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ABSTRACT 

 

Magnetic resonance imaging and X-ray computed tomography provide the two principal 

methods available for imaging the brain at high spatial resolution, but these methods are not 

easily portable and cannot be applied safely to all patients. Ultrasound imaging is portable 

and universally safe, but existing modalities cannot image usefully inside the adult human 

skull.  We use in-silico simulations to demonstrate that full-waveform inversion, a 

computational technique originally developed in geophysics, is able to generate accurate 

three-dimensional images of the brain with sub-millimetre resolution.  This approach 

overcomes the familiar problems of conventional ultrasound neuroimaging by using: 

transcranial ultrasound that is not obscured by strong reflections from the skull, low 

frequencies that are readily transmitted with good signal-to-noise ratio, an accurate wave 

equation that properly accounts for the physics of wave propagation, and an accurate model 

of the skull that compensates properly for wavefront distortion.  Laboratory ultrasound data, 

using ex-vivo human skulls, demonstrate that our computational experiments mimic the 

penetration and signal-to-noise ratios expected in clinical applications.  This form of non-

invasive neuroimaging has the potential for the rapid diagnosis of stroke and head trauma, 

and for the provision of routine monitoring of a wide range of neurological conditions. 

 

 

INTRODUCTION 

 

No universally applicable means of imaging the living human brain at high anatomical 

resolution exists.  The modality with the best spatial resolution and tissue contrast, magnetic 

resonance imaging (MRI), is contraindicated where the presence of magnetic foreign bodies 

cannot be excluded, and is impractical with claustrophobic, uncooperative or severely obese 

patients.  Its nearest rival, X-ray computed tomography (CT), involves exposure to harmful 

ionizing radiation.  Both require large, expensive, immobile, high-power instruments that are 

near-impossible to deploy outside specialized environments.  The clinical consequences of 

this are high symptom-to-image times, long inter-scan intervals during serial imaging, and 

constraints on the range of patients that can be imaged successfully.   

 

Pre-eminent amongst the many neurological disorders where patient outcomes are degraded 

by these restrictions, is stroke: the second most common cause of death worldwide, and the 
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dominant cause of acquired adult neurological disability [1].  Treatment decisions are here 

critically guided by neuroimaging, ideally performed immediately after symptom onset.  

Delays of the order of minutes have substantial impact on outcomes, yet the necessity to treat 

patients only after transport to hospital routinely introduces delays of an hour or more [2].  

Accelerating the treatment of stroke by enabling neuroimaging and treatment to be performed 

at the point of first contact would thus have large population-level impacts on survival and 

disability.  Analogous arguments can be made for improved rapid medical imaging in head 

trauma, and in routine intraoperative, post-operative and preventative neurological 

monitoring, with the potential to impact large numbers of patients worldwide.   

 

We provide in-silico proof-of-principle, supported by ex-vivo laboratory measurements, that 

the combination of transmitted transcranial ultrasound tomography with a computationally 

intensive technique originally developed to image the interior of the Earth, can address these 

clinical needs by providing portable three-dimensional (3D) quantitative imaging that is less-

expensive, faster and more easily applicable than MRI, and that is safer and has better soft-

tissue contrast than CT.  This approach results in a three-dimensional, sub-millimetre 

resolution, quantitative model of acoustic wave speed within the brain and surrounding tissue, 

that is capable of distinguishing most of the structures and pathologies to which MRI is 

sensitive.  The combined findings of our in-silico and ex-vivo experiments demonstrate that 

recording transcranial ultrasound data is feasible, recorded signal-to-noise levels are 

sufficient, the data contain the information required to reconstruct brain properties, and full-

waveform inversion can extract those properties at high resolution. 

 

Conventional medical ultrasound is fast, safe, portable and cheap, but is unable to image the 

adult human brain at high-resolution within the skull; the main reasons for this are well 

understood [3-6]: 

1. In both conventional pulse-echo B-mode sonography [7] and time-of-flight ultrasound 

computed tomography [8], high-frequencies are required in order to obtain high spatial 

resolution.  Scattering and anelastic losses occur within the skull and the brain, and these 

increase with frequency.  At the frequencies used  by conventional ultrasound modalities, 

these signal losses prevent successful imaging of intracranial soft tissue.   

2. The contrast in wave speed between the skull and soft tissues, and between the skull and 
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air-and-fluid-filled cavities within it, produces significant refraction, diffraction and 

reverberation of ultrasound energy as it is transmitted through the skull.  This 

significantly distorts and complicates the consequent wavefront, leading to strong 

aberrations in both phase and amplitude, and to significant spatial and directional 

variation in the waveform of the transmitted pulse.  It is not currently possible to correct 

for these effects with sufficient accuracy using conventional modalities. 

3. In pulse-echo sonography, back-scattered reflections are used to generate the image.  The 

bones of the skull differ significantly in wave speed and density from those of 

surrounding soft tissue.  Consequently, the skull generates strong reflections and multiple 

scattering, and these high-amplitude signals overlie, interfere with and obscure the much-

weaker reflections produced by the small impedance contrasts that occur between tissue 

types within the soft tissues of the brain, leading to low signal and high source-generated 

noise in intracranial pulse-echo images. 

4. Time-of-flight tomography uses a short-wavelength approximation, basing its analysis on 

the simplified physics of ray-theory in which the effects of transmission through a 

heterogeneous medium are represented by a simple change in travel time.  For a finite-

wavelength wave transmitted through a medium that is heterogeneous on many scales, 

such delay times are only sensitive to the properties of the medium averaged over the 

dimensions of the first Fresnel-zone [9].  Consequently, time-of-flight tomography is 

unable to resolve structure below this scale, and so lacks acceptable resolution at the low 

frequencies that can be recorded using transcranial ultrasound. 

One possible way around these problems is to use natural openings in the skull as acoustic 

windows, but this approach severely reduces illumination [5]; it is typically limited to 

neonates through an open fontanelle [10].  In principle, it is also possible to remove, or thin, 

portions of the skull in order to record data without strong bone reflections.  This method has 

produced promising results in rodents, generating functional ultrasound images that can 

capture transient changes in blood volume related to brain activity [11, 12], but this invasive 

approach has obvious limitations in clinical practice. 

 

In this paper, we present the neurological application of full-waveform inversion (FWI) [13], 

an imaging method first applied widely in geophysics [14].  FWI is a computationally 

intensive technique that has been developed to a high level of sophistication by the petroleum 
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industry to image hydrocarbon reservoirs within the Earth [15, 16].  The spatial resolution 

that can be obtained using this technique is much greater than that of time-of-flight 

tomography.  FWI achieves this improved resolution through a combination of characteristics 

[17], of which the most important is that it uses a more-complete description of the physics of 

wave propagation in heterogeneous media that takes proper account of the finite wavelength 

of transmitted waves.   This description, which involves the full numerical solution of the 

wave equation, is able to model accurately the effects of sub-Fresnel-zone heterogeneity and 

multiple scattering on the wavefield.  FWI combines this more-accurate description of the 

physics with an appropriate non-linear inversion scheme, and a suitable data acquisition 

geometry, so that it is able to recover fine-scale heterogeneity throughout the model. 

 

Fig. 1 outlines the geometry of the method.  Low-frequency ultrasound data are recorded at 

all available azimuths by surrounding the head with ultrasound transducers in three 

dimensions.  Every transducer acts, in turn, as a source of ultrasound energy, and this energy 

is recorded by every other transducer.  FWI uses predominantly transcranial transmitted 

energy recorded on the side of the head opposite to the source transducer, but it also extracts 

information from all other parts of the recorded wavefield including reflections, diffractions, 

multiple scattering and guided waves that arrive at any angle at any of the transducers.  

Unlike conventional ultrasound imaging, FWI does not use focused transducers, focusing 

arrays or any type of beam forming, either in the experimental configuration or in the 

computer subsequently.       

 

The paper is organized as follows:  We explore our proposed methodology using in-silico 

simulations, and present ex-vivo laboratory results that support our assumptions.  We begin 

by demonstrating the improvement in resolution provided by FWI in even the simplest case 

when the model is two-dimensional and the skull is absent.  We follow this by exploring what 

FWI is able to achieve for the intact adult human head in three dimensions; this result 

demonstrates the resolution and tissue contrast potentially achievable in a clinical setting.  

We follow this by demonstrating a practical method for building a starting model, and 

demonstrate the importance of full 3D data acquisition and inversion.  We present laboratory 

results using an ex-vivo human skull to demonstrate that good signal penetration and high 

signal-to-noise levels are readily achievable by transcranial ultrasound.  We provide an 

example of the clinical relevance of our approach by demonstrating the accurate recovery of 

an intracranial haemorrhage, and discuss clinical applications to stroke and other pathologies.  
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We conclude with an outline of our methodology, and in the supplementary information we 

explore the consequences of potential imperfections in real-world data.   

