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Microbes can preserve plasmids in non-selective conditions, paying a metabolic5

cost—reduced growth rate—without getting any benefit from them. Explaining6

this paradox is challenging. Here I report that plasmids can change multiple traits7

simultaneously, making them unexpectedly beneficial. A competition between two8

identical Escherichia coli strains, S and R, where R bears a non-transmissible plas-9

mid with a tetracycline-resistance gene, revealed that growth rate, biomass yield and10

lag are sensitive to plasmid carriage. Importantly these traits engaged in a trade-off11

that was previously unknown. R cells exploited it to preserve their plasmid and12

outgrow their plasmid-free counterpart S—with and without tetracycline. Most of13

the known plasmids are not transmissible, but they can replicate within their host.14

The above trade-off can explain the abundance of these plasmids in nature despite15

lacking horizontal transfer mechanisms.16

Introduction17

The ‘plasmid paradox’ (1 ) is founded on the seemingly contradictory abundance of plasmids18

among microbial communities. Plasmids are independent genetic elements that complement the19

chromosome of prokaryotes (1 , 2 ) and eukaryotes (3 ) alike. They can benefit cells harbouring20

them—notoriously in the form of resistance to antibiotics—but the metabolic costs associated21

with their upkeep reduce the host’s growth rate (1 , 4 ). Clinicians and evolutionary biologists22

exploit the sensitivity of growth rate to plasmid carriage, using pairwise competition experiments23

to estimate the costs of plasmid maintenance (5–9 ). Their conclusion is straightforward: mi-24

crobes without plasmids multiply faster in environments where plasmids are not beneficial, and25

overthrow microbes harbouring them (4 , 8 ). Bacteria, however, can preserve plasmids that have26

no evident benefit (10–12 ). Whence the paradox.27

Some plasmids can spread horizontally (i.e. conjugation) and escape this paradox (13 ), the28

problem is that most of the known plasmids are unable to do just that (14 ). The metabolic29

alterations that plasmids introduce in their hosts are unclear (5 , 15–17 ), so I asked whether30

growth rate is the only life-history trait sensitive to plasmid carriage. It is not. I analysed the31

growth dynamics of two identical constructs (18 ) of Escherichia coli, one of which (R in the32

remainder) harbours a non-transmissible plasmid with a tetracycline resistance gene, and found33

that plasmids can also delay the onset of growth (lag) and increment biomass yield. Importantly,34

growth rate, lag, and yield engaged in a trade-off that was previously unknown.35

Without tetracycline R exploited the trade-off in pairwise competition experiments that36

favoured yield over growth rate, preserving the plasmid while outgrowing S for 80< genera-37
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tions. During that time R maintained the plasmid without variations in the number of copies,38

but with tetracycline this number changed. Despite using concentrations below 2% the minimum39

inhibitory concentration, to allow the growth of the construct S, R-cells exposed to more antibi-40

otic hosted more plasmids. The gain was detectable within 24h, and exposed the dependence41

of the aforementioned benefits on plasmid copy number. Mutants harbouring more plasmids42

had lower yields and shorter lags, consistently with the above trade-off, but their growth rate43

remained unchanged. This suggests that growth rate assumes the costs of plasmid acquisition,44

whereas other traits—yield and lag—assume those of hosting different copies. Thus, plasmids45

can be either costly or beneficial depending on which trait is under selective pressure.46

Results47

Plasmid-mediated trade-off between rate, yield and lag. Growth curves can provide48

insight into metabolic changes in bacteria. The transition from efficient to inefficient pathways,49

for example, can be detected analysing them (19 , 20 ). I therefore sought changes in the growth50

curves (see Methods) of two strains of Escherichia coli MC4100, one of which, R, bears the51

plasmid pGW155B (18 ). This plasmid contains a tetracycline resistance gene, tet(36), and is52

non-transmissible, that is, it cannot be transferred horizontally to other cells. Now, the growth53

curves showed that harbouring pGW155B penalised the growth rate of R by 29.41% ± 2.57%54

(mean ± standard error, Mann-Whitney U-test p < 0.001) compared to its sensitive counterpart,55

