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Abstract (250 words max) 25 

Phylogenetic methods can use the sampling times of molecular sequence data to calibrate the 26 

molecular clock, enabling the estimation of substitution rates and time scales for rapidly evolving 27 

pathogens and data sets containing ancient DNA samples. A key aspect of such calibrations is 28 

whether a sufficient amount of molecular evolution has occurred over the sampling time window, 29 

that is, whether the data can be treated as being from a measurably evolving population. Here we 30 

investigate the performance of a fully Bayesian evaluation of temporal signal (BETS) in molecular 31 

sequence data. The method involves comparing the fit of two models: a model in which the data are 32 

accompanied by the actual (heterochronous) sampling times, and a model in which the samples are 33 

constrained to be contemporaneous (isochronous). We conduct extensive simulations under a 34 

range of conditions to demonstrate that BETS accurately classifies data sets according to whether 35 

they contain temporal signal or not, even when there is substantial among-lineage rate variation. 36 

We explore the behaviour of this classification in analyses of five data sets: modern samples of 37 

A/H1N1 influenza virus, the bacterium Bordetella pertussis, and coronaviruses from mammalian 38 

hosts, and ancient DNA data sets of Hepatitis B virus and of mitochondrial genomes of dog species. 39 

Our results indicate that BETS is an effective alternative to other measures of temporal signal. In 40 

particular, this method has the key advantage of allowing a coherent assessment of the entire 41 

model, including the molecular clock and tree prior which are essential aspects of Bayesian 42 

phylodynamic analyses. 43 

 44 

Key words: Bayesian phylogenetics, ancient DNA, measurably evolving population, marginal 45 

likelihood, molecular clock, temporal signal. 46 
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Introduction 48 

The molecular clock has become a ubiquitous tool for studying evolutionary processes in rapidly 49 

evolving organisms and in data sets that include ancient DNA. In its simplest form, the molecular 50 

clock posits that evolutionary change occurs at a predictable rate over time (Zuckerkandl and 51 

Pauling 1965). The molecular clock can be calibrated to estimate divergence times by using 52 

sampling time information, the timing of known divergence events, or a previous estimate of the 53 

substitution rate (Hipsley and Müller 2014). For example, Korber et al. (2000) used sampling times 54 

to calibrate the molecular clock and to infer the time of origin of HIV group 1. Their approach 55 

consisted of estimating a phylogenetic tree and conducting a regression of the distance from the 56 

root to each of the tips as a function of sequence sampling time. In this method, the slope of the 57 

regression is an estimate of the substitution rate in substitutions per site per unit of time, the 58 

intercept with the time axis is the age of the root node, and the coefficient of determination (R2) is 59 

the degree to which the data exhibit clocklike behaviour (Rambaut et al. 2016). Despite the 60 

practicality of root-to-tip regression, its use as a statistical tool for molecular dating has several 61 

well-known limitations. In particular, data points are not independent because they have shared 62 

ancestry (i.e., internal branches are traversed multiple times) and a strict clocklike behaviour is 63 

assumed by necessity.  64 

 65 

The past few decades have seen a surge in molecular clock models that explicitly use phylogenetic 66 

information. Bayesian methods have gained substantial popularity, largely due to the wide array of 67 

complex models that can be implemented and the fact that independent information, including 68 

calibrations, can be specified via prior distributions (Nascimento et al. 2017). Of particular 69 

importance is the availability of molecular clock models that relax the assumption of strict clock 70 

behaviour by explicitly modelling rate variation among lineages (reviewed by Ho and Duchene 71 

(2014) and by Bromham et al. (2018)).  72 

 73 

Regardless of the methodology used to analyse time-stamped sequence data, a sufficient amount 74 

of molecular evolution must have occurred over the sampling time window to allow reliable 75 

estimates of substitution rates and timescales. In such cases, the population can be considered to 76 

be ‘measurably evolving’ (Drummond et al. 2003). The degree of ‘temporal information’ in sequence 77 

data is determined by the sequence length, the substitution rate, and the range of available 78 

sampling times. Some viruses evolve at a rate of around 5×10-3 subs/site/year (Duchene et al. 2014), 79 

such that samples collected over a few weeks can be sufficient to calibrate the molecular clock. In 80 

more slowly evolving organisms, such as mammals, a sampling window of tens of thousands of 81 

years might be necessary; this can be achieved by including ancient DNA sequences (Drummond et 82 

al. 2003; Biek et al. 2015). 83 

 84 

Testing for temporal signal is an important step for verifying that the molecular clock can be 85 

calibrated using the sampling times (Rieux and Balloux 2016). For this purpose a date-86 

randomization test has been proposed that compares actual substitution rate estimates to those 87 

obtained by repeatedly permuting the sequence sampling times (Ramsden et al. 2009). A data set is 88 

considered to have strong temporal signal if the rate estimated using the correct sampling times 89 

does not overlap with those of the permutation replicates (Duchene et al. 2015, 2018; Murray et al. 90 

2015). An implementation of this test is also available that performs the permutation during a single 91 

Bayesian inference (Trovão et al. 2015). The interpretation of the date-randomization test is 92 

essentially frequentist in nature, which leads to an inconsistent mixture of statistical frameworks 93 

when Bayesian phylogenetic methods are used. Moreover, the procedure is not applicable in cases 94 

with small numbers of sampling times, owing to the limited number of possible permutations 95 

(Duchene et al. 2015).  96 

 97 
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We propose a full Bayesian model test, which we refer to as BETS (Bayesian Evaluation of Temporal 98 

