved domain (CD) search
314	(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) ⁴⁶ .
315	
316	nuclear-localized plastid DNA (nupDNA) and mitochondria DNA (numDNA)
317	analysis. Using the <i>P. micropora</i> plastid genome (DDBJ Accession No. LC490351) and
318	mitochondria genome sequence (DDBJ Accession No. LC490352) for queries, nupDNA
319	and numDNA were searched for by BLASTN against the P. micropora draft genome
320	and the raw sequence reads of Illumina HiSeq2500. In the raw read-based nupDNA and
321	numDNA analysis, chimeric segments of the organelle-like and non-organelle

322	sequences, which represent the junction region of nuclear localized organelle DNA,
323	were surveyed. The detected reads were assembled by CodonCode Aligner (CodonCode
324	Corporation, MA, U.S.A.). The chimera artefacts due to sequencing adaptors, or
325	contaminated bacterial and mitochondria genomes, were identified by BLAST analysis
326	using the NCBI database (nt, nr) and the mitochondria genome sequence (LC490352).
327	
328	Phylogenetic analysis and the divergent time analysis. Multiple sequence alignment
329	analyses were performed by MUSCLE ⁴⁷ and MAFFT ⁴⁸ . The phylogenetic trees were
330	constructed using MEGA packages (version 6^{49} , 7^{50} and $-CC^{51}$) and IQ-tree ⁵² . The
331	divergent time analysis was performed using the RelTime method ⁵³ implemented in
332	MEGA 6. Parameters used for phylogenetic analyses are shown in Supplementary Table
333	6 and 9, respectively.
334	
335	Analysis of EGT/HGT candidates. P. micropora nuclear genes derived from
336	cyanobacteria are referred to as EGT, and those derived from the rest of the bacteria are

defined as HGT. To screen the EGT/HGT candidates, *P. micropora* MYN1 genes were

338	used as queries for the BLASTP search against the NCBI nr database with e-value \leq
339	1e ⁻¹⁰ , and top-hitting genes of the <i>Paulinella</i> plastid genes or prokaryotic protein
340	sequences were selected. These genes were subjected to multiple alignment analyses by
341	MUSCLE using the protein sequences of a local protein dataset in Supplementary Table
342	10 and of the best BLASTP hit sequences. The obtained data sets were subjected to a
343	neighbour joining (NJ) phylogenetic analysis (MEGA6, 7, CC) to choose P. micropora
344	nuclear genes that form sister groups with prokaryotes or photosynthetic eukaryotes.
345	After fine taxon re-samplings from the NCBI nr database, the NJ analysis selection was
346	conducted again. The selected genes were finally subjected to maximum likelihood
347	(ML) analysis using MEGA packages (MEGA6, 7, CC). P. micropora nuclear genes
348	that satisfied at least one of the following three criteria were used as EGT and HGT
349	candidates. 1) BLAST analysis of the gene gave no hint of eukaryote genes in the NCBI
350	nr database. 2) EGT and HGT are supported by ML phylogenetic analysis with a high
351	bootstrap value. We adopted a bootstrap value of 95 as threshold when phylogenetically
352	available protein alignment sequence positions were long enough (\geq 100 aa). We
353	lowered the threshold to 70 when the available sites were less than 100 aa. 3) The gene

354	is included in the clade of photosynthetic organisms. To confirm the validity of the
355	above mentioned EGT candidate selection, we also screened the EGT candidates by
356	another independent procedure. The EGT candidates obtained by these two independent
357	analyses were almost overlapping and, therefore, used for the analysis (Supplementary
358	Table 6). The alternative analysis procedure is as follows. We performed a phylogenetic
359	analysis using the software of multiple alignment (MAFFT) and ML phylogenetic
360	analysis (IQ-tree), and alignment trimming tools (trimAI ⁵⁴ , BMGE ⁵⁵). We selected
361	genes hitting alpha-type cyanobacteria ^{56,57} within the top 100 by BLAST search against
362	a custom database, which consists of the NCBI nr database supplemented with the
363	protein sequences of 14 phylogenetically informative protists (Supplemental Table 10).
364	
365	Estimation of EGT/HGT timing. To estimate the timing of EGT/HGT, we used <i>P</i> .
366	micropora genes whose counter genes of P. chromatophora CCAC0185 were reported
367	as EGT/HGT candidates ^{58,59} . In addition, we restricted the analysis to <i>Paulinella</i>
368	ortholog's pairs that form a monophyletic sister group with a high bootstrap value (\geq
369	70). The nearest protein sequences of HGT/EGT candidates were surveyed from NCBI

370	nr database by BLASTP analysis. Within the top 2000 sequences of BLASTP hits, the
371	phylogenetically nearest gene sequences were estimated using NJ and ML phylogenetic
372	analysis. To estimate gene transfer timing, the branching time point when <i>P. micropora</i>
373	MYN1 separated from the nearest non-rhizarian organisms in the ML phylogenetic tree
374	was calculated using the RelTime method ⁵⁵ . We used an estimated value of the
375	divergence of <i>P. micropora</i> and <i>P. chromatophora</i> (45.7–64.7 MYA) based on the 18S
376	rRNA phylogenetic tree corrected by fossil information ^{11,60} .
377	
378	Analysis of Mavericks/Polinton transposons. P. micropora's Mavericks/Polintons
379	transposons were detected from the draft genome by tBLASTN using the sequence of
380	the DNA polymerase (DNA-pol) domain. Thousands of DNA polymerase ORFs,
381	predicted from the genome sequences by Transdecoder ³⁷ , were subjected to NJ
382	phylogenetic analyses. We grouped highly similar copies. Representative sequences that
383	have long ORFs and less ambiguous amino acid residues were selected from each group
384	and subjected to ML phylogenetic analysis.

