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Abstract, 191 words 

We evaluated 1038 of the most cited structural and functional (fMRI) magnetic 

resonance brain imaging papers (1161 studies) published during 1990-2012 and 273 papers 

(302 studies) published in top neuroimaging journals in 2017 and 2018. 96% of highly cited 

experimental fMRI studies had a single group of participants and these studies had median 

sample size of 12, highly cited clinical fMRI studies (with patient participants) had median 

sample size of 14.5, and clinical structural MRI studies had median sample size of 50. The 

sample size of highly cited experimental fMRI studies increased at a rate of 0.74 

participant/year and this rate of increase was commensurate with the median sample sizes of 

neuroimaging studies published in top neuroimaging journals in 2017 (23 participants) and 

2018 (24 participants). Only 4 of 131 papers in 2017 and 5 of 142 papers in 2018 had pre-

study power calculations, most for single t-tests and correlations. Only 14% of highly cited 

papers reported the number of excluded participants whereas about 45% of papers in 2017 

and 2018 reported excluded participants. Targeted interventions from publishers and funders 

could facilitate increase in sample sizes and adherence to better standards. 
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Introduction 

The number of participants and hence, statistical power is in general low in cognitive 

neuroscience and neuroimaging. Hence, false negatives, imprecise measurements, as well as 

exaggerated published effect sizes and high false report probability can be expected in this 

field (Yarkoni 2009; Ioannidis, 2008; 2005a,b; Button et al. 2013; Poldrack et al. 2017; Szucs 

and Ioannidis, 2017a,b).  

It is often thought that statistical power is only important for studies because low 

power precludes the detection of existing effects. However, studies with low power also have 

other serious problems: First, low power increases false report probability, the probability 

that statistically significant findings are in fact false (Ioannidis, 2005; Szucs and Ioannidis, 

2017b). Second, using low sample sizes (and therefore having low power) leads to noisy 

measurements due to high sampling variability. Hence, many studies with low power will 

likely report widely different results. Third, if mostly only null hypothesis significance testing 

studies (NHST) with statistically significant results are published, then these will inevitably 

report exaggerated (large) effect sizes even if the true phenomenon produces small effect 

sizes. This is so because by using small sample sizes and therefore small degrees of freedom 

only relatively large effects have a chance to pass traditional statistical significance testing 

thresholds (e.g. α = 0.05). Such large effects may occur occasionally due to sampling 

variability. Large effects can also be the result of p-hacking when analytical manipulation 

makes the results from these small studies to pass the significance threshold. Many such 

exaggerated published effects from small studies will then distort the literature and may also 

be picked up by meta-analyses, thus further resulting in exaggerated meta-analytic effect 

sizes.  

The above makes it clear that it would be extremely beneficial for studies 1) to 

increase statistical power by increasing sample size and 2) to include pre-study power 

calculations and set sample sizes in a principled manner so that pre-defined effect sizes could 

be detected. Such calculations would also be required in the original null hypothesis decision 

framework of Neyman and Pearson (1933) so that optimal decisions with regards to rejection 

or no rejection of the null hypothesis could be made (for review see Szucs and Ioannidis, 

2017b). In contrast to their theoretical and practical importance it is rare to see power 

calculations in papers published in many disciplines.  

It would be useful to understand whether the problem of low power also affects the 

most influential neuroimaging papers and whether any improvements have occurred over 

time. Here, our main objective was to scrutinize participant numbers in the most cited 

experimental functional magnetic resonance imaging (fMRI) studies published between 1990 

and 2012 and compare these to the participant numbers included in studies published  in 4 top 

neuro-imaging journals in 2017 and 2018. Previously (Szucs and Ioannidis, 2017a) we 

observed that, on average, power was higher in papers in medically oriented than in cognitive 

neuroscience journals. So, for comparison we also report participant numbers in the most 

cited structural MRI (sMRI) and fMRI clinical studies that examined patients (highly cited 

studies were published between 1990-2012). We were especially interested in highly cited 

studies because (by definition) they are often cited in support of claims and because they are 

likely to set standards for many researchers. To monitor progress in setting participant 

numbers in a principled way we have also collected data about the frequency and method of 

(pre-study) power calculations in studies published in top neuroimaging journals in 2017 and 

2018. 
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Methods  

Highly cited papers: Identification and data extraction 

 We evaluated sample size data from 1038 of the most cited sMRI and fMRI papers 

(1161 studies) published during 1990-2012 and 273 papers (302 studies) published in 4 top 

neuroimaging journals during 2017 and 2018. By ‘paper’ we mean a publication unit 

published as a formal paper in a journal, whereas by ‘study’ we mean the individual studies 

reported in papers. Some papers reported more than one MRI study. Hence, the number of 

studies is higher than the number of papers. We evaluated only fMRI studies whereas some 

papers also included purely behavioral, electro-encephalography, and other types of non-

eligible studies. 

First, we queried the Scopus (scopus.com) search engine for the 1,500 most highly 

cited ‘articles’ using magnetic resonance imaging (MRI) published from 1990 onwards in the 

‘neuroscience’ field. The date of query was 25 May 2017 and it returned papers published 

between 1990 and 2012. The search term was TITLE-ABS-KEY (*MRI*) AND DOCTYPE 

(ar) AND PUBYEAR > 1989 AND (LIMIT-TO (SUBJAREA, “NEUR”)). The query (see 

main text) generated a comma separated text file. During the process of data extraction we 

added additional records to this file describing participant numbers and study types. 

