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Abstract

Experienced teachers pay close attention to their students, ad-
justing their teaching when students seem lost. This dynamic
interaction is missing in online education. We propose to mea-
sure attention to online videos remotely by tracking eye move-
ments, as we hypothesize that attentive students follow videos
similarly with their eyes. Here we show that inter-subject cor-
relation of eye movements during instructional video presen-
tation is substantially higher for attentive students, and that
eye movements are predictive of individual test scores on the
material presented in the video. These findings replicate for
videos in a variety of production styles, for intentional and in-
cidental learning and for recall and comprehension questions
alike. We reproduce the result using standard web cameras in
a classroom setting, and with over 1,000 participants at-home
without the need to transmit user data. Our results suggest
that online education could be made adaptive to a student’s
level of attention in real-time.

Introduction

We have known for a long time that attended stimuli are eas-
ier to remember [1]. The point of gaze is an overt indicator
of where we focus our attention [2, 3]. Therefore, the point
of gaze is indicative of what we might recall in the future
[4]. When students are not following the relevant teaching
material, then there is a good chance that they are not pay-
ing attention and that they will perform poorly in subsequent
exams. Experienced teachers know this and adjust the inter-
action with students accordingly [5]. During online education
this immediate feedback is lost. Here we suggest that stan-
dard web cameras could be used to monitor attention based
on eye movements. When they lose focus they can then choose
to redo portions of a course, take a break, or start over. Eye
tracking has been extensively used to evaluate online media,
including user interfaces, advertising or educational material
[6, 7]. These studies often focus on the content of eye fixations
in static media, to determine, for example, whether users look
at a specific graphic or whether they read a relevant text [8, 9].
This approach requires detailed analysis and interpretation of
the specific online content, and cannot be used routinely to
evaluate individual students. Evaluating the content of eye
fixations is particularly complicated for dynamic stimuli such
as instructional video, which is increasingly abundant online.
Here we focus on dynamic video and whether students “fol-
low” that dynamic content, in the literal sense of following
with their eyes.

Previous studies have shown that during video presenta-
tion, brain signals of viewers respond similarly [10, 11, 12], in
particular for dynamic videos that tell a story [13]. This simi-
larity of responses, measured as intersubject correlation of the
time courses of brain activity, is predictive of whether subjects
subsequently remember the content of a story [14, 15], or how
they perform in subsequent test [16]. In particular, it mea-
sures whether the video engages a viewer’s attention [17]. We
also know that eye movements are correlated across subjects
during video presentation [18, 19], and that dynamic, well-
produced movies and video advertising elicits higher intersub-
ject correlation of eye-movements [20, 21, 22]. What has not
been established yet is whether this eye-movement correlation
similarly depends on attention, or whether it is predictive of
learning. Much of our eye movements during video seem to be
explained by simple low-level rules [20] and do not differ much
even when movies are presented backwards in time [18]. We
hypothesize, however, that online instructional videos guide
eye movements in a similar way across students, but only if
students are paying attention. We predict that eye-movement
correlation between subjects is predictive of retention of the
material presented in the video. The alternative hypothesis is
that the stimuli drive eye movements without engaging a stu-
dent’s mind meaningfully in the material. One may also argue
that static stimuli, while not reliably guiding eye movements,
may nonetheless engage students minds [23, 24].

Here we test our hypothesis in different learning scenar-
ios with instructional videos produced in different styles.
Specifically, we measure intersubject correlation (ISC) of eye
movements combined with pupil size, recorded while students
watch short instructional videos. We test whether ISC is
modulated by attention by measuring ISC during normal vs.
distracted viewing. We investigate whether ISC of individ-
ual students is predictive of their performance in subsequent
tests in a laboratory setting. We demonstrate how this ap-
proach can be used to measure attention remotely in online
education, using subjects own computers, without the need
to transfer data from the user, thus preserving online privacy.
We test this in a classroom and on a large cohort of subjects
at home.

Results

Effects of attention on eye movements during
video presentation

We recruited 60 subjects to participate in a series of experi-
ments where they were asked to watch 5 or 6 short instruc-
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Figure 1: Intersubject correlation of eye movements modulated by attention when watching instructional
videos. a) Two subjects’ gaze position and pupil size follow each other during attentive viewing. b) The same two subjects
viewing the same segment of video while distracted by a counting task. c) The intersubject correlation (ISC) of eye movement
is measured as the mean of ISC of vertical and horizontal gaze position and pupil size. Values for each subject are shown as
dots for all videos in Experiment 1. Each dot is connected with a line between two different conditions namely when subjects
were either attending (A) or were distracted (D) while watching the video. d) the receiver operator curve for deciding
whether a subject is attending or distracted based on their ISC. e) Intentional learning shows a higher ISC. Each dot is the
average ISC for each subject when they watched all instructional videos in the attend condition using either the intentional
or incidental learning style.
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tional videos in the laboratory while we monitored their eye
movements. The videos covered a variety of topics related
to physics, biology and computer science (Tab. 1). Some
feature a teacher writing on a board, while others use more
modern storytelling using animations or the popular writing-
hand style. A first cohort of subjects (N=27, 17 females, age
18-53 mean=26.74, standard deviation SD=8.98) watched 5
short instructional videos, after each video they took a test
with questions related to the material presented in the videos,
which they were informed were going to come. After watch-
ing the videos and answering questions they watched the
videos again. To test for attentional modulation of ISC, in
the second viewing subjects performed a serial subtraction
task (count in their mind backwards in steps of seven start-
ing from a random prime number between 800 and 1000).
This is a common distraction task in visual attention exper-
iments [4]. During the first attentive viewing eye movement
of most subjects are well correlated (Fig. 1a), during the sec-
ond, distracted viewing they often diverge (Fig. 1b). The
same appears to be true for the fluctuations of pupil size. To
quantify this, we measure the Pearson’s correlation of these
time courses between subjects. For each student we obtain
an intersubject correlation (ISC) value as the average corre-
lation of that subject with all other subjects in the group. We
further average over the three measures taken, namely, ver-
tical and horizontal gaze position as well as pupil size. This
ISC is substantial during the normal viewing condition (Fig.
1c; ISC median=0.32, interquartile range IQR=0.12, across
videos) and decreases in the second distracted viewing (ISC
median=0.11, IQR=0.07). Specifically, a three-way repeated
measures ANOVA shows a very strong fixed effect of the at-
tention condition (F (1, 231)=749.06, p=1.93·10−74) a fixed
effect of video (F (4, 231)=32.29, p=2.23·10−21) and a ran-
dom effect of subject (F (26, 231)=9.21, p=1.62·10−23). This
confirms the evident variability across films and subjects. The
effect of attention, however, is so strong that despite the vari-
ability between subjects one can still determine the attention
condition near perfectly from the ISC of individual subjects
(Fig. 1b). Specifically, a receiver operator characteristic curve
for determining attentional state has an area under the curve
of Az = 0.944± 0.033 (mean ± SD over videos).

Motivation modulates intersubject correla-
tion of eye movements

To test the effect of motivation we repeated the experiment,
but this time subjects did not know that they would be
quizzed on the content of the videos. The two conditions
thus constitute intentional and incidental learning which are
known to elicit different levels of motivation [25]. As expected,
we find a higher ISC in the intentional learning condition
(ISC median=0.325, IQR=0.12, N=27) as compared to the
incidental learning condition (ISC median=0.317, IQR=0.06,
N=30) (Fig. 1e; two-tailed Wilcoxon rank sum test: z=2.67,
p=7.68·10−3). This suggests that lower motivation in the in-
cidental learning condition resulted in lower attentional lev-
els and thus somewhat less correlated eye movements and
pupil size. The increased motivation in the intentional learn-
ing condition is also reflected in the increased test scores as
compared to the incidental learning condition (Fig. 2c; inten-

tional learning score=65.22 ± 18.75 points, N=27, incidental
learning score = 54.53 ± 15.31 points, N=31; two-sample t-
test: t(56)=2.39, p=0.02, d=0.63).