386	Divergent time analysis of the mobile elements. In the divergent time analysis of
387	Marvericks/Polintons DNA polymerases, representative DNA-pol sequences of <i>P</i> .
388	micropora MYN1 Polintons having the traits of recent amplification (nucleotide
389	sequence identity between the copies \geq 90%) were used. For the DNA-pol sequences of
390	P. chromatophora CCAC0185 Polintons, the genome sequence-reads (SRR3217293.sra,
391	SRR3217303.sra) were searched by BLASTX (e-value $< 1e^{-20}$) using the sequence of <i>P</i> .
392	micropora MYN1 Polintons, and then, the hit-reads were assembled into contigs with
393	CLC Genomic Workbench 7.0 (Qiagen). For the analysis of virus-type GPCR genes, in
394	addition to P. micropora MYN1 genes and P. micropora putative virus genes, the
395	translated ORFs of <i>P. chromatophora</i> CCAC0185 transcripts were analysed. The GPCR
396	gene family was detected by Orthofinder ⁴⁵ and BLASTP ³⁶ search. In this analysis, the
397	genes encoding seven intact trans-membrane domain sequences, of which all seven
398	trans-membrane helices can be identified by CD search ⁴⁶ , were used. Furthermore,
399	several genes predicted ab initio by Augustus without any supporting experimental data
400	were removed from the analysis, because their gene models appeared to be artificial
401	from applying eukaryotic splicing rules to virus-like fragments. The divergent time

402	points of the mobile elements and GPCR genes were calculated by setting the nearest
403	branching point of <i>P. micropora</i> MYN1 and <i>P. chromatophora</i> CCAC0185 at 45.7-
404	64.7 MYA.
405	
406	Statistical analysis
407	In GO-term enrichment analysis, Fisher's exact test (two tailed test) was performed and
408	the p-values corrected with false discovery rate (Benjamini) were calculated. In the
409	phylogenetic analysis, bootstrap test with ≥ 100 replicates was performed.
410	
411	References
412	1
413	Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G. & Bhattacharya, D. (2004) A
414	molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21,
415	809-18, https://doi.org/10.1093/molbev/msh075 (2004).
416	
417	2

418	Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic
419	eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. USA 114,
420	E7737-E7745. https://doi.org/10.1073/pnas.1620089114 (2017).
421	
422	3
423	McFadden, G. I. Origin and evolution of plastids and photosynthesis in eukaryotes.
424	CSH Perspect Biol. 6, a016105, https://doi.org/10.1101/cshperspect.a016105 (2014).
425	
426	4
427	Burki, F. & Keeling, P. J. Rhizaria. Curr. Biol. 24, R103-R107,
428	https://doi.org/10.1016/j.cub.2013.12.025 (2014).
429	
430	5
431	Nomura, M., Nakayama, T. & Ishida, K. Detailed process of shell construction in the
432	photosynthetic testate amoeba Paulinella chromatophora (euglyphid, Rhizaria). J.
433	Eukaryot. Microbiol. 61. 317-321. https://doi.org/10.1111/jeu.12102 (2014).

101

6

436	Matsuo,	М.	et al.	Characterization	of spliced	l leader	trans-splicing	in a	photosynthetic
					1		1 0		1 2

- 437 rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer.
- 438 *PLoS One* **13**, e0200961, https://doi.org/10.1371/journal.pone.0200961 (2018).
- 439
- 440 7

441 Nowack, E. C., Melkonian, M. & Glöckner, G. Chromatophore genome sequence of

442 Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 18,

443 410-418, https://doi.org/10.1016/j.cub.2008.02.051 (2008).

444

445 8

446 Yoon, H. S. et al. A single origin of the photosynthetic organelle in different Paulinella

- 447 lineages. *BMC Evol. Biol.* **9**, 98, https://doi.org/10.1186/1471-2148-9-98 (2009).
- 448
- 449 9

450	Reyes-Prieto, A. et al. Differential gene retention in plastids of common recent origin.
451	Mol. Biol. Evol. 27, 1530-1537, https://doi.org/10.1093/molbev/msq032 (2010).
452	
453	10
454	Nakayama, T. & Ishida, K. Another acquisition of a primary photosynthetic organelle is
455	underway in Paulinella chromatophora. Curr. Biol. 19, R284-R285,
456	https://doi.org/10.1016/j.cub.2009.02.043 (2009).
457	
458	11
459	Delaye, L., Valadez-Cano, C. & Pérez-Zamorano, B. (2016) How Really Ancient Is
460	PaulinellaChromatophora?PLOSCurr.Tree.Life.
461	https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b (2016).
462	
463	12
464	Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast
465	genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the

- 466 nucleus. Proc. Natl. Acad. Sci. USA. 99, 12246-12251,
 467 https://doi.org/10.1073/pnas.182432999 (2002).
- 468
- 469 13
- 470 Koonin, E. V. & Yutin, N. Evolution of the Large Nucleocytoplasmic DNA Viruses of
- 471 Eukaryotes and Convergent Origins of Viral Gigantism. Adv. Virus Res. 103, 167-202,
- 472 https://doi.org/10.1016/bs.aivir.2018.09.002 (2019).
- 473
- 474 14
- 475 Komenda, J. & Sobotka, R. Cyanobacterial high-light-inducible proteins--Protectors of
- 476 chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta. 1857, 288-295,
- 477 https://doi.org/10.1016/j.bbabio.2015.08.011 (2016).
- 478
- 479 15
- 480 Matsuo, M., Ito, Y., Yamauchi, R. & Obokata, J. The rice nuclear genome continuously
- 481 integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear

482	DNA flux. Plant Cell 17, 665-675, https://doi.org/10.1105/tpc.104.027706 (2005).
483	
484	16
485	Smith, D. R., Crosby, K. & Lee, R. W. Correlation between nuclear plastid DNA
486	abundance and plastid number supports the limited transfer window hypothesis.
487	Genome Biol. Evol. 3, 365-71, https://doi.org/10.1093/gbe/evr001 (2011).
488	
489	17
490	Bhattacharya, D. et al. Single cell genome analysis supports a link between phagotrophy
491	and primary plastid endosymbiosis. Sci Rep. 2, 356, https://doi.org/10.1038/srep00356
492	(2012).
493	
494	18
495	Feschotte, C. & Pritham, E. J. Non-mammalian c-integrases are encoded by giant
496	transposable elements. <i>Trends Genet.</i> 21 , 551-552,
497	https://doi.org/10.1016/j.tig.2005.07.007 (2005).

