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CRISPR-based high-throughput screens are a powerful method to unbiasedly assign function to a large 
set of genes, but current genome-wide libraries yield a substantial number of false positives and neg-
atives. We use a retrieval-tree based approach to accurately characterize the off-target space of these 
libraries and show that they contain a notable fraction of highly promiscuous gRNAs. Promiscuous 
gRNAs are depleted from screens in a gene-independent manner, create noise in the data generated by 
these libraries, and ultimately lead to low accuracy in hit identification. This extensive off-targeting also 
contributes to low overlap between data generated by independent libraries. To minimize these prob-
lems we developed the CRISPR Specificity Correction (CSC), a computational approach that segregates 
on- and off-targeting effects on gRNA depletion. We demonstrate that CSC is able to reduce the occur-
rence of false positives, improve hit reproducibility between different libraries, and uncover both known 
and novel genetic dependencies in melanoma cells. 

CRISPR-Cas9 can disrupt loci at genome-scale, and holds 
the potential of assigning function to loci in an unbiased 
manner with unprecedented scope and sensitivity1. Though 
relatively recent, CRISPR screens have been successfully 
employed to understand disease dependencies in numer-
ous settings1-5 including in vivo6. CRISPR libraries have 
gone through several design iterations to increase on-target 
efficiency, reduce off-targeting, and consequently improve 
performance7-9. Yet, second generation libraries still yield a 
significant number of false positives and negatives suggest-
ing that additional improvements to guide design may further 
increase screen sensitivity and specificity.
	 During our recent efforts to adapt CRISPR screening 
to the noncoding genome10, 11, we found a systematic flaw in 
the way off-targets of guide RNAs (gRNAs) are identified by 
design algorithms11. The flaw stems from the application of 
short-read aligners to identify potential off-target loci. Align-
ers were developed to deal with large datasets generated by 
high-throughput sequencing and have a trade-off between 
speed and exhaustive read-matching, leading to truncation 
of an alignment search if an effort limit is exceeded12, 13. Be-
cause of this, the adoption of aligners as a strategy to identify 
potential off-target sites by the majority of gRNA design tools, 
often leads to a mis-characterization of the potential off-tar-

get space of gRNAs even when off-targets have perfect or 
near-perfect (1 mismatch) complementarity to the guide11. As 
a consequence, tools that rely on aligners fail to discard high-
ly promiscuous gRNAs and often assign to them mislead-
ingly high specificity scores11, a problem that has been well 
documented by others7, 14. To address this issue we devel-
oped GuideScan11, a retrieval-tree (trie) based gRNA-design 
algorithm that accurately enumerates all potential off-target 
sites up to a user-specified number of mismatches. 
	 Here, we use GuideScan to accurately characterize 
the off-target space of published genome-wide libraries and 
determine if guide promiscuity compromises their perfor-
mance. We found that all libraries we analyzed had a sub-
stantial fraction of gRNAs with perfect or near-perfect off-tar-
gets. Like gRNAs targeting amplified genomic loci15, these 
promiscuous gRNAs are depleted from screens in a gene-in-
dependent manner and contribute to substantial noise in the 
data the libraries generate. They also contribute to the occur-
rence of false-positives and false-negatives following hit-call-
ing, and low overlap between genes identified as essential by 
independent libraries. To overcome this problem, we trained 
a gradient-boosted regression tree model to learn the influ-
ence of guide specificity features on gRNA depletion in the 
context of dropout assays. We use data from this model to 
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develop a CRISPR Specificity Correction (CSC) that disen-
tangles the contribution of off-targeting from the effects of 
gene disruption to the depletion of a guide. We show that 
implementation of CSC reduces the number of false posi-
tives, increases the concordance between hits identified by 
different libraries, and demonstrate it uncovers both known 
and novel genetic dependencies in melanoma cells.

RESULTS
Characterizing the off-target space of genome-wide 
CRISPR libraries
We used GuideScan11 to construct retrieval trees (tries) 
that index all possible Cas9-target sequences in the mouse 
(mm10) and human genomes (hg38) (see methods). We tra-
versed these to retrieve all potential off-target loci of com-
monly used human and mouse libraries3, 7, 8, 16, 17, allowing for 
up to 3 mismatches between gRNA and off-target. We found 
that a substantial fraction of guides in all libraries has multiple 
perfect or near-perfect sites in the genome (Figure 1a). For a 
single gRNA, perfect off-targets and single mismatch neigh-
bors can occur tens-of-thousands of times (Figure 1b and 
Supplementary Tables 1-9). Furthermore, some of these 
promiscuous gRNAs are included multiple times in a single 
library, as previously described18. Finally, in each library, a 
substantial fraction of genes are targeted by gRNAs with 
multiple perfect target sites in the genome (Supplementary 
Figure 1a).
	 It is well established that gRNAs targeting amplified 
genomic regions can confound measurements of cell pro-

liferation/viability in CRISPR loss-of-functions screens as a 
single gRNA can direct Cas9 to cleave multiple loci eliciting a 
DNA-damage response that includes cell cycle arrest15. We 
reasoned that the same could be true for highly promiscu-
ous gRNAs present in genome-wide libraries. To assess this, 
we examined gRNA performance in dropout screens, which 
aim to identify genes whose functions are required for cell 
proliferation or viability2, 7. Guides that target such genes are 
expected to confer a selective disadvantage to cells and, as 
a consequence, be depleted from the cell population over 
time. These assays are particularly useful to benchmark the 
performance of CRISPR libraries and gRNA design rules 
because the availability of curated sets of “essential” and 
“non-essential” genes19 allows the estimation of true positive 
and true negative hits.
	 As expected, highly-specific gRNAs (with no off-tar-
gets up to 2 mismatches) targeting essential genes were ro-
bustly depleted from the library over the course of two weeks 
(Figure 1c; red curves), while the representation of specif-
ic guides targeting non-essential genes remained roughly 
unchanged (Figure 1c; green curves). However, when we 
binned gRNAs targeting non-essential genes based on the 
number of perfect target sites in the genome (Figure 1c, left; 
blue curves), we saw a concomitant increase in the degree 
of their depletion until the distribution became similar to that 
of gRNAs targeting essential genes. The same effect was 
observed, though to a lesser extent, when gRNAs with a sin-
gle perfect genomic target where binned based on increas-
ing numbers of off-targets with one mismatch to the guide 
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Figure 1. Pervasive off-targeting 
in Genome-wide CRISPR libraries. 
(a) Percentage of gRNAs in com-
monly used human and mouse ge-
nome-wide libraries whose nearest 
off-target (OT) alignment has zero 
(red), one (black), or more than one 
(white) mismatches to the guide. Mis-
matches are calculated as hamming 
distances. (b) number of perfect tar-
get sites for gRNAs that have off-tar-
gets at hamming distance 0. Each dot 
represents a unique gRNA. (c) Cu-
mulative distributions of z-scores of 
gRNAs from all libraries during viabil-
ity screens in A375 cells. Left, guides 
targeting non-essential genes were 
binned based on increasing number 
of perfect OTs (2, 3, 4, 5, >5, >10, 
>15; blue distributions). Distributions 
of gRNAs targeting essential (red) or 
non-essential (green) genes and with 
no off-target up to a hamming dis-
tance of 3 are plotted for comparison. 
Right, same as before but binning the 
gRNAs based on decreasing speci-
ficity scores (grey curves). Distribu-
tions of gRNAs targeting essential 
(red) or non-essential (green) genes 
and with specificity of 1 are plotted 
for comparison. (d) Cumulative dis-
tributions of specificity scores for the 
gRNAs in human libraries.
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(not shown), suggesting that, in agreement with previous 
reports18, 20, a wide-range of off-targets can reduce cell fit-
ness and confound growth measurements in CRISPR as-
says. To determine how the full range of off-targets contribut-
ed to gene-independent depletion, we calculated GuideScan 
specificity scores for all gRNAs11. This score ranges from 
0-1 for targeting guides (with 1 denoting the most specific 
gRNAs) and takes into account the number, position, and 
type of mismatch between guide and genomic sequence11 

