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Abstract

To help elucidate genetic variants underlying complex traits, we develop EpiMap, a compendium of 833
reference epigenomes across 18 uniformly-processed and computationally-completed assays. We
define chromatin states, high-resolution enhancers, activity patterns, enhancer modules, upstream
regulators, and downstream target gene functions. We annotate 30,247 genetic variants associated
with 534 traits, recognize principal and partner tissues underlying each trait, infer trait-tissue, tissue-
tissue and trait-trait relationships, and partition multifactorial traits into their tissue-specific contributing
factors. Our results demonstrate the importance of dense, rich, and high-resolution epigenomic
annotations for complex trait dissection, and yield numerous new insights for understanding the

molecular basis of human disease.

Introduction

Genome-wide association studies (GWAS) have been extremely successful in discovering more than
100,000 genomic loci containing common single-nucleotide polymorphisms (SNPs) associated with
complex traits and disease-related phenotypes, providing a very important starting point for the
systematic dissection of the molecular mechanism of human disease’2. However, the vast majority of
these genetic associations remain devoid of any mechanistic hypothesis underlying their molecular and
cellular functions, as more than 90% of them lie outside protein-coding exons and likely play non-

coding roles in gene-regulatory regions whose annotation remains incomplete®™®.

To help annotate non-coding regions of the genome, large-scale experimental mapping of epigenomic
modifications associated with diverse classes of gene-regulatory elements has been undertaken by
several large consortia, including the ENCyclopedia of DNA Elements (ENCODE), Roadmap
Epigenomics, and the Genomics of Gene Regulation (GGR)"™°. Integration of these datasets, and in
particular histone modification marks and DNA accessibility maps, has helped infer chromatin states
and annotate diverse classes of gene-regulatory elements, including distal-acting and tissue-specific

10-12

enhancer regions and proximal-acting and mostly-constitutive promoter regions across 16 cell

types by ENCODE in 2012”8, and 111 cell and tissue types by Roadmap Epigenomics in 2015”2,
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These maps have been widely used to gain insights into the molecular basis of complex traits by
recognizing the preferential localization (enrichment) of genetic variants associated with the same traits
within gene-regulatory elements active in the same tissue or cell type*®'*-'®. These enrichments can
help gain insights into the tissues and cell types that may underlie complex disorders, and within which
the molecular effects of these genetic variants may first manifest'’~'°. They can also help fine-map
likely causal genetic variants in regions of linkage disequilibrium®?' by prioritizing those variants that lie

within enriched annotations'®%%2,

However, these maps also have great limitations. First, they remain highly incomplete, covering only a
small fraction of human tissue diversity, and missing many tissues of great relevance to human
disease. Second, the quality of reference epigenomes is highly variable, as each reference epigenome
typically relies on only 1-2 replicates, making them more prone to experimental noise and even
variation between experimental protocols, experimentalists, labs, antibody lots, or reagent batches.
Third, in addition to experimental noise, differences in the computational processing pipelines of
different consortia and across different versions of processing software and integration pipelines can
lead to dramatic differences in the regions annotated in different chromatin states, or within accessible
regions called by different peak-calling algorithms. Fourth, maps that rely on multiple epigenomic marks
are inherently limited in their dimensionality, as they need to exclude samples that do not contain all
marks incorporated, or marks that are not present in all the samples. Lastly, epigenomic reference
profiling projects must balance exploring biological space with exhaustively performing assays in each
sample, leading to incomplete epigenomic annotation matrices with few marks across many samples,

and few samples with many marks.

Here, we overcome these limitations and present a new reference of the human epigenome, EpiMap,
by incorporation of 1698 new datasets across three consortia, joint uniform re-processing of a total of
3030 reference datasets, and computational completion of 14,952 epigenomic maps across 859 tissues

and 18 marks. We rely on epigenomic imputation®>~’

, which maximizes the consistency and quality of
an ensemble of epigenomic maps by leveraging correlation patterns between related assays and
between related cell types to infer missing datasets, and to generate high-quality predictions of

experimentally-profiled datasets using all experimentally-profiled datasets.

We show that EpiMap greatly surpasses previous reference maps in scope, scale, and coverage of
biological space. We combine single-mark maps into a multi-mark chromatin state reference for each of
833 high-quality epigenomes, combine multiple enhancer chromatin states with DNA accessibility to
infer a high-resolution enhancer map for each cell type, group enhancers into modules based on their

common activity patterns across cell types, and use these modules to infer candidate upstream
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regulators based on motif enrichments, and downstream gene functions based on gene ontology
enrichments, providing an important reference for studies of gene regulation both for disease dissection

and for basic biological studies of human tissues.

Lastly, we use EpiMap to increase our understanding of the molecular processes underlying complex
traits and human disease by systematic integration of genetic variants associated with 926 traits and
high-resolution enhancer annotations across 833 tissues. Compared to the Roadmap Epigenomics
resource analysis®, we achieve a nearly 10-fold increase in the number of traits showing significant
epigenomic enrichments (N=534) and a dramatic increase in the number of loci with putative causal
variants within enriched enhancer annotations (N=30k). We also exploit the greatly-increased number
of samples by developing a new hierarchical approach for narrowing down the tissue-level resolution of
GWAS enrichments thus resulting in many new enriched traits and loci, to distinguish multifactorial and
polyfactorial traits from unifactorial traits, to learn principal-partner tissue pairs that cooperate to explain
multifactorial traits, to partition multifactorial-trait SNPs by tissue thus revealing the distinct biological
processes and explaining trait comorbidity patterns, and to learn a trait-trait relationship network that

helps guide the interpretation of unifactorial and multifactorial traits.

These results indicate that EpiMap is a valuable new reference for both gene-regulatory studies and

disease studies seeking to elucidate the molecular basis of complex disorders.

Results

Generation and validation of EpiMap reference epigenome compendium

We generated EpiMap, the largest integrated compendium of epigenomics maps to-date, spanning 859
epigenomes across 18 epigenomic assays (Fig. 1a, Supp. Fig. S1) by aggregation, uniform
processing, and computational completion of three major resources: Roadmap Epigenomics® (425
samples, of which 241 were generated since the 2015 data freeze), ENCODE’ (434 samples of which
381 were generated since the 2012 data release), and Genomics of Gene Regulation (GGR)
consortium? (25 samples). We uniformly processed a total of 3,030 datasets, including 1994 ChIP-seq
experiments for 33 histone marks, 701 experiments for DNA accessibility (DNase-seq, ATAC-seq), and
335 experiments for chromatin-associated general factors. We used each unique combination of
biosample, donor, sex, age, and lifestage, and removed samples with genetic perturbations

(Supplementary Table S1).

We classified these 3,030 assays into multiple tiers, according to their completeness. Tier 1 assays (7
marks, 2197 total experiments, 36% complete on average) include DNase-seq (accessible chromatin),
H3K4me3 (promoters), H3K36me3 (transcribed), H3K4me1 (poised enhancers), H3K9me3
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(heterochromatin), H3K27ac (active enhancers/promoters), and H3K27me3 (polycomb repression). Tier
2 assays (6 marks, 365 experiments, 7% complete on average) include H3K9ac, ATAC-seq, H3K4me2,
H2AFZ, H3K79me2, and H4K20me1, in order of abundance. Tier 3 assays consist of general factors
associated with key biological processes (5 factors, 335 total experiments, 8% complete on average),
including POLR2A (transcription initiation), EP300 (enhancer activation), CTCF (insulation, chromatin
looping), SMC3 (cohesin), and RAD21 (cohesin component, double-stranded-break repair). Lastly, Tier
4 assays (22 marks, 133 experiments, 0.7% complete on average) consist of 16 acetylation marks, 4
methylation marks (H3K9me2, H3K79me1, H3K9me1, H3K23me2), H3F3A, and H3T11ph.

We generated a total of 14,952 imputed datasets covering 18 marks and assays across 859 samples
using Chromimpute®. We constructed genome-wise browser visualization tracks available from the
WashU Epigenome Browser®. Imputed tracks showed strong agreement with high-quality observed
tracks, individual enhancer elements, precise boundaries in histone modification peaks, and finer-
grained features of epigenomic assays, such as dips in H3K27ac peaks indicative of nucleosome
displacement (Fig. 1b). They also captured the density, location, intensity, and cell-type-specificity of
both active and repressed marks across thousands of regions and all 859 samples (Fig. 1¢). We found
85% peak recovery and 75% average genome-wide correlation for puncate marks representing 59% of
tracks (Supp. Fig. S2).

Disagreement between imputed and observed tracks helped flag 138 potentially problematic datasets
which showed markedly lower QC scores (Supp. Fig. S2, S3), and revealed potential sample or
antibody swaps (Supp. Fig S4, S5) some of which were independently flagged by the data producers.
We also used the difference between observed and imputed datasets to recognize 15 experiments with
potential antibody cross-reactivity or secondary specificity (Supp. Fig $6-S8). We removed from
subsequent analyses the 138 flagged datasets and 442 tracks based solely on ATAC-seq or low-quality
DNase-seq data as they showed lower correlations, resulting in 2,850 observed and 14,510 imputed

marks across 833 samples used in the remainder of this work.

Sample relationships, chromatin states, and high-resolution enhancer mapping.
The resulting compendium of 833 high-quality epigenomes represents a major increase in biological

space coverage, with 75% of epigenomes (624 of 833) corresponding to new biological specimens
across 33 tissue groups (categories), providing the opportunity to study their relationships
systematically, providing insights into the primary determinants of the epigenomic landscape. Both
hierarchical and two-dimensional embedding® clustering of the genome-wide correlation patterns of
multiple marks (Fig. 2a,b, Supp. Fig. $9-S11) grouped these samples firstly by lifestage (adult vs.

embryonic) and sample type (complex tissues vs. primary cells vs. cell lines), and secondly by distinct
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groups of brain, blood, immune, stem-cell, epithelial, stromal, and endothelial samples within them. By

contrast, donor sex was not a primary factor in sample grouping.