Correlated eye movements as predictors of
test scores

In the previous experiments we confirmed the hypothesis that
if subjects are distracted the ISC of eye movements and pupil
size is reduced. Given the well-established link between at-
tention and memory we therefore expect that ISC will be pre-
dictive of how much each subject retained from the instruc-
tional video. We tested this hypothesis by quizzing subjects
after they had watched the video using a short four alterna-
tive forced-choice questionnaire (11–12 questions). Students
that watched the video performed significantly better than
naïve students (65.2% ± 18.8% versus naïve: 45%±8.8%;
t(56)=-5.37 p=1.58·10−6; see Methods section for details).
Importantly we find a strong correlation between ISC and
test scores across subjects for all videos we tested (Fig. 1b;
r=0.61 ± 0.06, SD across 5 videos, p<3.60·10−3). This is the
case regardless of whether students were aware they would
be tested or not (Intentional: r(25)=0.61, p=7.51·10−4, In-
cidental: r(29)=0.58, p=5.87·10−4). Evidently subjects with
lower ISC performed poorer on the tests (e.g. subject 3 in Fig.
2a). Inversely, subjects with correlated eye movements obtain
higher test scores (e.g. subject 1 & 2 in Fig. 2a). Basically,
if subjects do not follow the dynamics of the video with their
eyes, they have not paid attention and as a result their test
scores are lower. Alternatively, subjects with prior knowledge
on the material were more interested, and thus paid more
attention.

Different styles of instructional videos

The effect we observed was true for all 5 videos tested (in
Experiment 1: Intentional and in Experiment 2: Incidental).
The style of these five videos consisted of either animation
(lightbulbs, immune, internet) or showed a hand drawing fig-
ures (stars, birth). To test whether this effect is robust across
different types of video styles, we performed an additional ex-
periment on a new cohort of 30 subjects (Experiment 3; 22
females, 8 males, age 18-50, mean=25.73, SD=8.85 years).
All subjects watched 6 videos on different topics produced in
three different styles (two videos each): a real-live presenter
along with animation, a presenter writing on a glass board,
and writing-hand with animation. Despite the different visual
appearance and dynamic, we still find a strong correlation be-
tween ISC and test scores for all three styles (Fig. 2d, Ani-
mation & Presenter: r(27)=0.53, p=3.1·10−3), Animation &
Writing hand: r(28)=0.51, p=3.7·10−3), Glassboard & Pre-
senter: r(27)=0.46, p=0.01).

Recognition and comprehension questions

It is possible that attention favors recognition of factual in-
formation, but that questions probing for comprehension of
the material require the student to disengage from the video
to process the content “offline”. We therefore included in
Experiment 3 comprehension questions (41 out of a total
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Figure 2: Intersubject correlation of eye movements during instructional videos predicts learning performance.
a) Eye movements of three representative subjects as they watch Why are Stars Star-Shaped?. Two high performing subjects
have similar eye movements and pupil size. A third, low performing student does not match their gaze position or pupil
size. b) Intersubject correlation of eye movements (ISC) and performance on test taking (Score) for each of five videos in
Experiment 1. Each dot is a subject. The high and low performing subjects (subjects 1-3) from panel (a) are highlighted for
the Stars video. Dotted lines represent performance of subjects naïve to the video. c) Same as panel (b) but averaging over
the 5 videos. The data was collected in two different conditions: During intentional learning (Experiment 1) where subjects
knew they would be quizzed on the material. During incidental learning (Experiment 2) where subjects did not know that
quizzes would follow the viewing. d) Videos in three different production styles (Experiment 3) show similar correlation
values between test scores and ISC. Each point is a subject where values are averaged over two videos presented in each of
the three styles. (See Fig. S2 for results on all 6 videos.) e) A similar effect is observed for different question types. Here
each point is a subject with test scores averaged over all questions about factual information (recognition) versus questions
requiring comprehension. ISC were averaged over all 6 videos in Experiment 3.
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of 72 questions across the 6 videos). Overall subjects did
similarly on the comprehension questions as compared to
the recognition questions (Fig. 2e) and we find a signifi-
cant correlation with ISC for these comprehension questions
(r(28)=0.56,p=1.3·10−3), and we again find a correlation with
recognition performance (r(28)=0.51, p=4.0·10−3). These
correlation values do not differ significantly (asymptotic z-
test after Fisher r-to-z conversion, p=0.52) suggesting that
comprehension and recognition are both affected by attention.
Indeed, test scores for comprehension and recognition ques-
tions are significantly correlated across subjects (r(28)=0.62
(p=2.34·10−4)). Predicting comprehension performance may
have important implications for educational practice.

Capturing eye movements online at scale us-
ing standard web cameras

Thus far all experiments were performed in a laboratory set-
ting with a research grade eye-tracker. To test the approach
in a realistic setting we developed an online platform that can
operate on a large scale of users. The platform relies on stan-
dard web cameras and existing eye tracking software that can
run on any web browser [26]. The software operates on the re-
mote computer of the users and captures gaze position. In one
experiment we recruited 82 students (female=21, age 18-40,
mean=19.6, SD=2.7 years) from a college physics class to par-
ticipate after their lab sessions using the desktop computers
available in the classroom (Experiment 4: Classroom). In an-
other experiment we recruited 1012 participants (female=443,
age 18-64, mean=28.1, SD=8.4 years) on MTurk and Prolific.
These are online platforms that assign tasks to anonymous
subjects and compensate them for their work (Experiment 5:
At-home). The subjects used the webcam on their own com-
puters emulating the at-home setting typical for online learn-
ing. The gaze position data collected with the web camera is
significantly noisier than using the professional eye tracker in
the lab (Fig. 3a). To quantify this, we compute the accuracy
of gaze position when subjects are asked to look at a dot on
the screen (Fig. 3b). As expected, we find a significant dif-
ference in gaze position accuracy between the laboratory and
the classroom (two-sample t-test t(69)=-7.73, p=6.3·10−11)
and a significant difference between the classroom and the
at-home setting (t(242)=-2.46, p=0.01). Despite this signal
degradation we find a high correlation between the median
gaze position data for laboratory and classroom data (Hor-
izontal gaze: r=0.87 ± 0.04; Vertical gaze: r=0.75 ± 0.04)
and laboratory and at-home (Horizontal gaze: r=0.91 ± 0.04;
Vertical gaze: r=0.83 ± 0.04).

Predicting test scores in a classroom and at
home using web cameras

To preserve online privacy of the users we propose to evalu-
ate eye movements remotely by correlating each subject’s eye
movements with the median gaze positions (Fig. 3a). Instead
of ISC with all members of the group, we thus compute the
correlation with the median position locally without the need
to transmit individual eye position data (see Methods). To
compensate for the loss of the pupil signal we now also mea-
sure the correlation of eye movement velocity, which is high

when subjects move their gaze in the same direction, regard-
less of absolute gaze position (see Methods). We combine
these eye movement metrics by taking a weighted average of
the vertical, horizontal and velocity ISC (wISC; see Methods).
We find that this wISC of eye-movement robustly correlates
with subsequent test scores (Fig. 3; Tab. S1) despite the lower
quality of the gaze position data. In fact, the correlation of
wISC with test scores for the classroom (Fig. 3c; r=0.46 ±
0.16, p<0.01) are comparable to the values in the laboratory
experiments (r = 0.59 ± 0.08, all p<0.01; compare to Fig.
2b). The at-home experiment had also highly significant cor-
relation between wISC and subsequent test scores (Fig. 3d;
r=0.47 ± 0.08, p<3.9·10−8). The prediction accuracy of the
test score is 14.59% ± 16.86% (median across videos, IQR
across all videos and subjects), which is equivalent to 1.75
out of 12 questions. We can essentially predict how well a
student is going to perform on a test by comparing their eye
movements to the median eye movements.

Inherent ability versus attentional state

So far we have argued that variable attention modulates per-
formance across students, and that attention is also reflected
in eye movements. But it is also possible that an inherent abil-
ity, or trait of the students causes them to perform differently
and this affects their eye movements as well. Thus, correlation
between ISC and test scores could be induced by a variable
trait, and not a variable state of the students. To assess these
options, we asked students for their grade point averages in
their college courses (GPA is available for experiments 2, 3
and 4), and asked subjects to perform a digit span test (in
Experiment 2 and 3). The GPA is well-known to predict in-
dividual test scores [27], and the digit span test is a simple
test for working memory capacity [28]. We found a significant
correlation across subjects between the digit span test and the
test scores for the videos (Experiment 2: r(24)=0.41, p=0.04;
Experiment 3; r(28)=0.39 , p=0.03). We also found a signifi-
cant correlation between the students self-reported GPA and
the scores they obtained (Experiment 2: r(27)=0.38, p=0.04,
Experiment 3: r(22)=0.37, p=0.06; Experiment 4: r=0.38 +-
0.10, p<0.04). However, we found no correlation between the
eye movement measures and either the digit span test (Ex-
periment 2: r(24)=-0.12, p=0.56; Experiment 3: r(28)=0.27,
p=0.16) nor the GPA (Experiment 2: r(24)=0.03, p=0.86; Ex-
periment 3: r(28)=0.24, p=0.25). Given that ISC correlates
with performance this suggests that in addition to attentional
state, test-taking performance is affected by an inherent trait
or ability. However, this trait may have no effect on atten-
tional state, or at least it is not reflected in the ISC of eye
movements.