(Figure 1d, Supplementary Figure 1b). Binning gRNAs tar-
geting non-essential genes based on this score showed that 
decreasing specificity led to increasing depletion of gRNAs 
(Figure 1c, right; Supplementary Figure 1c), analogous to 
what has been recently reported for gRNAs targeting reg-
ulatory elements21. Importantly, distributions of gRNAs with 
scores above 0.16 became indistinguishable from those of 
highly specific guides (specificity = 1; Kolmogorov–Smirnov 
test, adjusted for multiple testing), suggesting that above this 
specificity threshold off-targeting no longer interferes with 
gRNA representation in the library.
	 Together this data shows that off-targeting in CRIS-
PR genome-wide libraries is more pervasive than previously 
anticipated. It also suggests that gRNAs with low specifici-
ty (GuideScan scores equal or below 0.16) may contribute 
to significant noise in data generated during genome-wide 
screens. In fact, for all libraries, a substantial fraction of 
genes is targeted by at least one (Supplementary Figure 

1d), and often multiple (Supplementary Figure 1e, Supple-
mentary Figure 1f), guides below our specificity threshold. 
Since promiscuous gRNAs are preferentially depleted during 
dropout assays, this may lead to the incorrect identifica-
tion of genes as essential hits. In addition to contributing to 
false-positive hits, promiscuous gRNAs may also lead to the 
occurrence of false-negatives in the data by minimizing the 
signal-to-noise ratio. Finally, even when promiscuous gRNAs 
target essential genes (Supplementary Figure 1f) and their 
depletion correctly reflects genetic dependencies, off-target-
ing may still be problematic as it can serve as a confounder 
for gRNA design rules that have been learned or validated 
based on the degree to which gRNAs essential genes are 
lost from screens.

Impact of off-targeting on gRNA efficiency metrics
We first sought to determine if off-targeting affected previous-
ly published metrics of gRNA efficiency. We focused on three 
distinct scores that predict gRNA efficiency based on gRNA 
design rules defined through three distinct screening modes. 
Rule Set 1 (RS1) was developed based on a set of guides 
targeting cell surface markers, where loss of these markers 
was used as a proxy for gRNA activity9. Rule Set 2 (RS2) was 
developed based on enrichment of guides targeting genes 
whose mutation is known to confer resistance to a panel of 
drugs7. Finally, Spacer Scoring for CRISPR (SSC) was de-
veloped based on the depletion of known essential genes 
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Figure 2. Influence of off-targeting on gRNA efficiency rules. (a) Top, dotplots and density plots showing the depletion of highly-specific (score = 1; 
grey) or highly-unspecific (score < 0.05; pink) gRNAs targeting essential genes in viability screens performed in KBM7 and HL60 cells. Bottom, spearman 
correlation coefficients between efficiency scores (RS1, RS2, and SSC) and depletion of specific gRNAs (pink), unspecific gRNAs (grey), or gRNAs from 
both groups combined (black). (b) Dotplots showing the correlation between the depletion of specific (score > 0.16) gRNAs targeting essential genes and 
RS1, RS2, and SSC scores in four distinct viability screens. Spearman correlation coefficients are shown. 
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from dropout screens22.
	 We computed RS1, RS2, and SSC scores for all 
guide RNAs in the Wang library23, which does not incorpo-
rate any of these scoring metrics in its gRNA design, and 
used the depletion of gRNAs targeting essential genes as a 
surrogate measurement for gRNA activity. To test if off-tar-
geting confounded any of the three scores, we selected gR-
NAs targeting essential genes and grouped them into high-
ly-specific (specificity = 1) or highly-unspecific (specificity < 
0.05) sets. As expected, the set of guides with the lowest 
specificity showed the strongest depletion in two indepen-
dent cell lines (Figure 2a, top). We then calculated the cor-
relation between all three efficiency scores and the deple-
tion of gRNAs in each set individually or combined. Because 
guides that are more efficient at disrupting essential genes 
should have the strongest degree of depletion, we expected 

to see a negative correlation between depletion and each 
of the three efficiency metrics. While this was true for RS1 
and RS2, both of which had moderate negative correlations 
for all groups tested (Figure 2a, bottom), SSC scores only 
correlated negatively with depletion when highly unspecific 
gRNAs were considered. This suggests that design rules ex-
tracted from gRNA depletion values are vulnerable to being 
confounded by off-target toxicity. In agreement with this, we 
observed mild negative correlations between RS1 and RS2 
scores and the depletion of specific (specificity score > 0.16) 
gRNAs from two additional libraries (Figure 2b), but no evi-
dence that SSC scores were able to predict gRNA activity in 
this setting. Overall, RS2 showed the best predictive value 
(Figure 2b, Supplementary Figure 2) and was therefore 
selected for follow up analysis.
	 Finally, we tested if gRNAs targeting functional pro-
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Figure 3. Off-targeting impacts hit-calling. (a) Percentage of essential genes identified as hits by 
STARS (FDR<10%) in viability screens performed in A375 cells for each of the indicated libraries. (b) 
Spearman correlation coefficients between gRNA rank and gRNA specificity (GuideScan’s specificity 
score) or efficiency (Rule Set 2 score). (c) Specificity scores for gRNAs in the Top 1000 position rank, 
grouped based on whether they target a validated essential gene, a validated non-essential gene, or a 
gene outside these two sets (uncharacterized). (d) Fraction of gRNAs in the Top 1000 rank that target 
essential, non-essential, or uncharacterized genes. (e) Upset plot showing the size of the intersections 
between uncharacterized genes identified as hits by each of the libraries. (f) GuideScan’s specificity 
scores of gRNAs that contribute to hit calling of uncharacterized genes in one, two, three, or all four 
libraries. (g) As (f) but showing Rule Set 2 efficiency.
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tein domains are preferentially depleted from dropout assays4 