 

Figure 1.   Experimental geometry.     (a) Three‐dimensional array of transducers used 

for data generation and subsequent inversion.  Each transducer acts as both a source 

and a receiver.  The red ellipse shows the location of the two‐dimensional array used 

to generate the data for Figs. 2 & 4.  (b) A snapshot in time of the wavefield generated 

by  a  source  transducer  located  at  the position  indicated by  the  small  yellow  circle, 

computed via numerical solution of the 3D acoustic wave equation.   The wavefield is 

dominated by strong reflections from the skull, and by intracranial transmitted energy 

travelling  across  the  brain;  Supplementary  Movie  1  shows  the  full  wavefield 

propagating in time. 

 

RESULTS  

 

Resolution in the absence of the skull 

 

Ray-based time-of-flight tomography and wave-equation-based FWI both represent forms of 

transmission tomography.  Fig. 2 demonstrates the difference between these two techniques 

using a simple two-dimensional model of the naked brain without the complicating effects of 

the skull.  Using the model from Fig. 2a, and solving a numerical wave equation, a synthetic 

dataset was generated for transducers located around the brain.  Using the homogeneous 

starting model shown in Fig. 2b, this dataset was inverted using both time-of-flight 
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tomography and FWI, to recover the models shown in Figs. 2c and d.  Time-of-flight 

tomography seeks to find the best-fitting model by using geometric ray theory to predict 

delay times for every source-receiver pair in the dataset, whereas FWI seeks to solve the 

same problem by using the wave equation to predict the detailed variation of acoustic 

pressure with time recoded at every receiver for every source. 

 

 

 

Figure 2.    Inversion of data  from a brain outside  the  skull.    (a) A  two‐dimensional 

model of acoustic‐wave  speed  in  the naked brain without  the  skull.   The  red ellipse 

shows the transducer positions.  (b) Homogeneous model used to begin inversion.  (c) 

Result of ultrasound computer tomography.   The resultant model  is accurate but has 

poor  spatial  resolution.    (d)  Result  of  ultrasound  full‐waveform  inversion.    The 

resultant model is now both accurate and spatially well resolved.   

 

For this numerical experiment, the shortest wavelength of the insonifying signal was less than 

2 mm, and the minimum diameter of the Fresnel zone for signals that travelled across the 

model was greater than 20 mm.   Well-established theory [9] and numerical experiments [18] 

show that the maximum spatial resolution that can be achieved, in the far field, using ray-

based time-of-flight tomography is of the order of the diameter of the first Fresnel-zone, 

whereas for wave-equation-based transmission tomographic methods the maximum 

achievable resolution is of the order of half a wavelength [14, 19].  Thus, we would expect 

that the FWI model would be about 20 times better resolved in linear dimensions than the 

time-of-flight model.  Fig. 2 illustrates this behaviour directly.  Both methods recover models 

that are accurate in their locally averaged properties, but the time-of-flight model has only 

centimetre-scale spatial resolution whereas the FWI model has millimetre resolution.  Note 
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that, in this simple example, the difference in resolution between the two techniques is not 

related to the presence of the skull, nor to differences in the optimization scheme – both 

methods used non-linear least-squares inversion applied to the same input data. 

 

In the absence of the skull, conventional high-frequency pulse-echo sonography would of 

course be able to recover an accurate image of the naked brain.  However, when the skull 

interposes, pulse echo will fail to image the brain inside the skull because brain reflections 

are then significantly distorted by the skull, and signal loses at typical pulse-echo frequencies 

are large.  Similarly, time-of-flight tomography for the intact human skull will fail because, at 

the low frequencies that can be transmitted across the head with acceptable signal-to-noise 

ratios, spatial resolution is insufficient.  FWI does not suffer from either of these problems; it 

properly accounts for the distorting effects of the skull, and it achieves good spatial resolution 

at the low frequencies that can be recorded after transmission through the skull.   

 

Three-dimensional full-waveform imaging through the skull 

 

FWI has obvious advantages for brain imaging; it does though have two complications of its 

own: the computational effort required to extract the image from the data in three dimensions 

is significant, and the method requires a reasonably good starting model in order to proceed 

to the correct final model. 

 

The former requirement has, until recently, limited the applicability of medical FWI to 

problems that can be usefully solved in two dimensions [20], and the skull is not even 

approximately two-dimensional.  The advent of large parallel multi-core multi-node compute 

clusters, of on-demand parallel cloud computing, and of large-memory GPU systems, 

coupled with improved FWI software and the use of pre-trained supervised deep-learning to 

accelerate the process, are reducing the computational demands of this method; runtimes and 

costs continue to reduce year-on-year. 

 

The requirement for a good starting model is straightforward for the soft tissue of the brain 

where a homogeneous starting model is adequate.  For the bones of the skull, either an 

accurate skull model must be obtained a priori, or a version of FWI must be employed that is 

able to build such a skull model from the observed data.  In this section we assume that the 

skull model is known, and in the following section we demonstrate a method of building such 
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a model during FWI.    

 

Fig. 3 shows transverse, sagittal and coronal sections through a three-dimensional target 

model of wave speed, a starting model containing the true skull but otherwise homogeneous, 

and the model reconstructed using FWI applied to sub-MHz ultrasound data generated by the 

target model.  Supplementary Movies 2, 3 and 4 show the true, starting and reconstructed 

models in three dimensions.  The colour scale shown in Fig. 3 is designed to highlight 

heterogeneity within both soft and hard tissues. 

Figure  3.   Models  of  acoustic wave  speed.    Transverse  (left),  sagittal  (centre)  and 

coronal  (right)  sections  through  the  true  (top),  starting  (middle)  and  recovered 

(bottom)  models.    Both  the  wavefield  modelling  and  waveform  inversion  are 

performed  in  three dimensions.   The  starting model  includes  the  true model of  the 

skull, but is otherwise homogeneous. 

 

The bones of most of the upper cranium are multi-layered, containing the inner and outer 

tables of denser cortical bone with a high wave speed, surrounding the diploë, which is 

formed of cancellous bone with lower density and wave speed. This structure, together with 
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the large contrast in properties between the skull and its surrounding soft tissues, provides the 

principal mechanism for transcranial signal attenuation, with anelastic absorption and elastic 

mode-conversions playing a less significant role [21-23].  The model of the skull used in this 

study included all cavities, foramina and other structural complications that are present in the 

adult human head, and that are capable of being captured on the 500 micron grid that we used 

to represent the model.   

 

The model recovered by full-waveform inversion, Fig. 3g to i, is in good agreement with the 

true model, Fig. 3a to c, for both extracranial and intracranial soft tissues.  Inside the skull, 

FWI is able to generate an accurate and detailed image: grey and white matter match the 

target tissue properties accurately, both in absolute wave speed and in structure, with 

sufficient resolution to allow direct identification of cortical folds.  Deeper structures such as 

the corpus callosum, the thalamus, the basal ganglia, and the ventricular system are recovered 

well.  Parts of the venous sinuses have a thickness of 0.8 mm in the true model, as do larger 

vessels within the brain, and these are recovered in the reconstructed image demonstrating 

that we are able to achieve sub-millimetre resolution of the brain and its vascular system 

using only relatively low frequencies lying below 1 MHz.  Parts of the cerebellum and the 

pons lie inferior to the lowest transducer positions in our numerical experiment, but it is still 

possible to extract sufficient information from the data to image both bodies, although there 

is a decrease in resolution as illumination is progressively lost in the area close to the base of 

the skull. 

 

Building the skull model 

 

FWI is a local optimization algorithm that requires an initial model that lies within the basin 

of attraction of the global solution [14].  The variation in soft-tissue acoustic wave speed is 

around ±7%, which has values between about 1400 ms−1 for fat and 1600 ms−1 for muscle 

tissue and cartilage [24].  At the frequencies that we use for FWI, such relatively small 

perturbations are readily retrievable starting from a homogeneous model having a wave speed 

similar to that of water at about 1500 ms−1.  This is the reason why FWI applied, for example, 

to breast imaging has been immediately successful [20, 25].  In contrast, the variation in wave 

speed for hard tissue in the cranium is larger at around ±14%, with values between about 

2100 ms−1 for cancellous bone and 2800 ms−1 for cortical bone [21-23]; the mandible and the 

vertebrae have even higher wave speeds of around 3500 ms−1 [24].  These high values are far 
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removed from that of water.  Consequently, recovery of the full model of the head, including 

the bones of the skull, will require a more-sophisticated approach. 

 

Fig. 4a shows the failure of an attempt to recover a model of the head using conventional 

FWI beginning from a purely homogeneous starting model.  This should be compared with 

Fig. 3g which shows the analogous result obtained when the starting model contains a model 

of the skull.  One solution to building an adequate starting model for the skull would be to 

extend the frequency spectrum of the ultrasound source to include even lower frequencies, 

mimicking the approach commonly employed in geophysics [14].  Despite the ease and 

elegance of such a solution, we have not explored that approach here because currently 

available ultrasound transducers are not sufficiently broadband to allow its practical  

implementation within a single device.  Instead, we demonstrate that a more-advanced form 

of FWI, so-called adaptive waveform inversion [26], is able to build the skull model, from a 

homogeneous starting model, using only the range of frequencies that it is straightforward to 

generate.   