We clustered samples using each individual mark (Fig. 2a,b) evaluated within mark-specific relevant
genomic regions. We found that active marks (H3K27ac, H3K4me1, H3K9ac) primarily group samples
by differentiation lineage, leading to separate blood, immune, spleen, thymus, epithelial, stromal, and
endothelial clusters. These marks also grouped lung, kidney, heart, muscle, and brain samples each
into distinct clusters, regardless of whether they were adult or embryonic. By contrast, repressive marks
(H3K27me3, H3K9me3) better captured the stage of differentiation, grouping together pluripotent,
iPSC-derived, and embryonic samples, which were separated into different groups by active marks. In
each case, observed and imputed data co-clustered, but imputed datasets better captured the
continuity between different sample types, and more clearly revealed the grouping of sample types,

likely driven both by their cleaner signal tracks and their sheer number.

We generated a reference epigenomic annotations for each for the 833 samples, using combinations of
histone modification maps to map genome-wide locations of 18 chromatin states”?®'° (Fig. 2c),
including multiple types of enhancer, promoter, transcribed, bivalent, and repressed regions (Supp.
Fig. $12). We applied this model on a scaled mixture of observed and imputed data, excluding the 138
flagged observed datasets (see Methods). We found broad consistency in state coverage (Supp. Fig.
$13, S14) and state definitions (Supp. Fig. S15) across cell types.

We also generated a high-resolution annotation of active enhancer regions by intersecting 3.5M
accessible DNA regions from 733 DNase-seq experiments (Meuleman et al., in preparation) with five
active enhancer states, resulting in 2.1M high-resolution enhancer regions (57% of all DNase regions),
covering 0.8% of the genome in each sample on average, and together capturing 13% of the human
genome (Fig. 3a, Supp. Fig. S18) a 31% increase from previous maps (Supp. Fig $19), and
constructed an ‘enhancer-sharing tree’ (Fig. 2d, Supp. Fig. S16, S17) relating all 833 samples in a

nested set of binary groupings based on their number of shared active enhancers.

Regulatory genomics of enhancer modules, target biological processes, and upstream regulators
For each high-resolution enhancer region, we defined its activation state in each of the 833

epigenomes using flanking nucleosome H3K27ac levels, and used it to group enhancers with
coordinated activity into 300 enhancer modules (Fig. 3a and Supp. Fig $S20-S22). We distinguished
290 tissue-specific modules (1.8M enhancers, 88%) with activity in only 2% of samples on average,
and 10 broadly-active modules (251k enhancers, 12%) showing activity across 77% of sample
categories on average. Embryonic modules combined multiple tissue types, including heart, lung,

kidney, muscle, and digestive system, while adult modules separated internal organs.
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We predicted candidate gene-regulatory roles of each enhancer module based on highly-significant
gene ontology enrichment of its target genes®', revealing fine-grained tissue-specific biological
processes (Fig. 3b and Supp. Fig $23), including: ion channels (for brain modules), camera-type eye
development (eye modules), neural precursor cell proliferation (neurosphere modules), endothelial
proliferation, hemidesmosomes, and digit morphogenesis (endothelial, stromal, and epithelial modules),
and organ development and morphogenesis (embryonic modules). These enrichments can help guide
the elucidation of target genes and biological processes controlled by individual enhancers within each
module. Endocrine, mesenchymal, pancreas, and reproductive modules lacked any gene ontology

enrichments, possibly due to small counts or still underexplored areas of biology.

We found significant motif enrichments for 202 modules (67% of 300) across 86 motifs (Fig. 3¢), both
suggesting potential new regulators, and confirming known roles for well-studied factors, including:
GATA and SPI1 for blood and immune groups®; NEUROD2 and RFX4 for brain and nervous
system®3: POU5F1 for iPSCs>®; KLF4 for digestive tissues®; MEF2D for skeletal and digestive
muscle®; TEAD3 for placenta, myosatellite and epithelial cells®; and HIC1 in heart, HSC, and B-cells*°.
Several motifs distinguished developmental vs. adult tissues, including: NEUROD2 for embryonic-only
brain; NFIB for embryonic-only heart, lung, and muscle; MEF2D for adult-only heart, lung, and muscle;
and AR for adult-only adipose, heart, liver, and muscle. Motifs were generally highly specific, with 95%
(N=82) enriched in only 3% of modules on average, but 4 “promiscuous” motifs were enriched across
79 modules on average, including: RFX1-5 (44 modules) in brain and testis*’; GRHL1 (52 modules) in
trophoblast and epithelial differentiation*'*; HNF1A/B (67 modules) in liver, kidney, and pancreas®’;
and JDP2/AP-1 (152 modules) in immune and bone development, cancer, and response to diverse

stimuli*4*,

New enhancer annotations help interpret trait-associated SNPs from genome-wide associations
studies.

We next used our 2.1M enhancer annotations and their tissue specificity to interpret genetic variants
associated with complex traits, which are increasingly recognized to play gene-regulatory roles®®'*. We
assembled a compendium of 926 well-powered genome-wide association studies (GWAS) from the
NHGRI/Ensembl GWAS catalog’ that have at least 20,000 cases in the initial study sample. These
capture 66,801 associations in 33,417 regions, corresponding to 59% of the 113,655 pruned
associations in the GWAS catalog*® (even though these studies only account for 17% of the 5,454

GWAS publications to date), providing an important benchmark for epigenomic enrichment studies.

For each trait, we calculated the enrichment of trait-associated SNPs in active enhancers from each of

our 833 epigenomes, resulting in 30,844 significant trait-tissue pairs, implicating 534 unique traits and
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all 833 samples (hypergeometric statistic, FDR<1%) (Fig. 4a and Supp. Fig. S24). These capture
30,247 SNPs in enriched annotations (45% of all loci 66,801 loci), providing invaluable insights for
epigenomics-based fine-mapping of SNPs within regions of extended linkage disequilibrium. The
number of enriched traits represents a nearly 10-fold increase from 58 traits® enriched in H3K4me1 and
54 traits®® enriched in H3K27ac reported by the Roadmap Epigenomics project, due to methodological
improvements, increases in GWAS results and power, and more available epigenomes. Quantifying the
latter component, the new reference epigenomes capture the strongest GWAS enrichment in 75% of
cases (402 of 534 traits) (Fig. 4b), and provide the only significant enrichment in 22% of cases (116
traits) (Fig. 4c).

We also studied the number of traits for which enrichments are found with increasing numbers of
epigenomes (Fig. 4d). New epigenomes represent 71 of the top 98 epigenomes that together capture
at least one significant GWAS enrichment, and 174 of the top 238 reference epigenomes that together
capture all maximal GWAS enrichments (Supp. Fig. S25). The tissue categories represented in top
contributing samples are very diverse, including blood (which captures several blood traits), heart right
atrium (atrial fibrillation, PR interval), liver (cholesterol, metabolites), skin fibroblasts (baldness, hair
color), neural cells (educational attainment), adenocarcinoma cells (breast cancer), and LCLs (immune
traits). To capture the full space of enriched GWAS traits, nearly the entire tree of sample types was
needed, highlighting the importance of broadly sampling cells and tissues to understand the molecular

basis of complex disorders.

Clustering and hierarchical analysis of GWAS enrichments and tissue sharing
Given the block-like structure of the trait-tissue enrichment matrix (Fig. 4a), with many biologically-

similar traits showing enrichment in samples of common tissue groups, we also calculated trait
enrichments for enhancer modules, seeking to capture the sharing between epigenomes (Supp. Fig.
S26, S27). This resulted in a 51% increase in the number of traits showing epigenomic enrichments
(from 534 to 804 at 1% FDR) (Fig. 4e and Supp. Fig. S28), indicating that the common biological

processes captured by enhancer modules are also relevant to complex trait interpretation.

Beyond the single-resolution grouping of our modules, we also carried out a multi-resolution analysis of
GWAS enrichments using our enhancer-sharing tree (Fig. 2d) and reporting significant internal node
enrichments relative to parent nodes, thus pinpointing the likely biological specificity at which genetic
variants may act (see Methods). This further increased the number of traits showing epigenomic
enrichments to 836 (51% relative to individual epigenomes, 4% relative to modules), and substantially
increased the number of lead SNPs falling in enriched annotations to 33,706 (11% relative to individual

epigenomes, 169% relative to modules) at the same FDR (1%), indicating that multi-resolution
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approaches can capture SNP-enhancer intersections missed by other approaches (Fig. 4e, Supp. Fig.
S28).

We next studied the fraction of GWAS traits for which a tissue showed maximal enrichment to
distinguish ‘principal’ tissues (e.g. immune cells, liver, heart, brain, adipose) that typically showed the
strongest enrichments in GWAS ftraits they are enriched in, suggesting they more frequently play driver
roles (Fig. 5a). By contrast, ‘partner’ tissues (e.g. digestive, lung, muscle, epithelial) were enriched in
many traits but rarely showed the maximal enrichment, suggesting they may play auxiliary roles.
Several tissue pairs showed common trait enrichments significantly more frequently than expected by
chance (Fig. 5b) in the context of distinct and biologically-meaningful traits (Fig. 5¢), including liver and
adipose (in the context of cholesterol and triglyceride traits), liver and digestive (metabolite traits), liver
and immune cells (eating disorders), adipose and endothelial (sleep duration, waist-to-hip ratio),
adipose and heart (atrial fibrillation), and adipose and muscle (gestational age), providing a guide for

understanding multifactorial traits.

Partitioning multifactorial traits and trait combinations into their tissues and pathways of action
We used the number of distinct tissue categories enriched in each trait (Fig. 4a; Supp. Data S1) to
distinguish 303 ‘unifactorial’ traits (56%) with most enriched nodes in only one tissue group (e.g. QT
interval in heart, educational attainment in brain, hypothyroidism in immune cells), indicating a more
constrained set of biological processes involved (Fig. 6a). Another 146 ‘multifactorial’ traits (27%) were
enriched on average in 5 different tissue categories indicating multiple modes of action, including:
Alzheimer’s disease (AD) in both immune and brain tissues*’**®; waist-to-hip ratio (adjusted for BMI)* in
adipose, muscle, kidney, and digestive tissues; and healthspan in ES, T cells, adipose, and digestive
tissues. A subset of 92 ‘polyfactorial’ traits (17%) implicated an average of 14 tissue categories each
(Fig. 6¢), including coronary artery disease (CAD)*® with 19 different tissue groups, including liver,

heart, adipose, muscle, and endocrine samples.

