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Microbes without plasmids divide faster than those harbouring them. Microbiolo-6

gists rely on this difference in growth rate between both types of microbe to foresee7

whether a plasmid will be maintained, or else purged by the host to avoid extinc-8

tion. However, here I report that plasmids change multiple life-history traits and9

show that growth rate alone can be a bad predictor for plasmid maintenance. Pair-10

wise competition experiments between two constructs of Escherichia coli—one of11

which carries a plasmid—revealed that harbouring plasmids can also increase yield12

and delay growth (lag). Crucially, yield engaged in a trade-off with growth rate.13

The plasmid borne by one construct (R), non-transmissible and with a tetracycline-14

resistance gene, reduced its host’s growth rate by 20%. However, given this trade-15

off, R outgrew its sensitive counterpart (S) in the absence of tetracycline when the16

competition favoured yield over growth rate. The trade-off makes unclear whether17

the plasmid is costly to maintain. R-mutants that acquired additional copies of the18

plasmid, through random segregation, exploited this trade-off and were selected19

with tetracycline concentrations below the ‘minimal selective concentration‘—the20

lowest antimicrobial concentration thought to select for resistant mutants. My21

data suggests that plasmids interfere with multiple traits, and whether plasmids22

are costly to maintain will depend on the relationship between them and which is23

under strongest selection. Thus, concepts that rely on plasmid carriage costs must24

be used cautiously.25

Introduction26

Plasmids are independent genetic elements that complement the chromosome of prokaryotes1,227

and eukaryotes3 alike. They can benefit cells harbouring them—notoriously in the form of28

resistance to antibiotics—but the metabolic costs associated with their upkeep can reduce the29

host’s growth rate2,4. Clinicians and evolutionary biologists exploit the sensitivity of growth rate30

to plasmid carriage, using pairwise competition experiments to estimate the costs of plasmid31

maintenance5–8 and whether a plasmid will be maintained through time. Their conclusion is32

straightforward: microbes without plasmids multiply faster in environments where plasmids are33

not beneficial, and overthrow microbes harbouring them4,7.34

Bacteria, however, can maintain plasmids that have no evident benefit—despite reducing35

their growth rate2,9–11. So, where is the hidden benefit? Plasmids are known to reduce the36

host’s growth rate, but the metabolic alterations that plasmids introduce are unclear12–15. Here37
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I asked whether growth rate is the only life-history trait that is sensitive to plasmid carriage,38

and it is not. I analysed the growth dynamics of two identical constructs16 of Escherichia coli,39

one of which (R in the remainder) harbours a non-transmissible plasmid with a tetracycline40

resistance gene, and found that plasmids can also delay the onset of growth (lag) and increment41

biomass yield. Growth rate and yield engaged in a trade-off that is highly sought after17–19.42

R-cells exploited this trade-off in pairwise competition experiments without tetracycline.43

The competition favoured yield over growth rate, resulting in R preserving the plasmid—with44

a tetracycline-resistance gene—for 80< generations. The trade-off between rate and yield has45

unforeseen consequences beyond plasmid maintenance. The estimation of antimicrobial concen-46

trations that select for drug-resistant mutants—‘mutant selection windows’6—relies on similar47

costs, so, how does the above trade-off affect the estimation of selection windows? As I demon-48

strate below, drug-resistant mutants that exploit this trade-off can be selected below the mutant49

selection window.50

I exposed a mixture of both constructs, S and R, to a range of tetracycline concentrations51

during a 7-day pairwise competition experiment that favoured yield over growth rate. With-52

out tetracycline R-cells maintained the plasmid with little variation in the number of copies53

borne, but with antibiotic this number changed: R-cells exposed to more drug hosted more54

plasmids, even at concentrations below the minimal selective concentration—which defines the55

lower boundary of the selection window6. The gain was detectable within 24h. Mutants har-56

bouring more plasmids had lower yields and shorter lags, but their growth rate increased during57

the same period. Thus, when plasmids trigger metabolic trade-offs, they can be either costly or58

beneficial depending on which trait is under selective pressure. Random segregation, commonly59

associated with plasmid loss in the absence of selection7, can also explain the accumulation of60

plasmids in these R-mutants.61

Results62

Plasmid-mediated trade-off between rate, yield and lag. Growth curves can provide63

insight into metabolic changes in bacteria. The transition from efficient to inefficient pathways,64

for example, can be detected analysing them20,21. I therefore sought changes in the growth65

curves (see methods) of two strains of Escherichia coli MC4100, one of which, R, bears the66

plasmid pGW155B16. This plasmid contains a tetracycline resistance gene, tet(36), and is non-67

transmissible, that is, it cannot be transferred horizontally to other cells. Now, the growth68

curves showed that harbouring pGW155B penalised the growth rate of R by 21.05% ± 2.01%69