Subject or stimuli effect

We have so far shown that the level of attention as measured
by ISC can predict how well students will perform on a test
quiz. However, students could already be familiar with a topic
covered in one of the instructional videos, and hence already
know the answers to the quiz questions. This could lead the
student to pay more attention to the videos, due to their in-
terest in the topic (stimuli effect). On the other hand it could
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Figure 3: Weighted inter-subject correlation of eye movement measured using low-cost web camera predicts
test scores. a) Gaze position for ‘Immune’ video in Laboratory, Classroom and At-home settings. Median and interquartile
range are taken across subjects (solid line and grayed area respectively). b) Deviation of gaze position when subjects looked
at 4 “validation” dots presented in sequence on the corners of the screen, collected in the Laboratory, Classroom and At-home
settings for the first video shown to subjects (see Methods). *indicates a significant difference in means. c) Eye-movement
wISC is predictive of performance in the Classroom. d) Eye-movement wISC is predictive of performance in the At-home
setting.
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be that some students just pay more attention throughout the
experiment and as a consequence they will both have higher
ISC and test scores (subject effect). We test the subject ef-
fect by subtracting the subject average of score and ISC from
the ISC and Scores of the test quizzes. If the correlation
between ISC and test scores is driven by the subject, by sub-
tracting the subject average, the effect would disappear. This
is what we find, there is no significant correlation between
ISC and Score in any of the three experiments (Fig. S6a-c;
Experiment 1: r(25)=-0.25, p=0.21, Experiment 2: r(29)=-
0.16, p=0.40, Experiment 3: r(28)=-0.05, p=0.78), suggest-
ing there is a strong subject effect. If the correlation was
due to familiarity with a topic, we can test the stimuli effect
by subtracting the stimuli average of score and ISC from the
ISC and test scores. We find significant correlation between
ISC and Score in all three experiment (Fig. S6d-f; Experi-
ment 1: r(25)=0.71, p=3.8·10−5, Experiment 2: r(29)=0.54,
p=1.9·10−3, Experiment 3: r(28)=0.59, p=5.5·10−4), suggest-
ing there is no stimuli effect.

Discussion

We found that eye movements during viewing of instructional
videos are similar between students, but only if they are pay-
ing attention. The effect is strong, allowing one to detect with
a few minutes of gaze-position data if a student is distracted.
Consequently, and as predicted, we find that students per-
formed well in subsequent quizzes if their eyes followed the
material presented during the video in a stereotypical pat-
tern. We replicated this finding in two subsequent laboratory
experiments, where we confirmed that the effect persists when
students do not expect to be quizzed, and that the effect does
not depend on the specific type of video or the type of ques-
tions asked. The results also replicate in a classroom setting
and in a large scale online experiment with users at home
using standard web cameras. By correlating to the median
gaze-positions one can avoid transmitting personal data over
the internet. Thus we conclude that one can detect students’
attentional engagement during online education with readily
available technology. In fact, we can predict how well a stu-
dent will perform on a test related to an instructional video,
by looking at their eyes while maintaining online privacy.

Note that our study was purely correlational. It is possible
that stronger students can both follow the video better and
also perform better in the test, without the need for a direct
link between the two. We build an analytic model assuming
a common cause for inter-subject correlation and test perfor-
mance. While we refer to this common cause as “attention”,
it really can refer to any internal state of a subject that may
have a causal effect on test scores and eye movements such
as alertness, interest, motivation, engagement, fatigue, etc.
This causal model explained the data more accurately than a
simple correlation. But ultimately, our study did not control
attention prospectively and thus cannot conclusively answer
the direction of this relationship.

Even if our causal model is correct, it is not clear that this
common cause is a state of the student or a generic ability. In
fact, performance correlated with GPA and working memory
capacity. In contrast, these traits did not correlate with ISC

of their eye movements. This suggests that a portion of the
test scores are affected by a generic ability of the student,
in addition to the attentional state that can be gleaned from
their eye movements.

We tested for recall of factual information presented in the
videos. Performance on these questions naturally depend on
attention to the presentation of this factual information. For
questions requiring comprehension, instead, it may be that
students need time to think about material quietly without
being absorbed by the video. Yet, we did not find a degrada-
tion in the ability to predict test scores from eye movement
for the comprehension questions. However, a more nuanced
analysis and larger sample size may be needed to establish a
difference in our ability to predict comprehension and recall
performance.

ISC of eye movements varied significantly between subjects
and videos. The variability between subjects is to a certain
degree predictive of different test scores and thus we can as-
cribe it to genuine differences in attention. However, there
is a significant variability in ISC across subjects even in the
distracted condition, suggesting that baseline levels of ISC do
vary between subjects, irrespective of attention. ISC also dif-
fered significantly among videos. This again could be due to
different levels of attention that the videos elicit, but it could
also be due to differences in visual dynamic (slower videos
may drive eye movements less vigorously). Therefore, one
caveat of using ISC is that its values should always be com-
pared against a baseline that calibrates for these differences
among videos [29].

A number of previous studies show the merits of using eye
tracking to evaluate online education. For instance, when
learning from pictures and written text, fixation times and
re-reading predict learning performance [30]. Showing the
instructor’s face while talking seems to help students’ attend
to the material [31, 32], but there are mixed results on whether
this is actually beneficial for learning [33, 34]. These types of
results required careful analysis of the exact content that is
fixated upon. The method presented here assesses whether
students are paying attention without the need for specific
information about the contents of the video.

Our analysis also included pupillary responses. That this
should correlate between subjects is not surprising as it is
strongly driven by luminance changes in the visual stimulus.
The novel observation is that this correlation is modulated by
attention. This may be a consequence of the similar eye move-
ments, as this will lead to similar luminance fluctuations in
foveal vision, or may result from the effects of attention [31] or
arousal [32] on pupillary response. The present finding differs
from the extensive literature on pupil size which attempt to
link pupillary response to specific events. For example, pupil
size predicted reliably which stimuli were recalled, in partic-
ular for emotionally arousing stimuli [35]. Pupil size has also
been linked with cognitive effort, for instance, the effort as-
sociated with holding multiple items in working memory [36].
In contrast to this traditional work on event-related pupil di-
lation we did not have to analyze the specific content of the
stimulus. As with the eye movements, we can simply use
other viewers as a reference to determine if the pupil size is
correlated, and if it is, anticipate high test scores.

Online education often struggles to persistently engage stu-
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dents’ attention, which may be one of the causes for low re-
tention [37]. Student online engagement is often measured in
terms of the time spent watching videos [38], mouse clicks [39]
or questionnaires [40], and some important lessons have been
gained from these outcome measures. For instance, videos
should be short, dynamic, and show the face of the instructor
talking with enthusiasm [38]. Our recent work has focused on
measuring attentional engagement of the students by measur-
ing their actual brain activity [16]. Attempts to record brain
signals in a classroom have been made [41, 42], but typically
require help from research personnel and may thus not be
practical, particularly at home. The method we have pre-
sented here opens up the possibility to measure not just time
spent with the material, but the actual engagement of the
student’s mind with the material, regardless of where they
are. With adequate data quality one may be able to even
adapt the content in real time to the current attentional state
of the student. In particular, for synchronous online course,
where students participate at the same time, real-time feed-
back to the teachers may allow them to adapt to students’
level of attention in real-time, much like real teachers in real
classrooms. The internet has turned attention into a com-
modity. With video content increasing online, remote sensing
of attention to video at scale may have applications beyond
education, including entertainment, advertising, or politics.
The applications are limitless.

