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ABSTRACT 

 

Cognitive maps are thought to enable model-based inferences from limited experience that can 

guide novel decisions–a hallmark of goal-directed behavior. We tested whether the hippocampus 

(HC), entorhinal cortex (EC), and ventromedial prefrontal cortex (vmPFC)/medial orbitofrontal 

cortex (mOFC) organize abstract and discrete relational information into a cognitive map to guide 

novel choices. Subjects learned the status of people in two separate unseen 2-D social 

hierarchies defined by competence and popularity piecemeal from binary comparisons. Although 

only one dimension was ever behaviorally relevant, multivariate activity patterns in HC, EC and 

mOFC were linearly related to the Euclidian distance between people in the mentally 

reconstructed 2-D space. Hubs created unique comparisons between the two hierarchies, 

enabling inferences between novel pairs of people. We found that both behavior and neural 

activity in EC and vmPFC/mOFC reflected the Euclidian distance to the retrieved hub, which was 

reinstated in HC. These findings reveal how abstract and discrete relational structures are 

represented, combined, and navigated in the human brain.
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INTRODUCTION  

 

To form rich world models, sparse observations often sampled from separate experiences need 

to be integrated into a coherent representation. There has been a recent surge of interest in the 

long-standing theory that the hippocampus (HC) and entorhinal cortex (EC) may organize spatial 

and non-spatial relational information into such a ‘cognitive map’ for goal-directed behavior 

(Behrens et al., 2018; Bellmund, Gärdenfors, Moser, & Doeller, 2018; Constantinescu, O’Reilly, 

& Behrens, 2016; Howard Eichenbaum & Cohen, 2014; Ekstrom & Ranganath, 2018; Hafting, 

Fyhn, Molden, Moser, & Moser, 2005; Moser, Kropff, & Moser, 2008; O’Keefe & Nadel, 1978; 

Schiller et al., 2015; Schuck, Cai, Wilson, & Niv, 2016; Tolman, 1948; Wikenheiser & 

Schoenbaum, 2016). While past studies have identified neural signals in the HC and EC indicative 

of a cognitive map primarily using continuous task dimensions with online sensory feedback 

during task performance (e.g. visual, auditory, vestibular) (Aronov, Nevers, & Tank, 2017; Bao et 

al., 2019; Constantinescu et al., 2016; Doeller, Barry, & Burgess, 2010; Howard Eichenbaum & 

Cohen, 2014; Hafting et al., 2005; Nau, Navarro Schröder, Bellmund, & Doeller, 2018; O’Keefe & 

Nadel, 1978; Theves, Fernandez, & Doeller, 2019), many important everyday decisions involve 

discrete entities that vary along multiple abstract dimensions that are sampled piecemeal, one 

experience at a time, in the absence of continuous sensory feedback, such as with whom to 

collaborate or where to eat. How the brain constructs a cognitive map of abstract relationships 

between discrete entities from piecemeal experiences is unclear. 

A powerful advantage of a cognitive map of an environment or task is the ability to make 

inferences from sparse observations that can dramatically accelerate learning and even guide 

novel decisions never faced before (Banino et al., 2018; Behrens et al., 2018; Jones et al., 2012; 

Stachenfeld, Botvinick, & Gershman, 2017; Tolman, 1948; Vikbladh et al., 2019), a hallmark of 

behavioral flexibility and a key challenge in artificial intelligence (Behrens et al., 2018; Kriete, 

Noelle, Cohen, & O’Reilly, 2013; Wang et al., 2018). This is in part because a cognitive map of a 

task space allows “shortcuts” and “novel routes” to be inferred, as in physical space. To provide 

a concrete example, understanding the structure of family trees allows one to infer new 

relationships, such as the following: because Sally is John’s sister and Sue is John’s daughter, 

Sue must be Sally’s niece without ever directly learning this relationship. Biologically inspired 

computational models show the map-like coding schemes found in the HC and EC can in principle 

enable agents to perform vector navigation, including planning new routes and finding shortcuts 

to a goal in physical space (Banino et al., 2018; Bush, Barry, Manson, & Burgess, 2015; 

Whittington, Muller, Mark, Barry, & Behrens, 2018). In particular, so-called place cells in HC and 
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grid cells in medial EC implement neural codes that permit calculation of predicted position (Moser 

et al., 2008; O’Keefe & Nadel, 1978; Stachenfeld et al., 2017), direction (Banino et al., 2018; 

Chadwick, Hassabis, Weiskopf, & Maguire, 2010), and Euclidian distance (Behrens et al., 2018; 

Bellmund et al., 2018; Howard et al., 2014) in physical space. Here, we asked whether similar 

neural computations might underlie novel non-spatial inferences about discrete entities organized 

in an abstract 2-D space that could only be re-constructed from piecemeal experience from binary 

comparisons on one dimension at a time, learned on separate days. 

A parallel literature based on recent studies focusing on the orbitofrontal cortex (OFC) has 

motivated a related theory that the OFC represents one’s current position in a cognitive map, not 

of physical space, but of task space (Schuck et al., 2016; Takahashi et al., 2017; Walton, Behrens, 

Buckley, Rudebeck, & Rushworth, 2010; Wikenheiser & Schoenbaum, 2016; Wilson, Takahashi, 

Schoenbaum, & Niv, 2014). Recent findings further suggest a specialized role for mOFC in 

representing all the latent (or perceptually unsignaled) components of the task space that define 

one’s current state in the task (Schuck et al., 2016; Wilson et al., 2014). This function is proposed 

to play an important role both during learning (Takahashi et al., 2017; Walton et al., 2010) and 

choice (Jones et al., 2012; Stalnaker, Cooch, & Schoenbaum, 2015). Recent studies have indeed 

discovered that the OFC represents latent task states during learning and choice in support of 

this theory (Chan, Niv, & Norman, 2016; Schuck et al., 2016; Wikenheiser, Marrero-Garcia, & 

Schoenbaum, 2017), yet to our knowledge there has been little direct evidence of map-like 

representations (e.g. position, direction, or distance) of the task space in OFC. Moreover, whether 

this proposed OFC function would extend to representing a cognitive map of an abstract social 

space, or whether it would instead transfer to areas implicated in social cognition is unclear. 

In addition to representing cognitive maps, both the HC and OFC have been implicated in 

model-based inference, such that distinct items, or stimuli and rewards, that were not directly 

associated can be associated or integrated through an overlapping, shared associate (Jones et 

al., 2012; Koster et al., 2018; Kurth-Nelson, Economides, Dolan, & Dayan, 2016; Schlichting & 

Preston, 2014; Tompary & Davachi, 2017; Wimmer & Shohamy, 2012). Computational models 

have proposed how a unitary mechanism in the HC system could additionally underlie transitive 

inferences about ordinal rank (Koster et al., 2018; Kumaran & McClelland, 2012) (though see 

(Frank, Rudy, Levy, & O’Reilly, 2005)). In addition to demonstrations that HC is necessary for 

transitive inferences (Howard Eichenbaum, Otto, & Cohen, 1996), studies in animal models have 

demonstrated that the OFC is necessary for model-based inferences, but not for decisions based 

on directly learned cached values (Jones et al., 2012). While these HC and OFC roles for 

associating or integrating individual items have been documented, how these proposed functions 
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relate to the construction of broader cognitive maps beyond elemental associations has been 

elusive. In particular, it is possible similar mechanisms enable not only the chaining of 

associations, but also the integration of distinct relational structures into a larger cognitive map 

from sparse observations (e.g. the integration of family trees through marriage) that even respects 

metric relationships (e.g. vector directions and distances). 

We tested two alternative hypotheses concerning how the human brain could represent 

and flexibly switch between different behaviorally relevant dimensions that characterize the same 

entities to guide inferences. First, if a neural representation depends on the current behaviorally 

relevant dimension alone, then we would predict preferential encoding of that dimension in brain 

areas important for current behavior. On the other hand, if relationships between people are 

projected into a unitary space defined by their respective values on two independent dimensions, 

then we would predict a single neural representation such that behavioral and neural activity 

reflect the distance over a 2-D Euclidian space between entities, rather than the behaviorally 

relevant 1-D rank alone. 
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RESULTS 

 

Participants learned relational maps of two 2-D social hierarchies and used hubs between 

them to make inferences between novel pairs of individuals 

 

To investigate whether the human brain constructs a cognitive map of multidimensional social 

hierarchies and leverages this map for model-based inference during decisions, we asked 

participants to learn the status of unfamiliar people in two separate groups organized 

hierarchically on two orthogonal dimensions: competence and popularity (Fig. 1A). Importantly, 

participants never saw the 1- or 2-D hierarchies. Instead, they were able to learn the relative ranks 

of neighboring people who differed by only one level on one dimension at a time through a series 

of feedback-based dyadic comparisons (see (Kumaran, Melo, & Duzel, 2012)). Participants could 

then infer the relative ranks of non-neighbors in their group through transitive inference. To learn 

the two hierarchies, participants completed three days of behavioral training, with a 48-hour gap 

between each training session, and on the last day, the fMRI experiment (Fig. 1C). 

During the first two days of training, participants learned the relative status of two groups 

of 8 “entrepreneurs” separately, on only one dimension per day (Supplementary Fig.1A for day 

1 and Supplementary Fig.1B for day 2 training), such that people in a group were only compared 

against others belonging to the same group (two groups of 8 entrepreneurs, Fig.1A). At the end 

of day 2, test trials without feedback ensured subjects could make transitive inferences to 

determine the status of remaining members within a group, on each dimension separately (test2 

in Supplementary Fig.1B), indicating they had learned the two 1-D hierarchies for both groups. 

Importantly, participants were never asked to combine the two dimensions in either group. We 

included four rank levels per dimension to ensure that differences between rank levels 2 and 3 

could not simply be explained by differences in win frequency, since these people each “won” and 

“lost” on ½ of trials. A separate behavioral experiment consisting of a placement task and a ratings 

task after day 3 training conducted on a separate group of participants showed that they had 

successfully learned the four levels for each dimension in the social hierarchy, and importantly, 

could accurately differentiate between rank levels 2 and 3 for both dimensions (Supplementary 

Fig.5). For the third day of training, fMRI participants learned from select between-group 

comparisons for the first time (Supplementary Fig.2A). That is, participants only learned the 

relative rank of selected entrepreneurs in each group referred to as ‘hubs’, who were paired 

against both group members (Supplementary Fig.2B). By limiting between-group comparisons 

only to hubs, we were able to create comparative paths connecting each of the individuals in 
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different groups, which could be leveraged to perform model-based inferences between novel 

pairs of entrepreneurs between groups. 