(mean ± standard error with n = 8, Mann-Whitney U-test p = 1.554 × 10−4, ranksum = 100)70

compared to its sensitive counterpart, S, as we may expect (Figure 1A). But they also exposed71

noteworthy differences in other growth parameters.72

Despite their lower growth rate, cells harbouring pGW155B attained larger population sizes73

than cells without it. I used this parameter to estimate the biomass yield (y) of both strains,74

a proxy for metabolic efficiency21 defined as y = K/glc, where K is the population size in the75

equilibrium or carrying capacity and glc the supply of glucose. This metric suggests that R76
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cells, despite their slower growth rate, were the most efficient of both types (Mann-Whitney77

U-test for differences in carrying capacity p ≈ 0.021, Figures 1B and C). Another parameter78

that I found sensitive to pGW155B was the lag phase—the period where cells negotiate their79

transition into growth—and its duration was considerably longer for the construct R (Figure80

1B, Mann-Whitney U-test p < 0.001). In other words, growth rate, yield and lag engaged in a81

trade-off that was previously unknown and that, in my experimental setting, is triggered by the82

acquisition of pGW155B.83

I asked whether R can take advantage of this trade-off without using tetracycline, which84

enforces the maintenance of pGW155B, and avoid extinction7. I propagated a culture containing85

equal proportions of each construct in media without tetracycline (see methods), and transferred86

the mixture into a new microtitre plate with fresh media only when R-cells reached stationary87

phase (after ∼ 24h, see Figure 1A). I repeated this process for seven consecutive 24h seasons88

and, during this time, tracked the relative abundance of each type. As Figure 1E illustrates,89

R-cells remained a significant part of the mixture despite growing at slower rates. The trade-off90

can therefore be exploited by plasmid-harbouring microbes.91

Rate-yield (RY) trade-off changes the interpretation of carriage costs. Now, lag,92

yield and growth rate are sensitive to plasmid carriage and engaged in a trade-off. But the one93

between growth rate and yield is particularly relevant for clinicians and evolutionary biologists,94

who measure drug sensitivity using different traits.95

The former frequently measure changes in bacterial density across a range of antibiotic96

concentrations22–25, whereas the latter measure changes in growth rate6,8,26. I therefore asked97

whether the above trade-off can influence the interpretation of antibiotic sensitivity tests, and98

exposed the strains S and R to a range of tetracycline concentrations to measure the minimum99

inhibitory concentration (MIC)—a metric of drug sensitivity commonly used in drug therapy100

design27,28. The plasmid borne by R increased its resistance to tetracycline by ∼ 3, 000%101

irrespectively of the trait I measured (Mann-Whitney U-test p = 0.083, ranksum = 55), but the102

MIC reported was, indeed, different for each trait (Figures 2A and S1A). Using growth rate data,103

the minimum inhibitory concentration for R was 8.343 ± 0.288 µg/mL of tetracycline (mean ±104

95% confidence, Figure 2A), whereas using bacterial density data the MIC was 6.106 ± 0.272105

µg/mL (Figure S1A). That is a ∼ 35% difference in the estimation of the same parameter. I106

found a similar gap for the tetracycline-sensitive strain S.107

Prior literature7 showed that costly plasmids are purged from bacterial populations at an108

exponential rate very rapidly, so it is reasonable to assume that the construct S—without109

pGW155B—will outgrow R in sustained pairwise competitions. But given the RY trade-off,110

it is no longer trivial to estimate the costs and consequences of plasmid carriage: Growth rate111

and lag data suggests that pGW155B is, indeed, costly to maintain (Figures 1A and S1B) but112

culture density data suggests it is beneficial. This uncertainty can be specially problematic for113

the estimation of mutant selection windows.114

The range of antimicrobial concentrations that select for drug-resistant mutants is known115

as the ‘mutant selection window’6,29. Microbes that carry chromosomal mutations, or indeed116
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plasmids that protect them against antimicrobials incur in resistance costs that reduce the cell’s117

growth rate6,7,24,30. It is predicated that, given these costs, selection on resistance occurs only118

when the antimicrobial drug is supplied at sufficiently high concentrations to leverage the differ-119

ence in growth rate between sensitive and resistant types—the ‘minimal selective concentration’120

or MSC6—existing a range of drug concentrations that optimally select for resistant mutants6,29.121

As I demonstrate below, resistant cells that exploit the above trade-off can be selected below122

MSCs.123

The MSC for the construct R laid at 0.052 ± 0.004 µg/mL of tetracycline (Figure 2A).124