We aimed to examine primary empirical research reports that used in vivo sMRI or 

fMRI to study brain structure and function in humans. So, we excluded misclassified review 

papers, methodological papers, meta-analyses of published findings, post-mortem studies, 

case studies, animal studies, behavioral papers, theoretical papers, modelling papers, papers 

on surgery which only used MRI to aid surgery, non-brain MRI papers (e.g. MRI of the chest 

and muscles), and papers with other than MRI technology (positron emission tomography, 

electro-encephalography, computed tomography). 

Specifically, we first read titles and abstracts queried from the Scopus database. For 

all studies of interest we accessed full text pdf files where possible and we confirmed whether 

a certain paper was appropriate for study. If a paper was appropriate for study then we 

manually extracted participant numbers from most papers by reading the ‘Participants’, or 

equivalent, sections of full text pdf files. In case of uncertainty about participant numbers 

other sections of papers were also examined. We could not access pdf files for 48 relevant 

papers but we were able to extract participant information from abstracts and online full texts. 

We could not access participant data for 9 relevant papers, so they were not considered for 

analysis (marked ‘xnoacc’ in the data file). 

In remaining sample there were 1098 papers (1223 studies). The journals most 

represented in our sample are shown in Supplementary Table 1. These studies could be 

sorted into 6 major categories: 

(1) Experimental fMRI cognitive neuroscience studies with normal adults 

(experimental studies). The primary concern of these studies was the understanding of brain 

structure and function and they did not have primary clinical relevance. Most of the 

experimental fMRI studies compared brain activity across two or more experimental 

conditions in a single group of participants. The approximate topics of experimental fMRI 

papers are shown in Supplementary Table 2. 

(2) Cognitive neuroscience sMRI studies typically used structural data to support the 

interpretation of fMRI data; to gain anatomical information relevant for understanding 

normal brain function (e.g. by studying connections between areas thought to implement 
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certain functions and/or cortical thickness in some areas thought to host some functions); to 

compare brain anatomy in non-clinical groups of participants (e.g. normal and poor adult 

readers); and to study network properties thought to support some functions.  

(3-4) Clinical fMRI (3) and Clinical sMRI (4) studies with patient groups including 

studies of ageing and studies focused on developmental disorders in children. Many clinical 

MRI studies compared brain function or structure across controls and patients or measured 

the effect of aging by studying multiple age groups. Single group studies also tested groups of 

participants in various experimental conditions. In a few papers participants were healthy 

'control participants' but the primary objective of papers was clinical research (e.g. testing the 

effectiveness of pain suppression). Such papers were categorized as 'clinical' papers. The 

most frequently studied diseases and conditions and associated median and mean participant 

numbers in clinically oriented papers are shown in Supplementary Table 3. 

(5-6) Normative developmental fMRI (5) and sMRI (6) studies with typically 

developing children who were under the age of 18 years. Many of these studies compared 

brain function or structure across multiple age groups. 

There were very few cognitive neuroscience sMRI (16 papers with 18 studies) and 

developmental sMRI (19 papers with 19 studies) and fMRI (25 papers with 25 studies) 

studies as compared with studies in the other 3 categories. Hence, data from these 60 papers 

(62 studies) were not considered for analysis. However, the extracted data is available as 

supplementary material. 

Data for the remaining 1038 papers with 1161 studies were analyzed in the work 

reported here. These studies were categorized as experimental fMRI, clinical sMRI and 

clinical fMRI studies. Table 1 shows the number of highly cited papers, the studies included 

in the papers and paper citation counts. Papers in this sample were published between 1990-

2012 (Experimental fMRI studies: 1993-2012; Clinical sMRI studies: 1990-2011; Clinical 

fMRI studies: 1996-2012). The 1038 papers received 391,180 citations. The experimental 

fMRI papers received 231,071 of these citations. 

   Citation Counts 

Study Type Papers Studies Min Median Mean Max Total 

All 1038 1161 208 297 377 4147 391,178 

Experimental fMRI 591 692 208 305 391 4147 231,071 

Clinical sMRI 318 334 208 287 358 2912 113,954 

Clinical fMRI 129 135 209 300 358 981 46,153 

Table 1. The numbers of highly cited papers, the studies included in the papers and paper 

citation counts. The 1038 papers were subdivided into three categories (see details below). 

 

We extracted the following data for each study: 1) Total number of participants tested. 

2) The number of participants stated as excluded from analyses. When no exclusions were 

reported we assumed that the number of excluded participants was zero. 3) The final number 

of participants included in the MRI analysis. This ‘final’ participant number was considered 

the number of participants for a study. 4) We determined whether a study defined two or 

more groups of participants. If at least two groups were defined then we recorded the number 

of participants in each group. 5) For experimental studies we noted the approximate main 

topic of a paper. 6) For clinical studies we coded the type of disease examined. 7) Finally, we 

coded whether a study was a randomized control trial or not. 
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Analysis of trial numbers in highly cited experimental fMRI papers 

In order to get an impression of total and per condition experimental trial numbers in 

individual participants we have examined the Methods sections of 142 experimental fMRI 

studies with event-related designs where trial numbers should be well-defined in principle. 

We extracted the total number of trials and the number of experimental conditions where this 

was possible. 

Sample of experimental fMRI papers in 2017 and 2018 

We analyzed a sample of 131 experimental fMRI papers published during 2017 and 

142 papers published during 2018 in 4 prominent neuro-imaging journals: Nature 

Neuroscience, The Journal of Neuroscience, NeuroImage and Cerebral Cortex. The number 

of studies and papers are shown above in Table 2. The issues checked per journal are shown 

in Supplementary Table 4.  