S, as we may expect (Figure 1A). But they also exposed noteworthy differences in other growth56

parameters.57

Despite their lower growth rate, cells harbouring pGW155B attained larger population sizes58

than cells without it. I used this parameter to estimate the biomass yield (y) of both strains, a59

proxy for metabolic efficiency (20 ) defined as y = K/glc, where K is the population size in the60

equilibrium or carrying capacity and glc the supply of glucose. This metric suggests that R cells,61

despite their slower growth rate, were the most efficient of both types (Mann-Whitney U-test for62

differences in carrying capacity p ≈ 0.021, Figures 1B and C). Another parameter that I found63

sensitive to pGW155B was the lag phase—the period where cells negotiate their transition into64

growth—and its duration was considerably longer in R cells (Figure 1B, Mann-Whitney U-test65

p < 0.001). In other words, growth rate, yield and lag engage in a trade-off that was previously66

unknown and that, in our experimental setting, is triggered by the acquisition of pGW155B.67

Rate-yield-lag (RYL) trade-off changes the interpretation of carriage costs. Now,68

clinicians and evolutionary biologists measure drug sensitivity using different traits. The former69

frequently measure changes in bacterial density across a range of antibiotic concentrations (21–70

24 ), whereas the latter measure changes in growth rate (7 , 9 , 25 ). I therefore asked how71

the above trade-off influence the interpretation of antibiotic sensitivity tests, and exposed the72

strains S and R to a range of tetracycline concentrations to measure the minimum inhibitory73

concentration (MIC)—a metric of drug sensitivity commonly used in drug therapy design (26 ,74

27 ). The plasmid borne by R increased its resistance to tetracycline by ∼ 3, 000% irrespectively75
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of the trait I measured (Mann-Whitney U-test p = 0.083, ranksum = 55), but the MIC reported76

was, indeed, different for each trait (Figures 2A and S1A). Using growth rate data, the minimum77

inhibitory concentration for R was 8.343 ± 0.288 µg/mL of tetracycline (mean ± 95% confidence,78

Figure 2A), whereas using bacterial density data the MIC was 6.106 ± 0.272 µg/mL (Figure S1A).79

That is a ∼ 35% difference in the estimation of the same parameter. I found a similar gap for80

the tetracycline-sensitive strain S.81

Importantly, whether pGW155B incurs in metabolic costs depends on which trait I measured.82

Growth rate and lag data suggests the plasmid is, indeed, costly to maintain (Figures 2A and83

S1B) but culture density data shows the opposite: harbouring pGW155B provides a benefit84

that helped R cells reach larger population sizes than their plasmid-free counterpart (Figures85

S1A). The trade-off between growth rate, yield and lag, triggered by pGW155B, explains this86

discrepancy.87

Plasmid maintenance depends on the trait under selection. Growth rate is often used in88

microbiology as a proxy for microbial fitness (1 , 8 , 9 ) and, as I showed in Figure 1B, harbouring89

pGW155B imposed a reduction in growth rate in the construct R. Prior literature (8 ) showed90

that costly plasmids are purged from bacterial populations at an exponential rate very rapidly, so91

it is reasonable to assume that the construct S—without pGW155B—will outgrow R in sustained92

pairwise competitions. But given the RYL trade-off, it is no longer trivial to estimate the costs93

and consequences of plasmid carriage.94

I tracked the growth rate of each construct grown in mixed cultures, with a 1:1 proportion,95

that were exposed to a range of tetracycline concentrations for five consecutive 24h seasons.96

Importantly I propagated the cultures once R reached the equilibrium (see Methods), thus,97

favouring yield over growth rate. Without antibiotic, the difference in growth rate between both98

constructs was negligible throughout the 5-day competition (Kruskal-Wallis H-test p = 0.7840,99

χ2
−statistic = 1.7368, Figure 2A). Growth data, however, shows that R outgrew S in every100

season (Figure 2B). This had unforeseen consequences.101

The mutant selection window (7 ) is a theoretical framework to estimate drug concentration102

that are likely to select for drug-resistant mutants. Crucially, it relies on costs of resistance103

imposed by either chromosomal mutations or plasmids that protect against antimicrobials that,104

analog to those of plasmid carriage, reduce the growth rate of emerging resistant microbes.105

A key parameter of this framework is the minimal selective concentration or MSC (7 ). This106

concentration defines an boundary whereby resistant mutants have higher growth rates than their107

sensitive counterparts—inhibited by the drug—above the MSC, whereas below this concentration108

sensitive cells are the ones with higher growth rates. In other words, drug concentrations above109

the MSC select for resistant mutants whereas lower concentrations select for sensitive cells (7 ).110

Now, I estimated the MSC at 0.052 ± 0.004 µg/mL of tetracycline (Figure 2C). The MSC111

remained unchanged in mixed culture conditions (Kruskal-Wallis H-test p ∼ 0.1, χ2
−statistic112