To test whether microbes exploiting a trade-off between growth rate and yield are still selected125

consistently with the mutant selection window hypothesis, I exposed a mixed culture containing126

equal proportions of each construct to a range of tetracycline concentrations. As above, the127

mixed culture was propagated after 24h into a microtitre plate with fresh media and antibiotic,128

and repeated the transfers for seven consecutive 24h seasons. The MSC did not change sub-129

stantially throughout the competition (Kruskal-Wallis H-test p = 0.3406, χ2−statistic = 6.7912,130

Figure 2B), thus, it is reasonable to expect that R will be selected with higher tetracycline con-131

centrations. The selection coefficient31 shows there was, indeed, selection for the construct R132

(Figure 2C), however, the selection coefficient for R was positive below the MSC. In other words,133

the construct R—harbouring pGW155B—was selected at lower-than-expected tetracycline con-134

centrations. Growth rate data was not informative of this selection process (Figure 2D), but it135

was with cell density data (Figure 2E) where the construct R is more abundant that S across136

all conditions.137

Note the change in costs of pGW155B with respect to those in Figure 1B. First, in mixed138

culture conditions both constructs reached lower densities as glucose, the carbon source, is now139

shared between two types of microbe—as opposed to one in pure culture conditions. But, given140

the trade-off between growth rate and yield resulting from pGW155B carriage, R divides faster141

in mixed culture (Mann-Whitney U-test for growth rate in absence of tetracycline, pure versus142

mixed conditions, p = 6.21×10−4, ranksum = 37). And second, S is not fully inhibited in mixed143

culture conditions (Figure S2), resulting in detectable growth rates shows in Figure 2D. However144

its growth rate is higher than that measured in pure culture conditions at similar tetracycline145

concentrations. Thus, parameters such as the MSC measured in pure culture growth conditions,146

did not hold in competition.147

R-mutants with additional copies of pGW155B selected below the MSC. The range148

of tetracycline concentrations that I used suppose less than 2% the minimum inhibitory con-149

centration for the construct R, however, Figure 2D shows that its growth rate declined with150

increasing tetracycline concentrations during the first season. However, in the last season, its151

growth rate remained unchanged. Figure 3A illustrates the relative difference in growth rate152

between both seasons, showing an increase in growth rate for the construct R over time that153

correlates with tetracycline concentration (linear regression p ≈ 1.45 × 10−4, F -statistic= 16.7,154

adjusted coefficient of determination R2 = 0.222; slope parameter 1.876, p ≈ 1.99 × 10−4, t-155

statistic= 3.9915). Importantly, yield and lag duration declined with higher drug concentra-156
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tions in the same period of time (Figures 3B and C), consistently with the above trade-off.157

Importantly, these changes were absent in the construct S with growth rate, yield, and lag not158

trading-off (Figure S3); so I asked whether the number of plasmids borne by R cells changed159

through time with different tetracycline concentrations. It did.160

To quantify the relative abundance of pGW155B within R cells, I sampled the mixed cultures161

on days one and five, calculated the proportion of chromosomal DNA corresponding to the162

construct R, and used quantitative polymerase chain reaction (qPRC) to measure the number of163

plasmids borne per cell (see methods). The initial pool of cells from this strain, grown overnight164

and used to inoculate the cultures, contained 30.21 ± 6.72 copies of pGW155B per cell (mean165

± 95% confidence, n = 3). Without tetracycline, this number did not change significantly after166

one and five days of competition against S (Mann-Whitney U-test p = 0.1, ranksum = 15,167

Figure 3D). But the relative abundance of pGW155B changed rapidly with increasing drug168

concentrations. Within 24h the gain in plasmids was 2-fold, increasing 6- to 10-fold after five169

days of competition depending on tetracycline concentration (Figures 3E and F).170

To understand the relationship between plasmid copy number and drug concentration I171

fitted two mathematical models to qPCR data. First the linear model pc = p0 + dκ and then172

the constant model pc = κ, where κ denotes the slope or proportionality constant, p0 the173

initial number of copies borne by each R cell and d the antibiotic supplied. The constant174

model, that assumes no change in the number of plasmids borne per cell, was extremely unlikely175

(relative likelihood ≈ 6.80 × 10−42, Figure 3E). Instead the linear model suggests that plasmid176

copy number correlates with drug concentration, where the constant of proportionality κ =177

161.87±110.37 plasmids per mL per microgram of drug per cell (t-statistic = 2.8745, p = 0.0088178

and 95% confidence interval (51.5, 272.2)). Albeit significant, with an adjusted coefficient of179

determination (R2) of 0.245, the linear model does not entirely capture the dynamics of qPCR180

data. A switch-like, non-linear model, say, the logistic model (see methods), explained better181

the variation in the number of pGW155B that I observed (adjusted R2 of 0.477). After five days182

of exposure to tetracycline the constant κ increased from 161.87 ± 110.37 to 880.19 ± 705.71183

plasmids per mL per microgram of drug per cell (Figure 3F, t-statistic = 2.4446, p = 0.0229, and184