 2017 2018 Totals 

Journal Papers Studies Papers Studies Papers Studies 

Nature Neuroscience 4 5 2 2 7 7 

The Journal of Neuroscience 42 47 33 38 80 85 

NeuroImage 46 51 68 74 119 125 

Cerebral Cortex 39 45 39 40 84 85 

Totals 131 148 142 154 273 302 

 Table 2. The number of papers and studies in the 2017 and 2018 sample. 

 

During data collection we manually opened each pdf file in Adobe Acrobat © and 

checked the ‘Participants’ or equivalent section for initial and final sample sizes and for the 

number of excluded participants. In addition, we have also searched papers for the words 

‘power’ and ‘sample size’ and determined whether papers included any formal power 

calculations and/or they justified their sample sizes. In order to verify power analyses in 

papers and/or to confirm their nature we have carried out our own power analyses for each 

paper based on the data given in the papers. This procedure was most often necessary because 

from papers it was not clear what kind of power analysis was exactly done. 

Data availability 

All data and the analysis code (Matlab scripts; www.mathworks.com) producing all 

figures, tables and numerical details reported here will be available as Supplementary 

Material of the final publication. It is not possible to upload pdf copies of published papers 

because of copyright restrictions. 

Results 

Highly cited paper sample: 1990-2012 

Figure 1A compares sample size distributions for the 3 types of papers in the highly cited 

sample. Table 3 shows the number of participants in studies with a single group and with 

more than one group. For example, 662 out of 692 experimental studies had a single group of 

participants whereas 30 studies defined two or more groups. The median number of 

participants in studies with a single group was 12. In the 30 studies with groups the average 

group number was 2.033. The median number of participants in groups was 11. The 
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proportion of studies with a single group is notably higher in experimental fMRI studies 

(662/692=0.9566) than in Clinical sMRI (163/334=0.4880) and Clinical fMRI studies 

(28/135=0.2074). Median participant numbers were 3.5 to 4.17 times larger (N=50) in single 

group Clinical sMRI studies than in the other two study categories. Median participant 

numbers were about twice as large in multi-group Clinical sMRI studies (N=24) than in other 

study categories. 

 Studies N in Group if gr=1 Number of Groups if gr>1 N in Groups if gr>1 

Study Type gr=1 gr>1 Total Min Median Max Min Mean Max Min Median Max 

All 853 308 1161 2 13 3660 2 2.35 8 1 17.2 1056 

Exp fMRI 662 30 692 2 12 603 2 2.03 3 1 11.0 500 

Clin sMRI 163 171 334 2 50 3660 2 2.50 8 2 24.0 1056 

Clin fMRI 28 107 135 3 14.5 146 2 2.19 7 1 12.5 68 

Table 3. The number of participants in highly cited studies with a single group (gr=1) and 

with more than one group (gr>1). Study categories: Experimental (Exp) fMRI and Clinical 

(Clin) sMRI and fMRI studies. The first 3 columns show the number of studies with one or 

more groups and totals. The next 3 columns (N in Group if gr=1) show participant numbers 

for studies with a single group. The next 3 columns (Number of Groups if gr>1) show the 

number of groups in studies with more than one group. The last 3 columns (N in Groups if 

gr>1) show participant numbers in groups in studies with more than 1 group. 

 

There was no relationship between the number of citations to a paper and the number of 

participants in studies. In the whole sample of 1161 studies the correlation of citation count 

and sample size was r=0.0098 [95% CI: -0.0413; 0.0609; p=0.71]. In the sample of 

Experimental fMRI papers the correlation was r=0.0342 [95% CI: -0.0405; 0.1084; p=0.37].  

 

Studies from 2017 and 2018 

Table 4 shows the counts and proportion of papers and studies with their own data, with 

secondary data and with only one group in the 2017 and 2018 data sets. Similarly to the 

highly cited paper data the overwhelming majority of papers had a single group of 

participants. 

 

 2017 2018 

Data source in study Papers % Studies % Papers % Studies % 

Own Data 122 93.1 139 93.9 123 86.6 134 87.0 

Secondary data 9 6.9 9 6.1 19 13.4 20 13.0 

One group 111 84.7 128 86.5 109 76.8 120 77.9 

Table 4. The counts and percentage of papers and studies with their own data, with 

secondary data and with only one group in the 2017 and 2018 data sets. The studies with 

one group are a subset of the studies with their own data. Percentages are computed relative 

to total paper and study numbers as shown in Table 2. 
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Comparison of sample size percentiles from highly cited papers and from papers published in 

2017 and 2018 

Figure 1B compares sample size distributions in the highly cited paper sample and in the 

2017-2018 sample. The shift in sample size distributions and a slight increase in the 

proportion of studies with large sample sizes (most of them studies based on data from large 

third party data bases) is well visible (sample size percentiles are shown in Supplementary 

Table 5). Table 5 shows what number and proportion of studies with their own data and a 

single group of participants exceeded certain participant numbers recommended by Desmond 

and Glover (2002) and Yarkoni (2009). 