= 7.6860, Figure 2D) but, as Figure 2A showed, there is no clear selection for neither construct.113

Given the above RYL trade-off I failed to detect MSCs using growth data. The selection114

coefficient (28 ) shows there was, indeed, selection for the strain R (Figure 2D) that is not115
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captured by metrics that rely on growth rate. Thus, as Figure 2B illustrates, the construct R—116

with pGW155B—can sustainably outgrow S—without pGW155B—despite growing at a slower117

rates, with and without antibiotic.118

R-mutants with additional copies of pGW155B show phenotypic changes consistent119

with the RYL trade-off. During the 5-day competition the growth rate of R did not change,120

as we may expect given the low tetracycline concentrations I used (Welsch’s t−test, t−statistic121

= 1.309, p ≈ 0.195, and slope 95% confidence interval = (-0.178, 0.853), Figure 3A). However,122

the selection coefficient for this construct was positive. Further analysis of the 5-day phenotypic123

dataset revealed changed in lag and yield that are consistent with the RYL trade-off, namely, a124

reduction in lag is followed by a reduction in biomass yield (Figure 3B and C). Crucially, R cells125

exposed to more tetracycline showed lower yield and shorted lag, so I asked whether the number126

of plasmid borne by R cells changed through time. And it did.127

To quantify the relative abundance of pGW155B within R cells, I sampled the mixed cultures128

on days one and five, calculated the proportion of chromosomal DNA corresponding to the129

construct R, and used quantitative polymerase chain reaction (qPRC) to measure the number of130

plasmids borne per cell (see Methods). The initial pool of cells from this strain, grown overnight131

and used to inoculate the cultures, contained 30.21 ± 6.72 copies of pGW155B per cell (mean ±132

95% confidence). Without tetracycline, this number did not change significantly after one and133

five days of competition against S (Mann-Whitney U-test p = 0.1, ranksum = 15, Figure 3D).134

But the relative abundance of pGW155B changed rapidly with increasing drug concentrations.135

Within 24h the gain in plasmids was 2-fold, increasing 6- to 10-fold after five days of competition136

depending on tetracycline concentration (Figures 3E and F). Note that the highest concentration137

I used, 0.14 µ mg/mL, represents ∼1% the minimum inhibitory concentration for the construct138

R (see Methods).139

To understand the relationship between plasmid copy number and drug concentration I fitted140

two mathematical models to qPCR data. First the linear model pc = p0 + dκ and then the141

constant model pc = κ, where κ denotes the slope or proportionality constant, p0 the initial142

number of copies borne by each R cell and d the antibiotic supplied. The constant model, that143

assumes no change in the number of plasmids borne per cell, was extremely unlikely (relative144

likelihood ≈ 6.80×10−42, Figure 3B). Instead the linear model suggests that plasmid copy number145

correlates with drug concentration, where the constant of proportionality κ = 161.87 ± 110.37146

plasmids per mL per microgram of drug per cell (t-statistic = 2.8745, p = 0.0088 and 95%147

confidence interval (51.5, 272.2)). Albeit significant, with an adjusted coefficient of determination148

(R2) of 0.245, the linear model does not entirely capture the dynamics of qPCR data. A switch-149

like, non-linear model, say, the logistic model (see Methods), explained better the variation in150

the number of pGW155B that I observed (adjusted R2 of 0.477). After five days of exposure to151

tetracycline the constant κ increased from 161.87 ± 110.37 to 880.19 ± 705.71 plasmids per mL152

per microgram of drug per cell (Figure 3C, t-statistic = 2.4446, p = 0.0229, and 95% confidence153

interval (174.5, 1585.9)). The predictive power declined for the logistic model, albeit it was still154

better than that for the linear model (adjusted R2 = 0.394 versus 0.261).155
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Discussion156

Plasmids are often portrayed as molecular parasites (6 , 29 ) that must jump between hosts to157

persist within a population or else, face extinction (14 , 30 , 31 ). Non-transmissible plasmids are158

an evolutionary anomaly that should not exist—specially if they transport genes that bear no159

benefit to their hosts. And yet, they represent the most common type of plasmid (14 ). The160

RYL trade-off helps explain their existence given that merely hosting a plasmid can be beneficial161

and, complementing prior research (13 ) on transmissible plasmids, explain the ‘plasmid paradox’.162

Which begs the question whether it was a paradox to begin with. Growth rate is used extensively163

as the sole predictor for plasmid carriage but, it turns out, it is not the only trait that changes164

by hosting plasmids. If all the traits sensitive to plasmid carriage pay a cost, then growth rate165

may well be a good predictor of plasmid maintenance. As good as any of the other traits.166

