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Abstract 
Motivation: Breast cancer is a heterogeneous disease. In order to guide proper treatment decisions for each individual patient, there is 
an urgent need for robust prognostic biomarkers that allow reliable prognosis prediction. Gene feature selection on microarray data is an 
approach to systematically discover potential biomarkers. However, common pure-statistical feature selection approaches often fail to 
incorporate prior biological knowledge and thus tend to select genes that lack biological insights. In addition, due to the high dimension-
ality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We there-
fore combined systems biology feature selection with ensemble learning in this study, aiming to address the above challenges and select 
genes with biological insights, as well as robust prognostic predictive power. Moreover, in order to capture the complex molecular 
processes of breast cancer, where multiple disease-contributing genes may exist and interact, we adopted a multi-gene approach to predict 
the prognosis status using machine learning classifiers. 

Results: We systematically evaluated three different ensemble approaches that all improved the original systems biology feature selector. 
We found that compared to the most popular data-perturbation approach, function perturbation can produce significant improvement 
with just a few ensembles. Among all, the hybrid ensemble approach led to the most robust feature selection result, and the identified 
genes were shown to be highly involved in pathways, such as ubiquitination and cell cycle. Final prognosis prediction models were 
constructed using the identified genes and clinical information as input features. Among all models, bimodal deep neural network (DNN) 
achieved the highest AUC (area under receiver operating characteristic curve) in test performance evaluation, where subsequent survival 
analysis also verified its ability to differentiate patients with different prognosis statuses. In summary, the study demonstrated the poten-
tial of ensemble learning to improve gene feature selection robustness, as well as the potential of bimodal DNN in providing reliable 
prognosis prediction and guiding precision medicine. 

 

1 Introduction  
Breast cancer is a heterogeneous group of tumors with variable morphol-
ogies, molecular profiles, and clinical outcomes (Polyak, 2011). Reliable 
prognosis prediction is thus challenging, yet essential, for a precise and 
personalized treatment decision. During the past decades, breast cancer 
biomarkers have been identified to estimate diverse responses in prognosis 
and therapeutic efficacy for different patients. For example, ER, PR, 
HER2, Ki67, and uPA/PAI-1 are some of the well-known breast cancer 
biomarkers that provide prognostic insights (Duffy et al., 2017). Joint 
evaluation of the immunohistochemical staining (IHC) statuses of ER, PR, 
and HER2 can further divide patients into subtypes, such as hormone re-
ceptor positive breast cancer (ER+/PR+) (Dunnwald et al., 2007) or triple 
negative breast cancer (ER-/PR-/HER-) (Lehmann et al., 2011; Carey et 
al., 2007; Dent et al., 2007), which are relevant for prognosis. 

In order to discover more potential biomarkers to aid in reliable prog-
nosis prediction, it is necessary to systematically analyze all possible gene 
candidates, which can be viewed as a feature selection problem performed 
on high-throughput microarray gene expression data. However, feature se-
lection based on a pure statistical approach often fails to incorporate prior 
biological knowledge, and thus, tends to select genes that lack biological  

 
insights. In addition, most feature selection methods are supervised ap-
proaches which rely on labeled samples that are generally scarce. There-
fore, we adopted the unsupervised systems biology feature selector (Lai et 
al., 2019) as our core feature selector. The systems biology feature selector 
selects genes through interaction network analysis, and two aspects of 
prior biological knowledge are incorporated — prognostic-relevant split 
criteria and BioGrid gene/protein interaction repository (Stark et al., 2006). 
The selector divides samples into two groups based on prognostic-relevant 
split criteria instead of classification label and constructs a gene interac-
tion network for each group based on BioGrid. Difference analysis of two 
networks was carried out successively, with an output score for each gene 
summarizing how differently the gene interacts with its partners in two 
distinct prognosis statuses. The score is then used to rank and select the 
genes. Therefore, the gene feature selection result will serve as an exten-
sion to the previous breast cancer studies, which are inputted into the se-
lector in the form of prognostic-relevant split criteria. Furthermore, since 
the selector is based on interaction network analysis, its feature selection 
result would help in understanding the molecular mechanisms of breast 
cancer from a topological aspect. 