We analyzed fMRI data acquired from twenty-seven subjects who successfully learned 

the relative ranks of entrepreneurs in each of the two social hierarchies (> 85% performance 

criterion for inferring relative status of each group member in both dimensions, tested on Day 2 

training). In each trial of an fMRI block, participants were asked to make a binary decision about 

who was higher rank in one or the other dimension between the first face (F1) and the second 

face (F2) presented sequentially (Fig. 1B). Unbeknownst to participants, individuals who were 

presented at the time of F1 and F2 were selected from different groups and were not hubs in the 

given dimension (non-hubs; Supplementary Fig.2D), meaning they had not been previously 

compared. Following decisions, a third face (F3) was presented, and participants were asked to 

perform a cover task to simply indicate their gender. F3 was presented from among hubs 

(Supplementary Fig.2E) to test for hypothesized fMRI suppression of the relevant latent hub, 

relative to other matched but non-relevant hubs, that may have been retrieved from memory to 

guide model-based inferences. 

Participants never learned the relative rank of F1 and F2. Instead, they could make a 

model-based inference through one of two specific hub individuals who had previously been 

paired with both F1 and F2 during training. Successful inferences, therefore, could rely on building 

an internal representation of the social hierarchies and a relational memory of the relative 

positions of F1, F2, and the hub. We predicted that the inference is made along a trajectory in 

abstract space connecting the two individuals via the (unseen) hub. The hubs were two individuals 

(H1 and H2) who had been paired with both individuals (F1 and F2) in a task-relevant dimension. 

The H1 (H2) is uniquely paired with F1 (F2) in between-group comparison while it belongs to the 

same group with F2 (F1). These task-relevant hubs in one dimension differ from those in the other 

dimension, which means that to make an accurate inference of the relative status of the same 

pair of individuals in the two different dimensions, participants needed to retrieve different hubs, 

which would alter the inference trajectories (Supplementary Fig.2F). Since the inference 

trajectory is anchored by the position of the hub, we were able to track the putative trajectory used 

by participants by examining which hub between H1 and H2 was selectively retrieved during 

inferences. Furthermore, we could examine whether participants utilize only the task-relevant rank 

distance (D) or also the Euclidean distance (E) between individuals’ positions in the cognitive map. 

Participants were able to successfully infer the relative position of novel pairs of individuals 

(overall accuracy ± standard error mean (s.e.m.) = 93.6±0.77%). Nonetheless, the shorter the 

distance between individuals, the more difficult the decision about relative positions in the 
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hierarchy. To examine the effects of distance of potential trajectories on decision making, we 

regressed choice reaction times (RT) on different distance measures using a multiple linear 

regression model, thereby allowing them to compete to explain RT variance. We included the 

Euclidean distance from the hub (H2) to F1 (EH2F1), the Euclidean distance from the other hub 

(H1) to F2 (EH1F2), the relative rank in the task-relevant dimension, which is the 1-D distance 

between H2 and F1 (DH2F1), the 1-D distance between H1 and F2 (DH1F2), (Fig. 1D), as well as 

both 1-D and 2-D distances between F1 and F2 (DF1F2 and EF1F2, respectively), (Fig. 1E) to control 

for their possible covariation with hub-related distances. We found that the greater the 1-D and 2-

D Euclidian distance between F1 and H2 (DH2F1 and EH2F1, respectively), the faster the RT 

(𝛽DH2F1±sem=-52.9±11.9, t26=-4.5, p=4.5e-05; 𝛽EH2F1±sem=-49.4±5.7, t26=-8.8; p=0.003), in 

addition to an effect of the 1-D distance between F1 and F2 (DF1F2) (𝛽DF1F2±sem=-64.6±12.5, t26=-

5.3, p=0.0002), (Fig. 1F). Moreover, we found that EH2F1 accounted for variation in RTs better 

(t26=-2.73, p=0.011, paired t-test) than EH1F2 (𝛽EH1F2=13.5±5.5, t26=1.0, p=0.33). Our behavioral 

results show that participants preferentially recall H2 as the task-relevant hub to aid in the 

comparison between novel pairs of faces, with the Euclidian distance to H2 explaining variance 

over and above the 1-D distance alone. 

 

Neural activity reflects the Euclidian distance to the retrieved hub during inferences 

 

To examine whether neural activity during choices was likewise modulated by the distance of 

inference trajectories via the hub over the Euclidean space, we regressed whole brain activity at 

the time of the inference (F2) against a general linear model (GLM1) that included the parametric 

regressors EH2F1, EH1F2, and the (cosine) vector angles between the hub and the face (AH2F1 and 

AH1F2), (see Methods for GLM1 specification). We found neural correlates of EH2F1 in a priori 

predicted areas of bilateral EC (pSVC<0.01 at the peak level, [x,y,z]=[20,2,-26], t26=4.17, 

pSVC=0.031 for right EC; [x,y,z]=[-18,-10,-34], t26=4.43, pSVC=0.017 for left EC, small volume 

correction (SVC) was applied at the peak level in anatomically defined ROIs (Amunts et al., 2005; 

Zilles & Amunts, 2010)), ventral medial prefrontal cortex encompassing medial OFC 

(vmPFC/mOFC) (peak voxel [x,y,z]=[2,32,-6], t26=4.82, pTFCE<0.05), and in the right lateral OFC 

(lOFC, [x,y,z]=[30,34,-18], t26=4.12, pTFCE<0.05), (Fig. 2A). Note that we apply whole-brain 

threshold-free cluster enhancement (TFCE) correction at pTFCE<0.05 for all analyses, unless 

specifically stated for our a priori hypotheses where we may apply small-volume correction (SVC) 

at the peak level. For a full list of brain areas surviving outside of these predicted areas that 

survive TFCE correction at pTFCE<0.05, see Supplementary Table1A. No significant effects were 
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found for the alternative terms EH1F2, AH2F1 and AH1F2 at these thresholds (Supplementary Fig.7). 

These analyses show that the EC, vmPFC/mOFC, and lOFC compute or use the Euclidian 

distance to the context-relevant latent hub H2 to guide inference decisions based on a cognitive 

map. 

We also tested our competing hypothesis that the brain flexibly switches between 

behaviorally relevant and irrelevant dimensions with simultaneous coding of both dimensions, but 

in different brain regions. Specifically, we tested whether the current behaviorally relevant rank 

distance (DH2F1) and the behaviorally irrelevant rank distance (IH2F1) better explain neural activity 

in the EC and vmPFC/mOFC, or elsewhere in the brain (GLM2), than the Euclidian distance 

(EH2F1). It is important to note that EH2F1 can be decomposed into DH2F1 and IH2F1 (with equal 

weighting), so if EH2F1 in fact is reflected by neural activity in a region, we would expect effects of 

both DH2F1 and IH2F1 in the same region. 

We found a largely overlapping network of areas to those reported for EH2F1 above showing 

positive effects of both DH2F1 and IH2F1 at a reduced threshold (Fig. 2A and Supplementary 

Table1B), including vmPFC/mOFC (DH2F1: [x,y,z]=[-2,32,-6], t26=5.25, pSVC=0.003, and 

[x,y,z]=[4,30,-6], t26=4.96, pSVC=0.005; IH2F1: [x,y,z]=[6,36,-6], t26=3.73, pSVC=0.060, and [x,y,z]=[-

4,30,-4], t26=3.48, pSVC=0.097 corrected at the peak level in a priori anatomically defined ROIs in 

vmPFC/mOFC (Neubert, Mars, Sallet, & Rushworth, 2015)), and the EC (DH2F1: [x,y,z]=[18,-12,-

26], t26=5.01, pSVC=0.021; IH2F1: [x,y,z]=[30,-14,-32], t26=3.14, pSVC=0.090, in a priori EC ROIs 

(Amunts et al., 2005; Zilles & Amunts, 2010)). A statistical conjunction analysis (Friston, Penny, 

& Glaser, 2005) between D H2F1 and I H2F1 showed common effects in the vmPFC/mOFC 

([x,y,z]=[6,36,-6], t26=3.74, pSVC=0.033, and [x,y,z]=[-2,32,-6], t26=3.54, pSVC=0.054) and the right 

EC ([x,y,z]=[20,-18,-26], t26=2.90, pSVC=0.067), (Fig. 2C). We did not find any significant effects 

of D over I and I over D in the vmPFC/mOFC and EC. Importantly, we did not find evidence D 

was encoded in one set of brain regions and I was simultaneously encoded in a different set of 

brain regions (Supplementary Fig.4). We likewise did not find any significant effects of 1-D 

distances from the alternative hub, H1 (DH1F2 and IH1F2; Supplementary Fig.7). These findings 

support the interpretation that vmPFC/mOFC and EC encode EH2F1, which is composed of both 

D and I (with equal weighting). 

To formally arbitrate between different possible decision trajectories, we used Bayesian 

model selection (BMS) to compare 2-D and 1-D metrics for different possible trajectories (or 

comparisons) through the hub H1 (EH1F2, DH1F2, and IH1F2), those through the hub H2 (EH2F1, DH2F1, 

and IH2F1), and also direct distances between F1 and F2, rather than trajectories via the hub (EF1F2, 

DF1F2, and IF1F2). In addition, different hypothetical cognitive spaces may have different underlying 
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metrics. That is, if participants do not construct a cognitive map in a 2-D Euclidean space, but 

rather a different architecture for representing social hierarchies, alternative distance metrics may 

better account for the neural data than the Euclidean distance. For example, if inferences were 

made through the sequential retrieval of individuals linking F1 to F2, activity in EC and 

vmPFC/mOFC should be better explained by the shortest number of links (L; note this is 

equivalent to 1+DH2F1). Alternatively, if a cognitive map encodes only the vector angle between 

individuals in a polar coordinate system, neural activity should encode the angle between 

individuals (AF1F2, AF1H1 and AF2H1), while it should be invariant to the length (Supplementary 

Fig.6A). This formal comparison revealed clear evidence in favor of the Euclidian distance 

through hub H2 (EH2F1) in the EC and vmPFC/mOFC, supporting the hypothesis that the relevant 

latent hub H2 is used for model-based inference using a cognitive map in Euclidian space 

(exceedance probability=0.82 in left EC; 0.91 in right EC; 0.89 in left vmPFC/mOFC;0.85 in right 

vmPFC/mOFC; Fig. 2B; Supplementary Table2). Taken together, our findings show that EC and 

vmPFC/mOFC compute or utilize Euclidian distances over the 2-D social space to guide decisions. 