by virtue of being more promiscuous—since sequences of 
functional domains are under strong evolutionary constraints 
and are often shared by multiple genes. We found that gR-
NAs used to define this rule4 where highly specific, with no 
evidence that their dramatic depletion was driven by off-tar-
geting (Supplementary Figure 2b, Supplementary Figure 
2c), lending further support to the idea that targeting func-
tional domains is a useful strategy to generate true loss-of-
function alleles.

Off-targeting affects library performance and hit-call re-
producibility
Next, to determine if off-targeting affects hit-calling, we 
used the STARS algorithm7 to identify essential hits from 
high-throughput screens performed under identical condi-
tions using GecKOv1, GecKOv2, Avana, and Brunello librar-
ies7,2. The Brunello library identified the highest percentage 
of genes from a curated set of core essentials (n=291) at 
FDR<10% (46.7%), followed by Avana (36.7%), GecKOv2 
(23.7%), and GecKOv1 (4.4%) (Figure 3a). 
	 STARS, like other hit-calling algorithms24, 25, is a gR-
NA-ranking system and rewards genes for which multiple 
guides score. We reasoned that both gRNA efficiency and 
gRNA specificity could influence the position of a guide within 
this ranking and thus help explain the differences between 
the hits identified by each of the libraries, or the inability to 
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identify the majority of core essential genes as hits. To ex-
amine this, we pooled the rankings of all four libraries and 
examined if the gRNA’s position in these lists correlated best 
with its efficiency (as determined by RS2 scores) or specific-
ity (as determined by GuideScan’s score). We looked at all 
guides combined or grouped by the targeting of essential, 
non-essential, or uncharacterized genes (i.e. genes outside 
the two pre-validated sets). In all cases, the specificity score 
showed the strongest correlation with guide rank (Figure 
3b). This was most noticeable for gRNAs targeting non-es-
sential and uncharacterized genes. In fact, within the top 
1000 rank, guides from these two sets tended to have the 
lowest specificities (Figure 3c), suggesting their ranking was 
largely driven by off-targeting. This is problematic because 
together, gRNAs targeting uncharacterized and non-essen-
tial genes occupy 90% of top rank positions during hit calling 
(Figure 3d), which may relegate gRNAs targeting true es-
sential genes to lower positions.
	 Because gRNAs targeting uncharacterized genes 
tend to have relatively low specificities (Figure 3c) which 
correlate with rank (Figure 3b) we examined the genes from 
this set that were identified as essential by each of the four 
libraries. Again, Brunello returned the highest number of hits, 
followed by Avana, GecKOv2, and GecKOv1 (Figure 3e). 
Despite the indication that these genes play essential roles in 
A375 cells, the majority of the hits did not overlap amongst li-
braries (Figure 3e). To see if this lack of hit-calling reproduc-
ibility is driven by differences in specificity or gRNA efficiency, 

Figure 4. A CRISPR Specificity Correction (CSC) to minimize noise in CRISPR screens. (a) Importance of the top 26 features for the boosted gradient 
regression tree model. The five features used in CSC are highlighted.   (b) Schematic representation of CSC. (c) Cumulative distributions of z-scores of 
gRNAs from GecKO1, GecKO2, Avana, and Brunello libraries during viability screens in A375 cells following CSC implementation. Distributions are plotted 
as in Figure 1c.
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we retrieved for each library all gRNAs that lead uncharacter-
ized genes to be identified as hits, and grouped them based 
on how many libraries had identified the gene they target as 
a hit (Figure 3f, 3g). We reasoned that if the discrepancies in 
hit calling are caused by off-targeting, this should be reflect-
ed in the specificity of the gRNAs in these groups. Indeed, 
we found that gRNAs that lead to genes being identified as 
hits in a single library had the lowest specificity (Figure 3e) 
and that the specificity scores increased with the number of 
libraries that reproduced the hit-call (Figure 3e). In contrast, 
the RS2 scores were identical for all groups regardless of the 
agreement amongst libraries (Figure 3g).
	 Based on these results, we conclude that off-target-
ing causes substantial noise in the data generated by ge-
nome-wide libraries. This includes the high ranking of pro-
miscuous gRNAs during hit-calling which compromises the 
identification of true positives hits and the reproducibility of 
the data generated by independent libraries.

A computational correction for off-target mediated gRNA 
depletion
Our data suggests that CRISPR loss-of-function screens 
should include only gRNAs with a specificity score above 
0.16 in their pools to prevent toxicity caused by off-targeting. 
Yet, current CRISPR libraries have not been designed using 
this specificity threshold, and as a consequence generate 
data with low signal-to-noise ratios. In an effort to minimize 
these issues, we set out to decouple the gene-knockout ef-
fect from the off-target effect by developing a CRISPR Spec-
ificity Correction (or CSC) that adjusts for the contribution of 
off-target cleavage to the total depletion of the gRNA. 
	 GuideScan computes specificity metrics that include 
the enumeration of potential off-targets up to a Hamming dis-
tance of 3, as well as the gRNA’s specificity score. These 
five metrics, along with the sequence features used in RS27, 
and novel features quantifying the gRNA’s self-complemen-
tarity (including complementarity to the scaffold sequence) 
were computed for all gRNAs in the Avana library7, 8. Overall 
these 426 engineered features (Supplementary Table 10) 
were used as covariates in the regression models. Previous 
studies attempted to learn cutting efficiency rules based on 
the performance of gRNAs targeting a subset of genes with 
known functional relevance7, 9, 22. In contrast, our model aims 
to predict gRNA depletion from the totality of gRNAs in the 
library, under the assumption that most of genes do not play 
a functional role in cell viability or proliferation and therefore 
depletion of the majority of guide RNAs will reflect the influ-
ence of off-targeting.
	 We trained three regression models (linear regres-
sion, random forest regression, and gradient-boosted regres-
sion tree) on 90% of the guides and held out the remaining 
10% for testing. Gradient-boosted regression trees per-
formed the best at predicting gRNA depletion as assessed 
by mean squared error. All five specificity metrics computed 
by GuideScan were within the top 25 most important features 
in predicting log2 fold depletion (Figure 4a, Supplementary 
Table 10) representing 50.6% of the overall feature impor-