 

Fig. 4b shows the result of applying adaptive waveform inversion, starting from the same 

homogeneous model as was used to generate Fig. 4a.  Now the attempt at recovering a 

reasonable starting model for the skull purely from the data succeeds even though no a-priori 

model of the skull is assumed.  Adaptive waveform inversion has immunity to cycle skipping, 

which is otherwise a common problem for conventional FWI [27], as well as an increased 

ability to recover sound-speed information from strong reflections such as those generated by 

the bones of the skull.  We suspect that both of these characteristics may play a role in 

explaining the improvement of Fig. 4b over Fig. 4a.  By analogy with the problem of imaging 

below high-contrast salt boundaries in geophysics [28], the recovered model of the skull 

would likely be further improved by the addition of total-variation constraints applied during 

adaptive waveform inversion, leading to a sharpening of the boundaries of the skull. The 

model in Fig 4b is now suitable for segmentation to extract the skull model, which can then 

be inserted into a homogeneous model, allowing the inversion to continue from this starting 

model using conventional FWI.   

 

In practice, we suspect that such solutions may not actually be required in a clinical setting, 

and we have not pursued them further here.  Large datasets consisting of many tens of 

thousands of MRI and X-ray CT images of adult human heads are becoming available [29], 
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Figure 4.  Model recovery using two‐dimensional FWI.   (a)  3D data inverted using 2D 

FWI.  (b)  2D data inverted using 2D FWI.   Left panels: show simulated data generated 

by a single source located at the yellow circle, as recorded on an elliptical array of 512 

transducers placed around the head.   Centre panels: show data recorded by a single 

receiver  located opposite  the source;  the position of  the data shown  is  indicated by 

the  blue  line.    Right  panels:  show models  recovered  using  purely  two‐dimensional 

FWI.  The colour scale is as shown in Fig. 3. 

 

and ultrasound FWI datasets, both experimental and simulated from the other datasets, will 

also likely become available over time as transcranial ultrasound FWI develops.  The pattern-

recognition abilities of modern machine learning are already making significant impact in 

medical imaging and analogous areas [30].  It seems probable therefore that a suitably pre-

trained deep neural network will be able to categorize raw reflection ultrasound observations 

against a suite of standard datasets to recover rapidly a parameterized model of the skull that 

will provide a high-quality starting model for FWI.  This model would then be subsequently 
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refined during conventional FWI of transcranial transmitted ultrasound to obtain the final 

quantitative image of both skull and brain.  

 

Importance of three dimensions 

 

Most three-dimensional medical imaging analyses data initially in two-dimensions in order to 

produce a stack of planes that are combined to form a final 3D image volume.  There would 

be advantages in applying this approach to ultrasound FWI: the computational cost of 

inverting many 2D slices is lower than that of true 3D inversion, and 2D acquisition systems 

are simpler to design, build and operate.  However, the structural complexities of the skull, 

and large contrast with soft tissue, both act to distort the wavefronts by refracting and 

scattering energy out of the 2D plane.   

 

Fig. 5a illustrates the detrimental effects of inverting three-dimensional data in only two 

dimensions.  Here, the data being inverted are a dense two-dimensional subset of the full 

three-dimensional data used to generate the results shown in Fig. 3.  In Fig. 5a, the data to be 

inverted have been generated by a 3D wave equation applied to a 3D model, but the inversion 

assumes only a 2D model and uses a 2D wave equation.  The inversion is therefore unable to 

explain energy that has been refracted, reflected, scattered or guided out of the 2D plane.  The 

model recovered in this case is neither accurate nor useful. 

 

 

Figure 5.  Inverting from a homogeneous starting model.  (a) Model recovered using 

conventional  FWI.    (b)  Model  recovered  using  adaptive  waveform  inversion.  The 

colour scale is as shown in Fig. 3. 
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Fig. 5b shows the equivalent experiment conducted purely in 2D; in this second case, both 

the initial data generation and the inversion are two-dimensional.  The 2D inversion of 2D 

data recovers a model that is as accurate as that recovered by 3D inversion of 3D data.  

Comparing the data and waveforms in Figs. 5a and b demonstrates why 3D FWI of 3D data, 

and 2D FWI of 2D data both succeed, whereas 2D FWI of 3D data fails entirely.  The 2D and 

3D datasets show major differences, and it is evident that there must be significant out-of-

plane energy present in the 3D data, and this cannot be explained adequately during 2D FWI.  

Since three-dimensional effects will always be present in real data, successful imaging of the 

brain using transmission FWI will always require 3D data acquisition and 3D inversion in 

order to correct properly for the three-dimensional distortion of the wavefield produced by 

the bones of the skull.   

 

Signal-to-noise ratios in ex-vivo experiments 

 

At the sub-MHz frequencies that were used in the numerical experiments, transmission losses 

in soft tissue are small [24, 31-36], but scattering and anelastic losses in the skull can be 

important [21-23].  To test the significance of these losses, we conducted an ex-vivo 

experiment in the laboratory, immersing a real human skull in water, recording transcranial 

ultrasound using the same bandwidth and source amplitude as was used in the numerical 

simulations. The data were recorded, and are displayed in Fig. 6, un-stacked and un-

processed. That is, a single source was triggered once, and the raw recorded data are 

displayed for each receiver without beam-forming, dynamic compression or other numerical 

manipulation.  Absolute signal levels employed in this experiment were set to match those 

recommended by the British Medical Ultrasound Society for continuous adult transcranial 

diagnostic ultrasound [https://www.bmus.org/static/uploads/resources/BMUS-Safety-

Guidelines-2009-revision-DETAILED.pdf].  

 

In the experiment, signals were transmitted across the cranium, passing through the bones of 

the skull twice, before being recorded.  The source transducer was centred approximately on 

the squamous suture so that the source overlaps both the parietal and temporal bones.  The 

principal signal losses within an in-vivo human head occur as the result of anelastic loss 

within bone, reflection at the inner and outer boundaries of the skull, and internal scattering 

within the bones of the skull.  The principal wavefront distortions are produced by the large 

sound-speed contrast between the bones of the skull and their surrounding soft tissues, which 
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have a sound speed close to that of water.  This ex-vivo experiment is designed to capture all 

these features.. 

 

We repeated the same experiment in silico, using a model of the skull obtained by converting 

a high-intensity X-ray CT image-volume of the ex-vivo skull into acoustic sound speed.  The 

conversion from X-ray attenuation to sound speed is not exact so that the in-silico data would 

not be expected to provide an exact match to the laboratory ex-vivo data.  The real experiment 

will also contain signals scattered by the physical transducers and their supporting 

infrastructure; we did not attempt to duplicate these additional signals in silico. 

 

Figure  6.    Ex‐vivo  and  in‐silico  data  after  transmission  across  the  head.   

(a)  The  geometry  of  the  ex‐vivo  laboratory  experiment.    (b)  Data  recorded  by  the 

central  ex‐vivo  transducer.    (c)  The  equivalent  in‐silico  data.    (d)  Laboratory  data 

recorded  on  a  finely  sampled  linear  array.    (e)  The  equivalent  numerical  data 

simulated in 3D.  The physical skull and the numerical model are nominally the same, 

but differ in detail, and the numerical model does not include the effects of scattering 

by the physical transducers and their supporting hardware. 
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Fig. 6 compares the two datasets.  It shows that the timing, waveform, absolute amplitude and 

variation of amplitude with position and time, in the ex-vivo laboratory data, are well 

reproduced by the in-silico simulation.  Most significantly, the noise level in the ex-vivo 

dataset observed in Fig. 6b is low, and low-frequency transcranial ultrasound, suitable for 

high-resolution FWI, penetrates the skull with only limited loss of signal intensity.  In 

Supplementary Fig. 1, we show that FWI can tolerate much higher noise levels than are 

observed in the laboratory.  Consequently, the signal penetration and signal-to-noise ratios 

that are likely to be achievable in practical applications will be more than sufficient for 

transcranial neuroimaging. 

 

Clinical application to stroke 

 

The application of FWI to neuroimaging has the potential to improve diagnosis in a wide 

range of neurological pathologies; here we explore its potential to aid early treatment of 

stroke, a major cause of death and adult disability worldwide [1].  Stroke has two principal 

causes: ischemic stroke is most commonly caused by a blood clot obstructing blood supply to 

the brain, and haemorrhagic stroke is most commonly caused by bleeding within the brain 

parenchyma.  When the blood supply to the brain is compromised, rapid intervention is 

required in order to restore circulatory integrity, halt and reverse tissue damage, and prevent 

and reduce morbidity, mortality and disability.  While there are a number of early treatments 

available, including thrombolysis, mechanical thrombus extraction and similar interventions 

[37,38], their applicability is limited in practice by the requirement for accurate high-

resolution brain imaging before these treatments can be deployed [2].   