500	Kapitonov,	V.	V.	& Jurka,	J.	. Self-synthesizing	DNA	transposons	in	eukaryotes.	Proc.
	1 /							1		2	

- 501 Natl. Acad. Sci. USA 103, 4540-4545, https://doi.org/10.1073/pnas.0600833103 (2006).
 502
- 503 20

504 Koonin, E. V. & Yutin, N. Multiple evolutionary origins of giant viruses. F1000Res. 7,

505 F1000 Faculty Rev-1840, https://doi.org/10.12688/f1000research.16248.1 (2018).

- 506
- 507 21

508 Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons.

509 Science **332**, 231-234, https://doi.org/10.1126/science.1199412 (2011).

- 510
- 511 22

512 La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature

513 **455**, 100-104. https://doi.org/10.1038/nature07218 (2008).

- 514
- 515 23
- 516 Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced 517 reactivation of the virophage mavirus. *Nature* **540**, 288-291.
- 518 https://doi.org/10.1038/nature20593 (2016).
- 519
- 520 24

521 Blanc, G., Gallot-Lavallée, L. & Maumus, F. Provirophages in the Bigelowiella genome

522 bear testimony to past encounters with giant viruses. Proc. Natl. Acad. Sci. USA 112,

523 E5318-5326, https://doi.org/10.1073/pnas.1506469112 (2015).

- 524
- 525 25

526 Boyer, M. et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in

- 527 emergence of chimeric microorganisms. Proc. Natl. Acad. Sci. USA 106, 21848-21853,
- 528 https://doi.org/10.1073/pnas.0911354106 (2009).
- 529

- retroposons from reptiles to mammals. *Proc. Natl. Acad. Sci. USA* **104**, 12046-12051
- 533 https://doi.org/10.1073/pnas.0700531104 (2007).
- 534
- 535 27
- 536 Smit, AFA, Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013-2015,
- 537 http://www.repeatmasker.org.
- 538
- 539 Method-only references
- 540 28
- 541 Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de
- 542 novo assembler. *GigaScience* **1**, 18, https://doi.org/10.1186/2047-217X-1-18 (2012).
- 543
- 544 29
- 545 Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of

546	occurrences	of	k-mers.	Bioinformatics	27,	764–770,
547	https://doi.org/10	.1093/bioi	nformatics/btr	011 (2011).		
548						
549	30					
550	Grabherr, M. G. e	et al. Full-	length transcri	ptome assembly fr	om RNA-Seq d	ata without a
551	reference genom	e. Nat.	Biotechnol. 2	9 , 644–652, http	s://doi.org/10.10	038/nbt.1883
552	(2011).					
553						
554	31					
555	Trapnell C., Pacl	nter L. &	Salzberg, S.	L. TopHat: discov	vering splice ju	nctions with
556	RNA-Seq. Bioinfo	ormatics 2	25 , 1105-1111	, https://doi.org/10	.1093/bioinform	natics/btp120
557	(2009).					
558						
559	32					
560	Trapnell, C. et	al. Trans	script assemb	ly and quantifica	tion by RNA-	Seq reveals
561	unannotated trar	nscripts a	ind isoform	switching during	cell different	tiation. Nat.

- 562 Biotechnol. 28, 511–515, https://doi.org/10.1038/nbt.1621 (2010).
- 563
- 564 33
- 565 Kent W. J. BLAT--the BLAST-like alignment tool. *Genome Res.* 12, 656-664,
 566 https://doi.org/10.1101/gr.229202 (2002).
- 567
- 568 34
- 569 Haas, B.J. *et al.* Improving the Arabidopsis genome annotation using maximal 570 transcript alignment assemblies. *Nucleic Acids Res.* **31**, 5654-5666,
- 571 https://doi.org/10.1093/nar/gkg770 (2003).
- 572
- 573 35

Bao, W., Kojima, K. K., & Kohany, O. Repbase Update, a database of repetitive
elements in eukaryotic genomes. *Mob. DNA* 6, 11,
https://doi.org/10.1186/s13100-015-0041-9 (2015).

- 578 36
- 579 Camacho C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421,
- 580 https://doi.org/10.1186/1471-2105-10-421 (2009).
- 581
- 582 37
- 583 Haas, B.J. et al. De novo transcript sequence reconstruction from RNA-seq using the
- 584 Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512,
- 585 https://doi.org/10.1038/nprot.2013.084 (2013).
- 586
- 587 38
- 588 Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically
- 589 mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637-
- 590 644, https://doi.org/10.1093/bioinformatics/btn013 (2008).
- 591
- 592 39
- 593 Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence

594	comparison. <i>BMC Bioinformatics</i> 6 , 31, https://doi.org/10.1186/1471-2105-6-31 (2005).
595	
596	40
597	Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov E. M.
598	BUSCO: assessing genome assembly and annotation completeness with single-copy
599	orthologs. Bioinformatics 31, 3210-3212, https://doi.org/10.1093/bioinformatics/btv351
600	(2015).
601	
602	41
603	David, L. et al. Database resources of the National Center for Biotechnology. Nucleic
604	Acids Res. 31, 28–33, https://doi.org/10.1093/nar/gkg033 (2003).
605	
606	42
607	Jones, P. et al. InterProScan 5: genome-scale protein function classification.
608	Bioinformatics 30, 1236–1240, https://doi.org/10.1093/bioinformatics/btu031 (2014).
609	

- 610 43
- 611 Beissbarth, T. & Speed, T. P. GOstat: Find statistically overrepresented Gene
- 612 Ontologies within a group of genes. Bioinformatics 20, 1464-1465,
- 613 https://doi.org/10.1093/bioinformatics/bth088 (2004).
- 614
- 615 44
- 616 Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A., & Kanehisa, M. KAAS: an automatic

617 genome annotation and pathway reconstruction server. Nucleic Acids Res. 35,

618 W182-W185, https://doi.org/10.1093/nar/gkm321 (2007).

- 619
- 620 45

621 Emms, D. M. & Kelly S. OrthoFinder: solving fundamental biases in whole genome

- 622 comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16,
- 623 157, https://doi.org/10.1186/s13059-015-0721-2 (2015).
- 624

- Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via
 subfamily domain architectures. *Nucleic Acids Res.* 45, D200-D203,
 https://doi.org/10.1093/nar/gkw1129 (2017).
- 629
- 630 47
- 631 Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high
- 632 throughput. Nucleic Acids Res. 32, 1792-1797, https://doi.org/10.1093/nar/gkh340
 633 (2004).
- 634
- 635 48
- 636 Katoh, K., Misawa, K., Kuma, K. & Miyata T. MAFFT: a novel method for rapid
- 637 multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30,
- 638 3059-3066, https://doi.org/10.1093/nar/gkf436 (2002).
- 639
- 640 49
- 641 Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular

- 642 Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725-2729,
- 643 https://doi.org/10.1093/molbev/mst197 (2013).
- 644
- 645 50
- 646 Kumar, S., Stecher, G., & Tamura, K. (2016) MEGA7: Molecular Evolutionary
- 647 Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874,
- 648 https://doi.org/10.1093/molbev/msw054 (2016).
- 649
- 650 51
- 651 Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: Computing Core of
- 652 Molecular Evolutionary Genetics Analysis Program for Automated and Iterative Data
- Analysis. Bioinformatics 28, 2685-2686, https://doi.org/10.1093/bioinformatics/bts507
- 654 (2012).
- 655
- 656 52
- 657 Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. IQ-TREE: A fast and

661 53

- 662 Tamura, K, Tao, Q. & Kumar S. Theoretical Foundation of the RelTime Method for
- 663 Estimating Divergence Times from Variable Evolutionary Rates. Mol. Biol. Evol. 35,

664 1770–1782, https://doi.org/10.1093/molbev/msy044 (2018).

665

- 666 54
- 667 Capella-Gutiérrez S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated
- alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973,
- 669 https://doi.org/10.1093/bioinformatics/btp348 (2009).

670

671 55

672 Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a

673 new software for selection of phylogenetic informative regions from multiple sequence

674	alignments. BMC Evol. Biol. 10, 210, https://doi.org/10.1186/1471-2148-10-210 (2010).
675	
676	56
677	Badger M. R., Hanson, D. & Price G. D. Evolution and diversity of CO2 concentrating
678	mechanisms in cyanobacteria. Funct. Plant Biol. 29, 161–173,
679	https://doi.org/10.1071/PP01213 (2002).
680	
681	57
682	Marin, B., Nowack, E. C., Glöckner, G. & Melkonian, M. The ancestor of the Paulinella
683	chromatophore obtained a carboxysomal operon by horizontal gene transfer from a
684	Nitrococcus-like gamma-proteobacterium. BMC Evol. Biol. 7, 85,
685	https://doi.org/10.1186/1471-2148-7-85 (2007).
686	
687	58
688	Nowack, E. C. et al. Gene transfers from diverse bacteria compensate for reductive
689	genome evolution in the chromatophore of Paulinella chromatophora. Proc. Natl. Acad.

690	Sci. USA 113, 12214-12219, https://doi.org/10.1073/pnas.1608016113 (2016).
691	
692	59
693	Nowack, E. C. et al. Endosymbiotic gene transfer and transcriptional regulation of
694	transferred genes in Paulinella chromatophora. Mol. Biol. Evol. 28, 407-422,
695	https://doi.org/10.1093/molbev/msq209 (2011).
696	
697	60
698	Lhee, D. et al. Diversity of the Photosynthetic Paulinella Species, with the Description
699	of Paulinella micropora sp. nov. and the Chromatophore Genome Sequence for strain
700	KR01. Protist 168, 155–170, https://doi.org/10.1016/j.protis.2017.01.003 (2017).
701	
702	
703	Acknowledgements
704	We thank Dr. Terabayashi T. for his kind instructions in SEM analysis.
705	Computations were partially performed on the NIG supercomputer at ROIS National

707	15K14554, 1 and 6K14788, and by a Grant-in-Aid for Scientific Research on
708	Innovative Areas 3308 of the Ministry of Education, Culture, Sports, Science and
709	Technology of Japan.
710	
711	Author contributions
712	M. M. prepared the P. micropora MYN1 genome samples, identified the
713	putative virus sequence in the P. micorpora MYN1 genome and wrote the draft
714	manuscript. M. M. and A. K. performed the RNA sample preparation. Y. M., H. N., A.
715	T. and A. F. performed the genome sequencing, the genome assembly and the Iso-Seq
716	analysis. Y. S. performed the RNA-seq sequencing analysis. M. N. and K. I. cultured P.
717	micorpora MYN1. M. M., A. K., M. T., H. N., H. T., S. S., M. N. and K. I. annotated
718	the P. micropora MYN1 genome. M. M., T. N. and R. K. performed the phylogenetic
719	analysis. T. N., R. K. and Y. I. analysed the organelle (chromatophore, mitochondria)
720	genome. J. O. organized and managed the P. micropora MYN1 genome project and
721	finalized the manuscript. We thank the members of Comparative Genomics

706

Institute of Genetics. This work was supported by JSPS KAKENNHI grants: 221S0002,

722	Laboratory in National Institute of Genetics for technical and computational
723	assistance.
724	
725	Competing interests
726	The authors declare no competing interests.
727	
728	Materials & Correspondence
729	Junichi Obokata
730	Email: obokata@kpu.ac.jp
731	Tel/Fax: +81-75-703-5164
732	Graduate School of Life and Environmental Science,
733	Kyoto Prefectural University, Kyoto, 606-8522, Japan
734	
735	
736	
737	

738 Figure Legends

739 Fig. 1. An overview of the *P. micropora* MYN1 draft genome. a, A SEM image of *P.*

740 *micropora* MYN1. **b**, The statistics of the draft genome. **c**, The genome composition of

P. micropora MYN1 analysed by RepeatMasker²⁷. **d**, Simple repeats are extraordinarily

rich in *P. micropora* MYN1 compared with other organisms.