Another challenge of gene feature selection arises from the properties 
of microarray data. Usually, microarray datasets come with extremely 
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high dimension but low sample size. The feature selection result obtained 
under this circumstance is often unstable, which would be highly sensitive 
to the given data and can thus fail to provide equally good predictive per-
formance on unseen samples (Kalousis et al., 2007; Kim, 2009). To alle-
viate the problem of instability caused by a high feature-to-sample ratio, 
some studies have pointed out that ensemble learning is an effective coun-
termeasure (Awada et al., 2012; Saeys et al., 2007; He and Yu, 2010). For 
example, Abeel et al. combined ensemble learning with linear SVM-RFE 
to successfully improve the robustness and prediction accuracy of selected 
biomarkers (Abeel et al., 2010). Yang and Mao proposed MCF-RFE 
(multi-criterion fusion-based recursive feature elimination), which outper-
formed simple SVM-RFE in terms of robustness and prediction accuracy 
(Yang and Mao, 2011). However, apart from these studies, the application 
of ensemble learning on gene feature selection is still quite limited, and 
the effect of different ensemble approaches requires further investigation 
(Ang et al., 2016). We therefore combined ensemble learning with the 
systems biology feature selector to select genes that have robust prognos-
tic predictive power while also providing biological insights. Furthermore, 
a comprehensive analysis was carried out to systematically evaluate the 
results obtained by different ensemble approaches. 

Complex diseases such as breast cancer are unlikely caused by the ab-
erration of a single gene but rather by the accumulated distortion of mul-
tiple genes, which causes the degradation of a whole biological process 
that then leads to cancer (Staiger et al., 2012). Traditionally, however, the 
expression of an identified gene biomarker would be directly used to infer 
the prognosis status. Potential interactions between multiple disease-con-
tributing genes cannot be considered in such a single-gene approach. In 
contrast, a multi-gene approach would be able to model a complex disease 
more comprehensively by taking into consideration the expression pat-
terns of multiple genes. Machine learning classifiers can be used for this 
exact purpose, merging multiple input features into a final prediction. 
Among various classification models, support vector machine (SVM) and 
random forest (RF) are common powerful classifiers. Deep neural network 
(DNN) is also a powerful classification model with high expressivity and 
has the ability to provide high-level abstract representation of input infor-
mation. There are successful examples of applying these machine learning 
models in cancer diagnosis, where gene expression or clinical information 
is used to predict whether a patient has cancer or not with very high accu-
racy (Díaz-Uriarte and Alvarez de Andrés, 2006; Akay, 2009). Prognosis 
prediction, on the other hand, is a much more complicated problem. There 
are more interacting factors, either known or unknown, which all contrib-
ute to the final outcome. We therefore integrated machine learning models 
with ensemble systems biology feature selection in this study, aiming to 
predict breast cancer prognosis statuses with multiple genes robustly iden-
tified through an ensemble approach. 

2 Methods 

2.1   Dataset 
The data used in this study is the METABRIC dataset (Curtis et al., 2012; 
Pereira et al., 2016) from cBioPortal, which is the largest open-access 
breast cancer cohort that includes both gene expression data, clinical in-
formation, and long-term survival follow-ups. The survival information 
was used to define the label (prognosis status) for each patient, whereas 
the gene expression and clinical information were used as model inputs to 
predict the prognosis status. Although there are other available datasets 
with gene expression measured by the more popular RNA-Seq technique, 

either the sample size is too small for relevant analysis or the clinical/sur-
vival information is missing. 

We defined the label of each patient according to his/her 5-year disease-
specific survival (DSS) outcome. For those who died of breast cancer 
within 5 years, we defined them to be the “poor prognosis class”; For those 
who died of breast cancer after 5 years, we defined them to be the “good 
prognosis class”. This binary prognosis status was the label for subsequent 
classification tasks. 