 

The indicated treatment for ischemic stroke is contraindicated for haemorrhagic stroke; brain 

imaging is therefore required to diagnose and separate these causes.  The need for speed is 

paramount, but MRI is not portable and X-ray CT is barely so.  Brain imaging then takes 

place not when paramedics first reach the patient, not within the ambulance, and not often 

within accident and emergency units; as a result, relatively few stroke patients receive a brain 

scan of any kind within the critical first hour, and even fewer receive high-quality MRI [2].  

There is then a clear need for portable, fast, high-resolution, high-fidelity, 3D, brain imaging 

that can differentiate between ischemic and haemorrhagic stroke, and differentiate these from 

other pathologies that can mimic stroke.  The development and clinical application of such a 

method would dramatically increase the survival rate and reduce the severity of subsequent 
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disability by enabling much earlier treatment at the point of first patient contact.   

 

To test the viability of this concept, we modified the target model to contain a haemorrhage, 

Fig. 7a to c.  To build this model, we used physical properties for blood-infused soft tissue 

[39,40].  Using a homogeneous starting model for the brain, and the true model for the skull, 

we recovered the FWI images in Fig. 7d to f.  Fig. 8 shows that the haemorrhage can be 

readily segmented from the three-dimensional model, both in the target and the FWI-

recovered models.  The target pathology is well recovered in the FWI image, and has good 

tissue contrast with other features of the brain.  The boundaries and exact extent of the 

pathology are clear; and although it is not shown here, FWI is well able to produce time-

lapsed images over a wide variety of time scales from seconds to hours.  The spatial 

resolution of  FWI is capable of detecting haemorrhage at all scales down to that of the 

originating vasculature. 

 

 

Figure 7.   Recovery of a large haemorrhage by FWI. (a – c) Slices through a 3D wave‐

speed model perturbed by a  large haemorrhage. (d – e) The same slices through the 

FWI.  The haemorrhage is well recovered by full‐waveform inversion at high resolution 

in all slices. The colour scale has been modified to highlight the haemorrhage. 
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Figure 8.  Segmented haemorrhage.  (a) Haemorrhage auto‐segmented from the true 

model.    (b)  Haemorrhage  auto‐segmented  from  the  model  recovered  by  full‐

waveform inversion.   

 

 

DISCUSSION 

 

Both X-ray CT and MRI revolutionized medical imaging when they first appeared; three-

dimensional transmission and reflection ultrasound tomography using full-waveform 

inversion has the same potential for impact across multiple disciplines, and has especial 

relevance for rapid diagnosis and treatment of stroke.  Supplementary Fig.1 shows that the 

method is robust against the levels of noise that we observe in realistic ex-vivo laboratory 

experiments, and transcranial ultrasound signals have large amplitudes at the relatively low 

frequencies (< 1 MHz) that are sufficient for successful sub-millimetre resolution.  The 

method overcomes the well-known limitations of conventional pulse-echo ultrasound 

imaging of the adult human brain, and the related limitations of conventional time-of-flight 

tomography.   

 

It is necessary either to include some prior model of the skull within the starting model before 

attempting to recover the brain, or  to use an advanced form of FWI such as adaptive 

waveform inversion that can converge towards the correct answer from a simpler starting 

model.  In order to correctly account for and remove the distorting effects of the skull, it is 

essential to acquire and invert the data in three-dimensions, and unlike many other imaging 

techniques, it is not possible to reduce three-dimensional imaging merely to the sum total of a 
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sequence of two-dimensional slices.  In Supplementary Fig. 2, we show that it is not 

necessary to include density or anelastic absorption explicitly in the inversion in order to 

recover a good image, but it may be desirable to do so, both to improve the accuracy of the 

final image, and to obtain additional independent parameters to aid diagnosis.     

 

The computational effort required for 3D FWI is considerable. The results shown in Fig. 3 

require about thirty-two hours elapsed time to complete, running on a conventional cluster of 

128, CPU-based, 24-core, compute nodes.  Our target is to reduce this time to below ten 

minutes; this requires a speed up of about two-hundred times.  The hardware that we used has 

a peak performance of about 60 tera-flop, so achieving the desired speed up requires 

hardware capable of operating usefully at a peak of about 12 peta-flop.  Individual high-

performance GPU-based servers are currently able to achieve speeds in excess of 1 peta-flop, 

so that a small array of these would in principle be capable of producing a final model in less 

than ten minutes.  Assuming 2019 prices, amortization over three years, and full utilization of 

the hardware, the capital cost of the GPU-server hardware required to do this represents a few 

tens of dollars to invert a 3D transcranial dataset on a 500-micron grid.  So, while the 

computational burden of FWI is high, the cost per patient is not high under appropriate 

circumstances.  

 

The potential value of FWI imaging is three-fold.  Most importantly it could improve 

outcomes in acute neurological disorders such as stroke and head trauma by enabling earlier 

intervention; the ultimate aim is diagnosis and treatment within minutes of first contact with 

paramedics.  Second, the low cost, high safety, portability and high resolving power of the 

technology provides the ability to monitor the brains of patients continuously at the bedside 

allowing clinicians to intervene, for a range of pathologies, to prevent injury with the speed 

that the brain demands, acting in rapid response as if the brain image was a simple 

physiological variable such as blood pressure.  And third, the technology can be deployed 

readily and safely, for prevention and diagnosis, in a wide range of situations where 

neuroimaging would be desirable but is currently unavailable – for example: within 

developing nations with limited health budgets, in remote locations, routinely at contact-

sports events, within military deployments, or as part of disaster relief when local 

infrastructure is compromised.   
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METHODS 

 

In-silico model 

 

We used the MIDA 3D numerical model of the human head [41], at the original sample 

spacing of 500 microns, as the basis to build the sound-speed model used in the in-silico 

simulations.  Physical properties within the model were derived from the geometry of the 

segmented model combined with values for acoustic sound speed, density and absorption for 

different tissue types from [21-24,31-36]; further details appear in Supplementary Table 1.  

Most minor tissue types within the model have unmeasured acoustic properties; in these 

cases, we estimated their values using small perturbations to the properties of other tissue 

types that appeared analogous in their other physical properties and composition.   

 

The models used to generate the data for all figures except Supplementary Fig. 2 were purely 

acoustic.  The model used for Supplementary Fig. 2 included anelastic absorption, and 

assumed a linear relationship between attenuation and signal frequency.  At the relatively low 

frequencies used in these simulations, such a model of absorption provides a reasonable 

approximation to the properties of real tissue [31]. 

 

In-silico modelling 

 

The experimental geometry was restricted to accommodate the application of this technology 

realistically to human patients in a clinical setting, and therefore no transducers were 

positioned in front of the face or below the base of the head.  Transducers were modelled 

assuming unfocused single elements.  We used 1024 transducers that acted as both sources 

and receivers, generating just over a million source-receiver records of acoustic pressure, 

each record lasting 240 μs.  The source waveform consisted of a three-cycle tone burst having 

a peak amplitude at a frequency of 400 kHz and a useful bandwidth for FWI extending from 

about 100 to about 850 kHz. 

 

The synthetic data were generated by solving the three-dimensional, variable density, 

acoustic wave equation, explicitly in the time domain using, using a time-stepping finite-

difference algorithm, with an optimised stencil that is nominally tenth-order in space and 

fourth-order in time.  For the two-dimensional data shown in Fig. 4b, the analogous two-
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dimensional wave equation was solved in which the model, wavefield, sources and receivers 

do not vary perpendicular to a two-dimensional plane.  For the anelastic data used to generate 

Supplementary Fig. 2c, the visco-acoustic wave equation was solved using the method 

described in [42]. 

 

Full-waveform inversion 

 

FWI is an imaging method that seeks to find a model that can numerically reproduce 

experimental data.  It does this by solving a non-linear least-squares local optimization 

problem, modifying the model in order to minimize the misfit, f, defined as (half) the sum of 

the squares of the differences between the experimental data and an equivalent simulated 

dataset that is numerically generated using a numerical model of acoustic properties.  Thus 

we seek to minimise: 

    T1

2
f   p d p d   (1) 

 
where p and d represent the predicted (numerically generated) and observed (experimental) 

data respectively organised as vectors that contain concatenated time-series of pressure 

variations at each recording location for every source location.  In this in-silico study, the 

experimental data were themselves generated using a known ground-truth target model.  At 

the initiation of FWI, a starting model m, representing an initial estimate of the target of 

interest and composed of many model parameters mi, is used to solve the wave equation and 

generate the predicted dataset p.   