We next used the enriched tissues of multifactorial traits to partition their associated SNPs into
(potentially-overlapping) sub-groups, which were enriched in distinct biological pathways, thus revealing
distinct processes through which multifactorial traits may act (Fig. 6d, Supp. Fig. $29). For example,
339 CAD-associated SNPs in enriched enhancers partitioned into: 212 SNPs in heart enhancers that
preferentially localized near artery, cardiac, and vessel morphogenesis genes; 121 SNPs in endocrine
enhancers, which enriched in lipid homeostasis; 122 SNPs in adipose enhancers, which enriched in
axon guidance/extension and focal adhesion, consistent with adipose tissue innervation processes; 169
SNPs in liver enhancers, which enriched in cholesterol/lipid metabolism and transport; and 112 SNPs in

ES-derived muscle cells, which enriched in septum morphogenesis, cardiac chamber and aorta
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development.

This partitioning of genetic loci into tissues also helped inform the shared genetic risk between pairs of
co-enriched traits, by revealing the tissues that may underlie their common biological basis (Fig. 6d).
For example, the same partitioning of CAD loci showed that CAD loci in heart, muscle, and endothelial
enhancers were preferentially also associated with high blood pressure and atrial fibrillation risk loci.
However, CAD loci in liver and endocrine enhancers were instead associated with systolic blood

pressure®'. Similarly CAD loci also associated with waist-to-hip ratio*®*">2

overlapped adipose but not
liver, endocrine, or heart enhancers, and CAD loci associated with HDL cholesterol®® overlapped liver,

adipose, and endocrine enhancer but not heart tissues.

Tissue enrichment and co-enrichment patterns paint network of complex trait associations.

We next classified each GWAS trait according to its enriched tissues, and linked traits showing similar
enrichment patterns into a trait-trait co-enrichment network (Fig. 7, and Supp. Fig. S30, S31).
Unifactorial traits formed the cores of highly-connected communities, including: cognitive and
psychiatric traits in brain and neurons; heart beat intervals in heart; cholesterol measures in liver;

filtration rate in kidney; immune traits in T-cells; and blood cell counts in hematopoietic cells.

Multifactorial traits connected these communities, including: CAD linking heart, endocrine, and liver;
HDL and triglycerides levels linking liver and adipose; lung function-related traits linking lung, heart, and
digestive tissues; blood pressure measurements surrounding heart and linking to endocrine,
endothelial, and liver; cell count fraction traits implicated principally blood often partnered with liver,
digestive, and other tissues. Polyfactorial traits (e.g. waist-to-hip ratio and heel bone mineral density)

were centrally located linking diverse categories.

We found that this trait-trait co-enrichment network captures many biologically-meaningful relationships
that are missed by genetic information alone (Supp Fig. $32, $33, $34). A genetic overlap network
connecting any two traits that share even 5% of their loci (Jaccard index, 10kb resolution) results in
only 934 edges, and only captures 5% of the edges captured by our epigenomics-centered analysis
(N=283 of 5547), highlighting the importance of our epigenomics lens in capturing the common

biological basis of complex traits.

Discussion

In this work, we presented EpiMap, the most complete and comprehensive map of the human
epigenome, encompassing ~15k uniformly-processed, QC-metric pruned, and computationally-
completed datasets. Our resource encompasses 833 distinct biological samples, each with 18

epigenomic marks, painting a rich epigenomic landscape. For each reference epigenome, we generate
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a chromatin state annotation based on multiple chromatin marks and distinguish diverse classes of
enhancer, promoter, transcribed, repressed, repetitive, heterochromatic, and quiescent states. We also
provide a high-resolution enhancer annotation track, that combines multiple active enhancer states and
DNase-accessible regions, covering only 0.8% of each reference epigenome, and collectively 13% of

the genome across all 833 tissues.

EpiMap greatly expands the biological space covered by previous reference epigenome maps, by
incorporating samples of the endocrine system, placenta, extraembryonic membranes, reproductive
system, stromal and endothelial primary cells, and a large collection of widely-used cancer cell lines.
We also greatly increase the coverage of embryonic and adult brain, heart, muscle, kidney, lung, and
liver tissues, as well as blood, immune, lymphoblastoid, and epithelial cells. This broader biological
space has important implications both in capturing gene-regulatory elements and upstream regulators
of an increased set of tissue-specific biological pathways, and in annotating gene-regulatory variants
across a broader biological spectrum that now capture many more traits and disease phenotypes that

were previously uncaptured.

The integration and uniform processing of these samples enabled us to paint a detailed picture of
biological sample relationships, both outlining the relationships between our 33 broad tissue categories,
and detailing the relationships of individual samples within these categories. For example, we found
that lifestage played an important role in establishing high-level organization of sample similarities, that
primary cells clustered separately from their tissue of origin, that adult samples separated by tissue but
embryonic samples clustered together. We also recognized differences in the epigenomic relationships
painted by different marks, with repressive marks better distinguishing developmental stages, and
active marks better distinguishing different tissues and lineages. These relationships can help guide the
prioritization of new biological samples to profile for gene-regulatory or disease studies, by studying
gene-regulatory motif enrichments, downstream-gene pathway enrichments, and GWAS trait
enrichments in the context of the coverage of biological space by closely- and distantly-related

samples.

Our analysis enabled us to elucidate important gene-regulatory relationships between enhancers, their
gene-regulatory targets, and their upstream regulators. By recognizing modules of common enhancer
activity, we partitioned 2.1 million gene-regulatory elements into 300 co-regulated sets, distinguishing
broadly-active enhancer modules vs. tissue-specific modules, and their distinct gene-regulatory circuitry
and biological roles. Gene-regulatory sequence motifs enriched in modules of common activity patterns
enabled us to recognize upstream regulators of these modules, including many newly-profiled tissues

such as TEADS in placenta and epithelial cells and NFIB in various embryonic organs, and
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distinguishing tissue-specific vs. promiscuous gene-regulatory motifs such as RFX1-5, GRHL1,
HNF1A/B, and AP-1. Similarly, common gene ontology enrichments of genes proximal to these
modules enabled us to pinpoint the common biological pathways they likely control in tissue-specific,

lineage-specific, and broadly-active biological roles.

Our work also provided the most comprehensive analysis to date of the gene-regulatory underpinnings
of complex traits and human disease. We found statistically-significant enrichments between 534 traits
and all 833 tissues, shedding light on 30,247 loci containing SNPs within enriched annotations, and
thus providing meaningful insights into their potential mechanisms of action. These enrichments helped
distinguish unifactorial, multifactorial, and polyfactorial traits, based on the number of distinct tissue
types they implicate, and revealed principal vs. partner tissues that play likely driver vs. auxiliary roles
across traits. The multiple enriched tissues in multifactorial traits allowed us to dissect their complexity,
by partitioning SNPs by tissues, which showed distinct gene pathway enrichments and shared genetic
risks with different related traits. Finally, we used these tissue-trait enrichment and co-enrichment
patterns to reveal the shared biological basis of hundreds of complex traits through the lens of their
enriched tissues, providing an important basis for studying the common and distinct components of

disease comorbidity relationships.

We expect EpiMap to enable many new methodological developments in the study of gene regulation
and disease. For example, the much more densely-populated tree of samples enabled us to develop a
new hierarchical approach to GWAS ftrait-tissue enrichment analysis that directly compares the
enrichment of parent-child tree node pairs, thus finding the appropriate level of tissue specificity where
genetic traits may act. The approach itself is general, and likely also applicable to hierarchical analyses
of motif and gene pathway enrichments across the tree. We expect that many additional multi-
resolution approaches will be applicable to these datasets, enabling us to recognize variability between
and within group rigorously and systematically. Similarly, the large number of traits and tissues enabled
us to infer networks of tissue-trait, trait-trait, and tissue-tissue relationships, and we expect that many

additional graph algorithms and analysis approaches will be applicable to the study of these networks.

EpiMap also has several limitations that we hope will be overcome with continued technological
improvements. First, outside cancer lines and isolated primary cells, our tissue samples are primarily
from bulk dissections, which combine multiple underlying cell types, thus hiding the individual
contributions and distinct biology of each cell type, and sometimes missing altogether the contribution

of lower-abundance cell types. As single-cell ATAC-seq®® and single-cell ChlP-seq®®*’

approaches
mature, we expect that new cell-type-specific maps will become possible, enabling us to partition the

enhancers and chromatin states discovered here into their constituent cell types, and also to discover
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new enhancers and gene-regulatory elements from lower-abundance cell types that are currently not
detectable in bulk samples. The presence of such single-cell maps should also allow systematic
methods for epigenomic deconvolution®. In addition, our current approach for uniformly processing and
imputing missing marks does not take into consideration the genotype of different individuals, which
contains important information for inferring the activity pattern of genes or gene-regulatory regions in a
new individual based on their genotype, but also their phenotypic variables. Lastly, while EpiMap
represents a substantial increase relative to previous maps, we are still missing many tissues,
environmental stimulation conditions and developmental stages that may active enhancers and other

gene-regulatory elements that may not be currently visible in our compendium.
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Figure legends:
Figure 1. EpiMap resource overview. a. EpiMap data matrix across 859 samples (columns) and 35 assays

(rows), ordered by number of experiments (parentheses) and colored by metadata. b. Paired observed (blue) and
imputed (red) tracks for all Tier 1 and Tier 2 assays in three regions at different resolutions for randomly-selected

samples. Full tracks at https://epigenome.wustl.edu/epimap. ¢. Heatmap of paired observed and imputed signal

intensity across all punctate Tier 1 and Tier 2 assays across 2000 highest-max-signal bins among 5000 randomly-
selected 25bp bins. Samples (rows) and bins (columns) are clustered and diagonalized using maximum imputed

signal intensity, with broadly-active regions shown first.