Fig. 2. P. micropora nuclear genes acquired by EGT/HGT. a, b, A functional 744745classification of the P. micropora nuclear genes derived from cyanobacteria (EGT 746 candidates) (a), and those from other bacteria (HGT candidates) (b). c, d, The amino 747acid sequence identity of EGT candidates against *P. micropora* MYN1 plastid genes (c) 748 and that of HGT candidates against bacterial genes of the NCBI nr database (d). e, f, An 749estimation of the gene transfer age for EGT candidates (e) and HGT candidates (f). The endosymbiosis initiation period is green-highlighted. The ages of gene transfer in (e) 750 751and (f) were calculated based on the divergent time points (45.7-64.7 MYA) of two 752Paulinella species; thus, a gene transfer age younger than 60 MYA (striped phase) 753could not be estimated.

755	Fig. 3. Putative DNA virus and mobile elements in <i>P. micropora</i> MYN1. a, A
756	schematic view of DNA virus-like fragments and mobile elements in the P. micropora
757	draft genome (Scaffold 1104). The genomic regions were coloured according to the
758	sequence characteristics; putative dsDNA virus (pink), Polinton (light blue),
759	retrotransposon (brass yellow) and simple repeat-rich region (grey). The copy number
760	of the interspersed repeat elements was analysed by BLASTN against the
761	simple-repeat-masked P. micropora draft genome. b, ML phylogenetic tree of DNA
762	polymerases of viruses, eukaryotes and prokaryotes. c, Divergent time analysis of the
763	virus-type GPCR in Paulinella's lineage. d, e, Divergent time analysis of DNA
764	polymerase genes of metazoa-type (d) and rhizarian-type (e) Polintons. Asterisks: the
765	branch point of <i>P. micropora</i> and <i>P. chromatophora</i> set at 45.7-64.7 MYA. Green
766	bands: initiation periods of endosymbiosis with cyanobacteria (93.6-141.4 MYA). P.
767	micropora; Paulinella micropora MYN1, P. chromatophora; Paulinella
768	chromatophora CCAC0185, P. brassicae; Plasmodiophora brassicae, R. filosa;
769	Reticulomyxa filosa, S. purpurgus; Strongylocentrotus purpuratus.

771	Fig. 4. Initial process of the endosymbiotic evolution of photosynthetic Paulinella
772	species modeled from the P. micropora genomic data. 1) Predacious ancestors
773	digested prey bacteria via phagocytosis with continuing low levels of HGT. 2) The
774	infection of large DNA virus triggered the massive HGT/EGT to promote the rapid
775	endosymbiotic evolution. 3) Acquiring photosynthetic competency shrunk the
776	phagocytic activity to shut down the source of HGT/EGT. 4) The photo-autotrophic
777	Paulinella sp. contains one photosynthetic organelle per cell, hence, release of the
778	organelle DNA hardly occurred without losing photosynthetic activity. In this final
779	stage, virus-mediated gene transfer continued at trace level.
780	
781	
782	
783	
784	
785	

0				•
0	50 100) 150	200	Biolog
	Multipl	icity		GC
				GO:00
				GO:00
				GO:00
Mapped cDNA-region	No. of the mapped	Percent (%) of the	e mapped	GO:00
(%)	cDNAs	cDNAs		GO:004
>80	137/7	99.7 (%)		GO:00
200	13747	33.7 (70)		GO:00
>90	13606	98.7		GO:00
	10000			GO:00
>95	13279	96.3		GO:00

76.4

d

С

100

Species name	P. micropora MYN1	A. thaliana	P. brassicae
Complete BUSCOs	388 (90%)	401 (93%)	392 (91%)
Complete Duplicated BUSCOs	139 (32%)	268 (62%)	95 (22%)
Fragmented BUSCOs	19 (4.4%)	10 (2.3%)	17 (3.9%)
Missing BUSCOs	22 (5.1%)	18 (4.1%)	20 (4.6%)

10532

	Plastid (Chromatophore)	Mitochondria
Genome size (bp)	977,199	37,153
GC%	39.3	23.6
Protein coding gene	874	23
rRNA gene	3 (X2)	2
tRNA gene	42	20

niaal process

Biological process			
GO ID	Description	p-value	
GO:0015074	DNA integration	0	
GO:0006259	DNA metabolic process	0	
GO:0006260	DNA replication	0	
GO:0006139	nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	0	
GO:0043283	biopolymer metabolic process	4.39E_65	
GO:0043170	macromolecule metabolic process	6.18E_36	
GO:0009186	deoxyribonucleoside diphosphate metabolic process	7.42E-21	
GO:0009262	deoxyribonucleotide metabolic process	3.35E-17	
GO:0009132	nucleoside diphosphate metabolic process	7.65E_17	
GO:0000160	two-component signal transduction system	4.40E-15	

Cellular component

GO ID	Description	p-value
GO:0005578	proteinaceous extracellular matrix	6.52E-05
GO:0000785	chromatin	0.009764
GO:0000786	chromatin#nucleosome	0.009764

Molecular function

GO ID	Description	p-value
GO:0003688	DNA replication origin binding	2.85E-77
GO:0043565	sequence-specific DNA binding	2.39E-59
GO:0008270	zinc ion binding	1.73E-41
GO:0046914	transition metal ion binding	8.56E-36
GO:0004930	G-protein coupled receptor activity	3.70E-22
GO:0003899	DNA-directed RNA polymerase activity	1.67E-20
GO:0004888	transmembrane receptor activity	1.10E-17
GO:0016775	phosphotransferase activity, nitrogenous group as acceptor	3.57E-16
GO:0004673	protein histidine kinase activity	3.57E-16
GO:0000155	two-component sensor activity	3.57E-16