 

The computational cost of numerically solving the governing wave equation in 3D for many 

sources restricts computationally tractable solutions to iterated local gradient-descent 

methods.  We solve the problem by seeking the direction of steepest descent, on the hyper-

surface defined by f, which has as many dimensions as there are model parameters mi.  For 

the 3D model shown in Fig. 3, this hyper-surface had about 108 dimensions.  This gradient-

descent algorithm seeks to move from the starting model, by a sequence of small steps, 

successively downhill on this hyper-surface, to arrive close to the model that lies at the lowest 

point on the surface – this is the model that best predicts the observed data in a least-squares 

sense.  Further details are provided in the Supplementary Information. 
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In a practical FWI algorithm, the direction of steepest descent is typically preconditioned in 

some way to speed convergence; here we used spatial preconditioning to compensate for 

illumination variation within the model [15].  We inverted the in-silico data over finite-

frequency bands, starting at a dominant frequency of about 100 kHz, and moving 

successively to higher frequency to reach to a maximum dominant frequency of around 720 

kHz.  This multi-scale approach helps to ensure that the inversion does not become trapped at 

some local solution produced by inadequacies in the starting model.  The highest frequencies 

present in the data have a half-wavelength in the brain of less than a millimetre, so that we 

would expect to be able to resolve sub-millimetre structure in the final recovered model.  

 

Time-of-flight tomography 

 

The model shown in Fig. 2c was generated using time-of-flight tomography.  This method is 

analogous to FWI, but with two significant differences: the data to be inverted consist of  

single numbers, one for each source-receiver pair, representing the time taken for energy to 

travel through the target model from source to receiver; and geometric ray-tracing rather than 

the full wave equation is used to calculate these travel times.  This approach has the 

advantage that it is computationally more tractable than FWI, and so runs orders of 

magnitude more quickly; it is also much less likely than FWI to become trapped in local 

minima.  But it has the disadvantage that it cannot recover structure in the model below the 

scale of the diameter of the first Fresnel zone.  For a signal of wavelength λ, and a source-

receiver separation of x, this diameter is approximately x , or about 17 mm for transcranial 

signals at 1 MHz, and this poor spatial resolution is apparent in Fig. 2c. 

 

We solved the tomographic problem by minimising a misfit similar to that shown in equation 

(1), but where p and d were now vectors containing the travel-times rather than the raw 

observed acoustic pressure data.  We address the problem as before by solving a non-linear 

least-squares local optimization problem, using gradient descent preconditioned by conjugate 

gradients.  Unlike the more familiar X-ray CT, in ultrasound tomography changes to the 

model affect the path that energy follows from source to receiver, and it is necessary to 

include this non-linear effect into the inversion by iterating.   
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Adaptive waveform inversion 

 

Adaptive waveform inversion (AWI) is a form of FWI that has immunity to cycle skipping 

[26,27].  In conventional FWI, the algorithm seeks to drive the sample-by-sample difference 

between the predicted and observed data to zero.  In contrast, in AWI the algorithm seeks to 

drive the ratio between the two datasets to unity.  Both approaches aim to drive the predicted 

dataset towards the observed dataset, and consequently to drive the recovered model towards 

the true model.  With perfect data, and perfect algorithms, both approaches will reach the 

same end point.  However, when both methods are implemented using local gradient descent, 

they follow different paths through the space of possible models in their attempt to reach the 

true model.  In these circumstances, FWI will tend to become trapped in local minima when 

the predicted data differ from the observed data by more than half a wave cycle, whereas 

AWI will not. 

 

The ratio used in AWI is not generated sample-by-sample; rather it is a ratio formed 

frequency-by-frequency after temporal Fourier transform, and the ratio is formed separately 

for each source receiver pair.  Since division in the frequency domain represents 

deconvolution in the time domain, the AWI algorithm effectively deconvolves one dataset by 

the other and then attempts to drive the result of that deconvolution towards a unit-amplitude 

delta function at zero temporal lag.  The mathematical details are given on [26], and practical 

details are given in [27]. 

 

Ex-vivo laboratory experiment 

 

The laboratory experiment was performed by immersing a formalin-preserved ex-vivo human 

skull in water, generating an ultrasound pulse on one side of the head, and recording the 

resultant signals on the other.  The skull retained some residual soft tissue, was stored dry, 

and was typically immersed for a few tens of minutes during ultrasound measurements.  

Sources and receivers were not in direct contact with the skull. 

 

We used a single-element unfocused Olympus 500 kHz V381 19-mm ultrasound source 

transducer to generate a three-cycle tone burst centred on 400 kHz at the intensities 

commonly employed in conventional medical imaging [7]; this signal matches that used in 

the in-silico experiments.  We recorded the transmitted signals from this emitter using an 
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Olympus 500 kHz V301 25-mm transducer located on the opposite side of the skull at a 

perpendicular distance of 210 mm from the source.  A planar receiver array was formed by 

moving the single receiving transducer successively in 4-mm steps to 729 positions to form a 

27 × 27 array measuring 108 × 108 mm.  The data were generated and recorded using a 

Verasonics Vantage 256, and the recorded data were low-pass filtered at 1 MHz.   

 

 

SUPPLEMENTARY INFORMATION 

 

Effect of noise on FWI 

 

Our in-silico conclusions are only relevant to the real world if ultrasound signals, of the 

intensity required for medical imaging and with the bandwidth that we use here, can be 

recorded with sufficient signal-to-noise ratio after propagation across the head, traversing the 

bones of the skull twice in the process.  Two questions are relevant: how sensitive is FWI to 

noise, and what level of signal-to-noise can be expected for transcranial ultrasound at the 

frequencies required?  Below, we address the first of these questions; Fig. 6, in the main text, 

has answered the second. 

 

Supplementary Fig. 1 shows the results of adding random noise to the in-silico data before 

subsequent inversion.  Apart from the addition of noise, Supplementary Fig. 1 is exactly 

analogous to Fig. 4b.  Comparison of these two figures demonstrates that models recovered 

with and without the addition of noise are similar; even the high level of noise applied here 

causes only modest degradation of the reconstructed image.  FWI using transcranial 

ultrasound is clearly robust in the presence of high levels of incoherent noise.  This 

robustness occurs because the formalism of FWI captures only those parts of the observed 

data that are capable of being reproduced by application of the wave equation to a model.  

Most forms of noise cannot be substantially reproduced in this way, and so, while noise may 

slow down convergence to the correct model, the level of noise in the final model is typically 

much lower than the level of noise in the data.  
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Sup. Fig. 1.  Model recovery using imperfect data.  Fig. 4b presented 2D data inverted 

using 2D FWI.  Here, we show the same data and the results of the same inversion, but 

after  the  addition  of  random  noise  to  the  raw  data.    The  noise  level  here  is much 

higher than the level of noise observed in the ex‐vivo experiment shown in Fig. 6, and 

the  recovery  of  the model  shows  only minor  degradation  as  a  consequence  of  the 

noise.        

 

Effect of absorption, density, anisotropy and elasticity 

 

The modelling and inversion shown in Fig. 3 was performed without regard to anelastic 

absorption, density variation, anisotropy or elastic effects.  Supplementary Fig. 2 shows the 

effects of ignoring both density and absorption during FWI.  Absorption and density models 

for the head are shown in Supplementary Figs. 2a and 2b respectively.  Here, absorption is 

displayed using quality factor Q, defined as 2π times the fraction of energy lost per wave 

cycle; lower Q values represent higher values of attenuation.  Our model here assumes a 

linear relationship between attenuation and frequency, but it is straightforward to incorporate 

a more complicated relationship where appropriate.   
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Sup.  Fig.  2.   Models of  the head.    (a)   Model  of  anelastic  absorption.    (b) Density 

model.  (c) Sound speed recovered by FWI, using data generated including absorption 

and  density,  but  assuming  constant  density  and  no  attenuation  during  inversion.  

Simulations and inversions are both in 2D. 

 

Supplementary Fig. 2c shows the model recovered by FWI assuming constant density and no 

attenuation when inverting simulated data that include both effects.  A reasonable 

representation of the true wave-speed model is recovered.  The principal effect of ignoring 

density variation is to ascribe all variation in signal amplitude to velocity variation, and this 

tends to exaggerate differences between locally heterogeneous regions.  The principal effect 

of ignoring absorption and its associated velocity dispersion is to reduce the mean sound 

speed of the recovered model.   Consequently, Supplementary Fig. 2c is slower on average 

than the true model, but its structure is nonetheless accurate.  Ignoring both density and 

absorption effects during inversion is not significantly worse that ignoring either one alone.  

In clinical application, both of these effects can be included within the inversion – this is 

straightforward to achieve, but appears not to be necessary for the recovery of a simple well-

resolved image.  It is also possible to use FWI to invert explicitly for attenuation and other 

parameters [14], and some pathologies may be more readily diagnosed using such multi-

parameter inversion than by use of acoustic wave speed alone. 