tance. This supports our previous analysis that off-target tox-
icity is a major driver of gRNA depletion in CRISPR screens. 
The remaining contribution came from features that impact 
the activity of the gRNA including those described in RS2 
(Figure 4a). Importantly, self-complementarity of different 
lengths were amongst the most important features for the 
model (4%) outside the specificity metrics. Self-complemen-
tarity with the scaffold region and complement segment of 
the gRNA are both expected to affect gRNA activity by in-
terfering with its association with the target. Therefore, the 
identification of these novel features suggests that current 
sequence specific cutting efficiency rules can be further en-
hanced. 
	 The five specificity features of the model represent 
confounding variables in CRISPR screens as they contribute 
to gene-independent gRNA depletion. CSC adjusts for this to 
generate a corrected log2 fold-change (Lc) for each guide in 
the library using the following formula (Figure 4b):

	 Where (L) is the original log2 fold-change of the 
gRNA, (H0, H1, H2, H3, and s) represent the five specificity 
metrics computed by GuideScan (i.e., occurrences at Ham-
ming distance 0, 1, 2, and 3, and specificity score), and (X0 
to X4) represent the numeric values of the relative feature 
importance learned for each of the specificity metrics (Figure 
4a). The cumulative depletion effects are scaled by a com-
putationally derived dynamic coefficient (c), ranging from 0 to 
10, to capture and minimize the influence of experimentally 
derived batch effects (see Methods).
	 We applied CSC to GecKOv1, GecKOv2, Avana, and 
Brunello datasets derived from viability screens in A375 mel-
anoma cells2, 7, and plotted the resulting depletion values for 
specific gRNAs targeting essential and non-essential genes, 
as well as gRNAs binned based on decreasing specificity. 
We found that CSC successfully removed the influence of 
off-targeting from the depletion of gRNAs targeting non-es-
sential genes, bringing all distributions together regardless of 
gRNA specificity (compare Figure 4c, Supplementary Fig-
ure 3a with Figure 1d, Supplementary Figure 1b). Of note, 
this was accomplished without compromising the signal of 
gRNAs targeting essential genes (Figure 4c, Supplementa-
ry Figure 3a; red distribution). 
	 In summary, our data suggests that off-targeting 
causes gRNAs to be inappropriately lost from libraries and 
that this confounder can be corrected for using CSC.

Testing CSC performance
To benchmark CSC, we applied STARS to the corrected log2 
fold-change of all four libraries and examined how that affect-
ed the identification of gold-standard essential genes as hits 
(FDR<10%). When comparing the number of true-positives 
that scored, we found that CSC adjustment uncovered vali-
dated essential genes that were previously missed (Figure 
5a). However, large numbers of essential genes that were 
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previously identified as hits failed to score after correcting the 
log2 fold-change with CSC (Figure 5a).
	 To investigate the reasons behind this observation 
we retrieved all gRNA sequences targeting the validated set 
of essential genes and, for each library, grouped them based 
on whether their target had scored as essential only before 
the correction, only after the correction, or in both cases. 
We found that essential genes identified as hits only before 
correction were targeted by the most unspecific gRNAs. In 
contrast, hits identified only after CSC implementation were 
on average the most specific (Figure 5b). The observation 
that essential genes uncovered as hits only after CSC are 
targeted by the most specific gRNAs lends further support 
to the notion that, before correction, these gRNAs were out-
competed by promiscuous gRNAs (see Figure 3). However, 
the inability to identify essential genes targeted by highly un-
specific gRNAs could suggest that CSC cannot retrieve infor-
mation from these gRNAs and its implementation is theoret-
ically equivalent to discarding all gRNAs with low specificity 
scores from hit-calling analysis. To determine if this was the 
case, we selected gRNAs targeting essential genes with low 
specificity and plotted their ranks before and after CSC cor-
rection (Figure 5c). We reasoned that if CSC was not able 
to retrieve information from these guides, then they would 
fail to rank after their log2 fold-change had been corrected. 

Instead, we found that even after correction with CSC, high-
ly unspecific gRNAs occupied some of the highest ranks of 
STARS (Figure 5c). In fact, ranking gRNAs could have spec-
ificities scores as low as 0.018. Thus, CSC does not simply 
discard gRNAs with low specificity. 
	 To further explore what features led known essen-
tial genes to be lost after CSC application, we analyzed how 
the depletion values of gRNAs changed before and after its 
implementation (Figure 5d). We found that for the majority 
of gRNAs, z-scores were similar before and after correction. 
Yet, a distinct subset of gRNAs had z-scores that substan-
tially changed with CSC (Figure 5d). The majority of these 
gRNAs targeted essential genes identified as hits only before 
CSC (Figure 5d, left panel). In addition, this uncorrelated 
population was comprised exclusively of gRNAs with more 
than one perfect target site in the genome (Figure 5d, right 
panel). This suggests that although CSC is able to retrieve 
depletion information from highly unspecific gRNAs, it is gen-
erally unable to assign function to guides that target multiple 
identical sites. Indeed, about 80% of all gRNAs targeting es-
sential genes that did not score after CSC had more than 
one perfect target site in the human genome (Figure 5e). It 
is worth noting however, that a small fraction of gRNAs with 
multiple perfect targets still ranked highly even after CSC 
implementation (not shown). Thus, for genes whose dis-

Figure 5. Benchmarking CSC 
performance in viability screens. 
(a) Overlaps between essential 
genes identified as hits by STARS 
(FDR<10%) before or after correct-
ing the log2 fold-changes with CSC 
for each individual library. The sub-
set of genes identified only before 
CSC implementation is highlighted 
in grey. (b) Specificity scores of gR-
NAs that contributed to genes being 
assigned to each of the interactions 
shown in (a). (c) Ranks of unspecific 
gRNAs before and after correction. 
Guides are color coded as in (b), 
based on whether the gene they tar-
get was identified as a hit only before 