Signal), to assess temporal signal based on previous analyses by Baele et al. (2012). The approach 99 

involves quantifying statistical support for two competing models: a model in which the data are 100 

accompanied by the actual sampling times (i.e., the data are treated as heterochronous) and a 101 

model in which the sampling times are contemporaneous (i.e., the data are treated as isochronous). 102 

Therefore, the sampling times are treated as part of the model and the test can be understood as a 103 

test of ultrametricity of the phylogenetic tree. If incorporating sampling times improves the 104 

statistical fit, then their use for clock calibration is warranted. The crux of BETS, as with Bayesian 105 

model selection, is that it requires calculating the marginal likelihood of the model in question. The 106 

marginal likelihood measures the evidence for a model given the data, and calculating it requires 107 

integration of its likelihood across all parameter values, weighted by the prior (Kass and Raftery 108 

1995). 109 

 110 

Because the marginal likelihood is a measure of model evidence, the ratio of the marginal 111 

likelihoods of two competing models, known as the Bayes factor, is used to assess support for one 112 

model relative to the other. In the case of applying BETS, let Mhet represent the heterochronous 113 

model, Miso the isochronous model, and Y the sequence data, such that P(Y|Mhet) and P(Y|Miso) are 114 

their respective marginal likelihoods. These models differ in the number of parameters; in Miso the 115 

substitution rates and times are nonidentifiable, so the rate is fixed to an arbitrary value, while in 116 

Mhet it is a free parameter. Differences in the number of parameters do not need to be taken into 117 

account separately, because the marginal likelihood naturally penalizes excessive parameterization. 118 

Kass and Raftery (1995) gave guidelines to interpreting Bayes factors, where a (log) Bayes factor 119 

log(P(Y|Mhet)) – log(P(Y|Miso)) of at least 5 indicates ‘very strong’ support for Mhet over Miso, a value of 120 

3 indicates ‘strong’ support, and a value of 1 is considered as positive evidence for Mhet over Miso. 121 

 122 

The importance of model selection in Bayesian phylogenetics has prompted the development of 123 

various techniques to calculate marginal likelihoods (reviewed by Baele et al. (2014) and by Oaks et 124 

al. (2019)). These techniques can be broadly classified into prior-based and/or posterior-based 125 

estimators and path-sampling approaches. Prior- and posterior-based estimators, also known as 126 

importance sampling, include the widely used harmonic-mean estimator (Newton and Raftery 127 

1994) and the AICM and BICM (Bayesian analogues to the Akaike information criterion and the 128 

Bayesian information criterion, respectively) (Raftery et al. 2007). These scores are easy to compute 129 

because they only require samples from the posterior distribution as obtained through Markov 130 

chain Monte Carlo (MCMC) integration. However, the harmonic-mean estimator has been shown to 131 

have unacceptably high variance when the prior is diffuse relative to the posterior, and, together 132 

with the AICM, has shown poor performance in practical settings (Baele et al. 2012, 2013). The BICM 133 

requires a sample size to be specified for each parameter, which is far from trivial for phylogenetic 134 

inference and therefore remains unexplored for such applications.  135 

 136 

Path-sampling approaches include path sampling (originally introduced in phylogenetics as 137 

‘thermodynamic integration’) (Lartillot and Philippe 2006), stepping-stone sampling (Xie et al. 138 

2011), and generalized stepping-stone (GSS) sampling (Fan et al. 2011; Baele et al. 2016). These 139 

methods depend on drawing samples using MCMC from a range of power posterior distributions 140 

that represent the path from the posterior to the (working) prior, and therefore require additional 141 

computation. Another numerical technique that was recently introduced to phylogenetics is nested 142 

sampling (NS) (Maturana et al. 2019), which approximates the marginal likelihood by simplifying 143 

the marginal-likelihood function from a multi-dimensional to a one-dimensional integral over the 144 

cumulative distribution function of the marginal likelihood (Skilling 2006). Fourment et al. (2019) 145 

recently compared the accuracy of a range of marginal-likelihood estimation methods and found 146 

GSS to be the most accurate, albeit at increased computational cost. Clearly, the reliability of the 147 

marginal-likelihood estimator is a key consideration for applying BETS. 148 
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 149 

We conducted a simulation study to assess the reliability of BETS under a range of conditions that 150 

are typical for data sets of rapidly evolving organisms and of those involving ancient DNA. We also 151 

analysed five empirical data sets to showcase the performance of the test in practice. Our analyses 152 

demonstrate the utility of BETS to provide accurate evaluation of temporal signal across a wide 153 

range of conditions.  154 

 155 

Results 156 

 157 

Simulations of Measurably Evolving Populations 158 

In our simulations we considered sequence data from heterochronous and isochronous trees. 159 

Heterochronous trees represent a situation where there is sufficient temporal signal, whereas 160 

isochronous trees lack temporal signal altogether. We simulated heterochronous phylogenetic 161 

trees under a stochastic birth-death process with between 90 and 110 tips. To generate isochronous 162 

trees we used similar settings, but we assumed a single sampling time. We then simulated 163 

substitution rates along the trees according to an uncorrelated relaxed clock with an underlying 164 

lognormal distribution with a mean of 5×10-3 subs/site/unit time and a standard deviation, σ, of 0, 165 

0.1, 0.5, or 1, where σ=0 is equivalent to simulating under a strict clock. We then simulated 166 

sequence evolution using an HKY+Γ substitution model, with parameter values similar to those 167 

estimated for influenza virus (Hedge et al. 2013), to generate alignments of 10,000 nucleotides.  168 

 169 

Our main simulation conditions produced data sets in which about 50% of the sites were variable. 170 