95% confidence interval (174.5, 1585.9)). The predictive power declined for the logistic model,185

albeit it was still better than that for the linear model (adjusted R2 = 0.394 versus 0.261).186

Plasmid gains through random segregation. Now the question is this: how did R cells gain187

additional copies of pGW155B? Note that E. coli cannot share the plasmid horizontally given188

pGW155B lacks the genes needed for horizontal gene transfer16,32 (addgene vector database189

accession code 2853). So, I hypothesised the following: That random segregation, the mechanism190

underlying plasmids loss in the absence of selection7, can also facilitate their accumulation in191

bacteria. Suppose a microbe that harbours a plasmid and neither the microbe’s chromosome192

nor the plasmid can mutate. If this microbe bears n copies of the plasmid and it replicates193

alongside the host’s chromosome, the only means to gain or lose plasmids would be through194

the imperfect segregation of plasmids during cell division: one daughter cell would carry n + 1195

plasmids whereas the other is left with n − 1. This process is how pGW155B, I hypothesise,196
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changed its relative abundance in E. coli.197

The microbe’s growth depends upon the active uptake of a carbon source, S, from the198

environment, and it is inhibited by an antibiotic A. Based on these assumptions, I developed199

a theoretical framework and used it to predict how the relative number of plasmids would200

change through time when the bacterium is exposed to different concentrations of an antibiotic201

(see methods). I implemented this hypothesis as a Markov process, where the segregation of202

plasmids during cell division events is stochastic and independent of previous events. Assuming203

that only one plasmid can be gained or lost during each event with probability σ, I defined the204

growth of a microbial population, B, as205

dB

dt
= M(1 − c) · G(A, S) · B, (1a)206

dAi

dt
= −d · Ai + ϕ

∑
B · (Ae − Ai), (1b)207

dAe

dt
= −d · Ae − ϕ

∑
B · (Ae − Ai), (1c)208

dS

dt
= −U ·

∑
B, (1d)209

where the uptake rate is given by210

U(S) = umaxS

km + S
(2)211

and the growth function by212

G(A, S) = y · U(S) · 1
1 + κA2︸ ︷︷ ︸

A-Inhibition

. (3)213

Here the growth function G(A, S) depends on the antibiotic A and carbon S supplied. The214

carbon uptake follows Michaelis-Menten kinetics, with the maximum uptake rate given by umax215

and km is the associated half-saturation constant. The antibiotic A, however, diffuses from the216

environment (Ae) into the cells (Ai) with a rate ϕ. The affinity of A for its target is given by the217

constant κ and the Hill coefficient 2. Finally, the carbon captured by B cells is transformed into218

biomass with yield y. B cells can harbour a plasmid so the associated cost of carriage is given219

by c in equation 1d, which will vary depending upon the number of plasmids borne. Inherent to220

the model is the emergence of subpopulations carrying different number of plasmids, from 0 to221

j − 1 copies. Due to computational constraints I imposed j maximum copies and assumed that,222

once the plasmid is lost, it cannot be recovered. The following transition probability matrix,223

M, defines the relative abundance of each subpopulation224

M =



1 σ 0 · · · 0

0 1 − 2σ σ 0
...

0 σ 1 − 2σ σ
. . .

0 σ 1 − 2σ
. . . 0

... . . . . . . . . . σ

0 · · · 0 0 1 − σ


.225
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Figures 3G and H illustrate the qualitative change in population structure resulting from the226

exposure to the antibiotic A. When the microbe grows in the absence of drug, the subpopulation227

with fewer copies of the plasmid is more abundant whereas those containing more copies of it228

are rare. However, the distribution changes when the microbe is exposed to A. The optimal229

number of plasmids changes in the presence of drug, and so, with more antibiotic the most230

frequent subpopulation harbours more copies of the plasmid.231

The experimental data set is consistent with this prediction (Figures 3I, J, and K). If the232

initial pool of E. coli cells contained 30.21 ± 6.72 copies of the plasmid, after 24h of antibiotic233

challenge cells containing more copies rapidly emerged. The resulting distribution followed a234

Nakagami distribution (corrected Akaike Information Criterion AICc = 198.14, Negative Log-235

Likelihood NLogL = 96.79. See Methods) with parameters for shape µ = 2.18 and scale236

ω = 1.79 × 103 (95% confidence intervals are µ = (1.29, 3.71) and ω = (1367.1, 2348.9)). The237

mean copies of plasmids borne per cell after this period were 39.95 ± 10.58 (mean ± 95%238

confidence). These parameters changed when I prolonged the antibiotic challenge. After 120h of239

exposure to tetracycline the mean copies per cell increased to 169.58 ± 90.14 and the resulting240

distribution now followed a skewed Birnbaum–Saunders distribution (AICc = 290.19, NLogL241