 

HC reinstates the hub to guide inferences 

 

The analyses presented so far imply the context-relevant hub is retrieved from memory to guide 

inferences. We therefore searched for neural evidence of a reinstatement of the latent hub along 

this trajectory to guide decisions. To address this question, we adopted a variant of repetition 

suppression (RS), but for a retrieved rather than explicitly presented item. Notably, RS has been 

proposed as a means to assess the information content of neuronal ensembles in the human 

brain (Barron, Garvert, & Behrens, 2016; Boorman, Rajendran, O’Reilly, & Behrens, 2016; Grill-

Spector, Henson, & Martin, 2006; Klein-Flugge, Barron, Brodersen, Dolan, & Behrens, 2013). 

During F3 presentation, participants were exposed to one of eight hub individuals 

(Supplementary Fig.2E). We hypothesized that if the relevant hub that bridges F1 and F2 in the 

given dimension is presented during F3 presentation, directly after participants retrieve the 

relevant hub, then the BOLD signal in areas reinstating that hub should be suppressed compared 

to other trials presenting matched but non-relevant hubs. We included only hubs as F3 because 

these individuals are equally matched for win/loss frequency (each winning on ½ of trials and 

losing on the other ½) and experience (i.e. presentation frequency), thereby ruling out these 

potential confounding factors. Moreover, we ensured the Euclidean distance from F2 to F3 (EF2F3) 

was not different when F3 was H1, H2, or a non-relevant hub (F2=0.77, p=0.47, one-way ANOVA; 
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Supplementary Fig.3C), in order to control for the distance between presented faces for each 

type of hub. 

We found that the right HC (peak voxel [x,y,z]=[38,-22,-12], t26=3.41, pSVC=0.021 corrected 

in a small volume based on an anatomically defined HC ROI (Yushkevich et al., 2015)) was the 

only brain area showing greater suppression, specifically for the relevant H2 presentations (𝛽=-

0.46±0.13) compared to all non-relevant hub presentations (𝛽=-0.19±0.11; t26=4.54, p<0.01, 

paired t-test in the independent, anatomically defined ROI), (Fig. 3). We did not find any brain 

area showing greater suppression during presentation of the other possible hub, H1 (𝛽=-

0.02±0.21; t26=0.81, p=0.43), consistent with our analyses reported above, indicating that 

participants wait for the presentation of F2 to make a backward inference about its rank relative 

to F1 by preferentially retrieving H2. Importantly, we did not find evidence for decreasing (or 

increasing) activity in the HC when we modeled whole brain activity as a function of Euclidean 

distance from the hub to F3 (EH2F1 and EH1F2) at the time of F3 presentation (Supplementary 

Fig.3D), further suggesting that HC suppression was specific to the latent hub itself, rather than 

driven by proximity in the Euclidean space, thus ruling out a distance-based suppression account 

between presented faces (Garvert, Dolan, & Behrens, 2017). Taken together, these findings show 

that HC reinstates the behaviorally relevant hub to guide model-based inferences between distinct 

relational structures. 

 

HC, EC, and vmPFC/mOFC represent social hierarchies in a 2-D space 

 

To directly examine the cognitive map’s representational architecture, we measured the pattern 

similarity between different face presentations during F1 and F2. Under the hypothesis that more 

proximal positions in the cognitive map will be represented by increasingly similar patterns of 

neuronal activity, we used representational similarity analysis (RSA) to test the extent to which 

patterns of activity across voxels in the HC, EC and vmPFC/mOFC are linearly related to the 

Euclidian distance between faces in the true 4-by-4 social network. We reasoned that if the 

cognitive map of social networks is characterized by two independent dimensions projected into 

a Euclidean space, the level of dissimilarity between neural representations evoked by each face 

(Fig. 4A) should be explained by pairwise Euclidean distances (E), in addition to the pairwise rank 

differences in the task-relevant dimension (D) (Fig. 4B). 

In hypothesis-driven analyses, we first analyzed data from a priori selected anatomical 

ROIs (Fig. 4C), including the bilateral HC (Yushkevich et al., 2015), EC (Amunts et al., 2005; 

Zilles & Amunts, 2010), and vmPFC/mOFC (Neubert et al., 2015). The representational 
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dissimilarities estimated in the ROIs was explained both by the model representational 

dissimilarity matrix (RDM) of pairwise Euclidian distance in 2-D space (E, one-sided Wilcox signed 

rank test, df=26, pFWE<0.01, Holm-Bonferroni correction for multiple comparisons across numbers 

of model RDMs and ROIs) and, in a separate RDM, by the pairwise rank difference in the task-

relevant distance (D, pFWE<0.01) between individuals (Fig. 4D). Based on previous 

demonstrations that univariate amygdala activity (Kumaran et al., 2012) and gray matter density 

(Bickart, Wright, Dautoff, Dickerson, & Barrett, 2011; Noonan et al., 2014; Sallet et al., 2011), 

correlate with social dominance status, we also tested anatomically defined amygdala ROIs 

(Tzourio-Mazoyer et al., 2002). The amygdala pattern similarity was neither explained by E nor 

by D, even at a reduced threshold (p>0.05, uncorrected). As a control region, we also tested the 

pattern similarity in primary motor cortex (Glasser et al., 2016), which was not explained by either 

predictor (p>0.05, uncorrected), (Fig. 4D). On the other hand, the pattern similarity in HC, EC, 

and vmPFC/mOFC was not explained by the behavioral “context” of the task-relevant dimension 

(C, defined as popularity or competence trials), nor whether individuals belonged to the same 

group or not during training (G), (pFWE>0.05), (Fig.4D and Supplementary Table3A). Importantly, 

the predictor of pairwise Euclidean distance (E) still significantly accounted for the pattern 

similarity in HC, EC, and vmPFC/mOFC (Rank correlation 𝜏A=0.045±0.005 for HC; 

𝜏A=0.027±0.007 for EC; 𝜏A=0.048±0.006 for vmPFC/mOFC; pFWE<0.01; Supplementary Fig.8B) 

after partialing out its partial correlation with rank distance (D) to ensure that D alone was not 

driving the pattern similarity effects (Supplementary Fig.8A). To confirm that the pattern similarity 

truly reflected E, we tested for separate effects of D and I. Decomposing E into the terms D 

(Supplementary Fig.8C) and I (Supplementary Fig.8D) revealed a linear relationship between 

pattern similarity and both distance components. These analyses show that, in addition to D, I 

contributed significantly to representations in these regions, supporting the interpretation that the 

social hierarchy was represented in 2-D, even though only one dimension was behaviorally 

relevant. 

Notably, the effect of E was strongest for within-group pairs (i.e. individuals who were part 

of the same group during training; Supplementary Fig.9C) and for between-group pairs involving 

hubs (i.e. individuals and their hubs who were compared during between-group learning in day 3 

training; Supplementary Fig.9D) and weaker for never-compared between-group pairs of non-

hubs (Supplementary Fig.9E) in the bilateral HC, EC and vmPFC/mOFC (pFWE<0.01, two-sided 

Wilcoxon signed-rank test; Supplementary Fig.9F and Supplementary Table3C; the mean rank 

correlations are shown in Supplementary Fig.9F and Supplementary Table3B). Notably, 

however, the effect of E was still significant, though weaker, for never-compared between-group 
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pairs of non-hubs in HC alone, suggesting that HC integration may lead EC and vmPFC/mOFC. 

This pattern is consistent with the interpretation that the 2-D representations of the two different 

groups had not yet been fully combined into a single combined cognitive map, but rather two 

partly separate group-dependent maps, and that subjects therefore had to utilize the hubs for 

between-group inferences. 

In addition to these hypothesis-driven analyses, we also performed whole-brain 

exploratory analyses to test whether the neural representation of the social network extends to a 

broader set of regions. Specifically, we measured the extent to which each predictor (the model 

RDM of E and D) explains the pattern similarity measured from searchlight-based pattern 

analyses across the whole brain. This analysis revealed that the pairwise Euclidean distance (E) 

significantly explained the representational similarity between faces in HC and EC, as shown by 

the ROI analyses, and also in medial, central, and lateral OFC, among other areas (pTFCE<0.05; 

Fig. 4F and Supplementary Table4A). A separate RDM based on the pairwise 1-D rank distance 

(D) significantly explained representational similarity between activity patterns in the lateral OFC, 

medial prefrontal cortex (mPFC), and posterior cingulate cortex (PCC) (pTFCE<0.05; Fig. 4G and 

Supplementary Table4B). Furthermore, partialing out D from the RDM for E revealed significant 

effects in these same areas of HC, EC, and central/medial OFC, confirming that these 

representations were not simply driven by D alone (Fig. 4H and Supplementary Table4C). Our 

findings suggest that the HC-EC and vmPFC/mOFC do not treat dimensions separately when 

representing individuals in a social network space. Instead, representations vary along the 

multidimensional cognitive map even when only one dimension is relevant to current behavioral 

goals. 
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DISCUSSION 

 

The HC formation is thought to contain relational codes of our experiences (Howard Eichenbaum 

& Cohen, 2014). Memories of place and their spatial relationship are key elements to constructing 

a cognitive map of physical space (Butler, Hardcastle, & Giocomo, 2019; Kropff, Carmichael, 

Moser, & Moser, 2015; Moser et al., 2008). In humans, the ability to construct an accurate 

cognitive map of relationships between abstract and discrete information is proposed to be critical 

for high-level model-based decision making and generalization (Behrens et al., 2018; Bellmund 

et al., 2018; Vikbladh et al., 2019). We show that the HC and EC, which are famously known for 

their key roles in the ability to navigate physical space (Moser et al., 2008; O’Keefe & Nadel, 1978) 

and simultaneously their roles in episodic memory (H. Eichenbaum, Yonelinas, & Ranganath, 

2007; Ekstrom & Ranganath, 2018), contribute in a more general way to the organization and 

‘navigation’ of social knowledge in humans. Although participants were never asked to combine 

the two social dimensions, we found that the brain spontaneously represents individuals’ status 

in social hierarchies in a map-like manner in 2-D space. Such a cognitive map can be used to 

compute routes through the 2-D space and corresponding distances (Behrens et al., 2018), which 

we found were computed or used to guide inferences in EC and interconnected vmPFC/mOFC, 

a region known to be important for value-based decision making (Boorman, Behrens, Woolrich, 

& Rushworth, 2009; FitzGerald, Seymour, & Dolan, 2009; Hunt et al., 2012; Lim, O’Doherty, & 

Rangel, 2011; Nicolle et al., 2012; Papageorgiou et al., 2017; Rushworth, Noonan, Boorman, 

Walton, & Behrens, 2011; Strait, Blanchard, & Hayden, 2014). Moreover, our results show that 

the HC-EC system did not selectively represent the task-relevant information in our task, but the 

relative positions in the multidimensional space. More broadly, these findings support the HC-EC 

system’s role in representing a cognitive map of abstract and discrete spaces to guide novel 

decisions that relied on that cognitive map. 