Figure 2. Reference epigenome relationships. a. Genome-wide correlation across all 833 samples using all
Tier 1 marks, hierarchically clustered (left), only H3K27ac (middle), and only H3K27me3 (right). b. Two-
dimensional embeddings of Tier 1 and 2 marks colored by tissue group, using Spearman correlation within
matched chromatin states. Arrows point to average of specified groups. ¢. Chromatin state annotations for 98
Roadmap (left) and 833 EpiMap (right) epigenomes using an 18-state ChromHMM model® based on all Tier 1
histone marks, with colored lines connecting matched epigenomes. d. Hierarchical clustering of 833 reference
epigenomes based on enhancer activity distances (Supp. Fig. S19). Subtrees enriched for specific sample types
are highlighted and labeled (colors). Samples labeled with reduced sample names and colored by metadata

(Supp. Table S1).

Figure 3. Enhancer module circuitry. a. Clustering of 2.1M enhancer elements (top) into 300 modules
(columns) using enhancer activity levels (heatmap) across 833 samples (rows), quantified by H3K27ac levels
within accessible enhancer chromatin states. Bottom panel shows enrichment of each module for each metadata
annotation, highlighting 34 groups of modules (separated by dotted lines): 33 sample-type-specific (colored

boxes) and 1 multiply-enriched (left-most). b. Gene ontology®"*

(GO) enrichments (heatmap) for each module
(columns) across 865 terms (rows) with P<e-4. GO terms colored by maximal enrichment group. Only 72
representative terms are shown, chosen by a bag-of-words approach within each tissue group. ¢. Motif

enrichment (heatmap) for each module (columns) across 86 motif clusters (rows) with enrichment log,FC>1.5.

Motifs colored by module of maximal enrichment.

Figure 4. GWAS tissue-prioritization. a. Trait-tissue enrichment (center, heatmap) between reported lead

single-nucleotide polymorphisms (SNPs) from 534 genome-wide association studies (rows) and accessible active
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enhancers across 833 epigenomes (columns) (FDR<1%). Enriched tissue groups (left) and number of enriched
epigenomes (right) shown for each trait. Only 100 representative traits labeled, using a bag-of-words approach
(full list of traits in Supplementary Fig. S30). Traits colored by sample with maximal trait-tissue enrichment. b.
Contribution of each project to the maximum GWAS trait-tissue enrichment for the 534 traits with significant
enrichments. c. Number of traits (y-axis) with significant GWAS frait-tissue enrichments for each combination
(column) of projects (rows). d. Increase in the cumulative number of GWAS traits (y-axis) with significant trait-
tissue enrichments with increasing numbers of epigenomes (x-axis), ordered to maximize the number of novel
trait annotations captured with each new epigenome. Top 25 samples labeled and colored by tissue group, with
top 6 GWAS traits shown for the first 8 samples. Points colored by project. All 534 traits are captured after
inclusion of 98 samples. e. Comparison of GWAS enrichments found (y-axis, left) and number of lead SNPs in
significantly-enriched annotations (y-axis, right) using different methodologies (x-axis) for three FDR cutoffs

(shades).

Figure 5. Principal and partner tissue enrichments. a. For each tree node label (rows), the number of GWAS
traits (black x-axis, bottom) showing maximum enrichment in that tree node (dark bars, principal tissue) or any
enrichment in that tree node (light bars, partner tissue), and the percentage of tissue-enriched traits for which the
tissue shows the maximal enrichment (red x-axis, top) across 538 traits. b. Overlap in enriched GWAS traits
between pairs of tissues with maximal enrichment in the trait (principal tissue, rows) and lower enrichment in the
same trait (partner tissue, columns), using tree node labels. ¢. Top traits in significant interactions for selected
tissue pairs (Liver, Endocrine, Muscle, Heart, Adipose, PNS). For each pair of co-enriched tissue groups we

reported the top 5 GWAS by their percent of significant enrichments coming from either group.

Figure 6. Examples of trait epigenomic enrichments on enhancer sharing tree, including a. single-tissue (QT,
Macular) and b. multi-tissue (AD, WHR) traits, highlighting nodes with FDR < 0.1% (labels = top 5 by -log+op). ¢.
Epigenomic enrichments for Coronary Artery Disease (CAD, PubMedID 29212778) on enhancer activity tree.
Nodes passing FDR < 0.1% are labeled by rank, tissue group, and top components, and their subtrees are drawn
with solid lines (large circles = top 20 nodes by -logop). Leaves annotated by metadata and number of enriched
parent nodes (outer, red=1, black=2). d. Top 20 enriched nodes for CAD with nominal p-values (heatmap) and
shared enhancer set sizes (barplot) with number at the subtree (full bar) and number of differential enhancers

between the node and its parent (tested set, dark bar). e. GO enrichments of node enhancers with lead SNPs
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(nearest expressed genes), colored by each node’s tissue group and diagonalized (over-representation test). f.
Enrichment for significant loci in overlap of CAD loci with loci from five related traits, within enriched enhancers in

each node (heatmap, -logop of one-tailed Mann-Whitney test against each trait’s loci in enhancer annotations).

Figure 7. Trait-trait network across 538 traits by similarity of epigenetic enrichments (cosine sim. >= 0.75), laid
out using the Fruchterman-Reingold algorithm. Traits (nodes) are colored by contributing groups (pie chart by
fraction of -log+p, size by maximal -log4op) and interactions (edges) by the group with maximal dot product of

enrichments between two traits.
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Methods:

Epigenomic datasets and processing

Primary data sources and metadata information: We analyzed 3,030 datasets, including 2329

epigenomic ChlP-seq datasets, 635 DNase-seq datasets, and 66 ATAC-seq datasets from ENCODE at

https://www.encodeproject.org/, released as of Sept. 24th 2018. These marks include: Tier 1 assays:

DNase-seq, H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3; Tier 2 assays:

ATAC-seq, H3K9ac, H3K4me2, H2AFZ, H3K79me2, and H4K20me1; Tier 3 assays: POLR2A, EP300,

CTCF, SMC3, RAD21; and Tier 4 histone marks: 16 non-imputed histone acetylation marks, 4

methylation marks (H3K9me2, H3K79me1, H3K9me1, H3K23me2), H3F3A, and H3T11ph. We

assigned unique sample IDs to each unique combination of: extended biosample summary, donor, sex,

age, and lifestage, wherever each attribute was available. We removed samples with genetic

perturbations, and kept only samples with appropriately matched ChIP-seq controls. We provide a

metadata matrix including the mapping between ENCODE accessions and our unique sample IDs

(Supp. Table S1, also at compbio.mit.edu/epimap). We mapped the 111 Roadmap epigenomes and 16

ENCODE 2012 epigenomes to any of our samples with overlapping dataset accessions if the
accessions were used in the flagship Roadmap epigenomics analysis. This mapping assigned 25
samples to ENCODE 2012 and 184 samples to Roadmap 2015, some of which were merged multi-
donor samples in Roadmap, out of the final 833 samples that passed QC. These were merged into 16

and 111 tissue types respectively in the Roadmap 2015 publication.

Uniform data processing: We downloaded one alignment file per replicate, prioritizing filtered

alignments in hg19 whenever possible. We uniformly processed ChlP-seq and DNase-seq datasets
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according to the processing pipelines established by the Roadmap Epigenomics Consortium?®. Briefly,
we filtered out improperly paired and non-uniquely mapped reads, truncated reads to 36 base pairs,
filtered out a blacklist of low complexity and artifact regions (ENCODE accession ENCSR636HFF), and
filtered reads against a mappability track of uniquely mappable regions for 36bp reads®. We converted
bam files to tagAlign, used liftOver®' to map GRCh38 alignments to hg19, and pooled all experiments
within each ID and assay combination. We subsampled pooled ChlP-seq data sets to a maximum of 30
million reads and DNase-seq and ATAC-seq data sets to a maximum of 50 million reads. We used SPP
to estimate fragment length. In cases with extremely low fragment length in ATAC-seq and DNase-seq
datasets we used the average fragment length (73) from the average of the rest of the tracks. We
generated -log10 p-value signal tracks against matched whole cell extract (WCE) for both ChIP-seq
and accessibility data sets using the MACS2% and the SPP®® peak caller and cross correlation analysis

to identify the proper fragment length as in the Roadmap analysis.

Epigenomic Imputation

Imputation: We carried out epigenomic imputation on 859 unique cell types using ChromImpute? for a
total of 10,778 imputed datasets over thirteen Tier 1 and Tier 2 assays using predictors trained on all 35
epigenomic assays across 859 samples. We additionally imputed 4,345 datasets for the five DNA
associated factors, using only the 35 epigenomic assays as features to train predictors with
ChromImpute. We provide all imputed and processed observed tracks along with tracksets for the 833

QCed samples at https://epigenome.wustl.edu/epimap?.

Quality control: For imputation quality control (QC) and validation, we compare observed tracks to
imputed tracks when both were available (i.e. when at least two original observed datasets were
available for that cell type). We calculated all imputation QC metrics from the original Chromimpute
publication®, including genome-wide correlation, % imputed and observed peak recovery, and AUC for
all pairs of imputed and observed tracks. In addition to quantitative metrics, we visually inspected

epigenomic predictions as part of our quality control. We show (Fig. 1B) three dense and varied regions
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of different resolutions (25kb, 200kb, 1.5Mb) for each of two randomly chosen samples containing both
observed and imputed tracks for each assay. We calculated epigenomic profile quality metrics NSC,
RSC, and read depth for all datasets and compared these to the imputation QC metrics (tables in Supp.
Table S1). We flagged low-quality tracks by detecting the elbow in the ranked correlation metrics, which

we calculated as the point where the change in correlation exceeded 5% of the correlation.