= 142.81 versus AICc = 293.66 and NLogL = 144.54 for the Nakagami distribution) with242

parameters for shape γ = 0.73 and scale β = 133.52 (95% confidence γ = (97.07, 169.98) and243

β = (0.52, 0.94)). Thus, the antibiotic challenge increased the frequency of cells bearing more244

copies of pGW155B consistently with this theory (Figure 3G) where the imperfect segregation245

of plasmid during cell division is the underlying mechanism.246

Discussion247

Studies that look beyond the effect of plasmids on growth rate are extremely rare12,13. Growth248

rate is associated with ‘fitness’ in microbes5,8,30 and, therefore, it is used to measure the costs of249

plasmid carriage7,33,34. My study suggests, however, that plasmids alter more than just growth250

rate. This expands the number of traits that selection can act upon, in principle, regardless251

of the genes borne by plasmids and the trade-off between growth rate and yield that I report,252

mediated by the acquisition of pGW155B, is an example of this. Now, this begs the question253

of whether growth rate is a reliable predictor of plasmid maintenance or, more generally, the254

outcome of pairwise competitions. In my study it was not, given the trade-off between growth255

rate and yield, and that I favoured yield over growth rate to maintain pGW155B in R-cells256

without using tetracycline. This shows that ‘costs’ of plasmid carriage, or indeed, antimicrobial257

resistance are relative. However, I do not wish to overstate my results. Plasmids are incredibly258

diverse in terms of size, genes, or transfer mechanism32, so the trade-off may be absent in other259

types of plasmid. Nevertheless, this highlights that plasmids are not molecular parasites5,35260

necessarily and may provide their hosts with more benefits than previously thought.261

The relativity of ‘costs’, and importantly the relativity of drug sensitivity, poses serious262

challenges to rationales, like the ‘mutant selection window’, that rely on plasmids or resistance263

costs. However, it also open new opportunities for drug therapy design. For example, if antibiotic264
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sensitivity depends on the trait used to assess it: Which one should be used to determine265

inhibitory concentrations and selection windows? Pathogens have different growth dynamics,266

with some dividing at faster rates than others36–38, so, it seems reasonable, drug sensitivity based267

on growth rate data could be more informative of the microbe’s sensitivity than sensitivity based268

on cell density data. But the relativity of costs and sensitivity can also have its drawbacks. For269

example, some traits may report a minimal selective concentration whereas other may not. The270

mutant selection window hypothesis claims that drug concentrations below the minimal selective271

concentration do not select for resistance6,8,26, however, antimicrobial-resistance genes (ARG)272

are increasingly detected in environments with residual drug concentrations39. The relationship273

between traits—here growth rate and yield—will determine whether such ‘safety’ net exists or274

not.275

The changes in plasmid copy number that I found were unexpected, given the low tetra-276

cycline concentrations used and, particularly, the lack of horizontal gene transfer mechanisms.277

Plasmid DNA can be substantially higher than chromosomal DNA in bacteria40, and its rela-278

tive abundance can change within the body during infections41. It is therefore surprising that279

international AMR surveillance programmes42 track only whether pathogens harbour plasmids,280

overlooking their relative abundance within the cell. This has practical implications. For ex-281

ample, the curation of plasmids from bacteria in vivo is gaining momentum as an alternative to282

treat drug-resistant infections43–46. But the technique is still inefficient. It should be self-evident283

that pathogens carrying fewer plasmids will be easier to treat than those bearing more copies284

of them, but the variations in the number of plasmids borne are often overlooked. Equally,285

microbes hosting more plasmids with antimicrobial-resistance genes should be less sensitive to286

antibiotics than those harbouring fewer plasmids—despite harbouring exactly the same plasmid.287

Reporting this information will be an asset in our fight against antimicrobial-resistant microbes.288

Methods289

Media and Strains. I used the strains of Escherichia coli GB(c) and Wyl47 (a gift from Remy290

Chait and Roy Kishony), and M9 minimal media supplemented with 0.4% glucose and 0.1%291

casamino acids. I made tetracycline stock solutions from powder stock (Duchefa #0150.0025)292

at 5mg/mL in deionised water. Subsequent dilutions were made from this stock and kept at 4oC.293

294

Batch transfer protocol. I inoculated a 96-well microtitre plate containing 150µg/mL of295

media supplemented with tetracycline with a mixture of two overnight cultures, one of E. coli296

GB(c) and another of E. coli Wyl (Figure S4). The overnight culture for GB(c) was supple-297

mented with 100ng/mL of tetracycline to preserve the plasmid pGW155B carrying tet(36)47,298

centrifuged and removed prior adding to the microtitre plate. I incubated the plate at 30oC299

in a commercial spectrophotometer and measured the optical density of each well at 600nm300