Methods

Participants

1182 subjects participated in one of five different experimen-
tal conditions. The first two experiments tested the learning
scenario of online education, namely intentional learning (Ex-
periment 1, N=27, 17 females, age 18-53 M=26.74, SD=8.98,
1 subject was removed due to bad data quality) and incidental
learning (Experiment 2, N=31, 20 females, age range 18-50,
mean 26.20, SD 8.30 years; 3 subjects were removed due to
bad signal quality). Experiment 3, was designed to investi-
gate the effect of different video styles and assessment types
(N=31, 22 females, age 18-50, M=25.73, SD=8.85 years; 2
subjects were removed due to bad signal quality). Partici-
pants for the laboratory Experiments 1-3 were recruited from
mailing lists of students at the City College of New York and
local newspapers ads (to ensure a diverse subject sample).
Experiment 4 was designed to replicate the findings from the
laboratory in a classroom setting. Participants were all en-
rolled in the same physics class at the City College of New
York (N=82, female=21, age 18-40, M=19.6, SD=2.7 years).
Experiment 5 replicated the finding from the laboratory in
a home setting. Amazon Mechanical Turk and Prolific was
used to recruit subjects (N=1012, 473 female, age range 18-
64, M=28.1, SD=8.4 years). Subjects of Experiments 1-4 only
participated in a single experiment, i.e. they were excluded
from subsequent Experiments. In Experiment 5 subjects were
allowed to participate in more than one assignment so the to-
tal count are not unique subjects. The experimental proto-
col was approved by the Institutional Review Boards of the
City University of New York. Documented informed consent
was obtained from all subjects for laboratory experiments.

Internet-based informed consent was given by subjects that
were recruited for the online experiments.

Stimuli

The five video stimuli used in Experiments 1, 2, 4 and 5
were selected from the ‘Kurzgesagt – In a Nutshell’ and
‘minute physics’ YouTube channels. They cover topics re-
lating to physics, biology, and computer science (Table 1,
Range: 2.4 – 6.5 minutes, Average: 4.1± 2.0 minutes). Two of
the videos (‘Immune’ and ‘Internet’) used purely animations,
where ‘Boys‘ used paper cutouts and handwriting. ‘Bulbs’
and ‘Stars’ showed a hand drawing illustrations aiding the
narrative. The six video stimuli used in Experiments 3-5 were
selected from ‘Khan Academy’, ‘eHow’, ‘Its ok to be smart’
and ‘SciShow’. The videos cover topics related to biology,
astronomy and physics (Table 1, Duration: 4.2 – 6 minutes
long, Average: 5.15 ± 57 seconds). They were specifically
chosen to follow recommendations from a large scale MOOC
analysis [38]. The three styles chosen were based on popular
styles from YouTube. ‘Mosquitoes’ and ‘Related’ produced in
the ‘Presenter & Animation’ style shows a presenter talking
as pictures and animations are shown. ‘Planets’ and ‘En-
zymes’ were produced in the ‘Presenter & Glass Board’ style
and shows a presenter drawing illustrations and equations on
a glass board facing the viewer. ‘Capacitors’ and ‘Work en-
ergy’ used the ‘Animation & Writing hand’ style.

Procedure

Laboratory experiments

In Experiment 1 (intentional learning), subjects watched a
video and answered afterwards a short four-alternative forced-
choice questionnaire. The subjects were aware that they
would be tested on the material. The test covered factual
information imparted during the video (11 – 12 recall ques-
tions). Examples of questions and answer options can be
found in Tab. 1. In Experiment 2 (incidental learning) sub-
jects were not aware that they would be tested or asked ques-
tions regarding the material. They first watched all 5 videos,
and subsequently answered all the questions. In Experiment
3, subjects were informed that questions regarding the ma-
terial would be presented after each video and followed the
procedure of Experiment 1, using a different set of stimuli.
The order of video presentation, questions and answer options
were randomized for all three experiments. Common for Ex-
periments 1-3, after subjects had watched all video stimuli
and answered questions, they watched all the videos again
in a distracted condition using the same order as the attend
condition. In this condition participants counted backwards,
from a randomly chosen prime number between 800 and 1000,
in decrements of 7. This task aimed to distract the subjects
from the stimulus without requiring overt responses and is
based on the serial subtraction task used to assess mental
capacity and has previously been used to assess attention [7].

Online experiments

The web camera experiments (Experiments 4 and 5) were car-
ried out using Elicit (???), a framework developed for online
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Experi-
ment
#

Title Abbrevia-
tion Video Style

Dura-
tion

(min:sec)

URL-
ending* Topic area Example question Example answer choices

1,2,4,5
Why are Stars
Star-Shaped? Stars

Animation
& Writing

hand

3:28 VVAKF
J8VVp4 Physics What causes “suture lines”?

1. Where the fibers that make
up the eye’s lens meet
2. Health problems
3. Short-sightedness
4. All options are correct

1,2
Why Do We

Have More Boys
Than Girls?

Birth rate Animated 2:48 3IaYh
G11ckA

Biology What is the ratio of boys to
girls born worldwide?

1. 106:100
2. 100:100
3. 96:100
4. None of the options are
correct

1,2,4,5
The Immune

System
explained

Immune Animated 6:48 zQGOc
OUBi6s

Biology What is the main job of the
macrophage cell?

1. To kill enemies
2. To cause inflammation
3. To activate cells
4. All options are correct

1,2
How modern
Light Bulbs

work
Bulbs

Animation
& Writing

hand

2:57 oCEKM
EeZXug Physics Which gas exists in halogen

light bulbs?

1. Hydrogen bromide

2. Mercury chloride
3. Nitrogen bromide
4. Nitrogen fluoride

1,2
Who invented
the Internet?
and why?

Internet Animated 6:32 21eFwb
b48sE

Computer
Science

What was the goal of the
first network?

1. Optimizing processor usage
2. Facilitating communication
3. Sharing research materials
4. Espionage

3
What if we
killed all the
Mosquitoes? Mosquitoes

Presenter &
Animation

4.21 e0NT9i
4Qnak Biology Anopheles is the primary

vector for:

1. Malaria

2. Dengue
3. Yellow fever
4. Zika

3,4,5
Are we all
related? Related Presenter &

Animation
6.03 mnYSM

hR3jCI Biology How much of the human
DNA is coded into proteins?

1. 2%

2. 98%
3. 80%
4. 30%

3
Dielectrics in
Capacitors Capacitors

Writing
hand &

Animation

5.46 rkntp
_3cZl4 Physics

What happens when a
dielectric is inserted in the
capacitor which is in a
circuit with a battery?

1. Charge Q increases

2. Charge Q decreases
3. Voltage V increases
4. Voltage V decreases

3
Work and the
work-energy
principle

Work
energy

Writing
hand &

Animation

6.26 30o4om
X5qfo Physics

A person pushes a box along
a horizontal floor at a

constant speed. The net
work done on the box is:

1. Zero

2. Positive
3. Negative
4. It depends

3,4,5
How do people
measure Planets

and Suns?

Planets Presenter &
Glass Board

4.23 bYgV9n
vgJ3E Astronomy

As the size of a star
increases, the angular

measurement needed in the
stellar parallax technique...

1. Does not matter

2. Increases
3. Decreases
4. Stays the same

3,4,5
What function
does an Enzyme

have?

Enzymes Presenter &
Glass Board

4.29 lkRZKq
DdwzU

Biology
What is the value of the
activation energy in the

example shown in the graph?

1. 3

2. 7
3. 4
4. 5

Table 1: Experiment, title, abbreviation, style, duration, web address, and example questions and answer choices. URL
beginning with https://www.youtube.com/watch?v=
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experiments. In Experiment 4 (classroom) students used the
same computers they use for their class exercises. From the
Elicit webpage subjects could select which video they wanted
to watch from a list of 5 videos. Subjects were given a short
verbal instruction besides the written instructions that were
provided through the website. In Experiment 5 (at-home)
subjects could select HITs (Amazon Mechanical Turk assign-
ments) or assignments (Prolific) that contained a single video
with questions and otherwise followed the same procedure as
Experiment 4. For both Experiment 4 and 5, subjects were
informed that there would be questions regarding the mate-
rial after the video. They first received instructions regard-
ing the procedure, performed the webcam calibration to en-
able tracking of their eye movements, watched a single video
and answered a four-alternative choice questionnaire for that
video. Subjects were allowed to perform more than one as-
signment, i.e. view more than one video and answer questions.
In Experiment 5 subjects were additionally shown a short in-
struction video on how to calibrate the webcam to track eye
movements.