 

    N=12 N=24 N=50 N=100 

Exp fMRI p>N 372 62 10 4 

  Prop. (all=662) 0.562 0.094 0.02 0.006 

Clin sMRI p>N 141 113 84 48 

  Prop. (all=163) 0.865 0.693 0.52 0.2945 

Clin fMRI p>N 16 8 3 2 

  Prop. (all=28) 0.571 0.286 0.11 0.0714 

2017 p>N 117 53 14 7 

  Prop. (all=128) 0.914 0.414 0.11 0.0547 

2018 p>N 109 57 9 4 

  Prop. (all=120) 0.908 0.475 0.08 0.0333 

Table 5. The number and proportion (Prop.) of studies with their own data and a single group 

of participants that exceeded participant numbers of 12, 24, 50 and 100 (N=). 

 

Figure 1C shows the increase in median sample sizes from 1993 to 2018. The figure shows 

the regression line computed from the highly cited paper data (black line). According to data 

form highly cited papers the rate of increase in sample sizes was +0.74 participants/year 

(intercept = -1477). The figure also shows the medians and 25th and 75th percentiles of the 

2017 and 2018 data. It is notable that extrapolation of the regression line extremely well fit 

the medians measured in 2017 and 2018. In Figure 1C it is visible that medians show larger 

scattering relative to the regression line at the left and right extremes of data points. This is 

due to the fact that less data points were available in very early and very recent publication 

years (see numbers in Supplementary Table 6.) 
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 Figure 1. (A) Sample size distributions in highly cited papers. Dashed lines marked by (a) in 

the legend show data for all studies. Continuous lines marked by (r) in the legend show data 

restricted to studies with that collected their own data and only included a single group of 

participants. (B) Sample size distributions in experimental fMRI papers in highly cited papers 

and in 2017 and 2018. Dashed (a) and continuous lines (r) show data as noted for Panel A. 

(C) Black circled dots show the yearly medians of the sample sizes from the highly cited 

papers. The black line is the regression line fitted to this data. The leftmost red dot and red 

crosses represent the median and 25th and 75th percentiles of sample sizes from the entirety of 

the highly cited paper data. The rightmost two red dots and crosses represent the medians and 

25th and 75th percentiles of 2017 and 2018 data. (D) The distribution of mean number of trials 

in the experimental conditions of 83 highly cited experimental fMRI papers (see further 

explanation in text). 
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The number of reported excluded participants in highly cited experimental fMRI 

papers 

Table 6 shows the number of reported excluded participants per study category. 86-

90% of highly cited studies did not report excluded participants. In contrast, about 45% of 

studies in 2017 and 2018 reported some excluded participants. The proportion of studies with 

a relatively large number of excluded participants (6-10 or more excluded participants) 

notably increased from 1-2% in highly cited studies to about 9-10% by 2017 and 2018. More 

excluded participants were reported in clinical than in experimental studies. 

 

    Total None Some 1-5 6-10 >10 Median Mean 

Exp 

fMRI 
N 692 595 97 80 13 4 2 3.7 

% 100 86 14 12 2 1     

Clin 

sMRI 
N 334 301 33 6 7 20 22 87.5 

% 100 90 10 2 2 6     

Clin 

fMRI 
N 135 121 14 8 3 3 4 8.4 

% 100 90 10 6 2 2     

2017 N 148 80 68 47 13 8 3 5.0 

% 100 54 46 32 9 5     

2018 N 154 84 70 41 15 14 4 15.1 

% 100 55 45 27 10 9     

Table 6. The number of excluded participants per study category. Numbers are 

given for studies (not papers). For each category the following data are shown: total number 

of studies (Total), studies with no reported exclusions (None), studies with some exclusions 

(Some), studies with certain numbers of participants excluded (1-5, 6-10, >10). The median 

and mean of the number of excluded participants. For each category top rows (N) 

communicate participant numbers and bottom rows (%) communicate the percent of 

participants relative to the total participant number in a category. 

 

Trial numbers in a sample of highly cited experimental papers 

We could identify total and per condition trial numbers in 109 of the 142 experimental 

fMRI papers, while this information was unclear in the other 33 papers.  

17 papers described old/new recognition memory experiments. We extracted the 

number of memory encoding trials as the usual question of interest is whether some brain 

activity at encoding will predict later recognition. The number of trials ranged from 10 to 455 

(median = 150). 9 papers described designs with a large number of standard trials 

interspersed with a significantly lesser number of deviant trials from a different, critical trial 

type, for example in go/nogo designs (where typically there are many fewer nogo than go 

trials) and in task switch designs (where typically there are much fewer task switch than 

standard trials). Trial numbers varied from 128 (8 critical) trials to 1180 (80 critical) trials. 

In 83 of the 109 papers trial numbers were more similar across conditions than in the 

above standard/deviant like designs. However, trial numbers were still very often unequal 

across conditions and there was also great variability in design. Figure 1D shows the mean 

number of trials by condition. The number of total number of trials in an experiment ranged 

between 40 and 2440, the number of conditions ranged between 2 and 28 and the mean 
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number of trials per condition ranged between 4 and 610. For example, on the one extreme 

112 trials were distributed into 28 conditions and on the other end 2440 trials were distributed 

into 4 conditions. It is notable in the figure that the mean number of trials per condition tends 

to decrease as the number of experimental conditions increases. 

Power calculations in 2017 and 2018 papers 

Table 7 shows the summary of the statistical power analysis assessment. In both 2017 

and 2018 less than 7% of papers (9 papers in both years) included power calculations and 

about a third of the papers made some comment about power. None of the papers with large 

secondary databases had power calculations in any of the years. 7.6% (10) vs. 11.3% (16) of 

papers without power calculations referred specifically to the problem of having low power, 

in 2017 and 2018, respectively. Only about 3% of 2017 and 2018 papers had clearly a priori 

power calculations. 