(OD600), yellow florescence for the S strain (YFP excitation at 505nm, emission at 540nm),301

and cyan fluorescence for the R strain (CFP at 430nm/480nm) every 20min for 24h (a.k.a.302

season). After each season I transferred 1.5µL of each well, using a 96-well pin replicator, into303
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a new microtitre plate containing fresh growth medium and tetracycline.304

305

Growth parameter estimation. Fluorescence protein genes were constitutively expressed306

with an approximately constant fluorescence to optical density ratio (Figure S5). This enabled307

me to use fluorescence as a proxy for culture density in mixed culture conditions. I normalised308

fluorescence readings with respect to optical density using the ratio OD to fluorescence in pure309

culture conditions as a reference.310

I imported the resulting OD time series data set (Figures S6 and S7) into MATLAB R2014b311

to subtract background and calculate growth rate per capita (fitness, f) using the following312

algorithm. First, I fitted three mathematical models to data: 1) linear model g(t) = b + f · t, 2)313

exponential model g(t) = b+C ·exp(f · t) and 3) logistic model g(t) = b+K/(1+C ·exp(−f · t)).314

The terms g(t) denote culture growth through time (in OD, YFP, or CFP units), b the inoculum315

size used to subtract the background, C is a parameter and K the maximal population size316

attained. I used the fitness reported by the model with the lowest corrected Akaike Information317

Criterion (AICc). To estimate the biomass yield I divided OD data in stationary phase by the318

glucose supplied21. I also used the highest density at any given time and the density reported319

by the data fit, both divided by glucose supply, as alternative metrics for biomass yield.320

Finally, I calculated the selection coefficient for the plasmid-harbouring strain using the re-321

gression model31 s = ln[R(t)/R(0)] · t−1, where R(0) is the initial ratio of resistant to susceptible322

(1:1) and R(t) the ratio at time t.323

324

Drug sensitivity parameter estimation. I defined the minimum inhibitory concentration325

(MIC) for each trait as the tetracycline required to reduce the trait of the bacterium by a factor326

of 99%, compared to the tetracycline-free control. The MICs were 0.364 ± 0.012 (mean ± 95%327

confidence), and 0.351 ± 0.013 of tetracycline for the strain S using culture density and growth328

rate, respectively. For the strain R they were 11.121 ± 1.734, and 9.103 ± 0.379 µg/mL. Given329

the suppression of S in competition (Figure S2), I failed to detect its MICs in these conditions.330

I therefore relaxed the degree of inhibition from 99% to 90% (IC90) to allow the estimation of331

drug sensitivity parameters in competition.332

333

DNA material extraction. For each concentration, I sampled three representative 150µg/mL334

cultures that I divided into two groups for chromosome and plasmid DNA extraction. I Thermo-335

Scientific GeneJet DNA (#K0729) and GeneJet Plasmid (#K0502) extraction kits to extract336

chromosome and plasmid DNA from the samples, respectively, and used Qubit to quantify the337

yields. Both extracts were diluted accordingly in extraction buffer to normalise DNA across338

samples.339

340

Quantitative PCR and plasmid copy number estimation. I used primer3 to design two341

pairs of primers with melting temperature (Tm) of 60oC and non-overlapping probes with Tm342

of 70oC. The amplicon ranges between 100 to 141bp depending on the locus (Table S1). Two343

reaction mixes were prepared using the kit ‘Luminaris Color Probe Low ROX’ (ThermoScientific344

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2019. ; https://doi.org/10.1101/810259doi: bioRxiv preprint 

https://doi.org/10.1101/810259
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

#K0342), adding 0.3µM of each primer and 0.2µM of the probe as per manufacturer specifica-345

tions. Following a calibration curve for each reaction (Figure S8) I added 0.01ng of chromosomal346

or plasmid DNA material to each of the reaction mixes.347

To estimate the relative copies of pGW155B per R cell, I calculated the corresponding pro-348

portion of chromosomal DNA corresponding to the R-type from data in Figure 2D and used the349

formula7350

cn = (1 + Ec)Ctc

(1 + Ep)Ctp
× Sc

Sp
,351

where cn is the number of plasmid copies per chromosome, Sc and Sp are the size of the chro-352

mosome and pGW155B amplicon in bp, Ec and Ep the efficiency of the qPCR taken from data353

in Figure S8, and Ctc and Ctp are the cycles at which I first detected product amplification354