We refer to this simulation scenario as (i) ‘high substitution rate and wide sampling window’, and we 171 

considered three other simulation scenarios that involved (ii) a lower substitution rate of 10-5 172 

subs/site/unit time, (iii) a narrower sampling window, and (iv) both of the last two conditions. We 173 

analysed the sequence data using a strict clock and an uncorrelated relaxed clock with an 174 

underlying lognormal distribution (Drummond et al. 2006). We considered three configurations for 175 

sampling times: birth-death sampling times, which are correct for the heterochronous data but not 176 

for the isochronous data; identical sampling times, which is correct for isochronous data but not for 177 

the heterochronous data; and permuted birth-death sampling times, which are incorrect for both 178 

heterochronous and isochronous data. 179 

 180 

We estimated the log marginal likelihoods of these six combinations of sampling times and clock 181 

models using NS and GSS as implemented in BEAST 2.5 (Bouckaert et al. 2019) and BEAST 1.10 182 

(Suchard et al. 2018), respectively. Our BETS approach ranked the models according to their log 183 

marginal likelihoods and computed log Bayes factors of the best heterochronous model (Mhet) 184 

compared with the best isochronous model (Miso). 185 

 186 

(i) Simulations with High Substitution Rate and Wide Sampling Window 187 

Both NS and GSS correctly classified data as being heterochronous or isochronous in 10 out of 10 188 

simulations, including in the presence of a high degree of among-lineage rate variation (i.e., σ=1; 189 

fig. 1 for heterochronous data and supplementary fig. S1, Supplementary Material online, for 190 

isochronous data). Although both marginal-likelihood estimators detected temporal signal, NS 191 

supported the relaxed clock over the strict clock for three heterochronous data sets simulated 192 

without among-lineage rate variation (σ=0) and for six data sets simulated with low among-lineage 193 

rate variation (σ=0.1). In the simulations of isochronous data, NS often favoured the relaxed clock 194 

over the strict clock when there was low among-lineage rate variation (σ=0.0 and σ=0.1), albeit 195 

mostly with log Bayes factors below 5 (supplementary fig. S1, Supplementary Material online). In 196 

contrast, GSS always selected the strict clock under these conditions (fig. 1 and supplementary fig. 197 

S1, Supplementary Material online). 198 
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 199 

For the heterochronous data sets, NS and GSS always displayed very strong support for Mhet over 200 

Miso, with log Bayes factors of at least 90. For the isochronous data sets, the log Bayes factors for 201 

Miso relative to Mhet were overall much lower, but still decisive, ranging from 30 to 50. Furthermore, 202 

log Bayes factors tended to decline with an increasing degree of among-lineage rate variation in the 203 

data. Another important observation is that in the heterochronous data, the relaxed clock was 204 

consistently selected over the strict clock when assuming that the data were isochronous, or when 205 

the sampling times had been permuted (fig. 1 and supplementary fig. S1, Supplementary Material 206 

online). Moreover, the strict clock with permuted sampling times yielded the lowest log marginal 207 

likelihoods for heterochronous data. Both of these patterns are likely to be due to an apparently 208 

higher degree of among-lineage rate variation when sampling times are misspecified. 209 

 210 

(ii) Simulations with Low Substitution Rate and Wide Sampling Window 211 

Our simulations with a low substitution rate of 10-5 subs/site/unit time produced data sets that each 212 

had about 10 variable sites, which provides very little information for the estimation of evolutionary 213 

parameters. Additionally, due to the stochasticity of the simulation process, increased estimator 214 

variance between replicates is to be expected given the small number of variable sites. For the 215 

heterochronous data sets, GSS selected the heterochronous model with correct dates in at least 7 216 

out of 10 simulation replicates (fig. 2). Across the simulations with different clock models (40 in 217 

total), only in five heterochronous data sets did we find models with permuted sampling times to 218 

have the highest log marginal likelihoods. For NS, in 11 out of 40 simulations, either isochronous 219 

models or those with random sampling times were incorrectly selected when heterochronous data 220 

sets were analysed.  221 

 222 

Log marginal likelihoods calculated using GSS tended to support models with sampling times 223 

(either permuted or those from the birth-death) for the isochronous data, whereas NS appeared to 224 

support all models with similar frequencies (supplementary fig. S2, Supplementary Material online). 225 

However, a critical feature of the results from the data sets with a low substitution rate is that the 226 

log marginal likelihoods for all models were more similar to one another than those for the data sets 227 

with high substitution rate (note that the log marginal likelihood scale in fig. 2 is smaller than that in 228 

fig. 1). As a case in point, for the isochronous data with σ=0.1 there were log Bayes factors of about 229 

0.1 for the best model with birth-death sampling times relative to those with permuted sampling 230 

times. This result indicates that comparing models with permuted sampling times might be useful 231 

for determining whether the data are informative about a particular set of sampling times. 232 

 233 

(iii) Simulations with High Substitution Rate and Narrow Sampling Window 234 

We conducted a set of simulations similar to those described in scenario (i) but where sequence 235 

sampling spanned only the last 10% of the age of the tree (0.5 units of time, compared with 5 units 236 

of time for the simulations with a wide sampling window). These conditions reflect those of 237 

organisms with deep evolutionary histories and for which samples are available for only a small 238 

portion of this time. Since in these trees the samples were collected over a narrower time window, 239 

we used a higher sampling probability to obtain about 100 samples, as in our other simulations (see 240 

examples of trees in supplementary fig. S3, Supplementary Material online). For these analyses we 241 

only considered heterochronous data because the isochronous case is the same as that in scenario 242 