Originally, there were 1980 samples (patients) in the dataset. After ex-
cluding those without gene expression data, there were 1904 in total. 
Among them, 1282 were censored samples, that is, the subject died of an-
other cause or was still alive. Since these cases cannot be labeled as good 
or poor, we defined these samples as the unlabeled set. For the rest (622) 
of the labeled samples, we excluded 40 of those without complete clinical 
information and defined the 582 remaining samples as the labeled set. We 
then stratified split the labeled set to form a training set (465 samples) and 
a hold-out testing set (117 samples). Details regarding preprocessing and 
data distribution can be found in Supplementary A 

2.2   Systems biology feature selector 
The core feature selector used in this study is the systems biology feature 
selector (Wang et al., 2011; Lai et al., 2019) (Supplementary B). It is an 
unsupervised gene feature selector that ranks the importance of genes 
through interaction network analysis. Based on a prognosis-relevant split 
criterion, the selector divides samples into two prognosis-distinct groups. 
Irrelevant genes would be eliminated by ANOVA (analysis of variance) 
and a gene interaction network is constructed for each group based on Bi-
oGrid. The PRV (prognosis relevant value) for each gene is then calcu-
lated to summarize how differently a gene interacts with all its partners in 
two prognosis-distinct interaction networks. Gene feature selection was 
performed by ranking the genes based on the calculated PRVs (Fig. 1). 

It should be noted that when a different split criterion is assigned to the 
systems biology feature selector, a different result will be produced and 
hence can be seen as a different feature selection function. In this study, 
seven prognosis-relevant split criteria were employed. Five of them were 
the statuses of well-established breast cancer biomarkers, namely ER, PR, 
HER2, MKI67, and PLAU, whereas two of them were breast cancer sub-
types, specifically the triple negative subtype (TN) and hormone receptor 
positive subtype (HP). 

2.3   Ensemble feature selection 
In this study, we combined the concept of ensemble learning (Zhang and 
Ma, 2012) with the systems biology feature selector to improve the robust-
ness of gene feature selection. There are generally two major approaches 
to ensemble feature selection — data perturbation and function perturba-
tion (He and Yu, 2010). In the data-perturbation ensemble approach, a 
feature selector is trained multiple times on different sample subsets, re-
sulting in multiple different feature selection outcomes (Fig. 2a).  

divide samples 
by split criterion ANOVA

construct 
interaction 

network
difference 
analysis PRV

gene expression data

samples +

samples -

A+

split criterion

construct 
interaction 

network
A-

Fig. 1. Systems biology feature selector. The required inputs for the systems biology 

feature selector are a prognostic-relevant split criterion and unlabeled samples with gene 

expression value. The output is the PRV for each gene feature, which was used to rank and 

select the genes. 
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The outcomes are then aggregated together to handle the selection insta-
bility with respect to sampling variation. On the other hand, the function-
perturbation ensemble approach tries to run different feature selectors on 
the same dataset then aggregates the outcomes (Fig. 2b). The idea is to 
capitalize on the strengths of different feature selection algorithms to ob-
tain a robust final output. 

Based on the above approaches, a third approach emerged — the hybrid 
ensemble approach. The hybrid ensemble approach intuitively tries to 
combine the strengths of data perturbation and function perturbation to 
further improve the robustness (Fig. 2c). Based on a previous review, de-
tailed research regarding the hybrid ensemble approach is still lacking and 
there are no previous examples that apply the hybrid ensemble approach 
on gene feature selection (Awada et al., 2012). Therefore, in this study, 
we comprehensively analyzed the three ensemble approaches mentioned 
above in the area of gene feature selection. 

2.4   Prognosis prediction 
We trained classifiers to predict the prognosis statuses of patients. In the 
first stage, the purpose was to evaluate and compare different feature se-
lection methods. Therefore, logistic regression was adopted to directly re-
flect the performance of selected genes. In the second stage, however, the 
purpose became finalizing a classifier that produces the best predictive 
performance. Therefore, more complex classifiers were adopted, includ-
ing support vector machine (SVM), random forest (RF), and deep neural 
network (DNN). 

A special bimodal structure (Ngiam et al., 2011) (Supplementary C) for 
the DNN was used when combining heterogeneous inputs of gene expres-
sion and clinical information. The two data sources were first processed 
by two separated subnetworks then merged together. This bimodal struc-
ture was shown to outperform simple fully connected DNNs (Lai et al., 
2019). 

2.5   Evaluation 
We used AUC (area under receiver operating characteristic curve) (Han-
ley and McNeil, 1982) as the main metric for the evaluation of predictive 
performance, since it provides a comprehensive overview of the perfor-
mance of the model at all possible classification thresholds. 