 

Anisotropy in wave speed is routinely incorporated into FWI in geophysics [15] because it 

needs to consider crystalline, micro-fractured and finely layered materials.  Other than 

perhaps in the skull, anisotropy in sound speed is unlikely to significantly affect ultrasound 
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neuroimaging.  Fully-anisotropic inversion for the skull is straightforward to incorporate into 

medical FWI, and most established 3D FWI codes will already have that capability 

incorporated. 

 

Elastic mode-conversions in soft tissue are small; the skull however does have a significant 

shear modulus [21,22], and so can produce elastic effects in acoustic data.  We have not yet 

investigated the quantitative importance of these phenomena in neuroimaging, but we do not 

expect them to be more significant than the effects shown in Supplementary Fig. 2c.  

Ultrasound sources and receivers in water do not generate or record shear waves, and elastic 

conversions are small close to normal incidence, which is the portion of the wavefield that is 

most important for FWI, both in transmission and reflection imaging.  In geophysics, despite 

its potential importance, commercial FWI is seldom performed using the full-elastic wave 

equation, and the resultant models match well to in-situ direct measurements made within 

boreholes [14-16].  The Fullwave3D code used in this study is able to undertake anisotropic 

full-elastic 3D FWI, but its significant increased computational cost has not-often proven to 

be justified, at least in commercial geophysics.  

 

In summary, acoustic, isotropic, constant-density, non-absorbing, three-dimensional inversion 

appears to be adequate for the generation of well-resolved detailed images of the brain.  

However, a more-complete account of the full physics during FWI, including absorption and 

anisotropy in bone, and elasticity in hard tissues, may help to provide a more quantitatively 

accurate model of physical properties, but at an increased computational cost which, at least 

initially, will translate into an increase in the total elapsed time required to compute the final 

model.  Practical solutions are likely to involve simple fast acoustic inversion to form an 

initial image, followed optionally by more-accurate inversion using more-complete physics 

subsequently as circumstances require.  In medical imaging, it is possible that additional 

physical properties recoverable by FWI will have diagnostic value advantages in special 

circumstances, as they do in both medical attenuation tomography [43] and in geophysics 

[44]. 

 

FWI algorithm 

 

Here, we continue the description of the FWI algorithm from equation (1) in the main text.  

In the account below, the quantities f, p, A and u each depend upon the assumed model m, 
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whereas d, s, and R do not.  

 

In order to find the direction of steepest descent, the derivative of the misfit with respect to 

the model parameters is found using the adjoint-state method [14].  The derivative of f with 

respect to each of the model parameters mi takes the form: 

 

  
T

i i

f

m m

  
    

p
p d   (2) 

 

To compute the first derivative of the predicted data with respect to the model parameters mi, 

we start by writing the wave equation as a matrix-vector operation: 

 

 Au s   (3) 

 

where A is the wave equation written in a suitable discrete form – here we used high-order 

finite differences to approximate the 3D anisotropic variable-density visco-acoustic wave 

equation, u is the pressure wavefield and s is the source.  Differentiating this with respect to 

mi, and taking into account that both A and u depend upon the model parameter mi but that 

the source s does not, gives: 

 
i im m

 
 

 
u A

A u 0   (4) 

Assuming that A is invertible, which it must be if equation 3 has a unique solution, leads to 

the expression: 

 1

i im m
 

 
 

u A
A u   (5) 

 

for the variation of the wavefield u with the model parameter mi.  Now, the predicted data p 

are simply a subset of the full wavefield obtained at those locations where we happen to have 

placed receivers.  Thus, we can use a restriction matrix R to extract the corresponding data as 

p = Ru, so that: 

 1

i im m
 

 
 

p A
RA u   (6) 
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because, again, R does not depend on mi.  The final expression for the gradient is then: 

 

  
T

T T T

i i

f

m m
 

  
 

A
u A R p d   (7) 

 

Reading from right to left, this expression implies the following sequence of steps to 

calculate the gradient:  

1. compute the residual data (p – d) by solving the wave equation to generate p in the 

starting model,  

2. inject the residual data into the model at the receiver positions,  

3. solve the wave equation backwards in time using the injected residual data as a virtual 

source,  

4. scale the resulting wavefield using the differential of the wave equation operator A 

with respect to the model parameters mi,  

5. find the zero lag of the cross-correlation of this wavefield in time with the original 

forward wavefield u at every point in the model. 

The result of applying these steps is a gradient vector oriented to point in the direction of 

maximum increase of f at the current position in the solution space.  The negative of the 

gradient indicates the direction in which small changes to the model will create the largest 

decrease in the misfit f, so the model should be changed in this direction.  Typically, the 

problem will be non-linear and non-convex, and therefore it requires that the model is 

updated iteratively, and that the starting point is within the basin of attraction of the global 

minimum.  A more complete development, and further details are given in [13,14,17].   

 

Resolution of computer tomography and FWI 

 

Spatial resolution in conventional pulse-echo ultrasound sonography typically depends upon 

pulse duration and beam width.  Resolution in this context relates to the spatial discrimination 

of features seen in a reflection image around the location from which the ultrasound energy is 

reflected.  In contrast, in transmission tomography, whether inverting the delay times used by 

conventional time-of-flight tomography, or the waveforms used by wave-equation FWI, it is 
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the spatial discrimination of features by their effect on the transmission properties of the 

wave through the medium that is relevant.  For  time-of-flight tomography, in order to 

separate two adjacent features within a model, their effect on the recorded delay times must 

be distinct from the effect of a single feature that represents a smooth mixture between the 

two adjacent features.  And for FWI, the separation of two features requires that their effect 

on the recorded waveforms must be distinct.   

 

In this context, a Fresnel zone represents that region of a model through which energy can 

travel from a source to a receiver, arriving within the same half cycle.  Such energy cannot be 

separated in terms of its delay time, and all such energy contributes to the same arrival.  The 

first Fresnel zone corresponds to the region of the model through which energy travels that 

arrives within half a cycle the geometric ray arrival, which corresponds to the arrival time of 

an infinite-frequency wave travelling along an infinitely thin ray path.  For a homogeneous 

model, the diameter of the first Fresnel zone at the midpoint along a path of length x is x ,  

where λ is the wavelength of the signal.  Since detail below the scale of the first Fresnel zone 

does  not change observed delay times, its diameter provides a limit to the spatial resolution 

that is obtainable by any method that uses only delay times to determine the model (9, 18).   

 

FWI however is not limited in this way.  It seeks to match waveforms, and these are sensitive 

to sub-Fresnel-zone structure.  In this case, it is the wavelength, not the Fresnel zone that is 

significant (14, 19).  Energy scattered from two objects that are separated by more than half a 

wavelength are distinguishable in terms of their waveforms, in at least some directions, from 

energy scattered from a single composite object.  Provided only that the angular coverage of 

the target region is sufficiently wide, the spatial resolution of transmission tomographic FWI 

is of the order of half the incident wavelength.  In practice, sufficient angular coverage can be 

obtained either by locating sources and receivers at all azimuths, or by making use of 

multiple scattering in a highly heterogeneous medium.  In the present context, FWI takes 

advantage of both approaches. 

 

For neuro imaging as discussed here, the characteristic sound speed is about 1500 m/s, and 

the maximum frequency employed is about 850 kHz, having a wavelength of about 1.8 mm 

in the brain.  The separation of source and receiver required for transcranial tomography is 

about 200 mm, giving a Fresnel-zone diameter of about 19 mm.  This is the resolution to be 
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expected from conventional time-delay ultrasound computer tomography at 850 kHz, and is 

the reason that such tomography is not useful for brain imaging. The corresponding 

resolution for FWI is half the wavelength, that is about 0.9 mm.  This is about 20 times better 

resolved in linear dimension, and about 8,000 times better resolved volumetrically.  It is the 

reason that FWI succeeds to image the brain while  time-of-flight tomography cannot. 

 

For conventional  time-of-flight tomography to reach the resolution of FWI,  time-of-flight 

tomography would need to use signals that have a Fresnel-zone diameter of about 1 mm.  

Such signals would require frequencies of several hundred MHz, and these lie far above the 

bandwidth of signals than can cross the head.           
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SUPPLEMENTARY MEDIA 

Movie 1.  Synthesized wavefield crossing the head.   The wavefield from Fig. 1, generated 

by a single emitter, is shown in time as it propagates across the head.  

Movie 2.  Transverse planes. The target, starting and recovered models from Fig. 3 are 

shown in three dimensions using a sequence of transverse slices.  

Movie 3.  Sagittal planes. The target, starting and recovered models from Fig. 3 are shown 

in three dimensions using a sequence of sagittal slices.   