CSC (yellow), only after CSC (blue), or in both (grey). Boxplots on the right show the specificity scores for gRNAs that lead to hit calling after CSC. (d) 
Z-scores of gRNAs targeting essential genes before and after CSC implementation, where gRNAs are labeled based on whether they led to the identifi-
cation of essential genes as hits only before CSC (left, yellow), or whether they have more than one perfect target (right, red). (e) Fraction of gRNAs that 
identify essential genes only before CSC that have only 1 (light blue) or multiple (2-8+, graded colors) perfect target sites in the genome. H0, hamming 0.
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Figure 6. CSC uncovers new genetic dependencies in melanoma cells. (a)  Overlaps between uncharacterized genes identified as hits by STARS 
(FDR<10%) before or after correcting the log2 fold-changes with CSC for each individual library. The subset of genes identified only before CSC imple-
mentation is highlighted in grey. (b) Gene Ontology (GO) analysis focusing on uncharacterized genes that were identified as essential hits only before 
(top, yellow) or only after (bottom, blue) CSC correction. (c) Guide RNA ranks for subset of genes involved in RNA metabolic pathways that are identified 
as essential after correction of off-targeting with CSC. (d) Growth competition assays in A375 cells for selected genes. A schematic representation of the 
experiment is shown on the left. Plots show ratios of GFP+/mCherry+ cells over the course of a week, normalized to the first time point. Each gene was 
targeted by two independent gRNAs. Control gRNAs are shown in grey and plotted in each graph for comparison. Curves show mean and standard devi-
ation between three replicate experiments.
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ruption is very deleterious to the cell, CSC may still be able 
to decouple off-targeting effects from gene-knockout effects 
even from gRNAs with multiple identical target sites in the 
genome.
	 We draw two main conclusions from this analysis. 
First, that even when essential genes are correctly identified 
as hits in high-throughput CRISPR screens that may be driv-
en in large part by off-targeting (Figure 5d). This may help 
explain why efficiency scores learned on the depletion of 
essential genes perform worse than others (Figure 2a, 2b). 
Second, because unspecific gRNAs are preferentially deplet-
ed from dropout screens and tend to occupy the top ranks of 
hit calling algorithms (Figure 4) they often mask true posi-
tive hits. By adjusting for the contribution of off-targeting to 
the total depletion of the gRNA, CSC allows known essential 
genes that are targeted by specific gRNAs (and as a conse-
quence generally at a disadvantage compared to unspecific 
gRNAs) to be identified as hits (Figure 5b). This suggests 
that the same approach may be able to uncover unknown 
genetics dependencies from high-throughput CRISPR data.

CSC uncovers genetic dependencies in melanoma cells 
We next turned our attention to the set of uncharacterized 
genes and asked how CSC impacted the identification of 
hits by STARS. Because the analysis above suggested that 
CSC is able to uncover true positive hits while minimizing the 
occurrence of false negatives, we first checked if this also 
led to better reproducibility of hits between libraries. Indeed, 
CSC led to a higher hit overlap among hits identified by all 
four libraries for this gene set (compare Supplementary Fig-
ure 3b with Figure 3e), with a significantly higher number of 
genes scoring in multiple libraries (Supplementary Figure 
3c).
	 As before, a subset of genes scored only after CSC 
implementation (Figure 6a). To understand if these reflected 
real genetic requirements for cell proliferation and/or viability 
we performed a Gene Ontology analysis with two indepen-
dent tools26-28. In both cases, we found that genes identified 
after log2 fold-change correction by CSC were enriched in 
terms related to cell division and chromosome segregation 
(Figure 6b, Supplementary Table 11), which are expected 
to score in dropout assays. In contrast, genes identified as 
hits only before correction were enriched for terms related 
to hormone signaling, carbohydrate metabolism, and Golgi 
organization (Figure 6b), and were driven by highly promis-
cuous gRNAs targeting multiple members of the same pro-
tein family (Supplementary Figure 3d). Although we cannot 
exclude that these genes play essential roles in A375 cells, 
this data strongly suggests that in the context of current ge-
nome-wide libraries their depletion is largely driven by off-tar-
geting.
	 Aside from terms related to cell division and chro-
mosome segregation, the majority of Gene Ontology terms 
enriched amongst new hits were related to metabolism and 
processing of RNA (Supplementary Table 11). We found 
numerous hits involved in small non-coding RNA process-
ing including genes required for the biogenesis of miRNAs 

(DICER, DGCR8) rRNAs (EBNA1BP2, DDX21) and tRNAs 
(KIAA0391, MOCS3, CTU1) (Figure 6c, Supplementary 
Table 11). In addition, multiple components of the Integra-
tor complex (INTS1, INTS2, INTS4, INTS5, INTS6, INTS9) 
scored as essential after CSC correction (Figure 6c). Of 
these, DICER, DGCR8, and CTU1 have been previously 
implicated in tumor cell growth, highlighting CSC’s ability to 
uncover true essential genes as hits. To test if these and the 
remaining candidate hits represent genetic dependencies in 
A375 melanoma cells, we selected two gRNAs for each gene 
and measured the impact of these guides on cellular growth 
using competition assays (Figure 6d; left). As expected, con-
trol gRNAs targeting “safe-targeting” regions20 (grey lines) 
showed no evidence of depletion (Figure 6d; right). In con-
trast, cells expressing gRNAs against our positive controls 
or our candidate hits (colored lines) were outcompeted by 
wild-type cells over the course of our experiment, suggesting 
that disruption of the genes they target impairs cellular prolif-
eration or viability.
	 Together these observations highlight the essenti-
ality of RNA metabolic pathways to melanoma cell growth 
and demonstrate that true genetic dependencies such as 
these can be systematically uncovered by CSC. To facilitate 
the use of CSC as a component of the analysis workflow of 
CRISPR screens, we are making the software available to 
the community via our Bitbucket repository, along with all the 
data produced in this study.