We found that during model-based inferences, RTs and neural activity in EC, 

vmPFC/mOFC, and lOFC reflected the Euclidian distance of navigational trajectories on 2-D 

space via relevant hubs, over and above the behaviorally-relevant 1-D ranks. Notably, cells 

encoding the distance to "goals” have been documented in EC and mPFC of rodents (Boccara, 

Nardin, Stella, O’Neill, & Csicsvari, 2019; Butler et al., 2019; Guise & Shapiro, 2017) when 

navigating in physical space, while the rodent OFC has been shown to be necessary for model-

based inferences (Jones et al., 2012). A separate body of work in humans and monkeys during 

value-based choice has consistently found value comparison signals thought to guide goal-based 

choices in vmPFC/mOFC (Boorman et al., 2009; FitzGerald et al., 2009; Hunt et al., 2012; Lim et 
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al., 2011; Nicolle et al., 2012; Papageorgiou et al., 2017; Rushworth et al., 2011; Strait et al., 

2014). Taken together, this suggests the EC, vmPFC/mOFC, and lOFC compute or utilize 

distance computations derived from a cognitive map to guide model-based decisions. 

These trajectories imply that people retrieve the task-relevant hub (H2) to guide backward 

inferences during novel comparisons between people from different groups. Consistent with this 

interpretation, suppression analyses revealed that the HC was the only brain region showing a 

reinstatement of this same unseen hub (H2) at the time of inference decisions, in order to link two 

individuals whose positions were learned in different social groups. This effect was specific to H2 

(relative to both non-relevant but matched hubs and H1). Importantly, this H2-specific suppression 

in the HC could not be explained by the Euclidean distances between F2 and F3 (Supplementary 

Fig.3C) or H2 and F3 (Supplementary Fig.3D), nor by win/loss frequency, nor the degree of 

experience with each face, since all faces presented as F3 were hubs that were carefully matched 

for presentation frequency/familiarity and win/loss history. Note that making inferences via H2 

does not indicate that participants integrated members in one specific group to the pre-existing 

structure of the other group. Considering that participants were also presented all F1-F2 pairs in 

reverse order, our results indicate that a different hub was preferentially recalled during inferences 

about the same pairs of individuals when they were presented in reverse order. Given the fact 

that participants were never informed that F1 and F2 were selected from non-hubs in different 

groups, it appears to be a more natural decision to select the hub to guide inferences after 

knowing both F1 and F2. 

We found that the pattern similarity between faces in HC, EC, and in vmPFC/OFC was 

robustly and linearly related to the true Euclidian distance between faces in the 4-by-4 social 

network, such that closer faces in the abstract space were represented increasingly more similarly. 

This finding is striking for two reasons: first, the two dimensions never had to be combined to 

perform the task accurately; and second, the true structure was never shown to participants, but 

had to be reconstructed piecemeal from the outcomes of binary comparisons between neighbors 

in each dimension separately learned on separate days. There are several strategies that could, 

in principle, be used to solve this task that do not rely on a 2-D representational space. For 

example, the task-relevant and irrelevant dimensions could be represented in separate brain 

areas, a hypothesis for which we did not find clear support. Alternatively, one could envision each 

person’s rank is represented by a linear (or logarithmic) number line, such as that found in the 

bilateral intraparietal area (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). That the neural 

representation in the HC, EC, and vmPFC/OFC areas automatically constructed the 2-D relational 

structure in our tasks instead suggests that the brain may project people, or perhaps any entities, 
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into a multi-dimensional cognitive or relational space such that the entity’s position is defined by 

the feature values on each dimension (Bellmund et al., 2018). It is unclear from our study whether 

this finding is specialized to representing people, who are likely to be ecologically perceived as 

coherent entities over time, and characterized by multiple attributes, or more general to 

representing any entity. Precisely how this construction takes place will be an exciting topic for 

future studies. 

Recent studies suggest that even relationships between social entities may be organized 

as a cognitive map in HC. In particular, these studies suggest that the HC not only represents the 

position of others in physical space through the firing fields of “social place cells” (Danjo, 

Toyoizumi, & Fujisawa, 2018; Omer, Maimon, Las, & Ulanovsky, 2018), but also their 1-D rank in 

a dominance hierarchy, with greater HC BOLD activity for higher rank people (Kumaran et al., 

2012), self-other differences in preference-based ratings (Kaplan & Friston, 2019), and their 

egocentric relative direction in a space characterized by power and affiliation dimensions (Tavares 

et al., 2015). This latter study showed that univariate HC BOLD activity is modulated by the angle 

of the vector to the relative position of another person with whom subjects interacted during a 

role-playing game (Tavares et al., 2015). Notably, the cosine angle, unlike the Euclidean distance, 

is invariant to the distance to others. While this important study first suggested the HC encodes 

the egocentric direction of another’s relative position during online social interactions, the nature 

of HC’s representational architecture, and any putative role of the EC and vmPFC/mOFC in 

representing a cognitive map of social space and guiding novel inferences were previously 

unaddressed. In addition to dominance, theories in social cognition propose orthogonal 

psychological dimensions of competence and warmth along which humans represent other 

people in an abstract space (Fiske, 1992). We found that 2-D social hierarchies defined by 

independent social dimensions were represented and navigated as a cognitive map to guide novel 

inferences. Our study further elucidates how even social relationships are represented as a 

cognitive map and how that map guides novel inferences about social status. 

Another recent study (Tang et al., 2019) in which human participants learned the 

association between novel visual stimuli and reward values over multiple days used a linear 

support vector machine to show that the brains of fast learners were more likely to use an efficient 

coding scheme to represent stimuli. Their study suggested that multidimensional coding in the 

brain helps participants to discriminate different stimuli while simultaneously embedding the 

stimuli in an efficient low-dimensional task-relevant structure. In the current task in which the rank 

positions of individuals in both dimensions were used to make inferences about the social 

hierarchical status of novel pairs of individuals, our results suggest that the accurate 
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representation of multidimensional task-relevant information may be critical for successful model-

based decision-making. 

While we found strong effects of the Euclidian distance between patterns of activity evoked 

by pairs of people across the entire social network, post-hoc comparisons suggested that these 

effects were strongest for pairs of faces within the same training group, and for pairs of faces and 

their hubs, while present (at least in HC) but weaker for pairs of faces between groups 

(Supplementary Fig.9). This pattern is consistent with the interpretation that people had formed 

two 2-D cognitive maps, one per hierarchy or group, and were in the process of combining these 

into one map of the integrated social hierarchy. This pattern also dovetails with our finding that 

people utilized hubs to guide inferences between pairs in different groups, rather than relying 

solely on the vector distances between faces in different groups. Notably, this observation is 

consistent with the view that the training episode may have constituted a context during which 

each relational map was initially formed separately for each group in HC, EC, and vmPFC/mOFC 

(Diana, Yonelinas, & Ranganath, 2007; McKenzie et al., 2014), supporting the theory that the 

elements of the map are bound together within distinct contexts. 

Our findings suggest that the brain utilizes the same neural system for representing and 

navigating continuous space to code the relationship between discrete entities in an abstract 

space. Further, they suggest that accurate inferences about relative ranks of novel pairs of 

individuals may depend on the ability to find a direct route in a multidimensional space. This 

vector-based navigation over the cognitive map may be critical for efficient decision making and 

knowledge generalization. Moreover, accurate knowledge about the position of others in a social 

space should provide a solid foundation for sound inferences, thereby supporting effective model-

based decision making. We found that the same cognitive map constructed by the HC-EC system 

is present in other brain areas, including the interconnected vmPFC/mOFC (Barbas & Blatt, 1995; 

Howard Eichenbaum, 2017; Insausti & Muñoz, 2001; Preston & Eichenbaum, 2013; Wikenheiser 

et al., 2017) and neighboring central/lateral OFC, generally supporting the theory that OFC 

represents a cognitive map of task space (Schuck et al., 2016; Wikenheiser & Schoenbaum, 2016; 

Wilson et al., 2014), though in our study not only of the behaviorally relevant task space, but also 

the broader task space. Moreover, we show here that the OFC’s representation of the task space 

respects map-like Euclidian distances of vectors through that space and that OFC activity reflects 

these distances to latent hubs retrieved from memory to guide inference. These findings thus cast 

light on why the OFC plays a critical role in model-based inference (Jones et al., 2012). 