In the first stage, we performed random validation 100 times to evaluate 
the stability of a feature selection method. Each time, random validation 
was carried out by sub-dividing the training set into a smaller training set 
(3/4) and a validation set (1/4). We evaluated the performance of a feature 
selection method by focusing on its top-50 ranked genes, and a curve cor-
responding to the validation AUC of the top-1 ranked gene to the top-50 
ranked genes was plotted. We then quantified the overall performance of 
a feature selection method by the “area” under this top-50 AUC curve. 
After random validation was performed 100 times, we generated 100 
curves and 100 summarized areas. The distribution of these summarized 
areas was presented with box plot and the averaged curve of 100 curves 
was also presented to display the rough performance pattern of the top-50 
ranked genes. We focused on the top-50 selected genes since, in the case 
of this study, important genes are usually ranked within the top 50, and a 
peak performance can be achieved within this window. Genes ranked out-
side the top 50 add very minor improvement to the predictive performance, 
and hence it makes less sense to include them when calculating the sum-
marized area. When comparing two feature selection methods, we used 
the one-tailed paired t-test to compare two sets of area distribution. This 
enabled us to statistically verify if a set of selected genes leads to signifi-
cantly better predictive performance on different unseen data (100 random 
validations), which confers a more robust feature selection result. 

In the second stage, we used 4-fold cross validation to determine the 
hyperparameter of our final proposed model. We did not adopt the 100-
random validation procedure as in the first stage, since hyperparameter 
grid search with such random validation setting is not computationally 
feasible. The averaged performance over 4-fold cross validation was used 
to present the performance of a hyperparameter set, and the hyperparam-
eter set that led to the highest cross validation performance was selected 
as the final hyperparameter set. After determining the hyperparameters, 
we trained the final model with the whole training set with determined 
hyperparameters and then tested the model on the hold-out test set. 

3 Results 

3.1   Comparison of different ensemble approaches 
In the first stage, we systematically evaluated the feature selection results 
of different approaches through 100 random validations as described in 
Sec. 2.5. 

3.1.1 Data-perturbation ensemble approach 

The random sampling setting we used in data perturbation was first deter-
mined by random validation, in which subsampling 70% of the data  

. . .. . .
feature  

ranking score+random 
sampling

whole 
data

split criterion

systems biology feature selectorsubsample 1 PRV

systems biology feature selectorsubsample 2 PRV

systems biology feature selectorsubsample N PRV

. . .
. . .

feature ranking score

whole data

systems biology feature selectorER  status PRV

systems biology feature selectorPR  status PRV

systems biology feature selectorPLAU status PRV

aggregate

. . .
. . .

data perturbationER  status primary score

final feature ranking scoreaggregate
data perturbationPR  status primary score

data perturbationPLAU status primary score

(a) Data perturbation

(b) Function perturbation

(c) Hybrid

Fig. 2. Ensemble feature selection workflow. (a) In data perturbation, multiple sample 

subsets were generated through random sampling. The systems biology feature selector 

was trained on different sample subsets. The output scores were then summed together to 

produce the final score. (b) In function perturbation, different systems biology feature se-

lection functions were all trained on whole training data then aggregated to produce the 

final score. (c) In the hybrid ensemble approach, different systems biology feature selection 

functions first underwent data perturbation and  then the data perturbation output of differ-

ent functions were aggregated to produce the final score. 
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each time and repeating five times resulted in the best performance (Sup-
plementary D). We then compared the seven original feature selectors 
with their data-perturbation versions. The result can be seen in the inte-
grated plot (Fig. 3c-p), and the separated pairwise comparisons for each 
feature selector are also provided in Supplementary Fig. S3. From Fig. S3, 
we found that data perturbation improves the robustness in most of the 
cases except for PR-selector. The improvement was verified through the 
one-tailed paired t-test, which implied that the “summarized area” distri-
bution of the data-perturbation results for ER, HER2, TN, HP, MKI67, 
and PLAU-selectors were all significantly higher than their corresponding 
original feature selection results. 

3.1.2 Function-perturbation ensemble approach 

Function perturbation aggregates the output score generated by different 
functions into one final feature ranking score. Other than simply taking 
the summation, there are many possible aggregation strategies (Pes et al., 
2017). Through random validation, we found that the rank-mean strategy 
led to the best performance, by transforming the output scores of seven 
feature selectors into ranking lists first and then taking the average ranking 
as the final score (Supplementary E). Having determined the aggregation 
strategy, we compared the original results of the seven feature selectors 
(Fig. 3d, f, h, j, l, n, p) with their function-perturbation results (Fig. 3b). A 
dedicated plot is also provided in Supplementary Fig. S5. Through Fig. S5, 
we found that function perturbation brought even more significant im-
provement to the original feature selection results, which was also statis-
tically verified by the one-tailed paired t-test. 