Extended Data Fig. 1. Information of the P. micropora MYN1 genome. a, Estimation of the P. micropora MYN1 genome by Kmer frequency analysis. Single peak at 39 of the multiplicity are detected with 31-mer, utilizing 52,592,411,100 b from Illumina 500b pair-end reads. From the peak value and the used reads length, 1.35 Gb genome size was estimated. b, Summary of the P. micropora MYN1 organelle genome. c, Validation of the genome assembly by mapping of the sequences of the isoform sequencing (Iso-Seq) transcripts. 13787 non-redundant Iso-Seq sequences of the intron-containing genes, either hitting protein sequences of the Swiss-Prot database by BLASTX search (e-value $\leq 1e^{-60}$) or containing long ORFs (≥ 300 amino acids), were mapped on the draft genome. d, Assessment of the genome assembly using 429 BUSCO v. 1 (Benchmarking Universal Single-Copy Orthologs) genes. In comparison with other eukaryote genome assemblies, the BUSCO values of a photosynthetic organism (Arabidopsis thaliana) and that of the well-assembled genome of a rhizarian organism (*Plasmodiophora brassicae*) are shown. e, The top 10 GO-terms that are significantly overrepresented in the *P. micropora* MYN1 genome compared with other rhizarian organisms (*Bigelowiella natans*, Plasmodiophora brassicae, Reticulomyxa filosa). Fisher's exact test p-values corrected with false discovery rate (Benjamini) are represented.

b

Extended Data Fig. 2. A ML phylogenetic tree of Hlips of *P. micropora* MYN1 and *P. chromatophora*. Hlips of cyanobacteria, photosynthetic eukaryotes and cyanophages are used as a reference for operational taxonomy units. Sixty-four *P. micropora* Hlip genes were subjected to phylogenetic analysis and grouped according to the clade. The redundant paralogs of identical sequences were removed. Asterisks: *Paulinella* ortholog-pair supported by a bootstrap value >70. Blue and red circle: nuclear encoded Hlip of *P. micropora* and *P. chromatophora*. Light-blue triangle: *P. micropora* plastid (chromatophore) Hlip. Phylogenetic branch of the *Paulinella* gene (light blue), virus (grey) and eukaryote Hlip-like gene (orange) are highlighted.

Extended Data Fig. 3. Comparison of the orthogroups of *P. micropora*, **primary photosynthetic eukaryotes and predator-type eukaryotes. a**, Venn diagram of *P. micriopora* orthogroups with the predator-type eukaryote orthogroups and the conserved orthogroups in primary photosynthetic eukaryotes. Orthogroups were detected by Orthofinder from the gene sets of *P. micropora* MYN1, 14 predator eukaryotes (*Acanthamoeba castellanii*, *Dictyostelium discoideum*, *Entamoeba histolytica HM-1*, *Bodo saltans*, *Naegleria gruberi*, *Caenorhabditis_elegans*, *Drosophila melanogaster*, *Monosiga brevicollis MX1*, *Oxytricha trifallax*, *Paramecium tetraurelia*, *Stylonychia lemnae*, *Tetrahymena thermophila*, *Reticulomyxa filosa*, *Thecamonas trahens ATCC50062*) and 13 photosynthetic eukaryotes (*Arabidopsis thaliana*, *Chlamydomonas reinhardtii*, *Coccomyxa subellipsoidea C-169*, *Klebsormidium nitens*, *Micromonas pusilla CCMP1545*, *Oryza sativa*, *Ostreococcus tauri*, *Physcomitrella patens*, *Selaginella moellendorffii*, *Chondrus crispus*, *Cyanidioschyzon merolae*, *Galdieria sulphuraria*, *Cyanophora paradoxa*). **b**, Annotations of 12 orthogroups conserved in primary photosynthetic eukaryotes, but not in predator eukaryotes. The functional annotation and the cellular localization were based on UniprotKB information of *Arabidopsis thaliana* orthologs, and manual annotations are represented in parenthesis. The estimated origins were based on the ML phylogenetic analysis. Genes involved in light acclimation (cyan), nutrient auxotrophy (yellow) and organelle gene expression (magenta) are highlighted. **c** and **d**, ML phylogenetic trees of orthogroup genes acquired by HGT from other eukaryotes; Haptophyta (**c**, OG0001742) and Stramenopiles (**d**, OG0002023). The phylogenetic analysis of **c** and **d** were performed using a LG+G (**c**) and a LG+G+I model (**d**), respectively. Photosynthetic *Paulinella* species are boxed.

Extended Data Fig. 4. Analysis of nuclear-localized plastid DNA (nupDNA) and mitochondria DNA (numDNA) in *P. micropora.* a, Analysis of the junction sequences of nupDNA and numDNA using Illumina raw-reads sequences. 902,121,079 quality-trimmed HiSeq paired-end sequence reads (insert size: 300 b, 500 b) were analysed. b, numDNA sequence structures in the *P. micropora* draft genome. c, Distribution of numDNA sequences in mitochondrial genome positions. d, Nucleotide percent identity of numDNA compared with the mitochondria genome sequence. NumDNA directions are represented by right and left arrows which denote clockwise- and anti-clockwise directions of the mitochondria genome sequence (c), respectively.

Extended Data Fig. 5. ML phylogenetic trees of four EGT candidates whose counterpart orthologs are found in the plastid (chromatophore) genome of *P. micropora*. The clades of the *Paulinella* plastid and cyanobacteria are highlighted in green. Blue circle: *P. micropora* nuclear gene, red circle: *P. chromatophora* nuclear gene, blue triangle: *P. micropora* and *P. chromatophora* nuclear genes supported by high bootstraps (numbers in the parenthesis) is represented as a red line. The divergence time of *Paulinella* nuclear genes from the plastid- or other cyanobacterial-genes (yellow stars) were estimated by RelTime methods of MEGA6 using the divergent time of *P. micropora* and *P. chromatophora* (45.7–64.7 MYA) (blue cross). Psak: Photosystem I subunit K, CcmL: CO₂ concentrating mechanism protein, Hlip: High light inducible protein. Brackets mean the substitution model used in the phylogenetic analysis. Trees with species names are available at the repository (https://figshare.com/s/a665678c48d0af073894).

Extended Data Fig. 6. Putative DNA virus fragments detected in the *P. micropora* **draft genome.** ORF structures, GC%, copy number and sequence gaps are represented as described in the legend to Fig. 3.