Online eye tracking using web cameras

The webcam-based gaze position data was recorded using We-
bGazer [26]. WebGazer runs locally on the subject’s computer
and uses their webcam to compute their gaze position. The
script fits a wireframe to the subject’s face and captures im-
ages of their eyes to compute where on the screen they are
looking. Only the gaze position and the coordinates of the eye
images used for the eye position computation were transmit-
ted from the subject’s computer to our web server. In order
for the model to compute where on the screen the participant
is looking, a standard 9-point calibration scheme was used.
Subject had to achieve a 70% accuracy to proceed in the ex-
periment. Note that here we did transfer user data to the
server for analysis. However, in a fully local implementation
of the approach no user data would be transmitted. Instead,
median eye positions of a previously recorded group would
be transmitted to the remote location and median-to-subject
correlation could be computed entirely locally.

Preprocessing of webcam-based gaze position
data

WebGazer estimates point of gaze on the screen as well as
the position and size of the eyes on the webcam image. Eye
position and size allowed us to estimate the movement of the
subject in horizontal and vertical directions. The point of gaze
and eye image position & size were upsampled to a uniform
1000Hz, from the variable sampling rate of each remote web-
cam (typically in the range of 15-100Hz). An inclusion criteria
for the study was that the received gaze position data should
be sampled at at least 15Hz in average. Missing data were
linearly interpolated and the gaze positions were denoised us-
ing a 200ms and 300ms long median filter. Movements of the
participant were linearly regressed out of the gaze position
data using the estimated position of the participant from the
image patch coordinates. This was done since the estimated
gaze position is sensitive to movements of the subject (we
found this increased the overall ISC). Subjects that had ex-

cessive movements were removed from the study (16 out of
1159 subjects; excessive movement is defined as 1000 times
the standard deviation of the recorded image patch coordi-
nates in the horizontal, vertical and depth directions). Blinks
were detected as peaks in the vertical gaze position data. The
onset and offset of each blink were identified as a minimum
point in the first order temporal derivative of the gaze posi-
tion. Blinks were filled using linear interpolation in both the
horizontal and vertical directions. Subjects that had more
than 20% of data interpolated using this method was removed
from the cohort (14 out of 1159 subjects). We could not com-
pute the visual angle of gaze since no accurate estimate was
available for the distance of the subject to the screen. In-
stead, gaze position is measured in units of pixels, i.e. where
on the screen the subject is looking. Since the resolutions of
computer screens varies across subjects, the recorded gaze po-
sition data in pixels were normalized to the width and height
of the window the video was played in (between 0 and 1 indi-
cating the edges of the video player). Events indicating end
of the video stimuli (“stop event”) were used to segment the
gaze position data. The start time for each subject was esti-
mated as the difference between the stop event and the actual
duration of the video. This was done, since the time to load
the YouTube player was variable across user platforms.

Estimate of the quality of gaze position

To compute the quality of the gaze position data, subjects
were instructed to look at a sequence of 4 dots in each corner
of the screen, embedded in the video stimuli before and af-
ter the video. The actual dot position on the subjects screen
was computed and compared to the captured eye gaze posi-
tion of the WebGazer. The deviation was computed as the
pooled deviation of the recorded gaze position from the po-
sition of the dot, while the subject looked at each dot. Poor
data quality is indicated by higher deviation. Furthermore,
subjects with low quality calibration were identified by com-
puting the spatial difference of recorded gaze position data of
opposing dots in the horizontal and vertical direction when
they were looking at the 4 dots. If the difference in recorded
gaze position between dot pairs were in average negative the
subject was excluded (135 of 1159).

Preprocessing of laboratory gaze position
data

In the laboratory (Experiments 1-3) gaze position data was
recorded using an Eyelink 1000 eye tracker (SR Research Ltd.
Ottawa, Canada) at a sampling frequency of 500 Hz using a
35mm lense. The subjects were free to move their heads, to
ensure comfort (no chin rest). A standard 9-point calibra-
tion scheme was used utilizing manual verification. To ensure
stable pupil size recordings, the background color of the cal-
ibration screen and all instructions presented to the subjects
were set to be the average luminance of all the videos pre-
sented during the experiment. In between each stimulus pre-
sentation a drift-check was performed and tracking was recal-
ibrated if the visual angular error was greater than 2 degrees.
Blinks were detected using the SR research blink detection al-
gorithm and remaining peaks were found using a peak picking
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algorithm. The blink and 100ms before and after were filled
with linearly interpolated values.

Intersubject correlation and attention analy-
sis of gaze position data

Intersubject correlation of eye movements is calculated by (1)
computing the Pearson’s correlation coefficient between a sin-
gle subject’s gaze position in the vertical direction with that
of all other subjects while they watched a video. (2) obtain-
ing a single ISC value for a subject by averaging the cor-
relation values between that subject and all other subjects
(ISC) (3) and then repeating steps 1 and 2 for all subjects,
resulting in a single ISC value for each subject. We repeat
step 3 for the horizontal eye movements ISChorizontal and the
pupil size ISCpupil. To obtain the measure used for laboratory
experiment we averaged the three ISC values which we call
ISC=(ISCvertical+ISChorizontal+ISCpupil)/3. The ISC values
for the attend and distract conditions, were computed on the
data for the two conditions separately. To test whether ISC
varies between the attend and distract conditions, a three-
way repeated measures ANOVA was used with fixed effect of
video and attentional state (attend vs. distract) and random
effect of subject. As an additional measure the receiver op-
erating characteristic curve (ROC) was used. Each point on
the curve is a single subject. To quantify the overall ability of
ISC to discriminate between attend and distract conditions
the area under the ROC curve is used (AUC). To test for
the effect motivation has, ISC was computed for each video
in the attend condition and averaged across all videos. Since
the distribution was not Gaussian, we tested for a difference
in median ISC values with a Wilcoxon rank sum test. To test
for the effect of video style on the attentional modulation of
ISC we performed a three-way repeated measures ANOVA.
The random effect was subject and fixed effects were stimuli,
attentional condition and video style.

Weighted intersubject correlation of eye
movements

For the experiments with the web camera in the classroom
and at-home we compute for each time point in the video
the median gaze position across all subjects (Fig. 3a). We
then compute the Pearson’s correlation coefficient of that
median time course with the gaze position of each subject.
We refer to this as median-to-subject correlation, MSCvertical
and MSChorizontal. Note that in principle this can be com-
puted with the median gaze positions previously collected on
a sample group for each video. To compute this remotely
without transmitting the gaze data of individual users, one
would transmit this median gaze positions to the remote
user of the online platform (two values for each time point
in the video). MSC can then be computed locally by the
remote user. We additionally compute MSC for the veloc-
ity of eye movements as follows. First we compute move-
ment velocity by taking the temporal derivative of horizontal
and vertical gaze positions using the Hilbert transform. We
form two-dimensional spatial vectors of these velocity esti-
mates (combining Hilbert transforms of horizontal and verti-
cal directions). These vectors are normalized to unit length.

The median gaze velocity vectors is obtained as the median
of the two coordinates across all subjects. The median-to-
subject correlation of velocity, MSCvelocity, is then computed
as the cosine distance between the velocity vectors of each
subject and the median velocity vector, averaged over time.
Finally, we combine the three MSC measures to obtain a sin-
gle weighted intersubject correlation value for each subject:
wISC = w1MSCvertical + w2MSChorizontal + w3MSCvelocity .
The weights wi are chosen to best predict test scores with
the constraint that they must sum up to 1 and that they are
all positive. This is done with conventional constrained op-
timization. The constraints insure that the wISC values are
bounded between -1 and 1. To avoid a biased estimate of pre-
dictability we optimize these weights for each subject on the
gaze/score data leaving out that subject from the optimiza-
tion, i.e. we use leave-one out cross-validation.