DISCUSSION
CRISPR high-throughput functional assays rely on the prin-
ciple that, within a population of cells infected with a lentiviral 
library, the abundance of individual gRNA sequences reflects 
the importance of their targets to the biological process being 
studied. One of the most common modalities are negative 
selection screens, where gRNAs targeting genes essential 
for cell growth are expected to specifically dropout from the 
population over the course of the experiment. These assays 
are extremely powerful at defining genetic dependencies. 
	 Yet, it is well appreciated that the abundance of gR-
NAs in these assays does not depend solely on the function 
of the gene they target. Guide RNA efficiencies are a known 
confounder in CRISPR screens since gRNAs with low activi-
ty are unlikely to score even if they target an essential gene. 
Similarly, unintended cleavage can contribute to the errone-
ous depletion of gRNA, particularly through toxicity caused 
by the generation of multiple double stranded DNA breaks 
at amplified genomic regions15, 29, 30. Both gRNA efficiency 
and toxicity therefore influence the effectiveness of libraries 
as gene discovery tools. The extent to which off-targeting 
outside highly amplified genomic regions affects CRISPR 
library performance is less well characterized20, 31, 32. While 
toxicity caused by off-target cleavage has been documented 
in large-scale assays20, studies suggest it may be general-
ly small, with CRISPR technology producing few systematic 
off-targets effects31, 32 and gRNA abundance reflecting pre-
dominantly on-target activity32. 
	 Because our previous work11 demonstrated that 
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short-read aligners do not accurately enumerate potential 
off-target sites for gRNAs leading to an underestimation of 
their promiscuity we set out to revisit the impact of off-tar-
get effects on large-scale CRISPR screens. We show that 
both first- and second-generation libraries are affected by 
extensive off-targeting which decreases their performance in 
negative selection screens. Decreased performance stems 
from at least two phenomena. First, genes can score as hits 
solely by virtue of being targeted by multiple promiscuous 
gRNAs. Second, promiscuous guides can be ranked high-
ly by hit-calling algorithms effectively outcompeting specific 
gRNAs against essential genes. Thus, gRNA off-target-
ing contributes to both the occurrence of false-positive and 
false-negative hits in loss-of-function negative selection 
screens. Both have clear implications to biomedical research 
as they increase the efforts required for secondary valida-
tion of identified hits and contribute to low replication of data 
when performing identical screens with independent tools.
	 We also show that gRNA promiscuity can be quanti-
fied—and gene-independent depletion predicted—using Gu-
ideScan’s specificity scores11, an aggregate metric that takes 
into consideration the number and type of off-targets for 
each guide. Using this score, we define a specificity thresh-
old (0.16) above which depletion of gRNAs due to off-target 
toxicity is no longer detected. The incorporation of this rule in 
newly designed CRISPR libraries should minimize the noise 
generated by off-target cleavage and yield libraries with in-
creased sensitivity. Yet, we foresee that implementation of 
this rule will not always be possible. First, large discovery 
efforts have already been deployed using current tools and it 
is unlikely that they will be replicated with improved libraries 
in the near future. Second, there is an increasing interest in 
using CRISPR to identify essential noncoding regulatory se-
quences in large scale. While GuideScan scores also predict 
gene-independent depletion of gRNAs in this setting21, many 
of these elements—such as transcription factor binding sites 
or RNA Binding Protein motifs—are so small in size that only 
a limited number of gRNAs that can potentially disrupt them, 
making further filtering unachievable.
	 To deal with these constraints we developed CSC to 
adjust for the contribution of off-targeting in gRNA depletion. 
We use CSC in four dropout screens performed under iden-
tical conditions and show that this correction can remove hits 
whose identification is driven by gRNA promiscuity. CSC also 
uncovers gold-standard essential genes targeted by specif-
ic guides and improves the concordance of hits between all 
four independent libraries. Finally, CSC uncovers numerous 
genes involved in RNA metabolism as genetic vulnerabilities 
in melanoma cells, which we validate experimentally using 
CRISPR-Cas9–based cell competition assays. 
	 DICER and DGCR8 have been previously implicat-
ed in tumorigenesis where they have been shown to act as 
haplo-insufficient tumor suppressors33-35. Our results support 
the notion that even if compromised gene regulation by the 
miRNA pathway may be advantageous to tumor cells, its 
complete disruption is detrimental to tumor cell growth. EB-
NA1BP2 is a conserved protein required for pre-rRNA pro-

cessing and ribosome assembly in yeast36, 37, whose deple-
tion in Saccharomyces cerevisiae, leads to an arrest in cell 
division under restrictive conditions36. The same requirement 
seems to also exist in melanoma cells. CTU1 is a subunit 
of the cytosolic thiouridylases complex, involved in wobble 
position post-transcriptional modifications38  which optimizes 
codon usage during gene-specific translation38. This activi-
ty has recently been shown to be critical for cells carrying 
oncogenic BRAFV600E 39. Finally, Integrator was initially de-
scribed as important for the processing of snRNA 3’-ends40, 

41, but has since been implicated in the biogenesis of other 
RNA molecules including enhancer RNAs42, 43 and messen-
ger RNAs43-45. At mRNAs, Integrator subunits seem to play 
various roles including the processing of replication-depen-
dent histones (INTS3, INTS9)45, the initiation of transcription 
downstream of MAPK signaling (INTS1, INTS11)43, 44 and the 
release of paused polymerase II (pol II) from the promoters 
of growth factor responsive genes (INTS1, INTS11)44. More 
recent reports suggest that integrator may also destabilize 
the association of pol II with promoters preventing produc-
tive elongation at a subset of genes (INTS1, INTS4, INTS9, 
INTS11, INTS12)46, 47. The scoring of multiple Integrator sub-
units in our analysis suggests that one or several of these 
functions are essential for the viability/proliferation of mela-
noma cells. Compromised snRNA biogenesis is perhaps one 
of the obvious explanations for impaired cell growth following 
loss of Integrator since it affects essential processes such 
as splicing. However, we find that subunits not required for 
snRNA processing in Drosophila41, 46 also score well following 
CSC implementation, suggesting that Integrator functions at 
protein-coding genes may also be essential. Our data lends 
further supports to the idea that stimulus-dependent recruit-
ment of Integrator to MAPK-responsive genes is required for 
the growth of cells with activating mutations in BRAF43. 
	 Together, these data suggest that CSC is an effective 
strategy to maximize data recovery from essentiality screens 
performed with published high-throughput libraries. We pre-
dict that CSC implementation will also further enable the use 
of high-throughput CRISPR screens against small regulatory 
sequences, by allowing the use of gRNAs with low specificity 
in cases filtering for gRNA specificity is not possible. Final-
ly, while our current study is limited to Cas9-based screens, 
CRISPRi and CRISPRa assays can also be confounded by 
off-targets21. Therefore, we predict CSC will also be useful to 
uncover genetic dependencies in those contexts. 
	 In summary, we characterize off-targeting in 
high-throughput CRISPR screens and develop a computa-
tional strategy to minimize the noise it creates. We expect 
this method will prove useful to maximize data recovery from 
screens targeting both the coding and non-coding genomes.
 