However, if they do not, and all or some of the traits engage in a trade-off, then predicting167

plasmid maintenance may not be as trivial.168

My study also suggests that plasmids can be highly sensitive to selection, given the sharp in-169

crease in the number of pGW155B borne by the construct R. Plasmid DNA can be substantially170

higher than chromosomal DNA in bacteria (32 ), and its relative abundance can change within171

the body during infections (33 ). It is therefore surprising that international AMR surveillance172

programmes (34 ) track only whether pathogens harbour plasmids. This has practical implica-173

tions. For example, the curation of plasmids from bacteria in vivo is gaining momentum as174

an alternative to treat drug-resistant infections (35–38 ). But the technique is still inefficient.175

It should be self-evident that pathogens carrying fewer plasmids will be easier to treat than176

those bearing more copies of them, but the variations in the number of plasmids borne is often177

overlooked. Equally, in the case of antimicrobial resistance, microbes hosting more plasmids178

with antimicrobial-resistance genes should be less sensitive to antibiotics than those harbouring179

fewer plasmids. The plasmid might well be the same, just in different number. Reporting this180

information will be an asset in our fight against antimicrobial-resistant microbes.181

Methods182

Media and Strains. I used the strains of Escherichia coli GB(c) and Wyl (39 ) (a gift from183

Remy Chait and Roy Kishony), and M9 minimal media supplemented with 0.4% glucose and 0.1%184

casamino acids. I made tetracycline stock solutions from powder stock (Duchefa #0150.0025) at185

5mg/mL in deionised water. Subsequent dilutions were made from this stock and kept at 4oC.186

Batch transfer protocol. I inoculated a 96-well microtitre plate containing 150µg/mL of187

media supplemented with tetracycline with a mixture of two overnight cultures, one of E. coli188

GB(c) and another of E. coli Wyl. The overnight culture for GB(c) was supplemented with189

100ng/mL of tetracycline to preserve the plasmid pGW155B carrying tet(36) (39 ), and inocu-190

lated the microtitre plate with a mixture of the aforementioned overnight cultures, using different191

volumes so that the proportion between GB(c) and Wyl was 1:1 (Figure S2). I incubated the192

microtitre plate at 30oC in a commercial spectrophotometer and measured the optical density193
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of each well at 600nm (OD600), yellow florescence for the S strain (YFP excitation at 505nm,194

emission at 540nm), and cyan fluorescence for the R strain (CFP at 430nm/480nm) every 20min195

for 24h (a.k.a. season). After each season I transferred 1.5µL of each well, using a 96-well pin196

replicator, into a new microtitre plate containing fresh growth medium and tetracycline.197

Growth parameter estimation. Fluorescence protein genes were constitutively expressed198

with an approximately constant fluorescence to optical density ratio (Figure S3). This enabled199

me to use fluorescence as a proxy for culture density in mixed culture conditions. I normalised200

fluorescence readings with respect to optical density readings using the ratio optical density to201

fluorescence in pure culture conditions as a reference.202

I imported the resulting OD time series data set (Figures S4 and S5) into MATLAB R2014b203

to subtract background and calculate growth rate per capita (fitness, f) using the following204

algorithm. First, I fitted three mathematical models to data: 1) linear model g(t) = b+ f · t, 2)205

exponential model g(t) = b+C ·exp(f · t) and 3) logistic model g(t) = b+K/(1+C ·exp(−f · t)).206

The terms g(t) denote culture growth through time (in OD, YFP, or CFP units), b the inoculum207

size used to subtract the background, C is a parameter and K the maximal population size208

attained. I used the fitness reported by the model with the lowest corrected Akaike Information209

Criterion (AICc).210

Finally, I calculated the selection coefficient for the plasmid-harbouring strain using the211

regression model (28 ) s = ln[R(t)/R(0)] · t−1, where R(0) is the initial ratio of resistant to212

susceptible (1:1) and R(t) the ratio at time t.213

Drug sensitivity parameter estimation. I defined the minimum inhibitory concentration214

(MIC) for each trait as the tetracycline required to reduce the trait of the bacterium by a factor215

of 99%, compared to the tetracycline-free control. The MICs were 0.364 ± 0.012 (mean ± 95%216

confidence), 0.351 ± 0.013 and 0.451 ± 0.019 µg/mL of tetracycline for the strain S using culture217

density, growth rate, and Malthusian growth respectively. For the strain R they were 11.121 ±218