Extended Data Fig. 7. Characteristics of virus-type GPCRs of *P. micropora* **and** *P. chromatophora.* **a**, A ML phylogenetic tree of seven transmembrane domains of GPCRs. GPCRs in *P. micropora, P. chromatophora, P. brassicae* (CEO98393.1, CEO98395.1), and those detected in DNA viral fragments were analysed using a LG+G+F model. Branches with bootstrap values <50 are condensed. **b**, Existence of the transcript. **c**, GC% of the coding sequence of GPCR genes. **d**, Exon/intron structures of the genes. **e**, Protein domain structures. Protein domains were detected by CD search⁴⁸. GPCRs in putative DNA viruses are boxed with a blue line.

Extended Data Fig. 8. ML phylogenetic tree of DNA polymerases of Polintons. a, DNA polymerase sequences of *P. micropora* Polintons (No. 2766 and No. 3055), *R. filosa* 'Polintons (Genbank, ETO12468.1, ETO19856.1, ETO13433.1), metazoan Polintons in Repbase ³⁷ and Mavirus (Genbank, YP 004300281.1) were analysed with a LG+G+I model. The metazoan and rhizarian groups are highlighted in green and yellow, respectively.

786 Extended Data legends

787 Extended Data Fig. 1. Information of the P. micropora MYN1 genome. a, 788 Estimation of the P. micropora MYN1 genome size by K-mer frequency analysis. 789 Single peak at 39 of the multiplicity are detected with 31-mer, utilizing 52,592,411,100 790 b from Illumina 500b pair-end reads. From the peak value and the used reads length, 791 1.35 Gb genome size was estimated. **b**, Summary of the *P. micropora* MYN1 organelle 792 genome. c, Validation of the genome assembly by mapping of the sequences of the isoform sequencing (Iso-Seq) transcripts. 13787 non-redundant Iso-Seq sequences of 793 794 the intron-containing genes, either hitting protein sequences of the Swiss-Prot database by BLASTX search (e-value $\leq 1e^{-60}$) or containing long ORFs (≥ 300 amino acids), 795 796 were mapped on the draft genome. d, Assessment of the genome assembly using 429 797 BUSCO v. 1 (Benchmarking Universal Single-Copy Orthologs) genes. In comparison with other eukaryote genome assemblies, the BUSCO values of a photosynthetic 798 799 organism (Arabidopsis thaliana) and that of the well-assembled genome of a rhizarian 800 organism (Plasmodiophora brassicae) are shown. e, The top 10 GO-terms that are significantly overrepresented in the P. micropora MYN1 genome compared with other 801

802 rhizarian organisms (*Bigelowiella natans*, *Plasmodiophora brassicae*, *Reticulomyxa*803 *filosa*). Fisher's exact test p-values corrected with false discovery rate (Benjamini) are
804 represented.

805

806 Extended Data Fig. 2. A ML phylogenetic tree of Hlips of P. micropora MYN1 and 807 **P.** chromatophora. Hlips of cyanobacteria, photosynthetic eukaryotes and cyanophages 808 are used as a reference for operational taxonomy units. Sixty-four P. micropora Hlip 809 genes were subjected to phylogenetic analysis and grouped according to the clade. The 810 redundant paralogs of identical sequences were removed. Asterisks: Paulinella 811 ortholog-pair supported by a bootstrap value >70. Blue and red circle: nuclear encoded 812 Hlip of P. micropora and P. chromatophora. Light-blue triangle: P. micropora plastid 813 (chromatophore) Hlip. Phylogenetic branch of the Paulinella gene (light blue), virus (grey) and eukaryote Hlip-like gene (orange) are highlighted. 814

815

816 Extended Data Fig. 3. Comparison of the orthogroups of *P. micropora*, primary
817 photosynthetic eukaryotes and predator-type eukaryotes. a, Venn diagram of *P.*

818 micriopora orthogroups with the predator-type eukaryote orthogroups and the conserved orthogroups in primary photosynthetic eukaryotes. Orthogroups were 819 820 detected by Orthofinder from the gene sets of P. micropora MYN1, 14 predator 821 eukaryotes (Acanthamoeba castellanii, Dictyostelium discoideum, Entamoeba 822 histolytica HM-1, Bodo saltans, Naegleria gruberi, Caenorhabditis elegans, 823 Drosophila melanogaster, Monosiga brevicollis MX1, Oxytricha trifallax, Paramecium 824 tetraurelia, Stylonychia lemnae, Tetrahymena thermophila, Reticulomyxa filosa, 825 Thecamonas trahens ATCC50062) and 13 photosynthetic eukaryotes (Arabidopsis 826 Chlamydomonas reinhardtii, Coccomyxa subellipsoidea *C-169*, thaliana, 827 Klebsormidium nitens, Micromonas pusilla CCMP1545, Oryza sativa, Ostreococcus 828 Physcomitrella patens, Selaginella moellendorffii, tauri, Chondrus crispus, 829 Cyanidioschyzon merolae, Galdieria sulphuraria, Cyanophora paradoxa). b, 830 Annotations of 12 orthogroups conserved in primary photosynthetic eukaryotes, but not 831 in predator eukaryotes. The functional annotation and the cellular localization were 832 based on UniprotKB information of Arabidopsis thaliana orthologs, and manual 833 annotations are represented in parenthesis. The estimated origins were based on the ML

834	phylogenetic analysis. Genes involved in light acclimation (cyan), nutrient auxotrophy
835	(yellow) and organelle gene expression (magenta) are highlighted. c and d, ML
836	phylogenetic trees of orthogroup genes acquired by HGT from other eukaryotes;
837	Haptophyta (c, OG0001742) and Stramenopiles (d, OG0002023). The phylogenetic
838	analysis of \mathbf{c} and \mathbf{d} were performed using a LG+G (\mathbf{c}) and a LG+G+I model (\mathbf{d}),
839	respectively. Photosynthetic Paulinella species are boxed.
840	