 2017 2018 

Information on power? N % of 131 N % of 142 

Power calculation (a) 9 6.9 9 6.3 

- A priori power calculation 4 3.1 6 4.2 

- Post-hoc power 

calculation 3 2.3 3 2.1 

- Unclear  2 1.5 -- -- 

Comments on power (b) 34 26.0 44 31.0 

No comments on power (c) 88 67.2 89 62.7 

Table 7. Summary of power calculation results. The table shows data for the 131 

papers in 2017 and the 142 papers in 2018. It is shown whether papers included statistical 

power calculations (a), had any comments on power (b) or had no comments on power (c). It 

is also shown whether power computations were a priori or post-hoc if we could determine 

this. 

Power calculation details in 2017 and 2018 papers 

In 2017 four papers seemed to include formal pre-study power calculations (α=0.05 

for all). Two of these papers computed power for single runs of t-tests (two cases; Cohen’D = 

0.5 and 0.65; power=0.8 for both). Two other distinct papers (n=32) in the same journal issue 

used the same participants. One paper computed power for a single one-sample t-test (D=0.5) 

and set a priori power to exceed 0.85. The other computed power for a single product-

moment correlation (r=0.4) and set a priori power to exceed 0.75.  

In 2018 six papers described a-priori power computations. One paper determined that 

a sample size of 24 was necessary to achieve power=0.8 with a matched-sample two-tailed t-

test to detect an effect size of D ≥ 0.6 (α=0.05). However, 2 participants were excluded from 

analyses leaving only 22 participants in the study. This obviously left the study underpowered 

by its own power criterion. Another paper aimed to look at brain structure vs. behavioral 

performance correlations. It was not specified how exactly power computation was done but 

our own power analysis suggested that the required sample size of 34 was computed for 

power=0.8 for a single correlation test of r=0.4 (α=0.05; one-tailed). The study noted that 

power was computed for D=0.4 in G-Power. However, G-Power computes the sample size of 

24 when r=0.4 rather than when D=0.4 (entering r is the default in G-Power). For D = 0.4; r 

would be r = D / sqrt(D2 + 4) = 0.1961 (Borenstein et al. 2009). To detect an effect size of 

r=0.1961 G-Power computes that N=156 participants would be necessary (α=0.05; one-
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tailed). For this effect size (r=0.1961) the study achieved power=0.24 with N=24 (α=0.05; 

one-tailed). Hence, the study had much less power than reported. Another paper stated that 

they chose a sample size to achieve good power to detect the typical effect size in the field. 

An effect size of r = 0.54 was chosen from a previous meta-analysis. It was concluded that 

for the 25 participants initially tested power=0.87 would be achieved for the D=0.54 effect 

size (α=0.05; two-tailed; power was computed for a single correlation). The paper initially 

tested 25 participants but one participant was excluded, so only 24 participants were tested. 

Another 2018 paper computed that 34 participants were necessary to detect an 

interaction effect size of partial eta2 = 0.06 at power=0.8 and 12 participants were required to 

replicate a previously found effect size of partial eta2 = 0.17 at power=0.8. The study tested 

34 participants. Based on recomputing power in G-Power it seems that power was computed 

for a 2(groups) x 2(measurements) mixed design ANOVA with partial eta2 of 0.06 and 0.17 

(transformed to Cohen’s f=0.2526 and f=0.4225 by G-Power). Another paper referred to a 

previous study of the authors where they used Monte-Carlo simulation to estimate sample 

size. The current study aimed to test a sample size of 30 participants as required by this 

previous power calculation. Based on the calculation the authors concluded that they 

achieved power > 0.95. However, 2 participants were excluded, so only 28 participants were 

tested. One paper estimated the required sample size for Multi Voxel Pattern Analysis by a 

simulation method. 

In 2017 in two cases it was unclear whether power was computed a priori. In these 

papers power (set to 0.8) was computed for a t-test (D=0.44) and for correlation (r=0.5). The 

first of these papers presented the only RCT in our 2017 sample with 128 participants.  

In 2017 in three cases power was computed post-hoc. In these papers power was 

computed for a t-test (D=0.6), for an ANOVA interaction term (D=0.52) and in one case it 

was unclear how power was computed as no exact effect sizes were given (but likely for 

multiple t-tests). One of these studies (n=2×15) computed power to guide future studies. 

In 2018 power computations seemed clearly post-hoc in three cases. One paper with 

15 participants has achieved null results in whole brain analyses. The study has computed the 

achieved power for multiple testing uncorrected ROI analyses suggesting that analyses 

achieved power=0.8 to detect an effect size of D=0.68 with α=0.05 and D=0.56 at α=0.1. 

Computations were not specified in the paper but re-analysis suggests that they were done for 

one-tailed t-tests. The second paper noted that the study was ‘adequately powered to detect 

large effects’ and noted that the sample size of 12 was adequate to detect an effect size of d ≥ 

0.89 at power=0.8 (α=0.05). Power was computed for a single two-tailed matched-sample t-

test. In the third paper it was unclear how power was computed but the authors claimed to 

have run some analyses for effect sizes of D=0.51, 0.53 and 0.54 with power=0.8. The 

analyses close to describing the power computation mentioned the use of matched sample t-

tests and the study had 31 participants. Indeed, power for a two-tailed t-test (α=0.05) for the 

above effect sizes and sample size varies between power=0.78 to 0.83. So, it is likely that 

power was computed for single matched-sample t-tests. 