Movie 4.  Coronal planes.  The target, starting and recovered models from Fig. 3 are shown 

in three dimensions using a sequence of coronal slices.  
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MIDA 
number 

speed 
(m/s) 

density 
(kg/m3) 

quality 
factor 

tissue type 

1 1600.0 1174.0 156 Dura 
2 1511.0 1045.0 523 Cerebellum Grey Matter 
3 1510.0 1053.0 135 Pineal Body 
4 1505.0 1044.0 1745 Amygdala 
5 1515.0 1044.5 1745 Hippocampus 
6 1504.5 1007.0 20882 CSF Ventricles 
7 1510.0 1044.5 1745 Caudate Nucleus 
8 1505.0 1044.5 1745 Putamen 
9 1552.5 1041.5 302 Cerebellum White Matter 
10 1505.0 1044.5 1745 Brain Grey Matter 
11 1546.3 1045.5 299 Brainstem Midbrain  
12 1552.5 1041.0 302 Brain White Matter 
13 1542.0 1075.0 30 Spinal Cord 
14 1546.3 1045.5 299 Brainstem Pons 
15 1546.3 1045.5 176 Brainstem Medulla 
16 1505.0 1044.5 1745 Nucleus Accumbens  
17 1505.0 1044.5 1745 Globus Pallidus 
18 1629.5 1075.0 146 Optic Tract 
19 1515.0 1053.0 135 Hypophysis or Pituitary Gland 
20 1505.0 1044.5 1745 Mammillary Body 
21 1520.0 1044.5 1745 Hypothalamus 
22 1552.5 1041.0 302 Commissura (Anterior) 
23 1552.5 1041.0 302 Commissura (Posterior) 
24 1578.2 1049.8 841 Blood Arteries 
25 1578.2 1049.8 841 Blood Veins 
26 343.0 1.2 233990 Air Internal - Ethmoidal Sinus 
27 343.0 1.2 233990 Air Internal - Frontal Sinus 
28 343.0 1.2 233990 Air Internal - Maxillary Sinus 
29 343.0 1.2 233990 Air Internal - Sphenoidal Sinus 
30 343.0 1.2 233990 Air Internal - Mastoid 
31 343.0 1.2 233990 Air Internal - Nasal/Pharynx 
32 1504.5 1007.0 20882 CSF General 
33 1504.5 1007.0 20882 Ear Cochlea 
34 1504.5 1007.0 20882 Ear Semi-circular Canals 
35 1639.6 1099.5 4358 Ear Auricular Cartilage (Pinna) 
36 3514.9 1908.0 16 Mandible 
37 1620.7 1102.0 16 Mucosa 
38 1588.4 1090.4 278 Muscle (General) 
39 1639.6 1099.5 4358 Nasal Septum (Cartilage) 
40 2813.7 1908.0 20 Skull (General) 
41 4565.9 2180.0 11 Teeth 
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42 1588.4 1090.4 682 Tongue 
43 1440.2 911.0 501 Adipose Tissue 
44 3514.9 1908.0 16 Vertebra - C1 (atlas) 
45 3514.9 1908.0 16 Vertebra - C2 (axis) 
46 3514.9 1908.0 16 Vertebra - C3 
47 3514.9 1908.0 16 Vertebra - C4 
48 3514.9 1908.0 16 Vertebra - C5 
49 1639.6 1099.5 4358 Intervertebral Discs 
50 1480.0 1000.0 20000 Background 
51 1624.0 1109.0 91 Epidermis/Dermis 
52 2117.5 1178.3 32 Skull - Diploë 
53 2813.7 1908.0 20 Skull - Inner Table 
54 2813.7 1908.0 20 Skull - Outer Table 
55 1643.3 1075.5 2868 Eye Lens 
56 1638.8 1032.0 1633 Eye Retina/Choroid/Sclera 
57 1525.8 1004.5 412 Eye Vitreous 
58 1562.5 1050.5 5464 Eye Cornea 
59 1525.8 1004.5 412 Eye Aqueous 
60 1588.4 1090.4 278 Muscle - Platysma 
61 1750.0 1142.0 124 Tendon - Galea Aponeurotica 
62 1477.0 911.0 304 Subcutaneous Adipose Tissue 
63 1588.4 1090.4 278 Muscle - Temporalis/Temporoparietalis 
64 1588.4 1090.4 278 Muscle - Occipitiofrontalis - Frontal 
65 1588.4 1090.4 278 Muscle - Lateral Pterygoid 
66 1588.4 1090.4 278 Muscle - Masseter 
67 1588.4 1090.4 278 Muscle - Splenius Capitis 
68 1588.4 1090.4 278 Muscle - Sternocleidomastoid 
69 1588.4 1090.4 278 Muscle - Occipitiofrontalis - Occipital 
70 1588.4 1090.4 278 Muscle - Trapezius 
71 1588.4 1090.4 278 Muscle - Mentalis 
72 1588.4 1090.4 278 Muscle - Depressor Anguli Oris 
73 1588.4 1090.4 278 Muscle - Depressor Labii 
74 1588.4 1090.4 278 Muscle - Nasalis 
75 1588.4 1090.4 278 Muscle - Orbicularis Oris 
76 1588.4 1090.4 278 Muscles - Procerus 
77 1588.4 1090.4 278 Muscle - Levator Labii Superioris 
78 1588.4 1090.4 278 Muscle - Zygomaticus Major 
79 1588.4 1090.4 278 Muscle - Orbicularis Oculi 
80 1588.4 1090.4 278 Muscle - Levator Scapulae 
81 1588.4 1090.4 278 Muscle - Medial Pterygoid 
82 1588.4 1090.4 278 Muscle - Zygomaticus Minor 
83 1588.4 1090.4 278 Muscles - Risorius 
84 1588.4 1090.4 278 Muscle - Buccinator 
85 343.0 1.2 233990 Ear Auditory Canal 
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86 343.0 1.2 233990 Ear Pharyngotympanic Tube 
87 2117.5 1178.3 32 Hyoid Bone 
88 1559.5 1048.0 216 Submandibular Gland 
89 1559.5 1048.0 216 Parotid Gland 
90 1559.5 1048.0 216 Sublingual Gland 
91 1588.4 1090.4 278 Muscle - Superior Rectus 
92 1588.4 1090.4 278 Muscle - Medial Rectus 
93 1588.4 1090.4 278 Muscle - Lateral Rectus 
94 1588.4 1090.4 278 Muscle - Inferior Rectus 
95 1588.4 1090.4 278 Muscle - Superior Oblique 
96 1588.4 1090.4 278 Muscle - Inferior Oblique 
97 343.0 1.2 233990 Air Internal - Oral Cavity 
98 1750.0 1142.0 124 Tendon - Temporalis Tendon 
99 1505.0 1044.5 1745 Substantia Nigra 
100 1552.5 1041.0 302 Cerebral Peduncles 
101 1629.5 1075.0 146 Optic Chiasm 
102 1629.5 1075.0 146 Cranial Nerve I - Olfactory 
103 1629.5 1075.0 146 Cranial Nerve II - Optic 
104 1629.5 1075.0 146 Cranial Nerve III - Oculomotor 
105 1629.5 1075.0 146 Cranial Nerve IV - Trochlear 
106 1629.5 1075.0 146 Cranial Nerve V - Trigeminal 
107 1629.5 1075.0 146 Cranial Nerve V2 - Maxillary Division 
108 1629.5 1075.0 146 Cranial Nerve V3 - Mandibular Division 
109 1629.5 1075.0 146 Cranial Nerve VI - Abducens 
110 1629.5 1075.0 146 Cranial Nerve VII - Facial 
111 1629.5 1075.0 146 Cranial Nerve VIII - Vestibulocochlear 
112 1629.5 1075.0 146 Cranial Nerve IX - Glossopharyngeal 
113 1629.5 1075.0 146 Cranial Nerve X - Vagus 
114 1629.5 1075.0 146 Cranial Nerve XI - Accessory 
115 1629.5 1075.0 146 Cranial Nerve XII - Hypoglossal 
116 1505.0 1044.5 1745 Thalamus 

 

Sup. Table 1.  Physical properties.  Tissue types in the MIDA model [41] together with 

their  corresponding  acoustic  wave  speeds,  densities  and  anelastic  absorptions 

(expressed as quality factor Q) used to generate the true model, taken from [21‐24,31‐

36].   The properties of most minor  tissue  types  are estimates.    Some properties of 

major  tissue  types  are  not  well  characterized  by  available  experimental 

measurements; values of anelastic absorption are especially difficult to measure in the 

laboratory.   Provided  that  these estimates are broadly correct,  their exact values do 

not influence the quality of the recovered images.   

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/809707doi: bioRxiv preprint 

https://doi.org/10.1101/809707


REFERENCES 

 

1. Donnan, G. A., Fisher, M., Macleod, M. & Davis, S. M. Stroke. The Lancet 371, 1612-

1623 (2008). 

2. Emberson, J. et al. Effect of treatment delay, age, and stroke severity on the effects of 

intravenous thrombolysis. The Lancet 385, 1929-1935 (2014). 

3. von Ramm, O. T., Smith, S. W. & Kisslo, J. A.  Ultrasound tomography of the adult brain.  

Ultrasound in Medicine, pages 261-267, White, D. & Lyons, E. A. (Eds.) (Springer, 

Boston, MA, 1978).   