(i). 243 

 244 

Both GSS and NS showed excellent performance in detecting temporal signal in this scenario, 245 

almost always selecting models with correct sampling times. The exceptions to this pattern 246 

occurred for one data set with σ=0.5 and for two data sets with σ=1.0 for NS (fig. 3). 247 

Differentiating between the strict clock and relaxed clock appeared somewhat more difficult, 248 
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particularly for NS, where the relaxed clock with correct sampling times yielded log marginal 249 

likelihoods very similar to those for the strict clock for data with low among-lineage rate variation 250 

(σ of 0.0 or 0.1). Although NS and GSS performed well in these simulations, the log Bayes factors 251 

for Mhet relative to Miso were much lower than those for data with a high substitution rate and a wide 252 

sampling window in (i). One obvious example is in the data with σ=0.0, where the mean log Bayes 253 

factors for Mhet over Miso using GSS was 203.15 with a wide sampling window (fig. 1), but only 35.77 254 

when sampling spanned a narrow time window (fig. 3).  255 

 256 

(iv) Simulations with Low Substitution Rate and Narrow Sampling Window 257 

We considered data sets with a narrow sampling window, as in scenario (iii), and with a low 258 

substitution rate of 10-5 subs/site/unit time, as in scenario (ii). We generated only heterochronous 259 

trees under these conditions, because the isochronous case would be the same as that in (ii). 260 

 261 

Estimates of log marginal likelihoods with GSS and NS were very similar among models, with mean 262 

log Bayes factors among data sets of less than 1 for the two models with highest marginal 263 

likelihoods for GSS (fig. 4). In the data sets with σ=0.0, GSS and NS always preferred a 264 

heterochronous model. However, in a few cases (three for GSS and one for NS) the model with 265 

permuted sampling times was selected, indicating that temporal signal was not detected. As with 266 

the data sets with low substitution rate and constant sampling (ii), the relaxed clock was sometimes 267 

preferred over the strict clock, even when the data sets had no rate variation among lineages. 268 

 269 

Comparison with Root-to-tip Regression 270 

Using a subset of the heterochronous data sets, we conducted root-to-tip regression using 271 

phylogenetic trees inferred using maximum likelihood in PhyML 3.1 (Guindon et al. 2010) with the 272 

same substitution model as in our BEAST analyses, and with the placement of the root chosen to 273 

maximize R2 in TempEst (Rambaut et al. 2016). We selected data sets generated with a high 274 

substitution rate and with both constant and narrow sampling windows. Because GSS and NS 275 

correctly detected temporal signal under these conditions, these regressions demonstrate the 276 

extent to which this informal regression assessment matches the BETS approach. We did not 277 

attempt to provide a thorough benchmarking of the two methods here. 278 

 279 

All regressions had R2 values that matched our expectation from the degree of among-lineage rate 280 

variation, that is, higher values of σ corresponded to lower values of R2 (fig. 5). The data with a 281 

wide sampling window yielded regression slopes ranging from 7.3×10-3 to 5.4×10-3 subs/site/unit 282 

time, which is similar to the substitution rate values used to generate the data. Although the root-283 

to-tip regression is sometimes used to assess temporal signal, it has no cut-off values to confirm 284 

temporal signal. This becomes critical when considering the data with a narrow sampling window, 285 

for which the R2 was between 0.13 and 0.02. For example, the regression for a data set with σ=1 286 

and narrow sampling window had an R2 of 0.02, which is sometimes considered sufficiently low as 287 

to preclude molecular clock analyses (Rieux and Balloux 2016). However, BETS supported strong 288 

temporal structure under a relaxed clock in this data set, with log Bayes factors of 5.48 for this 289 

particular data set, which matches the simulation conditions. More importantly, even with such 290 

high rate variation, the substitution rate estimated using a relaxed clock and the correct sampling 291 

times included the true value used to generate the data (5×10-3 subs/site/unit time), with a 95% 292 

highest posterior density (HPD) of between 2.15×10-3 and 1.90×10-2 subs/site/unit time, while the 293 

regression slope was 2.22×10-2 subs/site/unit time. A key implication of these comparisons is that 294 

BETS provides a formal assessment of temporal signal, unlike statistics computed from the 295 

regression. Moreover, the root-to-tip regression appears uninformative when the data have been 296 

sampled over a narrow time window and there is some rate variation among lineages. 297 

  298 
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Analyses of Empirical Data Sets 299 

We analysed five empirical data sets with similar configurations of sampling times as in our 300 

simulation study (Table 1). Two data sets consisted of rapidly evolving pathogens: A/H1N1 influenza 301 

virus (Hedge et al. 2013) and Bordetella pertussis (Bart et al. 2014). We also analysed a data set with 302 

highly divergent sequences of coronaviruses (Wertheim et al. 2013), and two data sets with ancient 303 

DNA: Hepatitis B virus (Patterson Ross et al. 2018), and mitochondrial genomes of dog species 304 

(Thalmann et al. 2013). Due to the demonstrated higher accuracy of GSS over NS (Fourment et al. 305 

2019), we applied the BETS approach using the former method only. 306 

 307 

The A/H1N1 influenza virus data demonstrated clear temporal signal, with the strict clock and 308 

relaxed clock with the correct sampling times having the highest log marginal likelihoods, and a log 309 

Bayes factor of Mhet with respect to Miso of 150 (fig. 6). The strict clock had higher support than the 310 

relaxed clock for the correct sampling times (log Bayes factor 3.41). Broadly, this result is consistent 311 

with previous evidence of strong temporal signal and clocklike behaviour in this data set (Hedge et 312 

al. 2013). Using the strict clock with correct sampling times we estimated a substitution rate of 313 