3.1.3 Hybrid ensemble approach 

We further compared the results of function perturbation (Fig. 3b) and data 
perturbation (Fig. 3c, e, g, i, k, m, o) with the hybrid ensemble approach 
(Fig. 3a). We found that the hybrid ensemble approach produced the most 
robust feature selection results among all approaches tested. The improve-
ment was also verified by the one-tailed paired t-test. This implies that the 
genes selected by the hybrid ensemble approach had a consistently better 
performance in 100 random validations, which is therefore a more robust 
feature selection result compared to either the result of data perturbation, 
function perturbation, or the original systems biology feature selector. 

As a result, we adopted the best-performing hybrid ensemble approach 
to select the final gene set. As observed from the top-50 curve of the hy-
brid ensemble approach (Fig. 3a curve plot), the first 16 genes alone pro-
duced the peak performance. Therefore, the first 16 genes were the final 
gene set we selected, which served as an extension to the inputted prior 
breast cancer  knowledge of well-established biomarkers and subtypes. 
With much fewer number of features, the 16 final selected genes signifi-
cantly outperformed the combination of all genes before feature selection 
(24,338 candidate genes) in random validation (Fig. S6). 

3.2   Test performance evaluation of final prognosis models 
After filtering out genes with the most robust prognosis predictive power, 
we moved on to finalizing the prognosis classification model in the second 
stage. Rather than the simple logistic regression as used in the first stage, 
more complex models such as SVM, RF, and DNN were considered to 
construct the final prognosis models. The hyperparameters were deter-
mined through 4-fold cross validation, listed in Supplementary G. After 
determining the hyperparameters, the final models were trained with 
whole training data and tested on the hold-out test set. Considering that 
both gene expression data and clinical information might not always be 

available at the same time, we proposed different models with only gene 
expression input, only clinical information input, and combined input. 

Firstly, models with only gene features achieved an AUC between 
0.7443 and 0.7672 (Table 1a). The input features are the corresponding 
genes of well-established breast cancer biomarkers (ESR1, PGR, ERBB2, 
MKI67, PLAU) and the final selected genes in Sec. 3.1.3. Through the test 
performance, we found that the expression pattern of these selected genes 
alone can give an accurate prediction towards the prognosis status. 

Secondly, models with only clinical features achieved an AUC between 
0.6657 and 0.6850 (Table 1b). The input features are the 10 clinical fea-
tures listed in Supplementary A. Through pairwise comparison of the first 
two columns in Table 1, we found that gene feature models performed 
substantially better than clinical feature models. This implies that the se-
lected genes can reflect the prognosis status more directly than typical  

Fig. 3. Comparison of different ensemble approaches. (a)-(p) The random validation 

results of different feature selection approaches are presented. The curves in the left repre-

sent the averaged validation AUC for the top-50 selected genes by different approaches. 

The boxes in the right represent the distribution of the summarized areas under the top-50 

curves out of 100 random validations. Higher distribution implies better robustness, since 

the selected genes have better performance in unseen validation data. 
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Table 1. Test performance evaluation of final models 

 (a) Gene (b) Clinical (c) Combined 

Accuracy AUC Accuracy AUC Accuracy AUC 

SVM 0.6838 0.7443 0.6154 0.6657 0.6752 0.7677 
RF 0.6923 0.7663 0.6581 0.6850 0.7265 0.7815 
DNN 0.7009 0.7672 0.6154 0.6833 0.7179 0.7836 

 
clinical features which are usually thought to be the most directly linked 
to the prognosis status. However, under the circumstances in which gene 
expression measurements are not available, the predicted prognosis by 
clinical feature models can still serve as a reference. 

Finally, the models combining both gene and clinical features achieved 
an AUC between 0.7677 and 0.7836 (Table 1c). The structure for the DNN 
we used here is the bimodal structure as described in Supplementary C. 
We found that bimodal DNN successfully combined heterogeneous inputs 
of gene expression and clinical information, achieving the highest AUC 
among all models. 