1.734, 9.103 ± 0.379, and 4.282 ± 0.038 µg/mL. Given the suppression of S in competition219

(Figure S6), I failed to detect its MICs in these conditions. I therefore relaxed the degree of220

inhibition from 99% to 90% (IC90) to allow the estimation of drug sensitivity parameters in221

competition.222

DNA material extraction. For each concentration, I sampled three representative 150µg/mL223

cultures that I divided into two groups for chromosome and plasmid DNA extraction. I Ther-224

moScientific GeneJet DNA (#K0729) and GeneJet Plasmid (#K0502) extraction kits to extract225

chromosome and plasmid DNA from the samples, respectively, and used Qubit to quantify the226

yields. Both extracts were diluted accordingly in extraction buffer to normalise DNA across227

samples.228

Quantitative PCR and plasmid copy number estimation. I used primer3 to design two229

pairs of primers with melting temperature (Tm) of 60oC and non-overlapping probes with Tm230
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of 70oC. The amplicon ranges between 100 to 141bp depending on the locus (Table S1). Two231

reaction mixes were prepared using the kit ‘Luminaris Color Probe Low ROX’ (ThermoScientific232

#K0342), adding 0.3µM of each primer and 0.2µM of the probe as per manufacturer specifica-233

tions. Following a calibration curve for each reaction (Figure S7) I added 0.01ng of chromosomal234

or plasmid DNA material to each of the reaction mixes.235

To estimate the relative copies of pGW155B per R cell, I calculated the corresponding pro-236

portion of chromosomal DNA corresponding to the R-type from data in Figure 2D and used the237

formula (8 )238

cn =
(1 + Ec)

Ctc

(1 + Ep)Ctp
×

Sc

Sp

,239

where cn is the number of plasmid copies per chromosome, Sc and Sp are the size of the chromo-240

some and pGW155B amplicon in bp, Ec and Ep the efficiency of the qPCR taken from data in241

Figure S7, and Ctc and Ctp are the cycles at which I first detected product amplification (Ct).242
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Figure 1. Rate-yield-lag (RYL) trade-off in strain carrying pGW155B. A) Overlapped growth

curves of strains S (black) and R (cyan) in the absence of tetracycline. I estimated the growth rate (r),

population size in the equilibrium (K), biomass yield (see main text), and lag from logistic models fitted

to data (see Methods) shown in grey and light cyan, respectively. B) Box plots for each trait showing the

median (centre of the box), 25th and 75th percentile of the data set. The whiskers extend to the most

extreme data points that are not outliers, and these are individually represented. The p value shown on

top of each box plot refers to a Mann-Whitney U-test that I used to test differences in the parameters

between both strains. C) Alternative metrics for biomass yield (see Methods) using culture density at the

onset of stationary phase (top) and maximal culture density at any given time. The p values correspond

to Mann-Whitney U-tests.
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Figure 2. Growth rate alone is unable to capture plasmid maintenance. A) Change in per

capita growth rate during the 5-day pairwise competition showing both sensitive (S, black) and resistant
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across all tetracycline concentration corresponding to five consequence 24h seasons. The crossing point

for each replicate—minimal selective concentration or MSC—is shown as small, black circles. B) Same

as A), but I show change in cell density in optical density units derived from normalised fluorescence data

(see Methods). In light grey I show the optical density of the mixed culture estimated from normalised

fluorescence data, and in dark grey the optical density measured at 600nm C) Dose-response profile for

each strain showing the change in growth rate with increasing tetracycline concentrations. I measured

the costs of carrying pGW155B using growth rate from relative fluorescence growth data, with a decrease

of 0.21 ± 0.039 h−1 for R (mean ± 95% confidence). The profiles of both strains crossed-over with 0.052
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time with respect that measured in monoculture (M). Mean and 95% confidence interval are shown as

black errorbars and the raw data as red dots. I fitted this data set to a constant (dotted line) and linear

(light grey) models, the p value and slope shown correspond to the linear model. E) Selection coefficient

for the resistant strain, s, at different tetracycline concentrations. I also represented the MSC in C) and

its 95% confidence interval as a reference.
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Figure 3. Variations in plasmid copy number induce phenotypic changes that are consis-

tent with the RYL trade-off. A-C) Variation in growth rate (A), biomass yield (B), and lag (C)

after 120h exposure to different tetracycline concentrations. I show mean and 95% confidence interval as

black error bars and raw data in red dots. The dotted black line represents a constant model (a.k.a. no

change), light grey line represents a linear model, and dark grey a logistic model. The statistics shown in