Finally, we suggest that the HC-EC system may play a key role in constructing a global 

map from local experiences, which may guide model-based decisions in vmPFC/mOFC, a region 
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previously implicated in value-guided choice (Boorman et al., 2009; Chib, Rangel, Shimojo, & 

O’Doherty, 2009; Grabenhorst & Rolls, 2011; Hunt et al., 2012; Lim et al., 2011; Papageorgiou et 

al., 2017; Strait et al., 2014). This same cognitive map appears to further guide how humans 

integrate knowledge in the social domain, a critical ability for navigating our social worlds. 
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Figure 1. A. Participants learned the rank of members of each of two groups (brown and gray) 
separately in two dimensions: competence and popularity. Crucially, subjects were never shown 
the 1- or 2-D structures but could infer them by making transitive inferences. B. Illustration of a 
trial of the fMRI experiment. Participants made inferences about the relative status of a novel pair 
(F1 and F2) in a given dimension (signaled by Cue color). A cover task (to indicate the gender of 
the face stimulus, F3) followed at the end of every trial. C. On day 1 and day 2, during learning 
blocks participants learned within-group ranks of the two groups in each of two dimensions 
through binary decisions about the status of members who differed by only one rank level in a 
given dimension. Test blocks tested subjects’ knowledge of the two 1-D hierarchies that could be 
constructed using transitive inferences for each group separately. On day3, subjects learned from 
between-group comparisons limited to ‘hub’ individuals, which created a unique path between 
groups per person in each dimension. Subsequently, on day3, participants were asked to infer 
the unlearned between-group status while undergoing fMRI. D. Participants could use hubs to 
infer the relationship between novel pairs. Possible trajectories for two example inferences can 
be seen. Two distances are shown for each trajectory: the behaviorally-relevant 1-D distance (D) 
and the 2-D Euclidian distance (E). Subjects could use either of two trajectories: a forward 
inference from F1 to its hub (H1) that has a unique connection to F2 (1-D distance: DH1F2, Euclidian 
distance: EH1F2) which is shown in yellow; or a backward inference from F2 to its hub (H2) that 
has a unique connection to F1 (DH2F1; EH2F1) which is shown in red. E. As alternative paths, 
subjects may not use the hubs, but instead compute the distance in the relevant dimension 
between F1 and F2 directly (DF1F2), or their Euclidean distance (EF1F2) in the combined cognitive 
map of two groups (blue). F. Multiple linear regression results show that both the rank distance 
(DH2F1) and the Euclidean distance from H2 (EH2F1), but not from H1, significantly explain variance 
in reaction times (RT), in addition to the direct distance between F1 and F2 (DF1F2), while 
competing with other distance terms.  
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Figure 2. A. The bilateral entorhinal cortex (EC; pFWE<0.05 corrected at peak level within a small 
volume ROI) and ventromedial prefrontal cortex (vmPFC/mOFC, p<0.05, whole-brain corrected 
with TFCE) encode the Euclidean distance from the hub inferred from F2 (H2) to F1 in the 2-D 
social space (EH2F1). Whole-brain parametric analyses showing neural correlates of each of the 
distance metrics that could theoretically drive inferences between pairs at the time of decisions 
(F2 presentation). D: 1-D rank distance in the task-relevant dimension (DH2F1 and DF1F2); L: the 
shortest link distance between F1 and F2 (L equals to DH2F1+1); I: the 1-D rank distance in the 
task-irrelevant dimension (IH2F1 and IF1F2); A: the cosine vector angle (AH2F1 and AF1F2). B. The 
results of Bayesian model selection (BMS). The exceedance probabilities revealed that the 
Euclidean distance from the hub (EH2F1) best accounted for variance in both EC and 
vmPFC/mOFC activity compared to the other distance measures, providing evidence that these 
regions compute or use a Euclidian distance metric to a retrieved hub (H2) in abstract space in 
order to infer the relationship between F1 and F2. C. The conjunction analysis shown in purple 
revealed that both DH2F1 and IH2F1 are both encoded in the right vmPFC/mOFC (pSVC=0.033) and 
the left vmPFC/mOFC (pSVC=0.054) and the right EC (pSVC=0.067). For visualization purposes, 
the whole brain maps are thresholded at p<0.005 uncorrected. 
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Figure 3. The result of repetition suppression analyses when one of the eight hubs was presented 
randomly following F2 presentation, as subjects performed a cover task (F3 presentation). Left: 
BOLD contrast of task-irrelevant hub (Non-hub) > H2, displayed at p<0.005 uncorrected (no 
masking is applied to the image). HC effect is significant at pFWE=0.03, small volume corrected at 
the peak-level, t26=3.81, [36,-24,-10]). Right: beta estimates from an independently defined right 
HC ROI (Yushkevich et al., 2015) (see Fig. 4C). Activity in the right hippocampus (HC) was 
suppressed when the relevant hub (H2) was presented, compared to matched Non-hubs. The 
activity in the right HC was not suppressed when the hub inferred from F1 (H1) was presented. 
This result suggests that HC reinstates the neural representation of the specific task-relevant hub 
(H2) to guide inferences. 
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Figure 4. Representational similarity analysis (RSA). A. The representational dissimilarity matrix 
(RDM) was computed in a priori regions of interest (ROIs) from the pairwise Euclidean distance 
in the multi-voxel activity patterns evoked when face stimuli were presented at the time of F1 and 
F2. People were modeled separately when they were shown in the competence (left panel) and 
popularity contexts (right panel). B. The neural RDM was explained by model predictions of four 
separate dissimilarity matrices, including pairwise differences in the rank in the task-relevant 
dimension (D), pairwise Euclidean distances on the 2-D social space (E), the behavioral context 
indicating for which social hierarchy dimension the face was presented (C), and in which group 
(group 1 or 2) the face belonged during training (G). C. Regions of interest (ROIs) generated 
independently from probabilistic maps of other studies (the HC (Yushkevich et al., 2015), EC 
(Amunts et al., 2005; Zilles & Amunts, 2010), amygdala (AM) (Tzourio-Mazoyer et al., 2002), 
vmPFC/mOFC (Neubert et al., 2015), and primary motor cortex (MT) (Glasser et al., 2016)). All 
ROIs were defined bilaterally. D. Kendall’s τ indicates to what extent a predictor RDM explains 
the pattern dissimilarity between voxels in each of the ROIs. The model RDMs of D and E, but 
not C or G, show robust effects on the pattern dissimilarity estimated in the HC, EC, and 
vmPFC/mOFC (pFWE<0.01, multiple comparisons are corrected with the Holm-Bonferroni method). 
We did not find any significant effects in the AM or a control region in the M1. E. The dissimilarity 
between brain activity patterns estimated in bilateral HC, EC, and vmPFC/mOFC increases in 
proportion to the true pairwise Euclidean distance between individuals in the 2-D abstract space. 
F. Whole-brain searchlight RSA indicates effects of E in the HC, EC, mOFC (a part of vmPFC), 
central OFC, and lateral OFC, among other regions (pTFCE<0.05). G. The activity patterns in the 
HC, EC, and central and medial OFC are still explained by the model RDM for pairwise Euclidean 
distance (E) after partialling out its correlation with the model RDM for D (pTFCE<0.05; see 
Supplementary Fig.7A). For visualization purposes, the whole-brain searchlight maps are 
thresholded at p<0.005 uncorrected. 
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METHODS 

 

Participants 

A total of 33 participants (16 female, age range: 19–23, normal or corrected to normal vision) 

were recruited for this study via the University of California, Davis online recruitment system. Six 

participants were excluded due to strong head movements larger than the voxel size of 3 mm. In 

total, 27 participants entered the analysis (mean age: 19.37±0.26, standard error mean (SEM)). 

The study was approved by the local ethics committee, all relevant ethical regulations were 

followed, and participants gave written consent before the experiment. 

 

Stimulus 

The stimuli consisted of 16 grayscale photographic images of faces (Strohminger et al., 2016) 

and two colored cues (red and blue squares). Each of the colored cues indicates the task-relevant 

dimension of social hierarchy for the current trial. The red square indicated the competence 

hierarchy for one-half of participants and the popularity hierarchy for the other half. All images 

were adjusted to the same mean grayscale value. The inter-trials fixation target was a white cross 

in the middle of a black screen. For hub learning and fMRI experiment, the inter-stimuli fixation 

target was a purple cross (between F1 and F2) and a green cross (between F2 and F3) in the 

middle of a black screen, which informs the progress of each trial to participants. The stimuli were 

presented to participants through a mirror mounted on the head coil. Note that face stimuli 

presented in this paper are license-free images for display purposes. Prior to the experiment on 

the first day of training, participants performed a 1-back task where they viewed each individual 

face three times to minimize stimulus novelty effects. 

 

Social hierarchies 

Participants were asked to learn the relative ranks of 16 individuals (face stimuli) in two 

dimensional social hierarchies–popularity and competence. The 16 face stimuli were introduced 

as entrepreneurs; participants were asked to learn about which individuals were more capable to 

attract crowd funds (popularity) and which individuals had higher technical proficiency 

(competence) and used this information to guide investment decisions. 

Each hierarchy has four levels of ranks. Four individuals were allocated at the same rank 

at each level of the hierarchy. Therefore, the structure of multidimensional social hierarchies is 

4×4 (Fig. 1A). The rank of an individual in one dimension was not related to his/her rank in the 

other dimension. For instance, the rank of four individuals who are at the 1st rank in the popularity 
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hierarchy are the 1st, the 2nd, the 3rd, and the 4th, respectively in the competence hierarchy. During 

first two days of training, the relative status of one individual is only compared to one-half of the 

other face stimuli, which implicitly creates two groups in which each group was comprised of eight 

individuals (Supplementary Fig.1). In each group, two individuals were allocated into the same 

rank of each of the hierarchies. The sub-group structure is shown in Fig. 1A. The allocation of 

each face to the position in the social hierarchies was pseudo-randomized, to make sure that any 

of visual features of the face (gender, race, and age) was not associated with the rank group of 

the individuals. To do this, we prepared eight stimuli sets. Each of the stimuli set comprises of 

different 16 faces. A stimuli set was randomly assigned across participants. 

 

Task instruction and experiment procedures. 

Participants were instructed to imagine that they were a venture capitalist and decide where to 

invest after learning the relative ranks of 16 entrepreneurs in two independent dimensions − 

competence and popularity. Participants were asked to learn which individual was better in 

technical proficiency – competence hierarchy, and which individual was better in attracting crowd 

funding – popularity hierarchy. During the learning block, participants were presented two face 

stimuli of entrepreneurs with the contextual cue of task-relevant hierarchy, chose one who is 

superior to the other (the higher rank individual) in the given dimension, and received feedbacks 

at the end of every trial. Participants were told that they would need to use the knowledge acquired 

during the learning block to decide which entrepreneur they want to invest in which the ability in 

one social hierarchy dimension is important. During the test block, participant chose one of two 

face stimuli who they believed was higher in the given social hierarchy. They did not receive any 

feedback during test block. 

Before training, the following instructions were clearly given to participants: (1) two 

entrepreneurs presented in the learning block have one rank difference whereas two 

entrepreneurs presented in the test block have one or more rank differences. (2) Multiple 

individuals could be allocated to the same rank. Importantly, participants have never been given 

any information implying the structure of social hierarchies − such as the total number of ranks in 

each of social hierarchies, and a number of individuals allocated into the same rank. Each subject 

participated in behavioral training across three separate days, at least 48 hours apart. After the 

behavior training on the third day, they participated in the fMRI experiment. 