Student learning assessment

Four-choice, multiple-choice questions were used to assess the
performance of students (Score). Test performance was cal-
culated as the percentage correct responses each student gave
for each video. For questions that had multiple correct op-
tions, points were given per correct selected options and sub-
tracted per incorrect selected option. The questionnaires were
designed in pilot experiments to yield an even distribution of
answer options from subjects that had not seen the videos. All
questions and answer options can be found here. To estimate
the baseline difficulty of the questions, separate naïve cohorts
of subjects were given the same questions without seeing the
videos. Two different cohorts were recruited from the City
College of New York to compare against the cohorts recruited
for Experiments 1-4 (Experiment 1,2 and 4, N=26; Experi-
ment 3, N=15) and a third from Prolific to compare against
the at-home experiment cohort (Experiment 5, N=25). When
evaluating the different learning styles (incidental and inten-
tional learning) in Experiments 1 and 2, students’ scores and
ISC values were averaged across all videos. ISC was compared
to student test performance by computing the Pearson’s cor-
relation coefficient between ISC and test performance. Simi-
larly, to test the effect of video style, the ISC and scores for
each subject were averages for the videos produced in differ-
ent styles and correlated using Pearson’s correlation. Test-
ing the connection between ISC and test scores on each in-
dividual video, subjects’ scores were compared with the ISC
using Pearson’s correlation. To test whether there is a sig-
nificant difference in correlation between comprehension or
recall questions and ISC we used the same ISC values and
performed a test between correlation values with a shared de-
pendent variable [43]. Testing how well eye-movement ISC
can predict the performance of students on tests regarding
the material in the online setting, we use leave-one-out cross
validation. We estimate the attention model (see Supplement
for description)on all subjects leaving but one subject’s ISC
values and their corresponding test scores. We then estimate
how well ISC predicts the test score on the left out subject.
We do this for all subjects and compute the median abso-
lute deviation between the prediction and the actual score.
To test if our eye-movement ISC model is statistically better
than a naïve model (only predicting the average score), we
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subtract the prediction errors of the two models and perform
a two-sided sign test.
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Supplement

Details of figure 3

Intersubject correlation of eye movements: a
measure of attentional engagement

Intersubject correlation of eye movements is modu-
lated by attention

In Figure 1c of the main manuscript we showed the result of
the attention manipulation task on the ISC of eye movements
and pupil size when subjects watched video stimuli. Here we
extend this analysis to Experiments 2 and 3.

For Experiment 2 (Incidental learning, Figure S1a), we per-
form the same three-way repeated measures ANOVA and
find a significant main effect of subject (F(29,257)=4.80,
p=1.65e·10−12)), a significant main effect of stimuli
(F (4, 257)=42.08, p=4.00e·10−27)) and importantly, a sig-
nificant main effect of attentional state (F (1, 257)=1213.27,
p=2.53·10−99)). This suggests that regardless of the different
instructions given to the subjects in the two learning scenar-
ios, the measure of ISC is still able to discern the two atten-
tional conditions.

In Experiment 3 six new videos were selected and
the attention manipulation task was again used to test
the ability of ISC to discern attentional states (Fig-
ure S1b). We perform a three-way repeated measures
ANOVA and find a significant main effect of subject
(F (28, 287)=5.41, p=1.49·10−14), a significant main ef-
fect of stimuli (F (5, 287)=19.88, p=5.15e·10−17)) and im-
portantly, a significant main effect of attentional state
(F (1, 287)=1357.63, p=8.21e·10−111)). This indicates the ro-
bustness of ISC of eye movements working for a total of eleven
different videos.

Intersubject correlation of eye movements modulated
by attention for multiple video styles

As education is moving to the online domain, teaching ma-
terial is growing in abundance and so are the different video
styles. We wanted to test if ISC of eye movements as a mea-
sure of attentional engagement generalizes to some of the most
popular video styles, which are found on the major educa-
tional channels of YouTube. In Experiments 1 and 2 sub-
jects watched educational videos produced using the ‘Anima-
tions’ (N=3) and ‘Writing hand & Animation’ styles (N=2).
In both experiments subjects (N=27,30) watched the videos
both in an attentive and distracted condition. The resulting
ISC scores for the two conditions can be seen on Figure S1c).

Importantly, in Experiment 1 we find that ISC is modulated
by attention for both video styles (Figure S1c, left), perform-
ing a three-way repeated measures ANOVA with subjects as
a random effect and attentional state and video style as fixed
effects. We find a significant main effect of attentional state
(F (1,260)=638.60, p=5.63·10−72)) but no significant main ef-
fect of video style (F (1,260)=0.43, p=0.51).

These finding are replicated in Experiment 2 using a dif-
ferent learning style on a new cohort (Figure S1c, mid-
dle). Here we perform the same two-way repeated mea-
sures ANOVA test and find a main effect of attentional state

(F (1,289)=875.74, p=1.83·10−89)) and no significant effect of
video style (F (1,289)=0.38, p=0.54). This indicates that with
this small sample we do not see any effect of video style on
the ability of ISC to discriminate between attentional states.

In Experiment 3 we extended our analysis by including
2 additional video styles, namely ‘Presenter & Animation’
and ‘Presenter & Glass Board’ (Figure S1c, right). Despite
these very different video styles we again find a robust dis-
crimination of attentional state with the eye movement ISC
(F (1,287)=1365.79, p=4.03·10−111)). However, in this case
we do find a main effect of video style (F (2,287)=20.57,
p=4.47·10−9)). We attribute this to the general dynamics
of the video, where some have high spatial dynamics whereas
others are more static eliciting less eye movements. Despite
these differences, regardless of video style or learning scenario
we find a robust discrimination between attention conditions
replicated on three different cohorts.

Intersubject correlation of eye movements
predicts test scores

In the main text we report a significant correlation between
test score and ISC and show the results for Experiment 1 (in
Figure 2b). Here we show the same results for Experiments 2
and 3 (Figure S2a and S2b respectively).

In the main text we analyzed video style in Experi-
ment 3. Here we report similar results for Experiment
1 (Figure S2c, left) for video styles ‘Animation’ (r=0.67,
p=1.1·10−4), N=27) and ‘Writing hand & Animation’ (r=0.62
,p=5.4·10−4), N=27). We reproduce these findings in Ex-
periment 2 using a new cohort and learning scenario (Fig-
ure S2c, right). We find a significant correlation for ‘Anima-
tion’ (r=0.40, p=0.03, N=30) and ‘Writing hand & Anima-
tion’ (r=0.50, p=5.0·10−3), N=30).

Modeling attention as common cause and
measurement noise

The test scores were determined with a short quiz of only 11-
12 questions. This makes the scores inherently noisy. Noise in
the eye tracking data also seems to have affected the accuracy
of the ISC metric. To determine how these noise sources, limit
our ability to predict test scores we formulated a probabilis-
tic model (Supplement ). This model aims to match observed
distribution of test scores and ISC (scatter plots in Fig. 2)
and 3). The simplest model captures the correlation between
scores and ISC assuming they are normally distributed (Fig.
S4a, Gaussian model). We also build a model based on our
hypothesis that attention causally affects eye movements as
well as test scores (Fig. S4b, Attention model). We fit both
models using maximum likelihood optimization (see Supple-
ment for details) and find that the causal attention model is
significantly more likely than the simple correlation model de-
scribing the data (Fig. S4c). The parameters of the attention
model are consistent with independent empirical observations,
such as the baseline performance of naïve subjects (Fig. S4d)
or the noise estimates of the eye movements (Fig. S4e). Ac-
cording to the model the differing performance in predicting
test scores is well explained by a change in signal-to-noise ra-
tio (SNR, Fig. S4f). SNR is an estimate of the variance in
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Experiment Stimuli Subjects wISC Score (%) wISC vs. Score Prediction error
(% score*)