Sample and antibody swap detection: To systematically identify both potential sample or antibody
(Ab) swaps and poor quality experiments, we computed the correlation of each observed experiment
against all 10,734 imputed tracks for histone marks and assays (all imputed tracks before removing
samples by QC). We then calculated the average correlation among the top 10 most similar tracks to
each observed track. We flagged potential Ab swaps by comparing the average correlation against
samples of the putative mark against those computed for other marks. We fit an OLS model to each
mark comparison, flagged datasets with residuals greater than 3 standard deviations of the average
correlation, and visually confirmed 7 Ab swaps (6 low-quality tracks). Similarly, we flagged potential
sample swaps by comparing the correlation between imputed and observed tracks against the average
correlation in the top 10 tracks in the same mark. We fit an OLS model and flagged datasets with
residuals greater than 3 standard deviations of the residuals distribution. We report 19 potentially

swapped samples, of which 5 were also flagged as low-quality tracks (Supp. Fig. S8).

Secondary reactivities: In addition to genome-wide QC of imputed tracks, we also focused on the
specific differences between observed and imputed tracks. For each observed mark, we generated a
genome-wide ‘delta’ track, computed as the difference in signal intensity between observed and
imputed data, re-scaling imputed tracks to match signal intensity properties of the observed tracks, as
observed tracks showed a general bias for higher intensity. Some of these ‘delta’ tracks showed
surprisingly high correlations with ‘primary’ tracks of non-putative marks, indicating potential secondary
antibody reactivities. In order to flag these reactivities, we compared the average correlation of each of

the delta tracks to the top 10 closest imputed tracks for each mark. As with antibody swaps, we fit an
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OLS model in each mark combination to flag outliers. We flagged 19 tracks and report 15 after visual
inspection as potential secondary reactivities or single replicate swaps (e.g. in the case of DNase-seq)
(Supp. Fig. S7 and S8). We noted that some cases showed clear difference tracks that don’t match
available antibodies, suggesting that the secondary reactivity is not a common mark in our

compendium.

Biological space coverage: To evaluate the similarity of imputed and observed tracks across
samples, we calculated the pairwise genomic correlations between all pairs of imputed and observed
signal tracks. We hierarchically clustered each individual mark’s imputed or observed correlation matrix
using Ward’'s method. We averaged all imputed matrices for the six main marks (H3K27ac, H3K4mef1,
H3K4me3, H3K36me3, H3K27me3, H3K9me3) to create a fused correlation matrix, which we similarly
clustered. We plotted the hierarchically clustered tree for the fused matrix alongside the metadata

information for each epigenome using the circlize R package®.

Additionally, we calculated mark-specific spearman correlations restricted to relevant features within all
observed and imputed tracks per mark. We mapped each of 13 marks to its top state by emission
probability in the ChromHMM 25 state model and any other states with emission probability over 80%.
For ATAC-seq, we use the same region list as DNase-seq. For each mark, we averaged and reduced
each 25bp signal track to any 200bp regions that were labeled as one of the states associated with the
mark in any of the 127 imputed Roadmap epigenomes under the 25-state model®*. We calculated the
spearman correlation between sets of these region-restricted mark signal tracks and generate similarity
matrices across all datasets for a mark. Using these spearman correlation matrices on all observed and
imputed signal tracks, we computed UMAP dimensionality reductions for each mark and assay using
with the uwot R package® with the default parameters except for n_neighbors=250, min_dist=0.25, and

repulsion_strength=0.25.

Epigenomic annotations

Chromatin state annotations: We computed epigenomic annotations on 3,533 imputed and 1,465
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observed datasets for six marks on 833 samples using ChromHMM with the fixed 18-state model from
Roadmap? with the same mnemonics and colors. We use observed data wherever possible, except in
cases with no observed data or where observed data was removed in QC. The table of signal tracks
used to calculate annotations is available as Supplementary Table S2. Observed data was binarized
from signal tracks with a -log10 p-value signal cutoff of 2. In order to binarize imputed data and facilitate
the comparison with observed data, we established mark-specific binarization cutoffs. We first
separately calculated the overall probability distributions of all imputed and observed tracks for each
mark. Then for each mark, we set the imputed binarization cutoff value to the value of the quantile
matching the quantile in observed data for the -log10 p-value > 2 cutoff. We used liftOver®' to map all
833 (after QC) ChromHMM annotations to GRCh38 and provide these alongside hg19 annotations and

binarized imputed and observed datasets and as tracksets at https://epigenome.wustl.edu/epimap.

Defining active enhancers: We define active enhancers as the intersection of DHS (DNase |
Hypersensitive Sites) regions with enhancer annotations and high H3K27ac signal (average signal > 2
in the region containing the DHS +/- 100bp). We define DHS regions from an index list of 3,568,912
DHS consensus locations determined from 733 DNase-seq experiments. We intersect these regions
with the 833 imputed enhancer annotations (states 7,8,9,10,11, and 15 in the 18-state model). This
results in 2,842,995 regions with at least one enhancer annotation in any epigenome. Finally, we
intersect this matrix with the H3K27ac signal in the +/-100bp region encompassing each DHS from the
same tissue-specific imputed and observed datasets used to calculate the ChromHMM annotations.
This procedure results in 2,356,914 active enhancer regions. We created an equivalent promoter
element region using the promoter annotations (states 1,2,3,4, and 14 in the 18-state model). We
noticed that a number of regions share both enhancer and promoter annotations. As a conservative
cutoff, we assign all regions to either enhancers or promoters if 75% or more of its active occurrences
are labeled as that type of element (Supp. Fig. $18). This final thresholding procedure yields 2,069,090
enhancers, 204,104 promoters, and 122,358 dyadic elements (neither specifically promoter or

enhancer). Matrices and enhancer locations are available through compbio.mit.edu/epimap.
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For all images using tissue group order, including ChromHMM tracks and modules heatmaps, groups
are ordered alphabetically within six major groups: Tissue/Organs (Adipose, Bone, Digestive,
Endocrine, Heart, Kidney, Liver, Lung, Mesench, Muscle, Myosat, Pancreas, Placenta & EEM,
Reproductive, Sm. Muscle, and Urinary), Other Primary Cells (Endothelial, Epithelial, and Stromal),
Blood + Immune (Blood & T-cell, HSC & B-cell, Lymphoblastoid, Spleen, and Thymus), Nervous

system (Brain, Eye, Neurosph, and PNS), Stem (ES-deriv, ESC, iPSC), and Other (Cancer, Other).

Defining enhancer modules: In order to define enhancer modules, we clustered the binary enhancer
matrix defined by intersecting enhancer annotations with DHS regions and with average centered and
flanking (+/- 100 bp) H3K27ac signal above a -log10 pval of 2 using the k-centroids algorithm with the
Jaccard distance with the number of clusters set to k=300. The average module contains 6,897
enhancers, and the largest module (enumerating constitutive elements) contains 93,554 enhancer
regions. In all heatmap plots of module centers (and associated enrichment figures), we diagonalize the
matrix by ordering each column in the heatmap (module centers) by the epigenome which contributes
the maximal signal. All columns which have signal over 25% in more than 50% of rows are shown first.
We use this diagonalization procedure for all diagonalized heatmaps. We colored each module by the
tissue group which contains its maximal signal. Modules highlight sample groupings and organize
according to cell type and tissue. Major groups are ordered alphabetically within six major groups and
samples are ordered within groups according to Ward method’s clustering of the Jaccard distance of of
the modules centers matrix. We performed enrichment on the module centers against the metadata of

included samples (signal over 25%) by the hypergeometric test, and show enrichments with -logop > 2.

Gene ontology enrichment: We performed gene ontology (GO) enrichments on each enhancer
module using GREAT v3.0.0 for the Biological Process, Cellular Component, and Molecular Function
ontologies®'. We analyzed and visualized the results in the same manner as in the Roadmap core
paper®. We only considered enrichments of 2 or greater with a multiple testing-corrected p-value less

than 0.01. For Figure 4C, we reduced the enrichments by modules matrix to terms with a maximal -
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logiop-value > 4 that were enriched in less than 10% of modules. The full enrichment matrix is shown
as Supp. Figure S27. As in the case of the diagonalized module centers, we labeled each term
according to the module containing its maximal signal. We used a bag of words approach (as described
in Roadmap®) to pick 72 representative terms out of 865 total terms for Figure 3B such that each tissue

group has at least one term and the rest are representatively allocated across groups.

Motif enrichment: We performed motif enrichment analysis across enhancer modules as described in
the Roadmap paper. Briefly, we measured enrichments for 1,772 motifs against a background of all
enhancers. We report the motif with the highest enrichment in any module for each of 300 previously

8,66

identified motif clusters™". We only report motifs with a maximal log, enrichment ratio of at least 1.5,

resulting in 86 motifs, which we show with their PWM logos against all 300 modules as Figure 3C.

GWAS enrichment analysis

We pruned the NHGRI-EBI GWAS catalog’ (downloaded from https://www.ebi.ac.uk/gwas/docs/file-

downloads on May 3rd, 2019) using a greedy approach: within each trait + PMID combination, we
ranked associations by their significance (p-value), and added SNPs iteratively if they were not within
5kb of previously added SNPs. We also removed all associations in the HLA locus (for hg19:
chr6:29,691,116-33,054,976). This reduced the catalog from 121k to 113k associations. Finally, we
reduced the catalog to 926 unique GWAS (from 5454 GWAS) with an initial sample size of at least
20,000 cases or individuals (wherever cases and controls were not annotated). This resulted in 66,801
lead SNPs, which landed in 33,417 unique genome intervals when we split the genome into 10,000bp

intervals.

Flat epigenome enrichments and module epigenome enrichments: We performed the hyper-
geometric test to evaluate GWAS enrichments on full epigenomes and on modules. For these flat
enrichments, we compare each number of SNP-enhancer intersections for each enhancer set

(epigenome or module) to the full set of intersections in all M enhancers. As above, we correct for

multiple testing for each GWAS and enhancer set combination by computing and correcting with null
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association p-values for epigenomes and modules using the null catalogs generated for the tree
enrichment. Rarefaction curves were calculated on the epigenome enrichments by iteratively adding
the sample that was either (Fig. 4D) significantly enriched or (Supp. Fig. $29) the maximal enrichment

for the most remaining GWAS until all GWAS were accounted for.