MATERIALS & METHODS
Enumeration of Targets 	
We constructed retrieval trees (tries) consisting of all possible 
20mer Cas9 gRNA target sites in the mouse and human ge-
nomes as previously published GuideScan11. Unlike the orig-
inal tries, these were constructed without alternative chromo-
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some data and thus produce a more accurate description of 
the off-target space of individual guide RNAs. To determine 
the mismatch neighborhood for each gRNA in the library, we 
traversed each of their sequences through the trie to exhaus-
tively determine all neighbors up to and including Hamming 
and Levenshtein distances of 3. Specificity scores for each 
gRNA was computed using Hamming distance neighbors as 
previously described11.

Model Development for Predicting log2 fold-change
Data
A total of 95,344 gRNAs from the Avana library cloned into 
the lentiGuide vector7, 8 were selected for model develop-
ment. Guide RNAs raw read counts were converted into 
logarithmic normalized (lognorm) counts and technical repli-
cates were combined and averaged. Prior to computing log2 
fold-change, counts between averaged control and averaged 
gRNA knock down were also logarithmically normalized. The 
resulting lognorm counts between control and knock down 
conditions were then subtracted to get log2 fold-change. This 
log2 fold-change was the predicted feature during model de-
velopment. 

Feature Engineering
A total of 426 features were used in the learning of the mod-
el to predict Avana gRNA log2 fold-change. All features from 
Rule Set 2 were generated and incorporated into the model. 
Pertinently, strings were represented in the model by one-hot 
encoding of position-dependent 1mers and 2mers as well as 
position-independent 1mers and 2mers. GuideScan gRNA 
specificity features (specificity score, and Hamming distanc-
es at 0,1,2,3) were represented as numeric values and were 
taken directly from trie-based mismatch neighborhood enu-
merations and specificity computations. Self-complemen-
tarity computations of the gRNA complementary sequence 
with itself and with the tracrRNA scaffold were done by con-
catenating the complementary sequence with the scaffold 
sequence to generate an aggregate string. The aggregate 
string was then divided into substrings of length k (where k 
is 3, 4, or 5). The k-string and the reverse complement of the 
k-string were then placed into a hash function to determine 
a hash slot for two hash tables. If the value of the forward 
k-string was greater than the value of the reverse k-string 
then the k-string was assigned to the first hash table; oth-
erwise the k-string was assigned to the second hash table. 
The value of the k-string in each hash slot equaled the occur-
rence of the k-string in the aggregate string. An inner product 
between the two hash tables was computed for each string 
at each k value to determine self-complementarity between 
the complementary sequence and the tracrRNA scaffold. 
Self-complementarity of the complementary sequence with 
itself was done in the same manner except the aggregate 
string is simply the complementary sequence.

Model Selection and Training
Regression models were selected to predict the value of log2 
fold-change from gRNA features. Specifically, regression 

models where the importance of each feature’s contribution 
to the prediction could be trivially extracted and interpreted 
were utilized. Linear regression, Random Forest Regression, 
and Boosted Gradient Regression Tree models were select-
ed for this regression task. Hyperparameters were tuned 
through grid search with fivefold cross validation to optimize 
the models prior to prediction on test data. Training was done 
on 90% of total data and testing was done on 10% of held 
out total data. The data was randomly divided into training 
and testing sets. Models never encountered test data during 
training. Accuracy of the models were assessed by mean 
squared error between predicted values and test values. Er-
ror residuals were computed for each model to assess for 
systemic learned error and no pattern was appreciated. The 
gradient boosted regression tree model had the lowest mean 
squared error and its features importance were extracted for 
use in constructing a depletion screen correction.

CRISPR Specificity Correction (CSC)
CSC Derivation
A mathematical correction to account for the influence of 
non-specificity on screen log2 fold-change data was derived 
using the formula below.

Where:

L = log2 fold-change
c = dynamic coefficient
s = GuideScan specificity score
x0 = learned value coefficient for specificity score
x1 = learned value coefficient for Hamming distance 0 
xn = learned value coefficient for Hamming distance n+1
h0 = number of occurrences at Hamming distance 0
hn = number of occurrences at Hamming distance n

Where the log2 fold-change is the unmodified log2 fold-
change from any depletion screen data. The occurrence of 
target sites at arbitrary Hamming distances is their enumer-
ated occurrences in a genome as determined by traversal 
through a trie of target sites. The learned value coefficients 
were determined by extracting the feature importance values 
from the gradient boosted regression tree model. The aggre-
gate of all features importance in this model add to one and 
the feature values used as coefficients in the correction rep-
resent confounders for on target log2 fold-change prediction. 
Explicitly, the value coefficients were learned from the gra-
dient boosted regression tree, while the values of a gRNA’s 
specificity score and Hamming neighborhood were directly 
computed. The specificity score was computed using the Gu-
ideScan specificity score detailed below:
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Where:

CFD = likelihood of a gRNA cutting at the ith neighbor 
qi = number of times the ith neighbor occurs in the genome

Notably for a unique target site up to z mismatches, the Gu-
ideScan Specificity Score would be 1 since CFD = i = n = qi 
= 1. The specificity score applies only to Cas9 gRNAs. In its 
special form the CSC only corrects for off-targeting of Cas9 
NGG PAM gRNAs. 

Dynamic Coefficient
The coefficient that scales the correction is computed for 
each screen and ranges from 1 to 10. For each value of the 
coefficient, a two-sided Kolmogorov-Smirnov test is com-
puted between a set of a priori defined ground-truth gene 
log2 fold-changes and all other gene log2 fold-changes in a 
screen. The p-value for each iteration is computed and the 
value of the coefficient that produces the largest p-value is 
taken as the optimal coefficient value for the screen. The as-
sumption behind the dynamic coefficient is that the aggre-
gate distribution of log2 fold-changes in a screen should not 
deviate significantly from the distribution of ground truth gene 
log2 fold-changes.