4: Classroom Stars N=82, Female 18, Age 19.7 ± 2.7 0.33 ± 0.20 62.14 ± 26.68 r=0.46 (p=1.8·10−5) 19.6 ± 19.4 (p=0.18)
4: Classroom Immune N=53, Female 13, Age 19.2 ± 1.2 0.33 ± 0.15 59.62 ± 22.35 r=0.55 (p=2.7·10−5) 12.5 ± 16.6 (p=0.33)
4: Classroom Birth rate N=57, Female 16, Age 19.3 ± 1.2 0.42 ± 0.22 72.17 ± 24.99 r=0.69 (p=5.3·10−9) 13.2 ± 15.0 (p=0.02)
4: Classroom Related N=71, Female 16, Age 19.5 ± 2.8 0.27 ± 0.17 46.35 ± 18.06 r=0.28 p=0.02 15.0 ± 16.7 (p=4.8·10−4)
4: Classroom Enzyme N=60, Female 17, Age 19.2 ± 1.1 0.38 ± 0.25 43.24 ± 21.92 r=0.33 p=0.01 15.4 ± 18.2 (p=0.43)
5: At-home Stars N=203, Female 86, Age 29.8 ± 8.8 0.35 ± 0.20 58.83 ± 24.73 r=0.55 (p=3.6·10−17) 14.8 ± 18.0 (p=2.6·10−4)
5: At-home Immune N=201, Female 87, Age 27.4 ± 8.3 0.28 ± 0.18 45.61 ± 21.89 r=0.53 (p=4.7·10−16) 12.8 ± 15.6 (p=7.4·10−3)
5: At-home Birth rate N=209, Female 88, Age 27.2 ± 7.8 0.41 ± 0.24 65.19 ± 26.71 r=0.51 (p=2.3·10−15) 17.5 ± 18.0 (p=3.7·10−3)
5: At-home Related N=195, Female 85, Age 27.9 ± 8.2 0.30 ± 0.19 44.57 ± 19.29 r=0.38 (p=3.9·10−8) 14.6 ± 14.7 (p=0.15)
5: At-home Enzyme N=204, Female 97, Age 28.1 ± 8.7 0.42 ± 0.25 37.72 ± 18.86 r=0.40 (p=4.0·10−9) 10.8 ± 15.8 (p=0.08)

Table S1: Details of Figure 3. Experiment, stimuli, subjects, weighted Intersubject Correlation (wISC), score, correlation
between wISC and score, leave-one-out cross validated Median Absolute Deviation (MAD). Mean ± SD are taken across
subjects. *p-values indicate test for whether predicted score is significantly different than naive median score prediction
using sign test. z-score is given where this test is approximate.

Figure S1: Intersubject correlation of eye movements and pupil size is modulated by attention when watching
educational videos. a-b) The intersubject correlation (ISC) values for each subject are shown as dots for all video tests
in Experiment 2 (panel a and 3 (panel b). Each dot is connected with a line between two different conditions, namely, when
subjects were either attending (A) or were distracted (D) while watching the video. c) The intersubject correlation (ISC)
values for each subject averaged across videos of different styles for Experiments 1-3.
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Figure S2: Intersubject correlation of eye movements predict test scores. a) The relation between intersubject
correlation of eye movements and pupil size and performance on test taking (Score) for each of five videos of Experiment 2.
Each dot is a subject. b) same as panel (a) but for the six videos in Experiment 3. c) same as panel (a) but averaging over
the video produced in the ‘Animation’ and ‘Writing hand & Animation’ styles for Experiments 1 and 2.

attention over the variance in the noise of the attention mea-
sure (eye movement ISC). If SNR could be improved, then
prediction performance could be substantially improved (Fig.
S4f). However, with only 12 test questions there is a limit
to this prediction performance as the test scores are inher-
ently noisy. For instance, despite the relatively low eye track-
ing noise in the laboratory experiment (both measured and
estimated; Fig. S4f) the model suggests that predictability
is limited to r<0.7 (Fig. S4g), which is consistent with the
empirical data (Fig 2b). Thus, in order to achieve better pre-
diction of test scores one would need to increase the number
of questions to obtain a more reliable assessment of student
performance (Fig. S4g). In summary, a larger number of test
questions, lower noise in our estimate of the attentional state
of the subjects, and larger variance in attention across sub-
jects are all expected to contribute to better prediction of test
scores.

Probabilistic model of relationship between
ISC and test scores

The data likelihood

The goal of this Supplement is to formulate a probability
model for the observed data, namely, the test scores ki and
the correlation values ci of eye movement. These are mea-
sured for subjects i = 1 . . . N . First we assume that these
measures are independent across subjects, so that the data
likelihood factorizes:

L(θ) = p(k1, . . . kN , c1 . . . cN |θ) =
N∏
k=1

p(ki, ci|θ) (1)

Here p(k, c|θ) is the joint probability density of the data given
parameters θ. Next we propose two generative models for this
joint density. One is a straightforward bivariate Gaussian den-
sity that captures the correlation between the two variables.
We refer to this as the “Gaussian model” (Figure S3a). The
other will incorporate a common cause that leads to observa-
tions k and c through specific processes. We refer to that as
the “Attention model” (Figure S3b).

Gaussian model

The canonical approach to describing the correlation between
two variables as a probability density is the bivariate Gaussian
density

p(k, c|θ) =
1

2π|Σ|
exp

(
−1

2
([k, c]− µ)Σ−1([k, c]− µ)T

)
(2)

The maximum likelihood solution for the parameters θ =
{µ,Σ} can be found in any statistics text book. They are
the sample mean and sample covariance:

µ =
1

N

N∑
i=1

[ki, ci] (3)

Σ =
1

N − 1

N∑
i=1

([ki, ci]− µ)([ki, ci]− µ)T (4)

Note that we have here 5 parameter that have been fit to the
data: µ = [µk, µc], and Σ = [σ2

k, σkc;σkc, σ
2
c ].
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Figure S3: Alternative models to explain test scores k and ISC values c. Wavy lines indicates probabilistic relationship
between variables. Straight line indicates deterministic relationship. Two-sided arrows indicate that the relationship is
invertible. a) The two variables are related by a bivariate Gaussian distribution. b) Variable a indicates “attention”, or more
generally, an unobserved internal state of the subject that affects test scores and eye movements. Variable q captures the
odds of answering a question correctly, i.e. questions to the subjects are Bernoulli trials with odds q, and the sum of correct
answers is test scores k. Variable z is the Fisher transformed version of correlation value c. It is assumed that this variable
captures attention, except additive Gaussian noise. c) In the Gassian model the correlation of k and c can be equivalently
formulated as the result of a common driving factor a that is also Gaussian distributed.

Attention model

The second approach is an explicit formulation of our hypoth-
esis that attention affects both test-taking performance and
how similar eye movements are to the group of subjects. We
assume that variables do not otherwise affect each other, i.e.
eye movement don’t directly affect test scores, and evidently
test scores can not affect eye-movements that happened in the
past. In this view, the joint density can be written as

p(k, c) =

∫
p(k, c|a)p(a) da =

∫
p(k|a)p(c|a)p(a) da. (5)

Here variable a quantifies the level of attention, and it is dis-
tributed across subjects according to p(a). We do not take
the word “attention” here too literal. From a modeling point
of view, this variable captures any internal state of the sub-
ject that affect performance as well as eye movements. This
could include alertness, engagement, interest or fatigue. For
instance, a low value for a could be due to fatigue or lack of
interest in the material. As an internal state of the subject,
a is an unobserved variable, so we integrate over it. We as-
sume that once conditioned on attention a, the score k and
eye correlation c become independent with p(k|a) represent-
ing the probability that at a given attention level a students
obtains a score of k in the subsequent exam, and p(c|a) is
the probability that at a given attention level the eye move-
ments correlates with other subjects at a value c. We will now
specify an analytic model for each of these terms.

We assume that attention a is normally distributed in our
cohort with standard deviation σa and zero mean, where zero
represents an average level of attention, while positive and
negative values represent more or less than average attention.

p(a) =
1√

2πσa
exp

(
− a2

2σ2
a

)
(6)

The exam consists of a series of yes/no questions, lets say, n
questions. Assume that a student has a chance q of getting

each question right. The number of correct answers k is then
Bernoulli distributed:

p(k|n, q) =

(
n
k

)
qk(1− q)n−k (7)

To link attention to performance we assume that high at-
tention levels will give students a high chance of answering
questions correctly (close to q = 1) and low attention will
cause poor odds (close to q = 0). Denote with θa the level of
attention at witch a subject reaches even odds of answering
correctly (q = 0.5), and let βa be the sensitivity of perfor-
mance on changing levels of attention. Then we can repre-
sent odds of correctly answering a question as a function of
attention as follows:

q(a) = logistic(βa(a− θa)) (8)

where we used the logistic function to capture the transition
from probability 0 to probability 1:

logistic(x) =
exp(x)

1 + exp(x)
(9)

Now we turn our attention to the distribution of correla-
tion values c. The density of correlation values is well
characterized by a normal distribution after the Fisher z-
transformation:

z = atanh(c) (10)

We will therefore work with the density p(z|a) instead of
p(c|a). The two can be related after appropriate scaling:

p(c|a) =
1

1− c2
p(z(c)|a) (11)

Given our finding that attention strongly modulates the cor-
relation values we assume that z is directly determined by at-
tention. However, we have seen that there are different noise
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levels in measuring eye movements, and so we will assume
that z carries an independent additive noise

z = a+ n (12)

with n normally distributed with mean µn and standard de-
viation σn. Given this normal noise, z given a is distributed
with the following density

p(z|a) =
1√

2πσn
exp

(
− (z − µn − a)2

2σ2
n

)
(13)

In total, the joint distribution of the model can be written
as

(14)

p(k, c|θ) =
1

1− c2

(
n
k

)
1

2πσnσa∫
daq(a)k(1− q(a))

n−k
exp

(
− (z(c)− µn − a)2

2σ2
n

− a2

2σ2
a

)
The parameters of this joint density are now θ =
{σa, βa, θa, σn, µn, }. To estimate these 5 parameters we will
again use maximum likelihood optimization.