Tree epigenome enrichments: We constructed a tree by hierarchically clustering the Jaccard
similarity of the binary enhancer by epigenomes matrix using complete-linkage clustering. Then, for
each node in the tree, we calculated its consensus epigenomic set, defined as the set of all enhancers
present in all leaves of the subtree, such that each node’s set was a superset of that of its parent. For
each GWAS, we asked whether the novel consensus enhancers at a node were significantly enriched
for lead SNPs by comparing the enrichment between each node and its parent as measured by the

likelihood ratio test between two logistic regressions.

Briefly, for each GWAS catalog unique trait and PubMedID, we find all intersections of its pruned SNPs
with M=2,069,090 enhancers. Then Y is an indicator vector of size M which shows the intersected
enhancers. We find all consensus enhancers (intersection of epigenomes in the subtree) in the node of
interest (vector Xy) and in its parent (Xp). All vectors are 1xM. We calculate Xp = Xy - Xp (specific

enhancers), which is also in {0,1}*")

as each node contains a superset of its parent’s enhancers.
We then calculate following two logistic regressions:
M1:Y ~Xp +1

M2:Y ~Xp+ Xp +1

We calculated the log-likelihood difference and apply the likelihood ratio test to test whether adding the
specific enhancers (M2) is significantly different from the parent model (M1). To correct for multiple
testing on a per GWAS and node basis, we generated 1000 null GWAS catalogs by shuffling the
associations across GWAS. We used these catalogs to compute the null association p-values for each

permuted GWAS and used the 1st, 5th, and 10th smallest p-values for each GWAS and node
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combination as their 0.1%, 0.5%, and 1% FDR cutoff.

For the CAD example, GO terms®” were calculated using the nearest gene of each enhancer hit by a
lead SNP. We pruned genes to expressed genes by calculating average RNA-seq profiles for each
tissue group and excluded genes that had log,FPKM of less than 2 in the average RNA-seq of each
sample’s group. 341 of 833 samples have matched RNA-seq, which we list in addition to releasing the

processed data at compbio.mit.edu/epimap. We kept only the GO terms that were significant in 25% or

less of nodes, report the top 2 GO terms per node in Figure 6C, and all GO terms in Supp. Fig. S37.

Tissue similarity: We assigned each internal node in the tree to a unique tissue if its subtree's leaves
are more than 50% of that tissue and as “Multiple” if the subtree is not majority one tissue. We assigned
tissue labels to 641 of 832 (77%) internal nodes where the majority of leaves corresponded to a single
group. Using these assignments, we created a tissue by GWAS matrix by adding the -log10 p-values
for each tissue node set from all of the GWAS enrichments on the tree. We binarized this matrix and
computed the jaccard similarity across tissues to calculate a tissue similarity matrix. To assess
significance of tissue overlap, we compared each overlap value against the overlaps from 10,000
permuted enrichments. We collapsed each permuted matrix into a tissue by GWAS matrix to compute
the overlaps under the null. We performed the permutations for each tissue against other tissues by
shuffling the enrichment p-values on the node by GWAS matrix. Specifically, we (a) binarized the
enrichment matrix, (b) fixed the column of the group of interest and (c) permuted the remainder of the
matrix keeping its row and column marginals the same and then (d) calculated the cosine distance

between the permuted and the original matrix of enrichments.

Cross-GWAS Network: To evaluate the cross-GWAS similarity, we normalized the tissue by GWAS
matrix for each GWAS to obtain the proportion of significance attributed to each tissue for each GWAS
(Supp. Fig S38). We reduced the matrix to 538 significant GWAS with at least 20,000 cases (or
individuals when no cases were specified). We created a GWAS-GWAS network using the cosine

distance matrix as an adjacency matrix, keeping 5,547 links with a cosine distance of 0.25 or less. We
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used the Fruchterman-Reingold algorithm to lay out the graph®. We use the tissue by GWAS matrix to
color links according to the maximum tissue in the product between each pair of nodes and to color

nodes according to the maximal tissue for each node (Supp Fig. S$39).

In order to compare the epigenetic network to trait genetic similarity, we binned snps in the GWAS
catalog into 10kb windows starting from the beginning of each chromosome. We counted the number of
intersecting bins between two traits and keep any trait pairs with jaccard similarity of at least 1%. To
compare this to the epigenetic network, we plotted only links in the epigenetic network that coincide
with any SNP-sharing GWAS pairs. Additionally, we plotted the heatmaps of the tree enrichments
distance matrix and the genetic similarity matrix side by side, first organized by hierarchically clustering

the enrichments matrix and then by clustering the genetic similarity matrix (Supp. Fig. S41 and S42).

30


https://paperpile.com/c/AkhoAQ/z3jG3
https://doi.org/10.1101/810291
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint d0| https //d0| org/lO 1101/810291; thls versmn posted October 19 2019 The copyrlght holder for this preprlnt (WhICh was not
ce et oy pee V/ N thaetr, Wnona ’Iii- V—a cen Prep FPerpe atraoreuncte
| Project Group aCC BY 4.01 rnanonal |.cen |olog|cal sex mpu fation status Observed total:
ENCODE 2012 (25) Adipose (10) Pancreas (7) Endothelial (11) . male (397) Observed, not imputed (N=643) N=3030
Roadmap 2015 (184) |__|Bone (5) Placenta & EEM (31) [_|Epithelial (51) | | female (350) Observed and imputed (N=2387) Imputed total:
n ENCODE new (381) Digestive (77) Reproductive (6) Brain (54) || unspecified (112) Imputed only (N=12565) N=14952
Roadmap new (241) Endocrine (29) | | Sm. Muscle (8) Eye (5) Neither (N=18765)
GGR (28) Heart (43) Urinary (4) Neurosph (4)  Type . #marks #expts %complete
Kidney (61) Blood & T—cell (41) PNS (10) tissue (471) Lifestage Tier1 7 2197 36.6%
Liver (10) HSC & B—cell (43) ES—deriv (18) cell line (183) embryonic (332) Tigr2 6 365  7.1%
Lung (43) Lymphoblastoid (17) BJESC (9) primary cell (170) adult (365) Tier3 5 335 7.8%
Mesench (4) || Spleen (7) iPSC (15) in vitro diff. cells (35) [ WO (28)  qigrs 2 433 07%
Muscle (61) Thymus (11) Cancer (108) child (35) ’
Myosat (6) Stromal (42) Other (8) unspecified (99)

|!|||1|-||| G G G il i)

'.'|'