 

Behavioral training 
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The behavioral training was comprised by the ‘learning’ block and the ‘test’ block (Fig. 1C). In the 

beginning of each of the mini-blocks, participants were presented which block they were in. The 

purpose of the learning block paradigm was to provide an experimental setting in which 

participants would gradually acquire robust knowledge of social hierarchies of two groups of 

individuals and use this to make successful transitive inferences during trials in the test block. 

For the test block during the training, participants were asked to infer the relative rank 

between two individuals. To make a correct inference, therefore, participants need to use 

successful transitive inference for the test block. If they adopted an alternative cognitive process 

such as statistical learning – comparing the values assigned to each of the face stimuli according 

to their number of wins/loses −, participants could not distinguish the second and third rank 

individuals since their number of wins/loses were equal. Considering that, participants who 

successfully distinguished the second and third rank individuals above chance while reaching 

above 85% accuracy in each test block were invited to participate in the following procedure of 

the experiment. 

It is important to note that, during three days of training, each of the 16 individuals has 

been exposed with the same numbers of times to the participants. For the trial in which 

participants could not respond within 2s, feedback was not given. This missing trial was tested 

again after a random number of trials to ensure all participants have the same level of knowledge. 

Participants were never asked to combine individuals’ ranks in both dimensions to make decisions. 

Participants have never seen either one-dimensional (1-D) or two-dimensional (2-D) global 

structure of social hierarchies. 

 

Learning relative ranks of within-group members (The learning block of day 1 and day 2 training) 

During the learning block, participants were presented two face stimuli on a black screen 

having one rank difference with a colored contextual cue which indicated which was the task-

relevant social hierarchy in the current trial (learning block in Supplementary Fig.1A). They were 

asked to indicate who was superior to the other in the given social hierarchy. Participants learned 

the relative status of all possible one rank difference pairs with feedback. The feedback (correct/ 

incorrect) was followed at the end of all responded trials. For the learning block of day 1 training, 

participants learned the relative status of an eight-individual group in one of two social hierarchies 

for the first mini-block (e.g. the hierarchy in competence dimension for group 1 individuals). For 

the second mini-block, they learned the relative status of the other eight individual group in the 

other social hierarchy (e.g. the hierarchy in popularity dimension for group 2 individuals). For the 

learning block of day 2 training (the learning block in Supplementary Fig.1B), they learned the 
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relative status of each group individuals in the unlearned hierarchy dimension (e.g. the hierarchy 

in popularity dimension for group1 individuals and the hierarchy in competence dimension for 

group2 individuals). After two days of training, participants were able to develop the knowledge 

about two different social hierarchies of individuals in two groups. The right panel in 

Supplementary Fig.1 shows the possible structure of the cognitive map that participants could 

build at the end of each training day. For each of day 1 and day 2 training, participants complete 

eight mini-blocks of learning block (Fig 1C). One-half of participants learned the relative ranks of 

group 1 in the competence dimension for the first day and the other half of participants learned 

the relative ranks of the group 1 in the popularity dimension for the first day. 

 

Inferences of relative ranks in one-dimensional social hierarchy (The test block of day1 and day2) 

After the learning block, we tested whether participants could generalize their knowledge 

to infer the relative status between individuals having one or more ranks difference. This test block 

was followed by each mini-block of the learning blocks (the test block in Supplementary Fig.1). 

During the test block, all possible pairs of within-group individuals were presented to participants 

except for the pair of individuals who are at the same rank in the given dimension. In each trial, 

participants were asked to indicate a face who was superior to the other in the given dimension. 

Participants were instructed that their choices would count towards their final payout. No feedback 

was given during test block to prevent further learning. 

 

Flexible inferences about relative ranks in intermixed contexts (The test 2 block in day2) 

At the end of the second-day training, an additional test block block was followed. During 

this test 2 block, the trials asking the relative rank of group 1 individuals and the trials asking the 

relative rank of group 2 were intermixed while the task-relevant dimension was also intermixed 

across trials (the test 2 block in Fig S2B). Consistent with the previous blocks, participants were 

asked to indicate one of two face stimuli who is superior to the other in the given dimension. No 

feedback was given during test 2 block. Participants were instructed that their choices would count 

towards their final payout. 

 

Learning relative ranks of between-group with ‘hub’ (The learning block in day 3) 

On the third-day training, participants learned the relative ranks of pairs of between-group 

individuals for the first time. Importantly, the purpose of the learning block paradigm in the third-

day training was to provide a limited knowledge to participants about relative ranks between-
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group individuals. That is, participants did not learn the relative rank of all pairs of between-group 

individuals but only the relative rank of the selected pairs of between-group individuals. 

During the hub learning block, participants learned the relative status between one 

individual in one group (hub) and another individual in the other group (non-hub) who has one 

rank difference in the given dimension. In each group, four individuals (two per each group) were 

selected as hubs in one dimension. In the other dimension, different four individuals played a role 

as hubs (eight hubs in total; Supplementary Fig.2E). For those two hubs in each group, one was 

at the second rank, and the other was at the third rank in the given dimension. Each of the hubs 

was paired with four different individuals in the other group. With this procedure, all eight 

individuals in one group (non-hub) were paired with two selected individuals in the other group in 

one dimension (they were never paired with the other six individuals who were not selected as 

hubs). In particular, a hub in group 1 who was at the third-rank in the dimension was paired with 

four individuals in group 2 including two second-rank individuals and two fourth-rank individuals 

(the top panel in Supplementary Fig.2B). The other hub in group 1 who was at the second-rank 

in the given dimension was paired with the other four individuals in group 2 including two first-

rank individuals and two third-rank individuals (the bottom panel in Supplementary Fig.2B). This 

is also true for hubs in group 2 (Supplementary Fig.2C). In doing so, participants have learned 

the relative rank of some pairs of between-group individuals who have one rank difference each 

other as they learned for the pairs of within-group individuals during the previous learning block. 

The hub learning block paradigm eventually allows us to create a unique path between members 

in different groups. That is, each of 12 non-hubs individuals (six per each group; Supplementary 

Fig.2D) has a unique connection to a specific hub in the other group (one among eight hubs in 

Supplementary Fig.2E) in one of two hierarchy dimensions. Note that the hubs in competence 

dimension differed from the hubs in popularity dimension. 

For each trial in the hub learning block, three face stimuli (F1, F2, and F3) were presented 

for 2 s sequentially after the presentation of a conditional cue (1 s) indicating the task-relevant 

dimension of the current trial (Supplementary Fig.2A). Participants were asked to indicate one 

who is superior to the other between F1 and F2 in the given dimension while F2 was presented. 

The feedback (correct/ incorrect) was followed after each decision (2 s). Between F1 and F2, one 

was the hub in the given dimension and the other was a non-hub individual in the different group 

who has one rank difference from the hub. While presenting F3 (2 s) at the end of every trial, 

participants were asked to press a button according to the gender of the F3 face stimuli. F3 was 

selected from 12 non-hubs in the given dimension (Supplementary Fig.2D). No feedback was 

given for the gender discrimination task. Inter-stimuli interval (ISI) was 2 s. Inter-trials interval (ITI) 
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was 4 s. While learning between-group relationship via hubs, participants became familiar with 

the task that we used for fMRI experiment (Fig. 1B). The number of presentations of each of the 

face stimulus was controlled to be equivalent. 

 

fMRI experiment 

 

Inferences about the relative ranks of novel pairs (The test block in day3) 

The purpose of the fMRI experiment paradigm was to test whether and how participants 

represent their knowledge of social hierarchies of the two groups of individuals and make a 

successful inference about relative ranks of novel pairs of individuals. Fig. 1B illustrates the 

procedure of an example trial of the fMRI experiment. In each trial, three face stimuli (F1, F2, and 

F3) were shown sequentially following a conditional cue (1 s) with an inter-stimuli fixation cross 

(1.5 s). The color of a square shown in conditional cue indicated the relevant dimension of the 

current trial. The same number of trials were shown per dimension of social hierarchies in a block. 

The trials were intermixed in random order. Each face stimuli were shown for 2 s. Between face 

stimuli, we presented a fixation cross for inter-stimuli-intervals (ISI) which were jittered between 

2 ~ 5 pulses (TR=1200ms). The first decision was made during the F2 presentation. Participants 

were asked to press a button to indicate who is superior to the other between F1 and F2 in the 

given social hierarchy dimension. They were asked to respond as fast as possible but also as 

accurate as possible. No feedback was given. The second decision was made during the F3 

presentation. Participants were asked to press a button to indicate the gender of F3 as fast as 

possible. The buttons allocated to indicate the gender of presenting face stimuli were 

counterbalanced across participants. If the response is missed in the inference decision, we 

showed ‘missed’ sign and proceeded to the next trial. The missed trial was tested again after a 

random number of trials, which allowed us to collect all responses from participants. 

The following were not informed to participants: (1) during the fMRI experiment, F1 and 

F2 were selected from different groups among 12 non-hubs individuals in the given dimension 

(Supplementary Fig.2D) – F1 was selected from group 1 for one-half of trials and F2 was 

selected from group 1 for the other half –; (2) F3 was selected among eight individuals who played 

a role in hubs regardless of the social hierarchy dimension (Supplementary Fig.2E). All eight 

hubs were shown the same number of trials at the time of the F3 presentation. Participants were 

asked to make the same type of decisions continuously as they did for the third-day behavioral 

training (i.e. choosing a higher hierarchy individual between first two faces in the given context 

dimension and indicating the gender of the third face). By doing this, unbeknownst to participants, 
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we were able to test whether and how participants make inferences about the relative position of 

unlearned pairs of individuals. The fMRI experiment comprised of two blocks. Each block included 

104 trials which include all possible between-group pairs of non-hubs who have different ranks in 

the given dimension. Note that, during the fMRI experiment, all F1-F2 pairs were also presented 

in reverse order in both context dimensions. The order of the trials was randomized across 

participants. 