(Ct).355

Distribution fit to data. To find the distribution that best fits qPCR data, I tried all356

distributions available in MATLAB 2014a using the built-in routine fitdist. I then used the357

negative log-likelihood (NLogL) function and corrected Akaike Information Criterion (AICc) as358

metrics for the goodness of fit, and sorted the distributions accordingly. Finally, I considered359

the best fit that distribution with the lowest NLogL and AICc.360
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Figure 1. Rate-yield-lag (RYL) trade-off in construct harbouring pGW155B. A) Overlapped
growth curves of strains S (black) and R (cyan) in the absence of tetracycline. I estimated the growth
rate (r) per capita, population size in the equilibrium (K), biomass yield (see main text), and lag from
logistic models fitted to data (see Methods) shown in grey and light cyan, respectively. B) Box plots for
each trait showing the median (centre of the box), 25th and 75th percentile of the data set. The whiskers
extend to the most extreme data points that are not outliers, and these are individually represented. The
p value shown on top of each box plot refers to a Mann-Whitney U-test that I used to test differences in
the parameters between both strains. C-D) Alternative metrics for biomass yield (see methods) using
culture density reported by the data fit (C) and maximal culture density at any given time (D). The p

values correspond to Mann-Whitney U-tests. E) Relative frequency (mean ± 95% CI) of each construct
during a 7-day long pairwise competition in the absence of tetracycline.
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Figure 2. Construct R selected below the minimal selective concentration. A) Dose-response
profile for each strain showing the change in growth rate with increasing tetracycline concentrations. I
measured the costs of carrying pGW155B using growth rate from relative fluorescence growth data, with a
decrease of 0.21 ± 0.039 h−1 for R (mean ± 95% confidence, n = 8). The profiles of both strains crossed-
over with 0.052 ± 0.004 µg/mL of tetracycline, defining the minimal selective concentration. B) Change
in MSC over time with respect that measured in monoculture (M). Mean and 95% confidence interval
are shown as black errorbars and the raw data as red dots. I fitted this data set to a constant (dotted
line) and linear (light grey) models, the p value and slope shown correspond to the linear model. C)
Selection coefficient for the resistant strain, s, at different tetracycline concentrations. I also represented
the MSC in B) and its 95% confidence interval as a reference. D) Change in per capita growth rate during
the 7-day pairwise competition showing both sensitive (S, black) and resistant (R, cyan) constructs of
Escherichia coli. In each subplot I present the mean growth rate ± 95% confidence (n = 8) across
all tetracycline concentration corresponding to seven consecutive 24h seasons. The crossing point for
each replicate—minimal selective concentration or MSC—is shown as small, black circles. E) Same as
D), but I show change in cell density in optical density units derived from normalised fluorescence data
(see methods). In light grey I show the optical density of the mixed culture estimated from normalised
fluorescence data, and in dark grey the optical density measured at 600nm.
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Figure 3. Tetracycline-induced variation in pGW155B copy number results phenotypic
changes compatible with the RYL trade-off. A-C) Change in growth rate (A), biomass yield (B),
and lag (C) after 168h exposure to different tetracycline concentrations. I show mean and 95% confidence
interval as black error bars and raw data in red dots. The dotted black line represents a constant model
(a.k.a. no change), light grey line represents a linear model, and dark grey a logistic model. The statistics
shown in A-C are those for the model with the lowest corrected Akaike Information Criterion (AICc). D)
Variation in pGW155B copy number after five days (120h) of exposure to tetracycline. Bars denote the
mean and the errorbar 95% confidence of the mean; those with a green edge have a significant increase in
copy number (p < 0.05) according to Welch’s t-test, red if it was not (p > 0.05), and yellow if the test was
inconclusive (p ≈ 0.05). Raw difference in qPCR data is shown as red dots. E-F) Copies of pGW155B
borne by R cells exposed to different tetracycline concentrations after 24h (E) and 120h (F). I show the
mean and 95% confidence interval of qPCR data as black errorbars, and raw qPCR data as red dots. The
black dotted line represents the prediction from the constant model, in light grey that for the linear model,
and in dark grey the prediction for the logistic model. Statistical significance (p) for the slope parameter
and confidence interval is shown for the model with lowest corrected Akaike Information Criterion, which
was the logistic in both data sets: 190.153 versus 184.106 for 24h data (linear versus logistic), and 305.586
versus 290.435 for 120h data. The likelihood function deemed the constant model unlikely (probability of
0.0486 for 24h data, 0.0005 for 120h data), so I did not consider its AICc. G) Theoretical distributions
of plasmid copy number as a function of antibiotic concentration. The thin, vertical line illustrates the
initial distribution of plasmids—analog to the inoculum in the experimental setup. The distribution of
plasmids for each drug concentration is shown in different colours from light green (low drug) to black
(high drug), with thicker lines denoting higher drug concentrations. The distribution in the absence of
antibiotic is shown in pink. H) Pooled frequency of plasmids after 24h and 120h of exposure to the
drug using simulated data. I-J) Distribution of pGW155B copies in R-cells after 24h (I) and 120h (J)
of exposure to tetracycline based on qPCR data. In red I represent the continuous distributions that
best fit the data (red lines, see methods): ‘Nakagami’ for the 24h dataset and ‘Birnbaum–Saunders’
for the 120h dataset. K) Two-sample Kolmogorov-Smirnov (KS) and Mann–Whitney U-tests to test
whether both datasets come from different distributions. The box plot shows the median (red), 75th and
25th percentile of the data set, and the whiskers extend to the most extreme data points not considered
outliers. The outliers are plotted individually.
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Supplementary Tables533