We further validated the performance of bimodal DNN through tradi-
tional survival analysis. The concordance index (CI) (Harrell, 2015) of the 
bimodal DNN was 0.6683, which outperformed the traditional cox model 
(Cox, 1972; Bradburn et al., 2003) trained with the same input features 
(CI = 0.6251). In addition, the survival curve (Clark et al., 2003; Harrell, 
2015) of the good and poor prognosis groups predicted by bimodal DNN 
is illustrated in Fig. 4. As observed from the plot, after five years, the over-
all survival rate of the predicted good prognosis group is 0.68, while that 
of the predicted poor prognosis group is only 0.24. A log-rank test (Peto 
et al., 1977; Clark et al., 2003) also showed that the survival rate of two 
groups of patients is significantly different (p-value = 1.763×10-5). 

4 Discussion 
Selecting robust gene features has long been a challenging issue due to the 
high dimensionality and low sample size properties of microarray data. To 
address the problem, we introduced ensemble learning into our systems 
biology feature selection pipeline. We systematically evaluated three en-
semble approaches through 100 random validations, which is one of the 
first comprehensive analyses of different ensemble approaches on gene 

feature selection. The results show that all three ensemble approaches im-
proved the feature selection robustness. Among all, the hybrid ensemble 
approach resulted in the most significant improvement, such that the se-
lected genes achieved the highest overall performance on different valida-
tion sets. In addition, while the most popular data-perturbation ensemble 
approach does bring improvement, the less frequently used function-per-
turbation ensemble approach can actually bring about more significant im-
provement with just a few numbers of ensembles. 

Further analysis on function perturbation showed that the final aggre-
gation can benefit even from adding suboptimal feature selection func-
tions. Initially, only ER, PR, and HER2 were adopted as split criteria, since 
they are the most high-confidence, well-established breast cancer bi-
omarkers. TN and HP are major prognosis-relevant subtypes, but individ-
ually, they did not outperform the primary function perturbation (ER + PR 
+ HER2; Fig. 5a). However, adding the suboptimal feature selectors TN 
and HP to the primary function perturbation improved the performance 
surprisingly (Fig. 5e). Similarly, when we further aggregated MKI67 and 
PLAU, the performance boosted again (Fig. 5h), which then became the 
final version of function perturbation. This indicates that by merging a few 
suboptimal-but diverse-functions, function perturbation can achieve sig-
nificantly better performance. 

On the other hand, although compared to function perturbation, data 
perturbation brings relatively minor robustness improvement, both ap-
proach further improve upon each other. The highest performance was 
achieved only in the final aggregation of data diversity and function diver-
sity in the hybrid ensemble approach. Therefore, the conclusion that we 
draw from random validation analysis is that, when computational re-
source is limited, function perturbation would be recommended over data 
perturbation. However, when computational resources are not the major 
concern, hybrid ensemble approach would be the best strategy to ensure 
robustness. 

Due to the core systems biology feature selector that was wrapped in 
the ensemble learning workflow, our feature selection method also suc-
cessfully incorporated prior biological knowledge to select genes that pro-
vide biological insights. Firstly, STRING interaction network analysis 
(Szklarczyk et al., 2017) showed that the 16 selected genes are tightly 
linked through experimental or literary verified interactions (Fig. 6). 
Among these genes, ESR1 (Kim et al., 2011), ELAVL1 (Yuan et al., 2010; 
López de Silanes et al., 2005), EGFR (Masuda et al., 2012), and YQHAQ 
(Santarius et al., 2010) were already known to be related to breast cancer. 

Fig. 4. Kaplan-Meier plot of two groups of patients classified by bimodal DNN. The 
blue curve represents the overall survival rate over time for the poor prognosis group of 
patients predicted by bimodal DNN. The orange curve represents the good prognosis group 
predicted by bimodal DNN. 

Fig. 5. Aggregating a different number of functions in function perturbation. (a) Ag-

gregating ER, PR, and HER2-selector. (b)-(d) Original feature selection result of ER, PR, 

and HER2-selector. (e) Further aggregating TN and HP. (f)-(g) Original feature selection 

result of TN and HP-selector. (h) Further aggregating MKI67 and PLAU. (i)-(j) Original 

feature selection result of MKI67 and PLAU-selector. 
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Strong linkage between these well-studied breast-cancer-related genes and 
other identified genes makes the identified, but under-studied, genes more 
reasonable targets for further experimental investigation. 