 

Inferences of relative status between unexperienced individuals via hubs 

During training, participants never directly learned the relative status between two face 

stimuli (F1 and F2) presented during the fMRI paradigm. Instead, participants could make 

transitive inferences about relative status of unlearned pairs via one of two hub individuals (H1 

and H2), (Fig. 1D). Note that, for every F1-F2 pair, there were only two individuals (H1 and H2) 

that have been paired with both F1 and F2 during training in the given dimension. That is, H1 

belonged to the same group with F2 (within-group) which had uniquely paired with F1 during the 

hub learning block (between-group). Likewise, H2 belonged to the same group with F1 (within-

group) which had uniquely paired with F2 during the hub learning block (between-group). The 

direction and the distance of inference trajectories on the social cognitive map were, therefore, 

determined by which of the hub (between H1 and H2) was preferentially recalled by participants 

for making transitive inferences. The between-group relationship to the hub (F1 → H1 and F2 → 

H2) had one rank difference in the given dimension. If participants recalled H1, the transitive 

inference depended on the within-group distance (H1 → F2), and the inference was made in the 

forward direction (F1 → F2). If participants recalled H2, the transitive inference depended on the 

within-group distance (H2 → F1), and the inference was made in the backward direction (F2→ 

F1). We examined which trajectory participants preferentially have chosen for making transitive 

inferences by examining which unseen hub was selectively retrieved during inferences. 

 

Behavioral data analysis 

We estimated the reaction times (RT) and accuracy in inferences of the relative status between 

a novel pair of individuals (F1 and F2). The RT was measured from the F2 onset to the response. 

To make successful inferences, participants need to use the cognitive map of social space with 

the transitive inference via an unseen hub. The inference trajectories, therefore, grounded by the 

location of the hub. To examine which hub was preferentially selected for inferences, we 

regressed choice RT on different distance measures of putative inference trajectories using a 

multiple linear regression model. The accuracy level was not regressed on the distances of 
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putative trajectories since all participants reached high accuracy (Supplementary Fig.3B). As 

regressors, we included both distances which were measured from each of two potential hubs: 

the distance between H1 and F2 and the distance between H2 and F1 in addition to the distance 

between F1 and F2 by allowing them to compete to explain RT variance. Moreover, the distance 

was measured in both of the rank difference in the task-relevant hierarchy (D) and Euclidean 

distance (E). Taken together, we regressed RT in inference decisions on four different distance 

measures of inference trajectories via hubs, 𝐷𝐻1𝐹2, 𝐷𝐻2𝐹1, 𝐸𝐻1𝐹2, and 𝐸𝐻2𝐹1(Fig. 1 D) and two 

distances measures between F1 and F2, 𝐷𝐹1𝐹2 and 𝐸𝐹1𝐹2 (Fig. 1 E), (Eq. 1). 

 

𝑅𝑇 = 𝐶 + 𝛽1𝐸𝐻1𝐹2 + 𝛽2𝐸𝐻2𝐹1 + 𝛽3𝐸𝐹1𝐹2 + 𝛽4𝐷𝐻1𝐹2+𝛽5𝐷𝐻2𝐹1+𝛽6𝐷𝐹1𝐹2 

Eq. 1 

The correlation between different distance measures is shown in Supplementary Fig.5B. At last, 

the group level effects of each of the distance measures were tested with a one-sample t-test to 

account subjects as a random variable. 

 

Functional imaging acquisition 

We acquired T2-weighted functional images on a Siemens Skyra 3 Tesla scanner. We 

used gradient-echo-planar imaging (EPI) pulse sequence that sets the slice angle of 30° relative 

to the anterior-posterior commissure line, minimizing the signal loss in the orbitofrontal cortex 

region (Weiskopf, Hutton, Josephs, & Deichmann, 2006). We acquired 38 slices, 3mm thick with 

the following parameters: repetition time (TR) = 1200 ms, echo time (TE) = 24 ms, flip angle = 

67°, field of view (FoV) = 192mm, voxel size = 3 x 3 x 3 mm3. Contiguous slices were acquired 

in interleaved order. We also acquired a field map to correct for potential deformations with dual 

echo-time images covering the whole brain, with the following parameters: TR = 630 ms, TE1 = 

10 ms, TE2 = 12.46 ms, flip angle = 40°, FoV = 192mm, voxel size = 3 x 3 x 3 mm3. For accurate 

registration of the EPIs to the standard space, we acquired a T1-weighted structural image using 

a magnetization-prepared rapid gradient echo sequence (MPRAGE) with the following 

parameters: TR = 1800 ms, TE = 2.96 ms, flip angle = 7°, FoV = 256mm, voxel size = 1 x 1 x 1 

mm3. 

 

Pre-processing 

The preprocessing of functional imaging data was performed using SPM12 (Wellcome 

Trust Centre for Neuroimaging). Images were corrected for slice timing, realigned to the first 

volume, and realigned to correct for motion using a six-parameter rigid body transformation. 
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Inhomogeneities created using the phase of nonEPI gradient echo images at 2 echo times were 

coregistered with structural maps. Images were then spatially normalized by warping subject-

specific images to the reference brain on an MNI (Montreal Neurological Institute) coordinate 

(2mm isotropic voxels). For the univariate analysis images were smoothed using an 8-mm full-

width at half maximum Gaussian kernel (Mikl et al., 2008). 

 

Univariate analysis 

We implemented a general linear model (GLM) to analyze the fMRI data. The GLM 

contained separate onset regressors for the contextual cue which indicates the task-relevant 

dimension, F1, F2, and F3 stimuli presentations for each of the trials. Specifically, the F3 onsets 

were separately modeled when F3 was (1) the task-relevant hub, H1, (2) the task-relevant hub, 

H2, and (3) neither of H1 nor H2, but the hub for other pairs of individuals (non-relevant hub). The 

BOLD signal of the brain was modeled by a stick function for the contextual cue and the F3 

presentation and a 2 s boxcar function for the presentation of F1 and F2. The F1 onset regressors 

were modulated with parametric regressors of the rank of the individual in the task-relevant 

hierarchy (F1R) and the rank in the task-irrelevant hierarchy (F1I). The F2 onset regressors were 

modulated by the rank in the task-relevant hierarchy (F2R), the rank in the task-irrelevant hierarchy 

(F2I), and additional regressors representing the putative inference trajectory which vary 

according to which structure of cognitive map was tested (Supplementary Fig.5A). The onset of 

button-press was also modeled with a stick function. The 6 motion parameters obtained during 

realignment were entered into the GLM as a regressor of no interest. The orthogonalization 

function was turned off. All these regressors were convolved with the canonical hemodynamic 

response function. 

To test whether the brain encodes the trajectories via hubs over Euclidean space, for 

GLM1, we included parametric regressors of Euclidean distance and cosine angle of the vector 

between F1 and H2 and those of the vector between F2 and H1 (EH2F1, AH2F1, EH1F2, and AH1F2). 

The Euclidean distance between face stimuli was defined over the two-dimensional (2-D) space 

characterized by their relative rank in each of two social hierarchies. The cosine angle represents 

the normalized function of competence modulated by popularity. The value of these regressors 

was invariant to the dimension related to the current task. 

From the first-level analysis, contrast images of the brain activity correlate with regressors 

of inference trajectories (EH2F1, AH2F1, EH1F2, and AH1F2) at the time of F2 presentation were 

estimated from each of participants. Moreover, during the cover task (at the time of F3 

presentation), following contrasts images were estimated for the cross stimuli suppression (CSS) 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/810051doi: bioRxiv preprint 

https://doi.org/10.1101/810051
http://creativecommons.org/licenses/by-nd/4.0/


 39 

analysis: the brain activity which was suppressed more when F3 was the task-relevant hub, H1 

compared to when F3 was non-relevant hubs (H1 < Non-relevant hub); the brain activity which 

was suppressed more when F3 was the task-relevant hub (H2) compared to when F3 was non-

relevant hubs (H2 < Non-relevant hub). The individual contrast images were estimated at the 

threshold, p<0.001, Fisher’s Z transformed, and enter into the second-level analysis. We reported 

the whole-brain threshold-free cluster enhancement (TFCE) corrected signals at the threshold 

pTFCE<0.05 (Smith & Nichols, 2009). Considering that the hippocampus (HC) and entorhinal cortex 

(EC) were our a priori ROI while the EC is prone to signal loss with fMRI, we reported our results 

in HC and EC at a cluster-defining statistical threshold of p<0.001 uncorrected, combined with 

small volume correction (SVC) in anatomically defined ROIs for correction of multiple 

comparisons (pFWE<0.05 at peak level). 

With the GLM2, we tested whether the brain uses different cognitive maps for making 

inferences in different contextual dimensions. We inputted the rank difference in the task-relevant 

dimension (D) and that of the task-irrelevant dimension (I) as the parametric regressors which 

includes the 1-D distances between H2 and F1 and those of H1 and F2 (DH2F1, IH2F1, DH1F2 and 

IH1F2) in addition to the other regressors not associated with the distance measures that we 

inputted in GLM1. The value of these regressors was dependent on which was the task-relevant 

dimension. To examine the brain area encodes both D and I, we performed a conjunction analysis 

in which the individual contrasts images estimated at p<0.001 were entered to the second-level 

analysis (One-way ANOVA). The whole-brain FWE corrected at cluster level (pFWE<0.05). With 

the GLM3, we tested whether the brain has already integrated the cognitive map for group 1 and 

that for group 2 into a combined cognitive map and encodes the inference trajectories between 

F1 and F2. We included the regressors of Euclidean distance and cosine angle of the vector 

between F1 and F2 (EF1F2 and AF1F2) in addition to the other regressors that we inputted in GLM1. 

With the GLM4, we tested whether the brain uses different combined cognitive maps for making 

inferences in different contextual dimensions. We inputted the rank difference in the task-relevant 

dimension and that of the task-irrelevant dimension as 1-D distances between F1 and F2 (DF1F2 

and IF1F2) in addition to the other regressors that we inputted in GLM1. Supplementary Fig.5A 

illustrates the regressors of different models to examine how the brain constructs and use a 

cognitive map of abstract social hierarchies.  

 

Cross stimuli suppression analysis 

Recent findings have shown that the blood-oxygen-level-dependent (BOLD) suppression 

can be measured not only to repetition of a stimulus, but also to pairs of stimuli that have been 
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well-learned though association (Barron et al., 2016; Boorman et al., 2016; Grill-Spector et al., 

2006; Klein-Flugge et al., 2013). This cross-stimulus suppression (CSS) allows us to examine the 

underlying neural representations of associative memories. In the current study, if the relevant 

hub is presented during the suppression phase, at the time of F3 presentation, directly after 

participants recall the relevant hub for making inferences of relative ranks between faces, then 

the BOLD signal in the areas encoding the relevant hub should be suppressed compared to the 

non-relevant hubs. Considering that effects of CSS did not depend on the responses of 

participants during the cover task, we included the BOLD responses in every F3 presentation into 

the analysis. Moreover, the BOLD signal should be suppressed specific to the relevant and 

preferentially selected hub compared to the relevant but unselected hub. Considering that the 

hippocampus (HC) and entorhinal cortex (EC) system were our a priori ROI, we reported our 

results at a cluster-defining statistical threshold of p<0.001 uncorrected, combined with small 

volume correction (SVC) in anatomically defined ROIs for correction of multiple comparisons 

(pFWE<0.05). 