a. H4K12ac

I

N

o

2

N

Y
~~~000 3]
ONHVIVIVIIIB RO B BRI S

=
[0}
1]
N

n
l |.||.. fl 1! il

|
66
N Aceseq (88 ] 1 lirmim [} QBRI P i |
H3K27me3 (242 | 11
H3K27ac (242 1 m | ||| ||

H3K9me3 (253 | | | IF ||.h1ll w } III I |

H3K36me3 (258 [ | | | Ill | '” II
H3K4me3 (310 J Jllh ‘II |

DNase-seq (635 1 NMIIN (D EIE TN NI | N Ll

Lifestage

Sex

Type

Project

Group

Tier2 Tier 3

Tier 1

EHH AH Il ﬂ | HH\\HH il

m WWH\HHH\H\HHHH\HH il \

/r
TE=
I

N

:
3
v

Brain 4
Heart — &=
Brain —|
Heart Jjf
Brain -
Heart
Stromal —
Myosat —
Heart —
Brain —|
Muscle —&=
Urinary
Other —|
Kidney —
Liver —|
Lymphob\astowd —
Cancer —

Muscle -
Placenta & EEM —

HSC & B-ce
Cancer

Stromal -

.
@
Q
c
@

6]

ES-deriv —&=&
Cancer —
Muscle —|

Adipose —
Blood & T—cell —|

ES-deriv
Cancer

Adipose

HSC & B-cell —|
Reproductive —|

HSC & B-cell — ===
Blood & T-cell - ==&

[}

i
[
8
°

o
kel
o

m
o3
O
n
T

Placenta & EEM |
Placenta & EEM

’ 200kb (chr19:200,000-400,000) 1.5Mb (chr4:2,000,000-3,500,000) D Actlve (Peak) [l Inactive (No peak)
ATAC- . 1 o NP P B ATAC-seq(N=44) -1 U] ATAC-seq (N =44 of 859
C-seq I - | RiEhE Atrium JI - :

ATAC-seq i

=
DNase-seq |||~ Pancrea +
- T — T S——— > PO VTPV WG TR
. A Y

™,
L

DNase-seq
H2AFZ
H2AFZ
H3K27ac

1

| |
H3K27ac m
H3K27me3
H3K27me3

[

i | —

*Dermi |
—NColorectal -
Pancreas

bbb
E|
|

aa

H3K36me3
H3K36me3

AL
TC Al L Sl ﬂ
e S VY VT T

™ m Tl B T
[Carcinoma YT

™ S-Cardiac
A‘: :: 'eloma

“A: UFibroblast
H3K4me2 . eloma T
H3K4me3 I JES-Neural

F

Lr
13
SEEEENENN Y Y

H3K4me3 ith
H3K79me2
H3K79me2
H3K9ac il “L.‘: " Mucosa
H3K9ac I . - I — T
H3K9me3 i - Breast

H3K9me3 = - Fogil - i
H4K20mel- - n  — T &

TTRNF223 Clorf159 “TheG

[ | Obsen/ed B Imputed

g‘:

H3K4me3 (N = 302) H3K4me3 (N = 302 of 859)

b
b

Observed data in 2000 random Iocationsulmputed data in the same 2000 locations

Figure 1


https://doi.org/10.1101/810291
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/810291; this version posted October 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display th€preprint in perpetuity. It is made available under

b TN T T R i R

A
RN | i g
! i

lIE #

833 ref. epigen.)

. EpiMap (N

98)

Roadmap 2015 (N

Lines M primcell 4
g‘ﬁf"}- * Adult ;
3 o ;

i km—Mesench

—Muscle

Myosat

® ;"5‘ W Pancreas
Embryo . ° < i
Brain « Muscle Prim.Cell /Placenta/EEM
- Adu R T—cell ¢ L i /Reproducnve
H3K27ac H3K27me3 DNase-seq H3K9me3 H3K9ac
\Urinary
Group Project
Neurosph (4) ENCODE 2012 (25
Endothelial (11) 'y ENCODE New (365) ll
Epithelial (41) £ & Roadmap 2015 (184
|| Stromal (42) Roadmap New (241
Sm. Muscle (8) GGR (18
Myosat (6 !
Placenta —Stromal

Thymus (11
Endocrine_s 9)

Digestive % 3)
Muscle LG 2
I Mesencl é))

Adipose (!
Heart (41)
Lung (43
[ Brain (52

/l—Blood & T-cell

—HSC & B-cell

—LCLs

‘W ~Brain

—ES—deriv
~ESC
W\ iPSC

Lifestage
Eye (5 B
u E§C(£36 embryonic 2332 —Cancer
PNS (10) adult (351
[ Urinary (3) newborn ;’g
.gf,ﬂféﬁaz)m . unknown/mixed (99
Pee Sex
i
Blood & j;)ce" @1 fomals (343
HSC g g—cell @3) unknown/mixed (112
Liver (10) . Type
e g (1Y colt e (179
Reproductive (5) primary cell (160 I
Cancer (108) in vitro differentiated cells (35 ) Chromosome 19
Other (78 unknown/mixed (0

Figure 2


https://doi.org/10.1101/810291
http://creativecommons.org/licenses/by/4.0/

I
2
a
£
©
»
I
]
©
0
]
o
S
o
©
>
2

Average ehancer module act

=

865 module-enriched gene ontology terms / pathways:

o

bioRxiv preprint & hitpsdidoi,0sg/18,3101481 28 ﬁ%‘%@&iﬂ‘f’&ﬁﬂﬁ&%ﬁ‘ig 2633 PR AR IBOR Fenrint (whichwas et

certified by pé\g_ 48
[

==

Adipose — ®
)
. c 100
Digestive — H
2 75
g
Heart — =[50
E]
Kidney — 3| |2
Liver — = 0
Mesench —
Muscle
Myosat \
Pancreas X
Placenta & EEM <
Reproductive —
Urinary /
Stromal 7~
Blood & T-cell —
HSC & B-cell N
Lymphoblastoid
Brain
ES-deriv 77
ESC
iPSC
Cancer —
Other —
ion channel binding .
ilar response to transorm Stor beta o - — - . = T = = = g— >4
embryonic di I N : B R S
= T T _ - - . = = - - Lo
" 5 o0 - : - S AN : B SE,
cellular response to nitrogen Compound ;e o= \_/
eralingoyts differentiation A\ - - = : = - -
ell-substrate junction = - B c
mguhtmr\ of hormarie level - L} - _ _ - —= °
ofibril assem . — . K o 3
cardiac mus = - L B _ £
striated must = - ~
ion : = — = S
mesonephric tibuls developmem\ - o
spinal cord development = - - SR - - - =
transcript. regul. region sequence-speciic DNA binding c 2
enhancer sequence- speclfc DNA binding - = - - - )
uclerc acd bincing B E R - - - = H - =
g orphogenesis = = = - - - = o
pmx\malldls'al atiern formation - -
Moryonic patern specifcation i . -0
arboxy ack metaboli process R Lt
oxidoreduct. activity, achng n CH-OH group of donors - L H -~ = -
gentalc developmen E - H - e £ - N
d entiatio - == =8 - =
mammary gland morphoée‘ne‘sws‘\
air cycle - N .
epithelial fo mesenchymal ransition \ .
mbryonic forelimb morphogenesis R . = = N =z
protein localization to nucleus -E - £ = = BE
smooth muscle contraction - - i - -
embryonic placenta developmem\ - - = 5 - . _ B
! A S x
2 = -
'\l it i = i .
embryonic digit morphogenesis —| 4 = 2o 1 i
ova\e chre modification —| = = = -
A Splicing. via spiiceosome —_
modulation by virus of hos( moronology or physiology =
mbrane-enclosed lumen—=| & 4 -
leukocyte activation mvo\ved in immune response~__ | - g H =
ymphooyte Lu>l\mu\duorv\ : E
e production —-| £ -
myeloid leukocyte n‘wed\‘atedh\rv\rvv:\mly e -
anulocyte chemotaxis 5
innate immune response—acuvﬁmg Sonal ransducionN\"| = S 1.5
ponse to type Tinierferon X| - N 2
alpha-beta T cell auwuou\ -
SRP-dependent cotransl. protein targeting fo mcm‘)r'mc\ = - - P - o 1
ribosome =
ome B = -
symbiosis, encompassing mutyalism through{f)arasmsm\ - - c
intracellular non-membrane-bounded organelle o O 5
calcium ion transmembrane transporter activity g B .
substrate-sp hannel aciyi y\ [ £
aptic transn O = _ K=
volta 2 Diex = £ .
ta : \ [ : e = 2 0
central nerv \ - = T E
o= - B - | @ -0.5
= == - - - e
cel-cell signaling invoived in el faie commiimen - - £
ynapiic membrane \-, s i = [} -1
cellcdll junction organizaiion =} = SRR s
tube closure — = - . = = |7
delayed rectifier potassium channel 15
Prgmentation —==. 1.
Dominant Sample Group for module activity Multiple 05" Digestve  Endorr I eart i R T Lung l_--_ISOEnEpllﬁelml___- _EyeNHiS_--l
HNF1A_ 4 15/ q—-_-—I—r._.'IT—-—I—-—.—"—-'I—I_“_If
CEBPB 5. THLARE [ [ b H 1 " ] it
E2F3_3 s C&mrr e o | ' . L8| T ! X » X a!
ZBTB7B_1 . i 1 1 |
ZBTB14_3 0ol c Co .CACTT .
I.'I’-’ HN <A 1) " " ] " — . ] r,yw\rm.hf
- . % ] BT = 1 T ANTCh
moa mm L L] 1 1 L] - -
= / o [ i ' ' Mhr.cosskTTALHXS_3
c |- L] To. HOXA3_1
= pcel ] L] ] M L] =aATra LMXTA 2
2] CAC;\LC . 2
b AATARTATT.
® ATTa i | ! - 1 ' LTk HOXCT0_1
|
£ Tous % i -
ko] A . ANALTOTT. TCF21 1
c " X W - T o +CACCT A BHLHE41 2
; -aT A-c_RHOXF1 3
® it T ] n 3 RO e TRAP2A 11
£ IS8 bl . i Cer N . . e TFAPZE 1
- 23 e A.vr.g
o AATlee. cs(ATCT, / ] '] " +|- - I 1 v M parnd I;ADL;MGA 2
E U g : ' Feg e,
= <ACCTC.... - ] £ olll.
Ee) 1 nehTrge. ehTuoe = ik OO
RXRA_11-5GGTCATGACCe |—| Al
ENEUFSJ‘DZ ! chTAIA,,, —| . " [ i ] i Té;; ,CEREBJ
2 aoklen_sobTen I AC~SMAD3_3
"_’ =ATTA _oTAATTA. b AT vAwirPOusFm 1
E C TACCAAC ] ] ATTA__ThkT, . EMX
- e LR B | n ATLx ATGoAuA, POU5F172
o o § ] | m e | 'AAuT%'g:ﬁngJ/:\“rézza
© Dot ; .
0 SRMAMKCTCM I~ ' [ b ks . I T SPI_a
NFATC1_2 1T10C....x M.f z n " ] . u " Bou| [Jetleer GLIZ_1
ToAo i T 9 / ahr. aATra DRGX_1
Tl 1n s 0 . i £ 3 M FOXCT. 4
' L0elc. EGR2 3
seobr s lATCK 1 ' ks ST r ' aTikellhs ATF4 2
FOXAI 2 ToTmeon o A g L LR T4 Tok s MAFF 1
2T G N . = E ¢ e ko IRF8 _3
TCF7L2:2 iy % m v - 4, 00 Gace.c. RUNX2_4
MAX N
JDP2 r)AT AcTCAT ! 5w s x ! [ nma (R %o - n

Figure 3

300 enhancer modules



https://doi.org/10.1101/810291
http://creativecommons.org/licenses/by/4.0/

a. bioRxiv preprint doi: https://doi-6fg/10:1101/810291; this versiop,nastedOctobet.1 0208 & RRLARIEE AR ST FSF N FIRCAARE Rwhich WSOk e
certified by peer review) isithe:au ri prd avai iye;e‘
63252 - Refrion isaue cal

9212778 — tery di 8
25673412 - Waist-to-hip ratio adjusted for body mzlss X
28448500 ~ Waist-to-hip ratio adjusted for BMI in active individuals

- 5

or/funder, who nted bioRxiv a license to display,the n
e ey DR AT e 1 IR
‘ e = 4 e . Eﬂ'g

sical activity interacti
ure (cigarette smoking ir

30275531 - Total cholesterol levels
27005778 - Metabolite levels (lipoprotein measures
19060911 - HDL cholesterol
4097068 ~ HDL cholesterol
28334899 - LDL cholesterol levels
29507422 - Low densily lipoprotein cholesterol levels