3.37×10-3 subs/site/year (HPD: 2.98×10-3 to 3.78×10-3). 314 

 315 

We detected temporal signal in the Bordetella pertussis data set (fig. 6). The relaxed clock with the 316 

correct sampling times had the highest log marginal likelihood, with a log Bayes factor relative to 317 

the strict clock of 28.86. The log Bayes factor for Mhet relative to Miso was 47.40. These results echo 318 

previous assessments of these data using a date-randomization test (Duchene et al. 2016). We 319 

estimated a mean substitution rate using the best model of 1.65×10-7 subs/site/year (95% HPD: 320 

1.36×10-7 to 2.00×10-7). 321 

 322 

Our analyses did not detect temporal signal in the coronavirus data, for which the strict clock and 323 

relaxed clock with no sampling times had the highest log marginal likelihoods. The log Bayes factor 324 

of Mhet relative to Miso was -16.82, indicating strong support for the isochronous model. The relaxed 325 

clock was supported over the strict clock, with a log Bayes factor of 19.25 (fig. 7). Previous analyses 326 

of this data set suggested an ancient origin for this group of viruses, but here the lack of temporal 327 

signal precludes any interpretation of our estimates of substitution rates and timescales.  328 

 329 

The Hepatitis B virus data set included several human genotypes with complete genomes, where 330 

135 were modern sequences collected from 1963 to 2013 and two were ancient samples from 331 

human mummies from the 16th century. Previous studies have not found any temporal signal in 332 

these data using different approaches, despite the inclusion of ancient sequences. Our estimates of 333 

log marginal likelihoods were consistent with a lack of temporal signal, with a log Bayes factor of -334 

101.51 for Mhet relative to Miso. 335 

 336 

The dog mitochondrial genome data contained samples from up to 36,000 years before the 337 

present. BETS detected temporal signal in these data, with a log Bayes factor of 38.77 for Mhet 338 

relative to Miso; this result is consistent with that of a date-randomization test in a previous study 339 

(Tong et al. 2018). The estimated substitution rate for these data using the best model had a mean 340 

of 1.08×10-7 subs/site/year (95% HPD: 7.49×10-8 to 1.52×10-7).  341 

 342 

Discussion 343 

We have proposed BETS, a method that explicitly assesses the statistical support for including 344 

sequence sampling times in a Bayesian framework. It is a test of the strength of the temporal signal 345 

in a data set, which is an important prerequisite for obtaining reliable inferences in phylodynamic 346 

analyses. BETS considers the model ensemble, such that the method can detect temporal signal 347 

using models that account for substitution rate variation among lineages. The results of our 348 
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analyses demonstrate that our method is effective in a range of conditions, including when the 349 

substitution rate is low or when the sampling window represents a small portion of the timespan of 350 

the tree. 351 

 352 

BETS does not require date permutations, which differentiates it from the widely used date-353 

randomization test for temporal structure. Date-randomization tests address the question of 354 

whether a particular association between sequences and sampling times produces estimates 355 

different from those obtained from data sets with permuted sampling times (Duchene et al. 2015; 356 

Murray et al. 2015). However, such an approach is not a formal test of temporal signal in the data 357 

because the permutations do not necessarily constitute an appropriate null model. In contrast, our 358 

method does not require permutations and so has the benefit of being robust to using a small 359 

number of sampling times.  360 

 361 

Accurate calculations of marginal likelihoods are essential for BETS. In our simulation study, we 362 

found that GSS and NS correctly assessed the presence and absence of temporal signal in the data 363 

under most conditions. The correct clock model was also identified, although in a few instances NS 364 

preferred an overparameterized model. Conceivably, using different marginal-likelihood estimators 365 

might affect the actual model selected. Murray et al. (2015) also employed a Bayesian model-366 

testing approach using the AICM to assess temporal signal. In their study, the AICM performed well 367 

in simulations, but failed to detect temporal signal in empirical data. We attribute this finding to the 368 

low accuracy of AICM relative to path-sampling methods (Baele et al. 2012, 2013), and suggest 369 

careful consideration of the marginal-likelihood estimator for tests of temporal signal. 370 

 371 

A key advantage of BETS is that the complete model is considered, unlike in simpler data-372 

exploration methods such as root-to-tip regression. Specifically, root-to-tip regression is a visual 373 

tool for uncovering problems with data quality and to inspect clocklike behaviour, but the absence 374 

of appropriate statistics means that there is no clear way of determining whether the data contains 375 

temporal information. Consider the regressions in figure 5 for data with a high substitution rate and 376 

narrow sampling window. Even when among-lineage rate variation is low (σ=0.1), the data points 377 

form a cloud, with a low R2 of 0.09. However, the apparent ‘noise’ around the regression line is 378 

probably the result of stochasticity in sequence evolution and of the narrow sampling window 379 

relative to the age of the root of the tree. In fact, for this particular data set the model with the 380 

highest log marginal likelihood is the strict clock with correct sampling times. 381 

 382 

In all of our analyses, we ensured that the priors for different models and configurations of sampling 383 

times were identical because, as with all Bayesian analyses, model comparison using marginal 384 

likelihoods can depend on the choice of prior (Oaks et al. 2019). For example, the tree prior can 385 

affect inferences of temporal signal, as it is part of the full model specification. Here we used an 386 

exponential-growth coalescent tree prior, which closely matches the demographic dynamics of the 387 

birth-death process under which the data were simulated. The effect of using an inappropriate tree 388 

prior on tests of temporal signal requires further investigation, but previous studies have suggested 389 

that there is only a small impact on estimates of rates and times if the sequence data are 390 

informative (Ritchie et al. 2017; Möller et al. 2018). 391 

 392 

An interesting finding is that statistical support for isochronous sampling times in truly isochronous 393 

data is lower than that for the correct sampling times in truly heterochronous data. This can 394 

potentially lead to an increased risk of incorrectly concluding the presence of temporal signal, but 395 

we only found this to be a problem in a small number of cases. In particular, in isochronous data 396 

simulated with a low substitution rate, and with very few variable sites, the best models were 397 

sometimes those that included sampling times, albeit with very low log Bayes factors (e.g., 398 
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supplementary fig. S2, Supplementary Material online). This probably occurs because stochastic 399 

error associated with a small amount of evolution leads to low power for model selection. 400 