Table S1. Primers and probes designed using Primer3. Amplicon ranging from 100 to 141bp. Tm

indicates the estimated melting temperature.
534

535536

Target gen Sequence (5′ → 3′) Tm (oC) Feature

tatB CGATGAAGCGTTCCTACGTT 60.27 Forward
TCATGCGCAGCTTCATTATC 59.94 Reverse

AAGGCGAGCGATGAAGCGCA 70.70 Probe

tet(36) ATTGGGCATCTATTGGCTTG 59.22 Forward
CCGATTCACAGGCTTTCTTG 60.76 Reverse
AGCCTTTGCCAATTGGGGCG 70.37 Probe
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Figure S1. Dose-response profile for tetracycline using culture density and lag data. Dose-
response profiles for each strain showing the change in culture density (A) and lag (B) with increasing
tetracycline concentrations. The difference in R growth with respect to S was positive in antibiotic-free
conditions (mean ± 95% confidence). Consequently, I could not detect any tetracycline concentration at
which the profiles crossed over—minimal selective concentration—and establish the selection window for
S. I estimated culture density from fluorescence data normalised with respect to optical density data (see
methods). In lag data, the difference between both types without tetracycline was negative and, thus, I
could detect two MSCs at 0,082 ± 0.025 and .0.154 ± 0.021 µg/mL of tetracycline.
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Figure S2. Sensitive type not fully outcompeted during the competition. A) Raw data for
the construct S (black) and R (cyan) growing in M9 media supplemented with increasing tetracycline
concentrations (different columns show different conditions). First and third rows show optical density
data measured at 600nm, whereas second and fourth rows show density data estimated from relative
fluorescence. B) Augmented detail of the evolved dose-response profiles of the tetracycline sensitive type
S after seven days of exposure to tetracycline. Density data measured every 20min for seven 24h seasons
(black) with the best fit to data (see main text) used to calculate growth parameters shown in grey.
Each column represents the data set for one 24h season and each row the data set for one tetracycline
concentration.
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Figure S3. No rate-yield-lag (RYL) trade-off observed for the construct S. Variation in
growth rate (A), biomass yield (B), and lag (C) after 168h exposure to different tetracycline concentra-
tions. I show mean and 95% confidence interval as black error bars and raw data in red dots. The dotted
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Figure S4. Calibration curve to translate optical density data to number of Escherichia
coli cells. I fitted the linear model a = bx + c to optical density and colony counting data (dots) to
calculate the number of optical density units (OD600) per cell. a denotes the optical density readings
measured at 600nm, c the crossing point with the y−axis when x = 0, and b the conversion factor
between optical density and number of cells (x). I interpolating optical density readings to calculate the
number of cells within a culture as x = (a − c)/b. For the strain S, b = 1.62 × 10−10 OD · mL · CFU−1

and c = 1.78 × 10−2 OD, whereas for R b = 1.79 × 10−10 OD · mL · CFU−1 and c = 1.33 × 10−2 OD.
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Figure S5. Changes in relative fluorescence over time in both R and S strains. Raw change
in florescence, per optical density units, measured every 20min for 24h for the S- (black) and R-type.
Each column represents the data set for each tetracycline concentration used.
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Figure S6. Raw data and model fit for resistant R strain. Raw optical Density data for GB(c)
measured every 20min for seven 24h seasons (blue). The best fit to data (see methods in main text) used
to calculate bacterial fitness is shown in grey. Each column represents the data set for one 24h season
and each row the data set for one tetracycline concentration.
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Figure S7. Raw data and model fit for sensitive S strain. Raw optical Density data for Wyl
measured every 20min for seven 24h seasons (black). The best fit to data (see methods in main text)
used to calculate bacterial fitness is shown in grey. Each column represents the data set for one 24h
season and each row the data set for one tetracycline concentration.
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Figure S8. Quantitative PCR calibration curves for tet(36) and tatB. Reaction efficiency
for the set of primers and probes listed in the ‘methods’ section for tet(36) (A) and tatB. The efficiency
was calculated as Ef = 10−1/Slope − 1, and the slope term calculated by fitting a linear model to qPCR
threshold cycle (Ct) data. The mean ± standard deviation for the coefficient of determination R2 and
efficiency are shown in the figures. The amplification curves for each reaction are shown in C) and D),
respectively.
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