841 Extended Data Fig. 4. Analysis of nuclear-localized plastid DNA (nupDNA) and 842 mitochondria DNA (numDNA) in P. micropora. a, Analysis of the junction sequences 843 of nupDNA and numDNA using Illumina raw-reads sequences. 902,121,079 844 quality-trimmed HiSeq paired-end sequence reads (insert size: 300 b, 500 b) were 845 analysed. b, numDNA sequence structures in the P. micropora draft genome. c, 846 Distribution of numDNA sequences in mitochondrial genome positions. d, Nucleotide 847 percent identity of numDNA compared with the mitochondria genome sequence. 848 NumDNA directions are represented by right and left arrows which denote clockwiseand anti-clockwise directions of the mitochondria genome sequence (c), respectively. 849

852

853

854

855

856

857

858

859

860

Extended Data Fig. 5. ML phylogenetic trees of four EGT candidates whose counterpart orthologs are found in the plastid (chromatophore) genome of P. micropora. The clades of the Paulinella plastid and cyanobacteria are highlighted in green. Blue circle: P. micropora nuclear gene, red circle: P. chromatophora nuclear gene, blue triangle: P. micropora plastid gene, red triangle: P. chromatophora plastid gene, unmarked: cyanobacterium gene. The branch of P. micropora and P. *chromatophora* nuclear genes supported by high bootstraps (numbers in the parenthesis) is represented as a red line. The divergence time of *Paulinella* nuclear genes from the plastid- or other cyanobacterial-genes (yellow stars) were estimated by RelTime methods of MEGA6 using the divergent time of P. micropora and P. chromatophora (45.7-64.7 MYA) (blue cross). Psak: Photosystem I subunit K, CcmL: CO₂

- 862 concentrating mechanism protein, Hlip: High light inducible protein. Brackets mean the
- substitution model used in the phylogenetic analysis. Trees with species names are
- available at the repository (https://figshare.com/s/a665678c48d0af073894).
- 865

Extended Data Fig. 6. Putative DNA virus fragments detected in the P. micropora
draft genome. ORF structures, GC%, copy number and sequence gaps are represented
as described in the legend to Fig. 3.

866

867

868

870	Extended Data Fig. 7. Characteristics of virus-type GPCRs of <i>P. micropora</i> and <i>P.</i>
871	chromatophora. a, A ML phylogenetic tree of seven transmembrane domains of
872	GPCRs. GPCRs in P. micropora, P. chromatophora, P. brassicae (CEO98393.1,
873	CEO98395.1), and those detected in DNA viral fragments were analysed using a
874	LG+G+F model. Branches with bootstrap values <50 are condensed. b , Existence of the
875	transcript. c, GC% of the coding sequence of GPCR genes. d, Exon/intron structures of
876	the genes. e, Protein domain structures. Protein domains were detected by CD search ⁴⁸ .
877	GPCRs in putative DNA viruses are boxed with a blue line.
878	
879	Extended Data Fig. 8. ML phylogenetic tree of DNA polymerases of Polintons. a,
880	DNA polymerase sequences of <i>P. micropora</i> Polintons (No. 2766 and No. 3055), <i>R.</i>
881	filosa' Polintons (Genbank, ETO12468.1, ETO19856.1, ETO13433.1), metazoan

882	Polintons in Repbase ³⁷ and Mavirus (Genbank, YP 004300281.1) were analysed with a
883	LG+G+I model. The metazoan and rhizarian groups are highlighted in green and yellow,
884	respectively.
885	
886	
887	Supplementary information
888	Supplementary Table 1. Summary of the raw sequence data of the <i>P. micropora</i>
889	genome.
890	
891	Supplementary Table 2. Annotation and categorization of the <i>P. micropora</i>
892	RepeatModeller sequences. *The categorization is based on the sequence similarities
893	with the manually curated repeat sequences in Supplementary Table 3 by BLASTX
894	search (e-value $< 1e^{-5}$).
895	
896	Supplementary Table 3. Annotation of the repeat elements manually identified
897	from the P. micropora draft genome. *The copy number of the repeat elements was

898	estimated by BLASTN search against the P. micropora genome. Redundant BLASTN
899	hits at the same genome locus were manually removed.
900	
901	Supplementary Table 4. <i>P. micropora</i> MYN1 gene list.
902	

903 Supplementary Table 5. GO-terms over- and under-represented in the *P*.
904 *micropora* MYN1 genome compared with the genome of other rhizarian organisms
905 (*B. natans, P. brassicae and R.filosa*). Significantly enriched GO-terms with Fisher's
906 exact test p-value less than 0.01 are represented.

907

908 Supplementary Table 6. EGT and HGT candidates in *P. micropora* MYN1. Genes
909 satisfying at least one of the following criteria were considered as EGT and HGT
910 candidates. 1) No hits to eukaryote genes of the NCBI nr database by BLAST analysis*
911 2) EGT and HGT are supported by ML phylogenetic analysis with a high bootstrap
912 value (≥95) except when the phylogenetically available protein alignment sequences
913 were short (< 100 amino acids)** 3) *P. micropora* genes were embedded in the clade of

914	photosynthetic organisms in the phylogenetic tree. * BLASTP top 1000 hits (NCBI nr,
915	e-value $< 1e^{-10}$) were classified. A: Archaea, B: Bacteria, E: Eukaryotes, V: Viruses, O:
916	Others, U: Unknown. ** We lowered the threshold of the bootstrap value to 70 when
917	the alignment sequence positions available for the phylogenetic analysis were less than
918	100 amino acids.
919	
920	Supplementary Table 7. Detection of P. micropora Polintons by tBLASTn search
921	using DNA polymerase domain sequences. A tBLASTn search was performed against
922	the <i>P. micropora</i> draft genome (e-value $< 1e^{-10}$). The draft genome sequences and the
923	query sequences are available at the repository

- 924 (https://figshare.com/s/a665678c48d0af073894).
- 925

926 Supplementary Table 8. Accession numbers of P. micropora MYN1 genome
927 sequences.

928

929 Supplementary Table 9. Parameters of the ML phylogenetic analysis by MEGA6.

931	Supplementary Table 10. Sequence data used in this study.
932	
933	
934	
935	
936	
937	
938	
939	
940	
941	
942	
943	
944	
945	