 401 

Permuting sampling times led to poor model fit, as expected. This procedure requires substantial 402 

computing requirements, depending on the number of permutations that are performed, and we 403 

find that such date permutations are of limited value for model testing when the data are highly 404 

informative (e.g., figs. 1 and 3). However, in data sets with very low information content, such as 405 

those that were produced by simulation with a low substitution rate here, conducting a small 406 

number of date permutations might offer a conservative approach to determining whether model 407 

fit and parameter estimates are driven by a particular set of sampling times, as one would expect in 408 

the presence of temporal signal. 409 

 410 

The nature of the BETS approach means that every parameter in the model has a prior probability, 411 

including the substitution rate. Because substitution rates and times are nonidentifiable, it is 412 

conceivable that an informative prior on the rate or on the age of an internal node might have a 413 

stronger effect than the sampling times on the posterior, for example if the samples span a very 414 

short window of time. Such analyses with informative substitution rate priors effectively include 415 

several simultaneous sources of calibrating information (i.e., sampling times, internal nodes, and an 416 

informative rate prior). Using sampling times in addition to other sources of calibration information 417 

might still be warranted if it improves the fit of the model, which can be tested using our proposed 418 

method. 419 

 420 

Analyses with multiple calibrations can also allow uncertainty in sequence sampling times, 421 

especially in data sets that include ancient DNA, where sampling times can be treated as 422 

parameters in the model (Shapiro et al. 2011). BETS provides a coherent approach to assess 423 

temporal structure in these circumstances, unlike date-randomization tests that typically use point 424 

values for sampling times. In fact, BETS can be used as a means to validate whether a sample is 425 

modern or ancient.  426 

 427 

In general, the uptake of Bayesian model testing in phylogenetics has great potential for improving 428 

our confidence in estimates of substitution rates and timescales. The test that we have proposed 429 

here, BETS, provides a coherent and intuitive framework to test for temporal information in the 430 

data. 431 

 432 

Materials and Methods 433 

Simulations 434 

We simulated phylogenetic trees under a stochastic birth-death process using MASTER v6.1 435 

(Vaughan and Drummond 2013), by specifying birth rate λ=1.5, death rate μ=0.5, and sampling 436 

rate ψ=0.5. This corresponds to an exponentially growing infectious outbreak with reproductive 437 

number R0=1.5 and a wide sampling window. We set the simulation time to 5 units of time, which 438 

corresponds to the time of origin of the process. For isochronous trees, we used similar settings, but 439 

instead of using the sampling rate, we sampled each tip with probabilityρ=0.5 when the process 440 

was stopped after 5 units of time (i.e. μ=1 and ψ=0). Some of our analyses consisted of artificially 441 

specifying sampling times for isochronous trees, which we set to those that we would have 442 

obtained from a birth-death process with μ=0.5 and ψ=0.5.  443 

 444 

In a second set of simulations of heterochronous trees, we generated trees with a narrow sampling 445 

window. We specified two intervals for μ andψ. The first interval spanned 4.5 units of time with 446 

μ=1.0 and ψ=0, and the second interval 0.5 units of time with μ=0.1 and ψ=0.9. As a result, the 447 

process still had a constant become uninfectious rate (μ+ψ), but samples were only collected in 448 
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the second interval. The high sampling rate in the second interval resulted in trees with similar 449 

numbers of tips to those with a wide sampling window, but where their ages only spanned 0.5 units 450 

of time.  451 

 452 

We only considered the simulated trees that contained between 90 and 110 tips. The trees 453 

generated in MASTER are chronograms (with branch lengths in units of time), so we simulated 454 

substitution rates to generate phylograms (with branch lengths in units of subs/site). To do this we 455 

specified the uncorrelated lognormal relaxed clock with a mean rate of 5×10-3 or 10-5 subs/site/unit 456 

time and a standard deviation σ of 0 (corresponding to a strict clock), 0.1, 0.5, or 1. We simulated 457 

sequence evolution along these phylograms under the HKY nucleotide substitution model 458 

(Hasegawa et al. 1985). We added among-site rate variation using a discretized gamma distribution 459 

(Yang 1994, 1996) using Phangorn v2.5 (Schliep 2011) to generate sequence alignments of 10,000 460 

nucleotides. We set the transition-to-transversion ratio of the HKY model to 10 and the shape of the 461 

gamma distribution to 1, which is similar to estimates of these parameters in influenza viruses 462 

(Duchene et al. 2014; Hedge and Wilson 2014). For each simulation scenario we generated 10 463 

sequence alignments. 464 

 465 

Estimation of Marginal Likelihoods Using Nested Sampling 466 

We analysed the data in BEAST 2.5 using the matching substitution model, the exponential-growth 467 

coalescent tree prior, the strict clock or relaxed clock, and different configurations of sampling 468 

times. We chose the exponential-growth coalescent tree prior, instead of the birth-death tree prior, 469 

because it is conditioned on the samples instead of assuming a sampling process; this ensures that 470 

the marginal likelihoods for isochronous and heterochronous trees are comparable.  471 