For the purpose of finding the optimal parameters first re-
call that n and a are independent and that a is zero mean.
Therefore the following constraints apply to the parameters:

µz = µn (15)
σ2
z = σ2

a + σ2
n (16)

Now, µz and σ2
z can be estimated directly from the sample

data:

µz =
1

N

N∑
i=1

zi (17)

σ2
z =

1

N − 1

N∑
i=1

(zi − µz)2 (18)

With these two constraints determined by the data, we really
only have 3 degrees of freedom remaining for optimization.
Parameter µn is directly specified by µz (15). Parameters σa
and σ2

n will be reduced to a single parameter, namely, the
logarithm of the signal to noise ratio:

λ = log

(
σ2
a

σ2
n

)
(19)

by leveraging the constraint (16) the two variances parame-
terized with a single parameter λ:

σ2
a =

σ2
z

1 + eλ
(20)

σ2
n =

σ2
z

1 + e−λ
(21)

So in total we directly measure µn and optimize for the log-
likelihood with respect to parameters {λa, βa, θa}. Optimiza-
tion of three unconstrained parameters can be done fairly ef-
ficiently numerically.

Unfortunately the integral over a in (14) has no obvious
solution and we thus evaluated it numerically during opti-
mization. To do this with equal accuracy for arbitrary pa-
rameter values we perform the following variable substitution:
a′ = a− µn and write the integral as∫

da′ q(a′ − µn)k(1− q(a′ − µn))
n−k

exp

(
− (a′ − µa′)2

2σ2
a′

)
(22)

with

σ2
a′ =

σ2
nσ

2
a

σ2
z

, (23)

µa′ =
zσ2

a + µnσ
2
n

σ2
z

(24)

In practice the integral is executed as a sum by evenly dividing
the range a′ ∈ [µa′ − 3σa′ , µa′ + 3σa′ ] into discrete steps of
∆a′ = 0.1σa′ .

Comparison between models

Here we want to make a few concluding remarks in comparing
these two models.

Both the Gaussian model and the Attention model have 5
free parameters that are fit to the data (Figure S4a and S4b
respectively). According to the Akaike Information Criterion
one can choose the preferred model by comparing the max-
imum likelihood value obtained on the data. In fact, since
both models have the same number of parameters no correc-
tion is needed for the degrees of freedom and one can directly
evaluate the likelihood ratios. These ratios are reported in
Figure S4c of the main paper for all experimental data. We
find that the Attention model is significantly more likely in
all cases (likelihood of Attention model over Gaussian model
is larger than 1).

The parameters of the two models quantify similar proper-
ties of the distribution: µn and µc take on identical roles, and
σc is captured by σa and σn; θa affects the mean score µk and
βa and σa affect σk; finally the larger σn (more noise), the
smaller will be the correlation between k and c, as captured
by σkc.

The variables of the Attention model, once fit to the empir-
ically observed data (performance scores and eye movement
ISC) seem to correctly capture empirical observations that
were assessed independently of this data. For instance, the
performance of naive subjects decreases with the estimated
attention threshold θa (Figure S4d). This is expected as θa
intends to capture the difficulty of questions (how much atten-
tion is required to answer half the questions right in average).
Thus, videos with easy tests should have a low estimate for θa
and videos with harder tests should have a high estimate. Ad-
ditionally, the measured deviation from fixation dots increases
with the estimated noise σn (Figure S4e). This is expected as
σn capture the noise in the eye-movement ISC. Thus, inaccu-
rate eye tracking data should lead to noise in the measured
eye-movement ISC. Finally, the estimated signal-to-noise ra-
tio σa/σn across videos follows the expected relationship with
correlation (of score vs ISC) as predicted by the model (Fig-
ure S4f). While these estimates are not independent from the
data used for the parameter fit, it does show internal consis-
tency of the modeling approach across videos and supports
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Figure S4: Analytic model of test scores and ISC of eye movements: a) Gaussian model fit to laboratory and at-home
experiments for videos ‘Immune’ (blue dots) an ‘Birth rate’ (red dots) respectively . This model assumes a bivariate Gaussian
distribution. Contour lines indicate the likelihood according to the model. b) Fit of the Attention model for the same data.
This model assumes that score is Bernoulli distributed and ISC follows a Fisher z-score (see Supplementary Fig. S3). c)
likelihood ratio between the Attention model and the Gaussian mode for all data from experiments in laboratory (Figure
2b), classroom (Figure 3c), and at-home (Figure 3d). Values larger than 1 indicate that attention model is a better fit. d)
Performance of naive subjects, i.e. baseline test scores, compared to the estimated attention threshold in the model θa. This
threshold parameter is the level of attention required to achieve 50% correct answers. e) comparison of estimated noise σn
and measured noise (Deviation as in Figure 3b). f) correlation between eye-ISC and test scores as a function of estimated
signal-to-noise ratio, σ2

a/σ
2
n. The variability observed in the empirical data is consistent with changing SNR. g) correlation

between ISC and test scores as a function of the number of questions for the laboratory experiment. Predictability of test
scores increases with number of questions.
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the argument that score/ISC correlations differ due to differ-
ing SNR levels.

The Gaussian model can be equivalently described in terms
of a common cause (Figure S3c), i.e. the correlation between
variables k and c is introduced by an unobserved common
cause a. In the case of normally distributed variables the
Gaussian model (Figure S3a) and the Equivalent model (Fig-
ure S3c) are mathematically indistinguishable. The Gaus-
sian model (Figure S3a) can also be described as normal dis-
tributed variable k affecting c with some Gaussian noise, or
vice versa. So one can not discern the direction of causality or
a common cause for Gaussian data. For the Attention model
the direction of influence can not be readily reversed. Thus,
a better fit of the Attention model may be suggestive of a
causal relationship via an unobserved common cause.

The Attention model takes the bounded nature of the vari-
ables k and c explicitly into account, whereas the Gaussian
model does not. Thus, it is no surprise that the attention
model has a higher likelihood on the empirical data as it does
not allocate any probability mass outside the valid data range.
In contrast, the Gaussian distribution has non-zero probabil-
ity outside the valid range of the data. So a better fit may
simply reflect that the data is more carefully modeled. In-
deed, if the Bernoulli distribution is replaced by a Gaussian
and the logistic and Fisher transformations by a linear trans-
formation, then the attention model of Figure S3b reduced to
the equivalent Gaussian model of Figure S3c. Ultimately the
two models are not very different except for this features of a
more careful model of the observed variables.

Gaze position data collected in at-home ex-
periment
To provide a sense of the raw data here we display gaze posi-
tion collected using web cameras in the at-home for one of the
videos (‘Birth rate’) for all subjects (Figure S5). Each row is
a subject and the intensity is the eye gaze position. Subjects
are sorted by how well they did on the test that followed the
video. It seems clear high-performing subjects have a stereo-
typical pattern of eye movements and this pattern disappears
as performance drops.
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Figure S5: Raw gaze position data: Gaze position collected for ‘Stars’ in the at-home condition. Position is coded as
brightness, and each subject is a row. Subject (N=203) are sorted by the score they obtained in the subsequent test (highest
on top).

Figure S6: Subject vs. stimuli effect: a-c) ISC and Score with the average across subjects substracted from each
(Experiment 1-3 respectively). d-f) ISC and Score with the average across stimuli substracted from each (Experiment 1-3
respectively).
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