Besides the papers with power calculations 34 and 44 papers mentioned statistical 

power in 2017 and 2018, respectively. Mentions were most often non-specific and non-

informative. For example, all but one paper in Nature Neuroscience had power calculations 

but all of them included similar text stating that no methods have been used to predetermine 

sample sizes and sample sizes were simply chosen to be in line with common practices in 

their field. Many studies noted that their sample size was chosen so that they would be 

identical to, or exceed sample sizes from the authors’ own or others’ previous work. Some 
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noted that sample size was based on funding availability. Some studies commented on issues 

of statistical power in general without clearly linking it to the context of the specific study. 

Some studies commented that a certain analysis was less or more powered than another one 

without giving any further details or computations. Some papers commented on their large 

perceived sample size (e.g. 60) without giving any actual power calculation details. Ten 

(2017) and sixteen (2018) studies mentioned that they may have been underpowered. Usually 

these non-informative statements were restricted to one or two brief comments in a paper. 

Several studies used small subsamples from their overall sample for certain analyses. 

In 2017 seven whereas in 2018 only two papers had multiple studies where some of 

these studies declared a goal to replicate findings from an earlier study in the same paper. 

None of these papers had power calculations. 

In 2017 two studies were special cases focused on individual measurement: One had 

only 4 participants but each of them were tested in 5-6 sessions. The other tested 10 

participants, each for 300 minutes during 10 sessions. 

Discussion 

Running underpowered studies may waste research funding on studies which a priori 

have low chance to achieve their objectives. In addition, low power leads to high false report 

probability, imprecise measurements and effect size exaggeration. Nevertheless, we have 

shown that participant numbers, and consequently power levels, are low in the most highly 

cited fMRI papers. Hence, highly cited studies are likely to have similar problems stemming 

from low statistical power as most of ‘typical’ neuroscience studies (Button et al. 2013; Szucs 

and Ioannidis, 2017a). 

Highly cited experimental and clinical fMRI studies had similar median sample sizes 

(medians in single group studies: 12 and 14.5; median group sizes in multiple group studies: 

11 and 12.5). 96% of experimental studies were single group studies. This pattern remained 

in 2017 and 2018 when 93% and 87% of experimental fMRI studies had a single group. In 

contrast, only 21% of highly cited clinical fMRI studies were relatively small single group 

studies. Consequently, while clinical fMRI studies had somewhat larger individual participant 

groups than experimental studies, most of their total sample size advantage stemmed from the 

fact that they more often had two or more groups than experimental studies. This is important 

to consider when comparing sample sizes from clinically vs. non-clinically oriented 

journals/publications. Clinical studies included multiple groups because these studies often 

included both patient and control groups. Overall, group sizes were relatively similar in both 

experimental and clinical fMRI studies. In addition, group comparison tests are typically less 

powerful than one-sample or matched sample-tests often used in single group studies. Hence, 

in terms of group comparison there was not much power advantage of clinical fMRI studies 

over experimental fMRI studies. Only the single-group clinical sMRI studies had notably 

larger sample sizes than fMRI studies. This difference probably has to do with the extra time 

and effort necessary to collect and analyze fMRI than sMRI data. 

We found that median sample sizes in highly cited experimental fMRI studies 

increased consistently at a rate of +0.74 participant/year between 1993 and 2010. This rate of 

increase was perfectly in line with the median sample sizes we found in 2017 (23) and 2018 

(24). The +0.74 participant/year rate of increase was also in line with our survey (Szucs and 

Ioannidis, 2017a) examining 3801 papers published between 2011 and 2014. In this earlier 

paper we reported degrees of freedom for one or two-sample t-tests and estimated that the 

median degree of freedom was 18 in cognitive neuroscience papers. Provided that median 

sample sizes were likely to be about 1-2 larger than the degrees of freedom this data would 
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also well fit the regression line found in the current study (with about median sample size of 

20-21 in about 2012/13). Notably, our sample size median estimates are smaller than the 28.5 

median estimated by Poldrack et al. (2017) for the year of 2015. However, our analysis is 

well compatible with the full set of data points from David et al. (2013) reported by Poldrack 

et al (2017). An option is that the 2015 data from Poldrack et al. (2017) may have included a 

higher proportion of clinical fMRI papers than our sample which may have raised sample 

sizes for 2015.  

Overall, our current and earlier data (Szucs and Ioannidis, 2017a) and data from other 

evaluations (David et al. 2013; Poldrack et al. 2017) suggest that sample sizes and 

consequently, power are improving, albeit very slowly. Only ~10% of highly cited 

experimental fMRI papers published between 1993-2012 reached the sample size of 24 

recommended by Desmond and Glover (2002) and only about ~2% reached the sample size 

of 50 recommended by Yarkoni (2009). There has been clear improvement by 2017 and 2018 

when respectively, 41% and 48% of papers were below the minimum participant numbers 

recommended by Desmond and Glover (2002). However, this also means that in 2017 and 

2018 still nearly half of papers had less than 24 participants. Moreover, there has been less 

improvement at the higher end of participant numbers as in 2017 still 79% of papers were 

under the sample size of 50 recommended by Yarkoni (2009) and this proportion was 82% in 

2018.  