General Form of CSC
CSC in its special form is specific to Cas9 NGG PAM gRNAs. 
However, it is written such that it can be generalized to any 
CRISPR system if one sets the value of x_0 to 0. Additionally, 
if a user does not have ground truth gene log2-fold changes 
to compare against they may set the value of c to 1. The most 
general form of the correction is therefore:

Cutting Efficiency Computations
Cutting efficiency for gRNAs were computed through com-
mand line versions of Rule Set 1, Rule Set 2, and SSC. All 
cutting efficiency metrics required 30mer sequences for gR-
NAs. The expanded 30mer sequence for each gRNA was 
determined through GuideScan derived gRNA target se-
quence to coordinate listed hash table lookup. In this manner 
all coordinates tied to a gRNA occurrence could be accessed 
in constant time. Coordinates for screen gRNAs were deter-
mined by hash table lookup and the coordinate was expand-
ed to a 30mer length. The resulting coordinates were then 
used to determine the 30mer sequence from an indexed fas-
ta file. The resulting 30mer sequence was used to compute 
cutting efficiency scores using Rule Set 1, Rule Set 2, and 
the SSC scorers.
	 Rule Set 1 was accessed at https://portals.broa-
dinstitute.org/gpp/public/analysis-tools/sgrna-design-v1 on 
March 23, 2019. Rule Set 2 was (Azimuth 2.0) was accessed 
at  https://github.com/maximilianh/crisporWebsite/tree/mas-
ter/bin/Azimuth-2.0 on March 24, 2019. SSC was accessed 
at https://sourceforge.net/projects/spacerscoringcrispr/ on 
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Code availability
Scripts for off-target enumeration and CSC implementation 
are freely available at our bitbucket repository (URL).

STARS
The STARS software (v1.3)7 was used to predict gene es-
sentiality based on raw and corrected log2-fold changes. The 
STARS software was run on default parameters with follow-
ing explicit parameters specified: threshold percentage set to 
10, directionality set to N. STARS was accessed at https://
portals.broadinstitute.org/gpp/public/software/stars on June 
20, 2019.

Gene Ontology Analysis
Enrichment of Gene Ontology in the Biological Processes 
category was calculate using two different web-based tools. 
Gorilla26 was accessed at http://cbl-gorilla.cs.technion.ac.il/ 
on July 31st, 2019. These results retrieved from this analysis 
are shown in Figure 6b. The Gene Ontology Resource27 was 
accessed at http://geneontology.org/ on August 1st, 2019. 
The results from this analysis are shown as Supplementary 
Table 11.

Cell Culture and generation of Cas9-expressing cells
Cells were cultured at 37 °C (5% CO2) in DME-HG sup-
plemented with 10% FCS, L-glutamine (2 mM), penicillin 
(100 U ml−1) and streptomycin (100 μg ml−1). For infections, 
293T cells (ATCC; # CRL-3216) were transfected with lenti-
viral constructs and packaging plasmids using Lipofectamine 
2000 (Invitrogen) according to manufacturer’s instructions. 
Viral media was collected 48h after transfection, concentrated 
using Lenti-X Concentrator (Takara) and used to infect A375 
cells (ATCC; # CRL-1619). To generate a Cas9-expressing 
cell line, A375 cells were infected with lentiCas9-Blast (Ad-
dgene #52962) and selected for 7 days with 10 μg ml−1 of 
Blasticidin. 
Competition Assays
We selected two gRNAs against each of our candidate 
genes and cloned them into LentiGuide-NLS–GFP48, using 
standard oligo cloning protocols. Sequences of all gRNAs 
along with their target coordinates are show in Supplementa-
ry Table 12. Cas9-expressing cells were infected with these 
constructs or with and LentiGuide-NLS–mCherry virus48 as a 
control. One day after infection, cells were selected with 1 μg 
ml−1 of puromycin for 48h after which point, gRNA-expressing 
cells were mixed in a 4:1 ratio with mCherry-labeled cells and 
plated in a well of a 24-well-plate (total 5000 cells per well). 
The total number of cells expressing GFP or mCherry fluo-
rescence was determined every 3h for the course of seven 
days with IncuCyte Live Cell Analysis Systems (Sartorius). 
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Supplementary Figure 1. Characterizing Off-targets in Genome-wide libraries. (a) Percentage of genes targeted by gRNAs with a single (H0=1) or 
more than one (H0>1) perfect target in the genome. (b) Cumulative distributions of specificity scores for the gRNAs in mouse libraries. (c) Cumulative 
distributions of log2 fold-change (logFC) of gRNAs from the Avana libraries during viability screens in A375 cells. Guides targeting non-essential genes 
were binned based on decreasing specificity scores (grey curves). Distributions of gRNAs targeting essential (red) or non-essential (green) genes and with 
specificity of 1 are plotted for comparison. (d) Percentage of genes targeted by gRNAs with a specificity score equal or below 0.16 in each of the libraries. 
(e) Fraction of genes with unspecific gRNAs that are targeted by only one (light blue) or by more (2-8+, graded colors) unspecific guides. (f) Examples of 
gRNAs from the Avana library targeting genes with known (non-essential, essential) or unknown (uncharacterized) requirements for cell viability/prolifera-
tion. Log2 fold-changes for two replicates experiments in A375 cells are plotted. Guide RNAs are color-coded based on their specificity values.
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Supplementary Figure 2. Efficiency rules and depletion of gRNAs targeting essential genes. (a) Cumulative distributions showing fold depletion of 
specific gRNAs (specificity score > 0.16) targeting known essential genes in viability screens performed in A375 cells using the GecKOv1 (top) or GecKOv2 
(bottom) library. Guides are binned based on increased RS1, RS2, and SSC scores. A statistically significant segregation of the curves is observed for 
increasing RS2 scores in the GecKOv2 dataset (Kolmogorov–Smirnov test, ‎Bonferroni correction), and to a lesser extent for RS1 scores. (b) Preferential 
depletion of gRNAs targeting protein domains (left) is not driven by higher promiscuity of gRNAs (right). (c) Characterization of the off-target space of 
gRNAs plotted in (b), showing fraction of guides that have only one (light blue) or by more (2-8+, graded colors) potential target sites with zero (hamming 
distance 0) or up to three (hamming distance 3) mismatches to the gRNA.
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Supplementary Figure 3. CSC improves hit calling amongst CRISPR libraries. (a) Cumulative distributions of corrected log2 fold-change of gRNAs 
from the Avana libraries during viability screens in A375 cells. Guides targeting non-essential genes were binned based on decreasing specificity scores 
(grey curves). Distributions of gRNAs targeting essential (red) or non-essential (green) genes and with specificity of 1 are plotted for comparison. (b) Upset 
plot showing the size of the intersections between uncharacterized genes identified as hits by each of the libraries after CSC implementation (FDR<10%). 
(c) Fraction of hits identified by 1, 2, 3, or all 4 libraries before and after correcting gRNA log2 fold-changes with CSC. P-values were calculated using the 
Chi-square test. (d) Number of perfect target sites for gRNAs contributing to hit calling of genes driving GO terms in Figure 6b. 
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