 472 

We specified proper priors on all parameters, which is essential for accurate estimation of marginal 473 

likelihoods (Baele et al., 2013). In our heterochronous analyses the prior on the substitution rate had 474 

a uniform distribution bounded between 0 and 1. We made this arbitrary choice to set a somewhat 475 

uninformative prior and because the default prior in BEAST 2.5 is a uniform distribution between 0 476 

and infinity, which is improper. Owing to the nonidentifiability of substitution rates and times, 477 

neither can be inferred in the absence of calibrating information, so in our isochronous analyses we 478 

fixed the value of the substitution rate to 1. The initial NS chain length was chosen so as to draw 479 

20,000 samples, with 20,000 steps, 32 particles, and a subchain length of 5,000 (note that NS is not 480 

equivalent to standard MCMC, nor is the definition of an iteration/step). The chain length and its 481 

accompanying sampling frequency were adjusted to obtain effective sample sizes for key 482 

parameters of at least 200 (computed in the NS output in BEAST 2.5). Examples of MASTER files 483 

and BEAST input files for NS are available online (supplementary data, Supplementary Material 484 

online). 485 

 486 

Estimation of Marginal Likelihoods Using Generalized Stepping-Stone Sampling 487 

We used BEAST 1.10 with the same model specifications and priors as in BEAST2, except for the 488 

prior on the substitution rate, for which we used the approximate continuous-time Markov chain 489 

reference prior (Ferreira and Suchard 2008). Because our simulation analyses of GSS and NS differ 490 

in this prior, the marginal-likelihood estimates are not directly comparable, so for each simulation 491 

we report log Bayes factors of competing models instead of the log marginal likelihoods. The GSS 492 

implementation in BEAST 1.10 has two different working priors for the tree generative process: a 493 

matching tree prior and a product of exponentials. The latter approach is the most generally 494 

applicable and is the one that we used here (Baele et al. 2016).  495 

 496 

We used an initial MCMC chain length of 5×107 steps sampling every 5000 steps. After discarding 497 

10% of the samples obtained, the remaining samples were used to construct the working 498 

distributions for the GSS analysis. These comprised 100 path steps distributed according to 499 
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quantiles from a β distribution with α=0.3, with each of the 101 resulting power posterior 500 

inferences running for 5×105 iterations. We assessed sufficient sampling for the initial MCMC 501 

analysis by verifying that the effective sample sizes for key parameters were at least 200 in Coda 502 

v0.19 (Plummer et al. 2006). If this condition was not met, we doubled the length of the MCMC and 503 

reduced sampling frequency accordingly. Examples of MASTER files and BEAST input files for GSS 504 

are available online (supplementary data, Supplementary Material online). 505 

 506 

Analyses of Empirical Data Sets 507 

We downloaded sequence alignments from their original publications (Table 1): complete genomes 508 

of A/H1N1 influenza virus (Hedge et al. 2013), whole genome sequences of B. pertussis (Bart et al. 509 

2014; Duchene et al. 2016), RdRP sequences of coronaviruses (Wertheim et al. 2013), complete 510 

genomes of Hepatitis B virus (Patterson Ross et al. 2018), and dog mitochondrial genomes 511 

(Thalmann et al. 2013). The data and BEAST input files are available in the Supplementary Material 512 

online. 513 

 514 

Briefly, we used similar settings as in our simulations to estimate marginal likelihoods using GSS. 515 

For sequence sampling times we considered the correct sampling times, no sampling times (i.e., 516 

isochronous), and permuted sampling times. We also specified tree priors as follows: an 517 

exponential-growth coalescent for the A/H1N2 influenza virus, Bordetella pertussis, coronaviruses, 518 

and Hepatitis B virus data sets, and a constant-size coalescent for the dog mitochondrial genomes 519 

as used by Tong et al. (2018). We again chose the HKY+Γ substitution model, except in the analysis 520 

of Hepatitis B virus data, for which we used the GTR+Γ model (Tavaré 1986), and in the analysis of 521 

the dog data set for which we used the SRD06 substitution model (Shapiro et al. 2006) for coding 522 

regions and the GTR+Γ for noncoding regions. 523 

 524 

Supplementary Material 525 

Supplementary data are available online. 526 
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Figure Legends 662 

FIG. 1. Log Bayes factors of heterochronous data simulated with a high substitution rate and wide 663 

sampling window. Each panel shows the results for data sets simulated with a different degree of 664 

among-lineage rate variation, governed by the standard deviation σ of a lognormal distribution. In 665 

each plot the x-axis depicts six analysis settings, with two clock models, strict clock (SC) and the 666 

uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and three settings for 667 

sampling times: generated under the birth-death process (BD), identical sampling times 668 

(Isochronous), and permuted (Permuted). The points have been jittered along the x-axis to facilitate 669 

visualization. The y-axis shows log Bayes factors relative to the best model. Red points correspond 670 

to estimates using generalized stepping-stone sampling and blue points correspond to estimates 671 

using nested sampling. We conducted 10 simulation replicates, with each replicate data set 672 

analysed under the six analysis settings and two marginal-likelihood estimators, such that 673 

stochastic error might cause differences in the preferred model. The number next to each cloud of 674 

points denotes the number of times (out of 10) that the corresponding model had the highest 675 

marginal likelihood with generalized stepping-stone sampling (red) and nested sampling (blue). 676 

 677 

FIG. 2. Log Bayes factors of heterochronous data simulated under a low substitution rate and a wide 678 

sampling window. Symbols and colours are the same as those in figure 1. 679 

 680 

FIG. 3. Log Bayes factors of heterochronous data simulated under a high substitution rate and 681 

narrow sampling window. Symbols and colours are the same as those in figure 1. 682 