While we only have two years’ of observations from 2017 and 2018 a noteworthy 

trend in the literature is the increasing use of large third party databases in neuroimaging. The 

proportion of papers using such databases doubled from 2017 to 2018 from 6% of studies to 

13% of studies. It remains to be seen whether this trend continues in the coming years and 

whether it is present in other neuroimaging journals. The use of large shared databases would 

be beneficial for many reasons. First, such databases assure high statistical power for modest 

effects. Second, considering the effort required to compile large databases data collection 

may be carried out by seriously vetted procedures and by experienced teams. Third, data is 

available to any interested researchers assuring increased scrutiny and hence, reliability of 

published results. Fourth, if data is collected in a decentralized manner (e.g. many labs jointly 

contributing to data collection) than replicability across different labs can easily be examined. 

While low power in neuro-imaging received lots of attention recently (Poldrack et al. 

2017; Szucs and Ioannidis, 2017; Button et al. 2013), we found that in both 2017 and 2018 

only about 3-4% of papers had clear pre-study power calculations and more than 62% of 

papers never mentioned any issues of statistical power. Most power calculations we found 

were done for single runs of t-tests and product-moment correlations as there seems to be no 

agreement on how to estimate statistical power for fMRI studies which rely on a very large 

number of tests, idiosyncratic statistical procedures and on heavy multiple testing correction 

(Hayasaka et al. 2007; Poldrack et al. 2017, Carp 2012). The power calculations we found 

often expected medium sized effects based on previous published data. However, considering 

the very probable effect size inflation of the published literature expecting relatively large 

medium sized effects seems too optimistic (Ioannidis, 2008; Szucs and Ioannidis, 2017a). It 

also frequently happened that studies determined a required sample size by power calculation 

but then analyzed less data than required by their own power calculation because they did not 

account for the number of excluded participants. This practice leaves studies underpowered 

by their own power criteria. It was also typical that power calculation parameters were not 

defined clearly so that in most cases guesswork and recalculation was necessary to see how 

power was determined. In some cases power calculations seemed erroneous. 

Many papers without power calculations referred to sample sizes in previous similar 

research to justify their sample sizes. However, considering that lots of neuroimaging is 

underpowered (Yarkoni 2009; Button et al. 2013; Szucs et al. 2017a) this is clearly 
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inadequate rationale. Unless the purpose is to guide future studies it is not informative to 

compute post-hoc power considering an effect size already detected as statistically significant 

in a study. Moreover, small studies are not good guides for power calculations for future 

studies because they can only detect relatively large effects as statistically significant (see e.g. 

Ioannidis, 2008; Yarkoni 2009; Szucs and Ioannidis, 2017b). Similarly, meta-analyses may 

also overestimate effects because they tend to rely on many small, underpowered studies 

(Ioannidis, 2010). In fact, studies with large sample size (and hence, with more accurate 

measurements than small studies) rarely report large effects (see Fig. 2. in Szucs and 

Ioannidis 2017a). 

We suggest that it would be desirable to quickly develop 'industry standards' for 

technical aspects for neuroimaging studies including power requirements. In our opinion two 

key ingredients of future studies are pre-registration (optimally, with pre-study acceptance by 

journals) and an increase in sample sizes (Hardwicke and Ioannidis, 2018; Munafo et al. 

2017; Ioannidis et al. 2014). Pre-registration guarantees that studies get published based on 

pre-study significance. In consequence, we avoid effect size exaggeration (as negative 

findings are published) and registered procedures and hypotheses largely decrease the danger 

of data dredging which is a particular danger in neuro-imaging where often complicated and 

opaque procedures are used and seeming minor changes in some (pre-)analysis parameters 

can result in major distortions of data (Carp 2012).  

If expected effect sizes are larger in clinical than in experimental studies (as disease is 

likely to have more substantial impact on brain function than experimental manipulations in 

healthy participants), the power advantage of clinical over experimental studies may be larger 

than indicated here. Importantly, both here and earlier (Szucs and Ioannidis, 2017a) we 

detected considerable variability in sample sizes across studies. So, using solely medians to 

characterize sample sizes seems inadequate as it masks variability. The crucial question is 

what proportion of studies in the literature remain too small and hence, underpowered. 

A further point to discuss regards the question of whether high population level power 

is always necessary for studies. We agree that small N designs may be more appropriate than 

large samples in some situations (Smith and Little, 2018). For example, if we study some 

relatively straightforward to localize motor or perceptual processes with already well-known 

brain anatomy and probably modest individual anatomical variability then using very high 

trial numbers in a few participants and fitting models to high volumes of data may be a more 

productive approach than testing large populations with a few trials. However, such design 

may be less adequate when researchers aim to study harder to localize processes with 

probably large individual variability such as autobiographical memories, emotional 

evaluation of stimuli, love, etc. In any case, small N designs require us to assure very high 

individual level statistical power as well as to demonstrate the replicability of each 

experimental effect at the individual level. Considering that signal to noise ratio is 

proportional to the square root of trials used in experiments assuring the above would require 

us to collect much higher volumes of individual data than typical at the moment. This could 

be achieved by delivering a very high number of trials per experimental condition and 

participant substantially prolonging experimental time for individual participants. The 

challenge is made even more difficult by natural variation in the anatomical location of 

effects. However, as shown in Results, currently very few studies deliver high trial numbers. 