Secondly, the systems biology feature selector identifies important 
genes based on interaction network analysis. Therefore, compared to pure 
statistical approaches that typically focus on the differential expression of 
each individual gene between two patient groups, our approach focuses on 
the topological aspect differences. We conducted enrichment analysis on 
an expanded list of the top-50 ranked genes by hybrid ensemble approach 
(listed in Supplementary F) to find out what pathways the identified genes 
generally fall into. In the resulting list of biological process enrichment 
analysis, we found that the genes are highly involved in pathways such as 
cell cycle and ubiquitination. For example, highly ranked genes such as 
BTRC (#2), FBXO6 (#3), SHMT2 (#4), GSK3B (#16), FBXW7 (#18), 
and UCHL5 (#19) are related to ubiquitination. It is known that the mis-
regulated expression of E3 ubiquitin ligases contributes to aberrant onco-
genic signaling (Gallo et al., 2017), where FBXW7 is an example. 
FBXW7 is a component of the SCF (SKP1, CUL-1, F-box protein) E3 
ubiquitin ligase complex, where its down-regulation in breast, colorectal, 
gastric, and cholangiocarcinoma (CCA) tumors correlates with poor prog-
nosis and survival, elevated tumor invasion, and occurrence of metastasis 
(Iwatsuki et al., 2010; Yang et al., 2015; Ibusuki et al., 2011). We there-
fore think that other identified ubiquitination-related genes in the list may 
link to similar breast cancer pathogenesis mechanism as well. In addition, 
it is known that ubiquitination pathways are potential druggable pathways 
(Gallo et al., 2017). Thus, the genes selected in this study may also be 
potential druggable targets. On the other hand, among the top-50 list, there 
are also genes related to cell cycle, such as PLK1 (#14), AURKA (#21), 
CDK4 (#31), and CDK1 (#43). For example, CDK1 and CDK4 play key 
roles in cell cycle regulation (Malumbres and Barbacid, 2005). Their over-
expression is closely related to proliferative diseases such as cancer (Kim 
et al., 2007). Therefore, CDK1 and CDK4 were found to be potential can-
cer therapeutic targets. CDK1 is also involved in the activation of AURKA 
and PLK1 in the complex cell cycle regulatory network, and together they 
control whether a cell enters the mitosis phase (Asteriti et al., 2015; Lind-
qvist et al., 2009). Due to the deterministic role in cell cycle regulation, 
AURKA and PLK1 are also possible targets for inhibiting abnormal pro-
liferation (Giet et al., 2005; Spankuch-Schmitt et al., 2002). Disorders in 
cell-cycle-related pathways have key influences on the prognosis of breast 
cancer, and our feature selection result highlights that CDK1, CDK4, 
AURKA, and PLK1 may play particularly important roles in the complex 

cell cycle regulatory network, which in turns affects breast cancer prog-
nosis. 

With the selected gene features that provide biological insights and ro-
bust predictive performance, we moved on to finalizing prognosis predic-
tion models in the second stage of the study. Through test performance 
evaluation, we found that models with gene feature alone can achieve an 
AUC between 0.7443 and 0.7672. This performance achieved by a multi-
gene approach is higher than the AUC of any component gene as a single 
biomarker (Supplementary H). This indicates that a multi-gene approach 
can indeed model the complex molecular process of breast cancer more 
comprehensively through joint evaluation of multiple genes. On the other 
hand, clinical feature models can also serve as a reference when gene ex-
pression data is not available. However, models that combine both gene 
expression and clinical information were the ones that achieved the best 
predictive performance, with bimodal DNN achieving the highest AUC 
among all. Additional survival analysis also indicates that bimodal DNN 
can successfully differentiate patients with different prognosis status. 

In conclusion, our study demonstrated that ensemble learning can help 
improve gene feature selection robustness. The selected genes provide in-
sight into the complex breast cancer molecular process from a topological 
aspect and serve as good targets for further experimental validation. Fur-
thermore, test evaluation and survival analysis showed that bimodal DNN 
can accurately predict breast cancer prognosis, which would in turn help 
guide personalized and precise treatment. 
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