 683 

FIG. 4. Log Bayes factors of heterochronous data simulated under a low substitution rate and 684 

narrow sampling window. Symbols and colours are the same as those in figure 1. 685 

 686 

FIG. 5. Root-to-tip regressions for a subset of data sets simulated with varying degrees of among-687 

lineage rate variation (governed by the standard deviation σ of a lognormal distribution), using a 688 

high substitution rate and either a wide or narrow sampling window. The y-axis is the root-to-tip 689 

distance and the x-axis is the time from the youngest tip, where 0 is the present. Each point 690 

corresponds to a tip in the tree and the solid line is the best-fit linear regression using least-squares. 691 

The coefficient of determination, R2, is shown in each case. For comparison, the log Bayes factors of 692 

the best heterochronous model relative the best isochronous model, BF(Mhet -Miso), are also shown. 693 

 694 

FIG. 6. Log marginal likelihoods estimated using generalized stepping-stone sampling for six 695 

analysis settings for sequence data from rapidly evolving pathogens, A/H1N1 Human influenza virus 696 

and Bordetella pertussis. The y-axis is the marginal likelihood and the x-axis shows the analysis 697 

settings, with two clock models, strict clock (SC) and the uncorrelated relaxed clock with an 698 

underlying lognormal distribution (UCLN), and three settings for sampling times: generated under 699 

the birth-death process (BD), identical sampling times (Isochronous), and permuted (Permuted). 700 

Solid points and dashed lines correspond to the log marginal-likelihood estimates. The asterisk 701 

denotes the model with the highest marginal likelihood. 702 

 703 

FIG. 7. Log marginal likelihoods estimated using generalized stepping-stone sampling for six 704 

analysis settings for data sets with ancient DNA or highly divergent sequences. The y-axis is the 705 

marginal likelihood and the x-axis shows the analysis settings, with two clock models, strict clock 706 

(SC) and the uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and 707 

three settings for sampling times: generated under the birth-death process (BD), identical sampling 708 

times (Isochronous), and randomized (Random). Solid points and dashed lines correspond to the log 709 

marginal-likelihood estimates. The asterisk denotes the model with the highest marginal likelihood. 710 

 711 

 712 
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 713 

 714 

 715 

Tables 716 

 717 

 718 

Table 1. Details of empirical data sets used in this study. 719 

 720 

Data set 
Number of 

sites 
(nucleotides) 

Number of 
samples 

Sampling time range Reference 

A/H1N1 influenza 
virus 

13,154 329 
10 months (March to 

December 2009) 

Hedge et al. 

(2013) 

Bordetella 
pertussis 

4.9×10
6
 150 89 years (1920 to 2009) Bart et al. (2014) 

Coronaviruses 1,860 43 70 years (1941 to 2011) 
Wertheim et al. 

(2013) 

Hepatitis B virus 3,271 137 445 years (2103 to 1568) 
Patterson Ross et 

al. (2018) 

Dog mtDNA 14,596 50 36,000 years (to the present) 
Thalmann et al. 

(2013) 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

Supplementary Material 733 

FIG. S1. Log Bayes factors of isochronous data simulated with a high substitution rate. Each panel 734 

shows the results for data sets simulated with a different degree of among-lineage rate variation, 735 

governed by the standard deviation σ of a lognormal distribution. The x-axis depicts six analysis 736 

settings, with two molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with 737 

an underlying lognormal distribution (UCLN), and three settings for sampling times: generated 738 

under the birth-death process (BD), identical sampling times (Isochronous), and permuted 739 

(Permuted). The points have been jittered to facilitate visualization. The y-axis shows log Bayes 740 

factors relative to the best model. Red points correspond to estimates using generalized stepping-741 

stone sampling and blue points correspond to estimates using nested sampling. We conducted 10 742 

simulation replicates, with each replicate data set analysed under the six analysis settings and two 743 

marginal-likelihood estimators, such that stochastic error might cause differences in the preferred 744 

model. The number next to each cloud of points denotes the number of times (out of 10) that the 745 

corresponding model had the highest marginal likelihood with generalized stepping-stone sampling 746 

(red) and nested sampling (blue). 747 

 748 

FIG. S2. Log Bayes factors of isochronous data simulated with a low substitution rate. Symbols and 749 

colours are the same as those in figure 1. 750 

 751 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/810697doi: bioRxiv preprint 

https://doi.org/10.1101/810697
http://creativecommons.org/licenses/by-nc/4.0/


 17

FIG. S3. Example of three phylogenetic trees used in simulations. Red dashed lines indicate the 752 

times of each of the tips and therefore represent the sampling process over time. All trees are 753 

simulated under a birth-death process with time of origin of 5, such that the sum of the tree height 754 

and the length of the stem branch leading to the root is always 5. In all trees, we set the birth rate 755 

λ=1.5, and become uninfectious rate δ=1, where δ=μ+ψ, where μ is the death rate and ψ is 756 

the sampling rate upon death. Thus, the population growth rate is constant and the same across all 757 

trees. The top tree assumes a constant sampling process and a wide sampling window (ψ=0.5 758 

throughout the whole process), whereas in the second tree sampling starts after 4.5. Before this 759 

time the sampling rate, ψ0, is zero. After 4.5 time units the sampling rate ψ1 is 0.9 (and thus mu_1 760 

= 0.1), resulting in a narrow sampling window. The bottom tree has samples drawn at a single point 761 

in time with a sampling probability at present, ρ, of 0.5 (and thus phi=0). 762 
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