Hence, currently very few studies can argue that they use credible small N designs: Simply 

having small N does not turn a study into a credible small N study. In fact, probably due to 

low individual level signal-to-nose ratio it is a well-known problem of neuroscience 

experiments that it is often difficult to identify even well-established group level effects in 
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individual participants. Further, even if we use large trial numbers but only a very few 

participants then individual measurements will be very precise but we may still not be able to 

generalize anatomical findings (that are often the focus of fMRI studies) to the full 

population. For example, if we measure a phenomenon with small individual standard errors 

in 4 undergraduate university students (e.g. using 5,000 trials per condition in each 

participant) but individual brain activity measures and anatomical areas show large scattering 

then we cannot approximate the population distribution of anatomical brain activation 

locations with much confidence. Even if individual measurements are very similar in a few 

participants, functional and anatomical generalizability remains unknown. For example, non-

clinical experimental results are very often coming from “WEIRD” undergraduate students 

from Western, Educated, Industrialized, Rich and Democratic countries. A potential approach 

for increasing confidence in group level findings may be to replicate a finding from a key 

experiment in a (pre-registered) follow-up experiment within the same paper. However, this 

practice is currently also very rare (see Results) and in some cases it may also be difficult to 

assure the independence of replication experiments reported within a single paper. 

Importantly, the number of trials in single fMRI measurement sessions is constrained 

by various practical factors. First, the sluggish nature of the haemodynamic response requires 

relatively long trial durations (e.g. much longer than in electro-encephalography 

experiments).  Second, fMRI scanning time is expensive (e.g. costs may be higher than 

£500/hour in the United Kingdom). Third, lying in the scanner relatively motionless is 

challenging for participants. Fourth, complex cognitive experiments may need long trial 

durations which restrict the number of trials doable in a single imaging session. The only 

solution may be to collect many trials in multiple runs. However, in such a case multi-level 

analysis is needed to factor in potential discrepancies across sessions. Moreover, research 

grants can rarely offer funds for long/repeated scanning sessions. Hence, overall several 

practical limitations often beyond the control of researchers restrict individual measurement 

precision in studies. Finally, our data shows that individual research groups may use very 

different trial numbers even in relatively similar experimental designs and overall there is 

very great variability in trial numbers per experimental condition in the literature. Hence, 

individual measurement precision is likely to vary greatly across studies and research groups. 

Only 10-15% of highly cited studies reported any excluded participants. In contrast, in 

2017 and 2018 respectively, 46% and 45% of studies reported at least some excluded 

participants. The proportion of studies with 5 or more excluded participants also increased by 

about 5-fold by 2017/2018. Importantly, studies practically never stated that no participants 

were excluded. Hence, the default value was that studies have not mentioned anything about 

exclusions. That is, when there were no reported exclusions it may mean that there were 

really no exclusions or that exclusions were simply not reported. Taking the above into 

account our observations about reporting exclusions raise several questions. On the one hand, 

the distribution of excluded participants in highly cited papers seems oddly biased towards 0 

exclusions and it is also in conflict with the much larger proportion of studies with exclusions 

and the larger number of excluded participants in 2017/18. So, many highly cited studies may 

not have reported exclusions rather than not have exclusions. If so, there may have been a 

change in exclusion reporting habits during the past years,  Alternatively, perhaps the most 

recent papers do exclude more participants then earlier papers. Overall, it is not possible to 

decide which of the above scenarios may be more probable. However, it is important to note 

that exclusions do allow for high ‘researcher degree of freedom’ and so have implications for 

data dredging and N-hacking (Simmons et al. 2011; Carp 2012; Szucs 2016). Therefore, it 

would be important to clarify and define exclusion criteria and numbers in research fields. 
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Besides the uncertainty about interpreting the above exclusion data it is also 

noteworthy that extracting condition numbers and trial numbers in each condition in 

published papers was particularly difficult due to completely idiosyncratic descriptions and 

missing information. So, we suggest that it would be beneficial to standardize reporting 

requirements and formats in neuroimaging, for example by linking standard reporting cards 

to all neuroimaging papers. For example Nature Research has already started using standard 

‘Reporting Summaries for MRI studies’. However, we suggest a more formal, comprehensive 

and universally required approach (see related discussion in Begley and Ioannidis, 2015). 

Standardized reporting would also make papers easily machine readable, with their data 

being possible to re-analyze and to combine. 

In conclusion, the consistent historic increase in sample sizes suggests that we may be 

able to break the long ‘tradition’ of criticizing low power but not improving the situation 

(Sedlmeyer and Gigerenzer, 1989). However, the increase in sample sizes could be sped up 

by targeted and timely interventions by both publishers and funders. Funding contracts could 

specify power-calculation-based sample sizes, pre-registration requirements for crucial 

studies and standardized reporting of methods/results. Such changes would provide funders 

with certainty that their money is not wasted.   

It is tempting to assume that many of the highly cited papers analyzed here are 

probably replicated given that so many other scientists cite them. However, high citations are 

not synonymous to replication. It is well known from other fields that some papers get 

extremely heavily cited without any attempt to replicate them and that when replication 

eventually is attempted, it fails (Ioannidis 2007). A survey of the most-highly cited papers 

across all medicine has shown that of the most-cited observational studies 5 out of 6 were 

subsequently refuted and even a quarter of randomized trials were contradicted (Ioannidis 

2005). Exact replication in particular is often avoided and this may allow building large 

literatures upon questionable findings. Therefore, we suggest that, whenever this has not been 

done already, the exact replication of some highly cited influential studies should be high 

priority as many of these ground-breaking studies were done in a previous era with deficient 

sample size standards. Consequently, some highly cited studies in this field may have high 

false report probability (Yarkoni 2009; Szucs and Ioannidis, 2017a,b). 
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