4. Ylitalo, J., Koivukangas, J. & Oksman J.  Ultrasonic reflection mode computed 

tomography through a skull bone.  IEEE Transactions on Biomedical Engineering 37, 

1059-1066 (1990). 

5. Smith, S. W. et al. The ultrasound brain helmet: Feasibility study of multiple 

simultaneous 3D scans of cerebral vasculature.  Ultrasound Med. Biol. 35, 329-338 

(2009). 

6. Niesen, W-D., Rosenkranz, M. & Weiller, C.  Bedsided transcranial sonographic 

monitoring for expansion and progression of subdural hematoma compared to computed 

tomography.  Frontiers in Neurology 9, 374 (2019).  

7. Hoskins, P. R., Martin, K. & Thrush, A. (Eds.)  Diagnostic Ultrasound, Third Edition: 

Physics and Equipment  (CRC Press, Boca Raton, Florida, 2019). 

8. Li, C.,  Duric, N., Littrup, P. & Huang, L.  In-vivo breast sound-speed imaging with 

ultrasound tomography.  Ultrasound in Med. & Biol. 35, 1615–1628 (2009). 

9. Williamson, P. R.  A guide to the limits of resolution imposed by scattering in ray 

tomography.  Geophysics 56, 202-207 (1991). 

10. Demene C., et al.  Functional ultrasound imaging of brain activity in human newborns. 

Sci. Transl. Med. 9, eaah6756 (2017). 

11. Macé, E.,  Montaldo, G.,  Cohen, I.,  Baulac, M., Fink, M. & Tanter, M.  Functional 

ultrasound imaging of the brain.  Nat. Methods 8, 662-664 (2011). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/809707doi: bioRxiv preprint 

https://doi.org/10.1101/809707


12. Yang, G., Pan, F.,  Parkhurst, C. N., Grutzendler, J. & Gan, W.-B. Thinned-skull cranial 

window technique for long-term imaging of the cortex in live mice.  Nat. Protoc. 5, 201-

208 (2010). 

13. Tarantola, A.  Inversion of seismic reflection data in the acoustic approximation.  

Geophysics 49, 1259-1266 (1984). 

14. Virieux, J. & Operto, S.  An overview of full-waveform inversion in exploration 

geophysics.  Geophysics 74, WCC1-WCC26 (2009). 

15. Warner, M., et al.  Anisotropic 3D full-waveform inversion.  Geophysics 78, R59-R80 

(2013). 

16. Routh, P. et al.  Impact of high-resolution FWI in the Western Black Sea: Revealing 

overburden and reservoir complexity. The Leading Edge 36, 60-66 (2017). 

17. Pratt, R.G.  Seismic waveform inversion in the frequency domain, Part 1: Theory and 

verification in a physical scale model.  Geophysics 64, 888-901 (1999). 

18. Williamson, P. R. & Worthington, M. H.  Resolution limits in ray tomography due to 

wave behavior – Numerical experiments. Geophysics 58, 727-735 (1993). 

19. Dessa, J. X. & Pascal, G.  Combined traveltime and frequency-domain seismic 

waveform inversion: A case study on multi-offset ultrasonic data, Geophys. J. Int. 154, 

117-133 (2003).  

20. Pratt, R. G., Huang, L., Duric, N. & Littrup, P.  Sound-speed and attenuation imaging of 

breast tissue using waveform tomography of transmission ultrasound data. Medical 

Imaging 2007, Proceedings of the SPIE 6510, 65104S (2007). 

21. Fry, F. J. & Barger, J. E.  Acoustical properties of the human skull.  J. Acoust. Soc. Am. 

63, 1576-1590 (1978). 

22. Pichardo, S., Sin, V. W. & Hynynen, K.  Multi-frequency characterization of the speed 

of sound and attenuation coefficient for longitudinal transmission of freshly excised 

human skulls. Phys. Med. Biol. 56, 219-250 (2011). 

23. Pinton, G., Aubry, J., Bossy, E., Muller, M., Pernot, M. & Tanter, M. Attenuation, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/809707doi: bioRxiv preprint 

https://doi.org/10.1101/809707


scattering, and absorption of ultrasound in the skull bone. Med. Phys. 39,  299-307 

(2012). 

24. Duck, F. A.   Physical Properties of Tissue: A Comprehensive Reference Book  

(Academic Press, London, 1990).  

25. Agudo, O. C.,  Guasch, L., Huthwaite, P. & Warner, M.  3D imaging of the breast using 

full-waveform inversion.  Proceedings of the International Workshop on Medical 

Ultrasound Tomography,  Speyer, Germany, 1-3  Nov.  2017  (KIT Scientific 

Publishing, Karlsruhe, Germany, 2018). 

26. Warner, M. & Guasch, L. Adaptive waveform inversion: Theory.  Geophysics 81, R42-

R445 (2016). 

27. Guasch, L., Warner, M. & Ravaut, C. Adaptive waveform inversion: Practice. 

Geophysics 84, R447–R461 (2019). 

28. Esser, E., Guasch, L., Herrmann, F. J. & Warner, M. Constrained waveform inversion for 

automatic salt flooding. The Leading Edge 35, 214–300 (2016). 

29. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective 

epidemiological study. Nat. Neurosci. 19, 1523-1536 (2016).  

30. Schlemper, J., Caballero, J., Hajnal, J. V., Price, A. & Rueckert, D.  A deep cascade of 

convolutional neural networks for MR image reconstruction. Information Processing in 

Medical Imaging, pages 647-658, Niethammer, M. et al. (Eds.) (Springer, New York, 

2017). 

31. Chivers, R. C.  & Parry, R. J.  Ultrasonic velocity and attenuation in mammalian tissues.  

J. Acoust. Soc. Am. 63, 940-953 (1978). 

32. Goss, S. A., Johnston, R. L. & Dunn, F. Comprehensive compilation of empirical 

ultrasonic properties of mammalian tissues.  J. Acoust. Soc. Am. 64, 423-457 (1978). 

33. Goss, S. A.,  Frizzell, L. A. & Dunn, F.  Ultrasonic absorption and attenuation in 

mammalian tissues. Ultrasound Med. Biol. 5, 181-186 (1979).  

34. Goss, S. A., Johnston, R. L. & Dunn, F.  Compilation of empirical ultrasonic properties 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/809707doi: bioRxiv preprint 

https://doi.org/10.1101/809707


of Mammalian tissues II.  J. Acoust. Soc. Am. 68, 93-108 (1980). 

35. Yongchen, S., Yanwu, D., Jie, T. & Zhensheng, T.  Ultrasonic propagation parameters in 

human tissues.  Proceedings of the 1986 IEEE Ultrasonics Symposium, Williamsburg, 

VA, November 17-19, 1986. 

36. Culjat, M. O., Goldenberg, D., Tewari, P. & Singh, R. S.  A review of tissue substitutes 

for ultrasound imaging.  Ultrasound Med. Biol. 36, 861-873 (2010). 

37. Stead, L. G., Gilmore, R. M., Bellolio, M. F., Rabinstein, A. A. & Decker, W. W. 

Percutaneous clot removal devices in acute ischemic stroke: A systematic review and 

meta-analysis.  Arch. Neurol. 65, 1024–1030 (2008). 

38. Joyce, S. et al. A systematic review and meta-analysis of randomized controlled trials of 

endovascular thrombectomy compared with best medical treatment for acute ischemic 

stroke.  Int. J. Stroke 10, 1168-1178 (2015). 

39. Mourad, P. D. & Kargl, S. G.  Acoustic Properties of Fluid-Saturated Blood Clots 

(Technical Report APL-UW TR 2003, Applied Physics Laboratory, University of 

Washington, 2000). 

40. Huang, C.-C., Lin, Y.-H., Liu, T.-Y.,  Lee, P.-Y. & Wang, S.-H.  Review: Study of the 

blood coagulation by ultrasound.  J. Med. Biol. Eng. 31, 79-86 (2011). 

41. Iacono, M. I. et al.,  MIDA: A multimodal imaging-based detailed anatomical model of 

the human head and neck.  PLOS ONE 10, e0124126 (2015). 

42. da Silva, N. V., Yao, G. & Warner, M. Semiglobal viscoacoustic full-waveform 

inversion.  Geophysics 84, 1MA-Z11 (2019). 

43. Li, C., Sandhu, G. Y., Boone, M. & Duric, N. Breast imaging using waveform 

attenuation tomography.  SPIE Proceedings 10139, Ultrasonic Imaging and 

Tomography, 11-16 Feb 2017, Orlando, FL (2017).  

44. Vigh, D., Jiao, K., Watts, D. & Sun, D.  Elastic full-waveform inversion application 

using multicomponent measurements of seismic data collection.  Geophysics 79, 1MA-

Z52 (2014). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/809707doi: bioRxiv preprint 

https://doi.org/10.1101/809707