5 — Triglycerides
29777097 - Alzheimer's disease or family history of Alzheimer's disease
21533024 - Soluble ICAM—1
29403010 - Creatine kinase levels
20899526 - Vigorous physical actviy
30054594 - Intraocular pressure
29615537 — Hematocrit ~

20705733 ~ Calcium levels ~\\
29912962 - Systolic blood pressure x alcohol consumption (ight vs fieavy) inferaciion (2df est] k
30595370 - Balding type 1 —~|
30578418 - Systolic blood pressure ——]|

27197191 Cancer

27182965 ~ Myopia

2718: - Joint mobility )
24262325 - Coronary artery disease or ischemic stroke
28199695 - Mosquito bite size

breis
N
|
]

30595370 - Eosinophil counts

27863252 - Lymphocyte percentage of white cells
30531941 - Physical acivity (overal physical activy time)
017375 - Mean corpuscular hemoglobin

29403010 - Mean corpuscular hemoglobin concentration
27863252 - High light scatter reticulocyte count

across 534 genome-wide association studies (GWAS)
(only 100 representative traits shown, using a bag-of-words approach)

28403010 — Mean corpuscular hemogiobin A
27863252 — Sum neutrophil eosinophil counts i g _ 1
27863252 - Neutrophil percentage of white cells e E ] 1
27182965 - Asthma - i - a
29403010 - Albumin-globulin ratio
30778226 - Waist-to~hip ratio adjusted for BMI (additive genetic model) i~ -
28093568 - Cognive function -/ a
29455858 - Diastolic blood pressure x smoking (current vs non—-current) interaction (2df test) /f 2 3
i = A |

30643251 - Smoking initiation (ever regula ar) (A
3 396 - Educ:

ever regul
ational atf

Reported trait-associated lead single-nucleotide polymorphisms (SNPs)

23722424 - Educational attainment
30279459 - Hippocampal subfield CA1 volume (corrected for total h\ggocampal volume)
22267200 - Ti

27067015 - Neuroticism
26426971 - Waist-to-hip ratio adjusted for BMI (age <50)
30643256 - Life satisfaction
29187730 - Mood instabilit
28448500 - Body mass index oint analysis main effects and physical actvy ineraction

1191 = Chronic kidney disease 3 R S —— I I :
o B S L A 72745 N A S
o _ 27089181 - Posiive affe Poly-factorial (46)"" ¢ o o v > £ 0ROS QOO0 > T = = O c > s = Number of
243625, B0y mass nde (ot analysts i s and smoling EraCiSh) . Multi-factorial (S67)M| 0 = = 5 8% G GRERSCIISE 3 B BUIF UER3 §  Cenrichedtissues
28604730 - Lung cancer in ever smoker Uni-factorial (131)M| 85 5 (0} 5 5 o 292m02c 5 0 T 52Eq Suwa € 5 (logscale)
GWAS-tissue enrichment 22797727 - Renal uncion 76iicd Hase (AH Traitcomplexity 5 & g ¢ 3SCwyasS 5 - og -8
||||||_ 30664634 - Body fat "‘g‘(;g’““g;'g'fg,_,‘:i‘,?;;g, / classification < a s E @0 N ¥ o '8 CLL?
I 19862010 - Mean corpuscular hemoglobin 4| 25 o 2
10 15 20 30429480 - Ne nt or cutaneous melanoma -| ac) B o 8 S
-log,,p ’ o S T E
@ m >
b. d. i - R LR
500 ceceseesevees ’ '
- L]
# Strongest Project ARSSTELEE
i . ENCODE 2012 oo
enrichment ] Roadmap 2015 coe°® O ° Reaction time, Body mass index,
N=402 'g = ® R N 00® Height, Menarche (age at onset), Coronary
400 — 55 . E:l?OmDaI'E) (New) 0e® O artery disease or ischemic stroke, Life satisfaction
c ew
mg ® GGR ( ) & B CELL Prostate-specific antigen levels,
g .£°G 400 «*— | IVER Preterm birth (maternal effect), BMI in
a © = ° non-smokers, BMI (adjusted for smoking
=] ie] va \ behaviour), Waist circumference, Body mass
= .‘10_’, 29 ® DERMIS FIBROBLAST index (joint analysis main effects and
g s >3 o NEURAL PROGENITOR DERIV smoking interaction) Dentate gyrus granule cell layer
5 300 — g = o Ee_it—fr_ee mass, Age at menfopause, _ volume (corrected for total hippocampal
£ [ o FORESKIN MELANOCYTE iverticular disease, Body fat distribution - yolume), Left ventricular mass, Educational
o? 5 5 300 D ADIPOSE TISSUE (arm fat ratio), Diastolic blood attainment (MTAG), Alcohol consumption
c€E aE . pressure, Diastolic blood pressure (drinks per week), Smoking status,
§§ 38 ) PACI\?(L;;E»C@ELISUCT EPITHELIAL CARCINOMA Depressed affect
R} nE Hypothyroidism, Non-albumin protein Male-pattern baldness, Hair color,
a3 5% S SKELETAL MUSCLE SATELLITE CELL levels, Autoimmune tratts. Self-reported  Balding type 1, Body fat distribution
=2 200 | > S5 BIPOLAR NEURON DERIV allergy, Mosquito bite size, Allergic rhinitis (trunk fat ratio), Lung function (FVC), Body
% [ 2 2 500 . AORTA —— A fat distribution (leg fat ratio)
c z £ B reast cancer, Waist-to-hip ratio
2 P w % 2 LUNG EPITHELIAL CARCINOMA adjusted for body mass index, Colorectal Total cholesterol levels, Low density
= S N=132 Q S _8 cancer, Serum uric acid levels, lipoprotein cholesterol levels, Total
8 £ - (e} P NEURAL PROGENITOR DERIV Waist-to-hip ratio adjusted for BMI cholesterol levels, LDL cholesterol,
o< % 2y . PROSTATE EPITHELIAL CARCINOMA X sex x age interaction (4df test), Triglycerides, C-reactive protein levels
O = Gamma glutamyl transferase levels
8¢ 100+ w g % HEPATOCYTE 9 Y Heel bone mineral density, Atrial
gv < 5 1004 LYMPHOBLASTOID CELL LINE fibrillation, Atrial fibrillation, Lung
2 Road o MAMMARY GLAND ADENOCARCINOMA function (FEV1/FVC), Systolic blood
2”(3%% E % o NEURAL DERIV pressure, Heel bone mineral density
g“c') SKIN FIBROBLAST Mean corpuscular hemoglobin, Red cell
=1 LIVER distribution width, Red blood cell
0 ENC12 o HEART RIGHT ATRIUM count, Mean corpuscular volume, Eosinophil
B counts, Mean platelet volume
Old  New 0 MER . : ] y ? ,
EpiMa 0 20 40 60 80 100
c 137p P Number of epigenomes included (sorted greedily by increasing number of traits captured)
o £ FDR level 804 836 g 34k
o —
25 1o e £ 750 MO = 3E 00] 30k s
=82 100 . S 0.1% 0.5% 1% ggaq L2735
so8 Uniquely captured by new e QE
536 77 reference epigenomes ; = g
=T S N=116 . L
g9o8 Number of traits S 500 -
£2° 50 44 44 captured by each o &2
283 project in isolation & S5
vE 24 22 20 » oo 8 =
1 g S o © = »
v 6 o N < =
0 Il.----iiéiiiLLLL\_t_p u‘c'_; 250 g%
GGR 1 ° 1 11 les 3 E—E
Rl
ENCODE 2012 I 235 € >9
=4
Roadmap 2015 l l l l l l l 34 3 0 g
Roadmap (New) . l l 341 Individual  Enhancer Enhancer Individual ~ Enhancer  Enhancer
I eplr%enomes modules tree nodes epigenomes modules tree nodes
ENCODE (New) o I 75 (N=833) (N=300) (N=1665) (N=833) (N=300) (N=1665)
Enrichment methodology used Enrichment methodology used

Figure 4


https://doi.org/10.1101/810291
http://creativecommons.org/licenses/by/4.0/

Tissue labels of 1665 tree nodes (33 sample groups + Multiple)
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Tissue 1 Tissue 2 Traits enriched in both tissues (tree node labels)
= Triglycerides (85.7%), High density lipoprotein cholesterol levels (80%), Triglyceride levels (75%), HDL cholesterol (71.4%), Triglycerides (66.7%)

Phosphorus levels (100%), Blood metabolite levels (80%), HDL cholesterol levels (80%), Fibrinogen levels (75%), Gamma glutamyl transferase (75%)
_ Red cell distr. width (90%), B cell non-Hodgkin lymphoma (80%), Mean corp. vol. (78.6%), Anorexia nervosa (exc. from binge-eating disorder or bulimia) (62.5%)
Systemic lupus erythematosus (50%), Eczema (42.3%), Eosinophil counts (41.1%), Serum total protein level (33.3%), Lymphocyte counts (33.1%)
Hemoglobin (50%), Alzheimer's or family history of AD (42.9%), Lipid metabolism phenotypes (40%), Total cholesterol (38.9%), LDL cholesterol (33.3%)
Bone Heart rate variability (RMSSD) (50%), Atrial fibrillation (42.9%), Pulse pressure (39.5%), Heart rate variability (SDNN) (36.4%), Body fat distribution (trunk) (35.7%)
|AGIBESEN Atrial fibrillation (54.2%), Resting heart rate (51.6%), Birth weight (47.1%), Atrial fibrillation (44.7%), LDL cholesterol (42.9%)
_ Subcutaneous adipose tissue (100%), Pediatric bone mineral content (spine) (100%), Crohn's disease (100%), Magnesium levels (83.3%), Eotaxin levels (71.4%)
Endocrine Hippocampal atrophy (100%), Fear of medical pain (dental) (100%), Factor VIII levels (100%), Migraine (83.3%), Hemoglobin (80%)
Endothelial Sleep duration (long) (23.1%), Waist-to-hip ratio (17.2%), HER2 status breast cancer (15.4%), Waist-to-hip ratio adjusted for BMI (13.6%), Platelet count (11.6%)
Rheumatoid arthritis (40%), Creatine kinase (37.5%), Waist-to-hip ratio adj. for BMI and smoking (35.3%), LDL cholesterol (33.3%), Cholesterol, total (33.3%)
[Heart | Atrial fibrillation (54.2%), Resting heart rate (51.6%), Birth weight (47.1%), Atrial fibrillation (44.7%), LDL cholesterol (42.9%)
MUSEIERN Gestational age at birth (maternal eff.) (100%), Waist-hip ratio (66.7%), Pre bronchodilator FEV1 (66.7%), Erectile dysfunction (66.7%), LDL cholesterol (50%)
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