 

Neural model comparison 

The different hypothetical structure of the cognitive map and putative inference trajectories cannot 

be tested in a GLM while there is potential multicollinearity between different distance measures. 

The cross-correlation between different distance measures is shown in Supplementary Fig.5B. 

To formally compare the predictability of each of distance measures in different models, we used 

Bayesian model selection (BMS), (Stephan, Penny, Daunizeau, Moran, & Friston, 2009). 

We tested whether the brain activity in the vmPFC/mOFC and EC which correlate with the 

Euclidean distance of the inference trajectory from the hub (𝐸𝐻2𝐹1) is better explained with other 

alternative distance measures of inference trajectories. To test this, we ran several GLMs in which 

the brain activity at the time of inferences (F2 presentation) was modeled with only one of 

candidate distance measures as parametric regressors. Specifically, we compared the models 

having one of the following distance measures as parametric regressors: 𝐸𝐻2𝐹1, 𝐸𝐻1𝐹2, 𝐸𝐹1𝐹2, 

𝐷𝐻2𝐹1, 𝐷𝐻1𝐹2, 𝐷𝐹1𝐹2, 𝐴𝐻2𝐹1, 𝐴𝐻1𝐹2, and 𝐴𝐹1𝐹2. The inference process can be modeled with the link 

distance (𝐿) which indicates the minimum number of links between F1 and F2 in the social network. 

The shortest link distance, 𝐿 equals to the sum of the number of links from F2 to H2 (between-

group) and the number of links from H2 to F1 (within-group). Since we controlled the between-

group distances as one, the brain areas encoding 𝐿 also can be estimated by the GLM which 

includes 𝐷𝐻2𝐹1 as parametric regressors. In addition to the parametric regressors of distance, all 

GLMs were also included the rank of the task-relevant dimension and the rank of the task-
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irrelevant dimension of presenting faces as additional regressors at the time of F1 and F2 

presentation (F1R, F1I, F2R, and F2I). The onsets of the contextual dimension cue, F3 presentation, 

and button presses were also entered as additional regressors in all GLMs. 

For the univariate neural model comparisons, we first estimated the log-likelihood of each 

of GLMs. Following previous work (Kumaran, Banino, Blundell, Hassabis, & Dayan, 2016; Niv et 

al., 2015; Wilson & Niv, 2015), the log-likelihood (LL) of each of the models was calculated (Eq.2) 

separately for the a priori anatomically defined ROIs – the EC and vmPFC/mOFC. 

 

𝐿𝐿 = 𝑛 (ln √2𝜋𝜎2 + 0.5) 

Eq. 2 

where n is the total number of scans, and 𝜎2 is the variance of the residuals after subtracting the 

best-fit linear model. Considering that the linear model provides the maximum likelihood solution 

to each model with Gaussian-distributed noise, the likelihood was computed from residuals in the 

ROIs after subtracting the best-fit linear model. Since all models had the same number of 

parameters, their likelihoods could be directly compared to ask which model accounted best for 

the neural activation patterns. We further entered the LL to Bayesian model selection (BMS) to 

compare the goodness of the model with the exceedance probability (XP). 

 

Regions of Interest (ROI) analyses 

The ROIs were defined in the bilateral HC (Yushkevich et al., 2015), bilateral EC (Amunts 

et al., 2005; Zilles & Amunts, 2010), bilateral amygdala (AM) (Tzourio-Mazoyer et al., 2002), and 

bilateral vmPFC/mOFC (Neubert et al., 2015) using probabilistic map of anatomical ROIs. We 

also included additional ROIs in the bilateral primary motor cortex (M1) (Glasser et al., 2016) as 

control regions. Note that ROIs were independently defined from the current task. For the display 

purpose, all statistical parametric maps presented in the manuscript are unmasked. 

 

ROI based representational similarity analysis (RSA) 

 

Neural representation of social hierarchies while inferring relative social status between novel pair 

individuals 

In hypothesis-driven analyses, we performed a representational similarity analysis (RSA) 

(Kriegeskorte, 2008; Nili et al., 2014) to test whether the a priori ROIs contain a reliable structure 

with respect to the social hierarchies. To test this hypothesis, we extracted the brain activity of 

each of the individuals from their unsmoothed beta maps. We estimated the patterns of brain 
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activity from each of ROIs. We averaged the neural activity patterns elicited while each of the 

individual faces has been shown at the time of F1 or F2. These neural representations were 

separately estimated according to which social hierarchy dimension was relevant to the current 

task. Reliability of data was improved by applying multivariate noise normalization (Walther et al., 

2016). We quantified the representational similarity for the two blocks using the Mahalanobis 

distance between the activity patterns which generated a 24×24 representational dissimilarity 

matrix (RDM; 12 non-hub individuals were presented in each of two-dimension; Fig. 4A). These 

processes were repeated per ROI. We validated that the RDM estimated from the brain activity 

patterns in each of the ROIs discriminates different face stimuli with good sensitivity using the 

exemplar discriminability index (EDI) (Nili, Walther, Alink, & Kriegeskorte, 2016), which is defined 

as the average of the pattern dissimilarity estimates between different stimuli compared to the 

average of the pattern dissimilarity estimates between the same stimuli. We confirm that EDI in 

all ROIs was positive (one-sample t-test, p<0.01) suggesting that the different sets of stimuli were 

discriminable based on their multivariate activity patterns. 

 We predicted the RDM estimated from the patterns of neural activity in a priori ROIs by 

several model-based predictors (Model RDM; Fig.3 B). The model RDMs included (1) pairwise 

Euclidean distances between individuals in 2-D social space (E); (2) pairwise rank difference 

between individuals in the task-relevant hierarchy (D); (3) the context of which social hierarchy 

dimension the face stimulus was presented in (C, task-relevant dimension); (4) which was the 

group the stimulus belonged to during training (G). 

In addition to the model RDMs, using partial correlation, we also tested for the effect 

specific to E while controlling the confounding covariance between E and D. Specifically, we 

estimated the extent to which the RDM estimated in each ROI was explained by E’. E’ indicates 

the pairwise Euclidean distances between individuals (E) while regressing out its partial 

correlation with the pairwise rank difference in task-relevant hierarchy (D):𝐸′ = 𝐸 − 𝐷𝐷+𝐸 where 

𝐷+ is the Moore-Penrose generalized matrix inverse (𝐷+ = 𝑝𝑖𝑛𝑣(𝐷), Supplementary Fig.8A). 

This partial correlation method gives an advantage over the other methods such as 

orthogonalization which often loses the original structure (Fig.S8A). Note that, as Supplementary 

Fig.7A shows, E’ differs from EOrth  which indicates E orthogonalized by D using the Gram-

Schmidt method or the pairwise rank difference in task-irrelevant hierarchy (I). After regressing 

out the partial correlation, the predictors are independent from each other while preserving high 

correlation with its original structure. That is, E’ do not correlates with D while it still highly 

correlates with E (The right panel in Fig.S8A). 
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The extent to which the brain RDM of each ROI was explained by the model RDM was 

estimated with the rank correlation (Kendall’s 𝜏A). This effect was further tested at the group-level 

with the Wilcox signed-rank test across participants. The ROI based analysis treats data from a 

whole ROI. Therefore, correction for multiple comparisons was made by the number of ROIs as 

well as by the number of comparisons. We reported the results corrected for family-wise error 

(FWE) for multiple comparisons with the Holm-Bonferroni method. 

Last, we examined the relationship between pattern dissimilarities in each of the ROIs to 

pairwise Euclidean distances (E), the pairwise task-relevant rank differences (D), and the pairwise 

task-irrelevant rank differences (I) of all between individuals in the social cognitive map. The brain 

RDM of each participant was normalized into a range between 0 and 1. The upper triangular part 

of the normalized 24×24 RDM was assorted by the distance measure in each model RDM which 

indicates the model prediction of representational dissimilarity. We estimated the mean pattern 

dissimilarity per bin across participants. This analysis was only performed for visualization 

purpose (Fig.3E for E; Fig.S8C for D; and Fig.S8D for I). We did not make any statistical 

interpretation based on this analysis. 

 

Searchlight based RSA 

The searchlight RSA was performed to examine the brain areas in which the activity 

patterns represent the structure of the social hierarchies outside of the HPC-ERC system. 

Moreover, the searchlight analysis allows us to examine to what extent the model RDM explains 

the neural representation dissimilarity with a fixed number of voxels examined across regions. 

We defined a sphere containing 100 voxels around each searchlight center voxel. Consistent with 

the ROI analysis, we estimated the neural activity patterns elicited while each of the individuals 

has been presented at the time of F1 or F2 from each of the searchlights. These neural 

representations were separately estimated according to which social hierarchy was relevant to 

the current task. The dissimilarity matrices were quantified with Euclidean distance between 

neural patterns estimated form different blocks. For each searchlight, therefore, a 24×24 

dissimilarity matrix was generated based on neural activities elicited by each of face stimuli in two 

different task-relevant dimensions. We used the same predictors (i.e. model RDMs) that we used 

for ROI-based RSA analysis to estimate the neural representational dissimilarity across 

searchlights with Kendall’s 𝜏A rank correlation. Given the need to assess specific neural 

dissimilarity representing E, we also used partial correlation, E’ while controlling for its covariance 

with D. The computed Kendall’s 𝜏A values were then mapped back on the central voxel, allowing 

continuous mapping of information in the whole-brain per subject. These images were further 
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smoothed using an 8-mm full-width at half maximum (FWHM) Gaussian kernel and Fisher’s Z 

transformed. We further performed one-sample t-tests for a group-level analysis. We corrected 

for multiple comparisons using threshold-free cluster enhancement (TFCE) (Smith & Nichols, 

2009) with 1000 times of simulation. We reported the results corrected for family-wise error (FWE) 

for multiple comparisons (pTFCE<0.05). 
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