A-C are those for the model with the highest adjusted coefficient of determination (R2). D) Increment in

pGW155B copy number after five days (120h) of exposure to tetracycline. Bars denote the mean and the

errorbar 95% confidence of the mean; those with a green edge have a significant increase in copy number

(p < 0.05) according to Welch’s t-test, red if it was not (p > 0.05), and yellow if the test was inconclusive
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show the mean and 95% confidence interval of qPCR data as black errorbars, and raw qPCR data as
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for the linear model, and in dark grey the prediction for the logistic model. Statistical significance (p)
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Supplementary Tables381

Table S1. Primers and probes designed using Primer3. Amplicon ranging from 100 to 141bp. Tm

indicates the estimated melting temperature.

382

383384

Target gen Sequence (5′ → 3
′) Tm (oC) Feature

tatB CGATGAAGCGTTCCTACGTT 60.27 Forward

TCATGCGCAGCTTCATTATC 59.94 Reverse

AAGGCGAGCGATGAAGCGCA 70.70 Probe

tet(36) ATTGGGCATCTATTGGCTTG 59.22 Forward

CCGATTCACAGGCTTTCTTG 60.76 Reverse

AGCCTTTGCCAATTGGGGCG 70.37 Probe
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Figure S1. Dose-response profile for tetracycline using culture density and lag data. Dose-

response profiles for each strain showing the change in culture density (A) and lag (B) with increasing

tetracycline concentrations. The difference in R growth with respect to S was positive in antibiotic-free

conditions (mean ± 95% confidence). Consequently, I could not detect any tetracycline concentration at

which the profiles crossed over—minimal selective concentration—and establish the selection window for

S. I estimated culture density from fluorescence data normalised with respect to optical density data (see

Methods). In lag data, the difference between both types without tetracycline was negative and, thus, I

could detect two MSCs at 0,082 ± 0.025 and .0.154 ± 0.021 µg/mL of tetracycline.
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Figure S2. Calibration curve to translate optical density data to number of Escherichia

coli cells. I fitted the linear model a = bx + c to optical density and colony counting data (dots) to

calculate the number of optical density units (OD600) per cell. a denotes the optical density readings

measured at 600nm, c the crossing point with the y−axis when x = 0, and b the conversion factor between

optical density and number of cells (x). I interpolating optical density readings to calculate the number

of cells within a culture as x = (a − c)/b. For the strain S, b = 1.62 × 10−10 OD · mL · CFU−1 and

c = 1.78× 10−2 OD, whereas for R b = 1.79× 10−10 OD ·mL · CFU−1 and c = 1.33× 10−2 OD.
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Figure S3. Changes in relative fluorescence over time in both R and S strains. Raw change

in florescence, per optical density units, measured every 20min for 24h for the S- (black) and R-type.

Each column represents the data set for each tetracycline concentration used.
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Figure S4. Raw data and model fit for resistant R strain. Raw optical Density data for GB(c)

measured every 20min for five 24h seasons (blue). The best fit to data (see Methods in main text) used

to calculate bacterial fitness is shown in grey. Each column represents the data set for one 24h season

and each row the data set for one tetracycline concentration.
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Figure S5. Raw data and model fit for sensitive S strain. Raw optical Density data for Wyl

measured every 20min for five 24h seasons (black). The best fit to data (see Methods in main text) used

to calculate bacterial fitness is shown in grey. Each column represents the data set for one 24h season

and each row the data set for one tetracycline concentration.
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Figure S6. Sensitive type not fully outcompeted during the competition. Augmented detail

of the evolved dose-response profiles of the tetracycline sensitive strain S after five days of exposure to

tetracycline. Raw optical Density data measured every 20min for five 24h seasons (black). The best fit

to data (see Methods in main text) used to calculate bacterial fitness is shown in grey. Each column

represents the data set for one 24h season and each row the data set for one tetracycline concentration.
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Figure S7. Quantitative PCR calibration curves for tet(36) and tatB. Reaction efficiency

for the set of primers and probes listed in the ‘methods’ section for tet(36) (A) and tatB. The efficiency

was calculated as Ef = 10−1/Slope
− 1, and the slope term calculated by fitting a linear model to qPCR

threshold cycle (Ct) data. The mean ± standard deviation for the coefficient of determination R2 and

efficiency are shown in the figures. The amplification curves for each reaction are shown in C) and D),

respectively.
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