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Abstract (250 words max) 26 

Phylogenetic methods can use the sampling times of molecular sequence data to calibrate 27 
the molecular clock, enabling the estimation of evolutionary rates and timescales for rapidly 28 
evolving pathogens and data sets containing ancient DNA samples. A key aspect of such 29 
calibrations is whether a sufficient amount of molecular evolution has occurred over the 30 
sampling time window, that is, whether the data can be treated as having come from a 31 
measurably evolving population. Here we investigate the performance of a fully Bayesian 32 
evaluation of temporal signal (BETS) in sequence data. The method involves comparing the 33 
fit to the data of two models: a model in which the data are accompanied by the actual 34 
(heterochronous) sampling times, and a model in which the samples are constrained to be 35 
contemporaneous (isochronous). We conducted simulations under a wide range of 36 
conditions to demonstrate that BETS accurately classifies data sets according to whether 37 
they contain temporal signal or not, even when there is substantial among-lineage rate 38 
variation. We explore the behaviour of this classification in analyses of five empirical data 39 
sets: modern samples of A/H1N1 influenza virus, the bacterium Bordetella pertussis, 40 
coronaviruses from mammalian hosts, ancient DNA from Hepatitis B virus and 41 
mitochondrial genomes of dog species. Our results indicate that BETS is an effective 42 
alternative to other tests of temporal signal. In particular, this method has the key 43 
advantage of allowing a coherent assessment of the entire model, including the molecular 44 
clock and tree prior which are essential aspects of Bayesian phylodynamic analyses. 45 
 46 
Key words: Bayesian phylogenetics, ancient DNA, measurably evolving population, 47 
marginal likelihood, molecular clock, temporal signal. 48 
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Introduction 50 

The molecular clock has become a ubiquitous tool for studying evolutionary processes in 51 
rapidly evolving organisms and in data sets that include ancient DNA. In its simplest form, 52 
the molecular clock posits that evolutionary change occurs at a predictable rate over time 53 
(Zuckerkandl and Pauling 1965). The molecular clock can be calibrated to estimate 54 
divergence times by using sampling time information, the timing of known divergence 55 
events, or a previous estimate of the evolutionary rate (Hipsley and Müller 2014). For 56 
example, Korber et al. (2000) used sampling times to calibrate the molecular clock and to 57 
infer the time of origin of HIV group 1. Their approach consisted of estimating a 58 
phylogenetic tree and conducting a regression of the distance from the root to each of the 59 
tips as a function of sequence sampling times. In this method, the slope of the regression is 60 
an estimate of the evolutionary rate in substitutions per site per unit of time, the intercept 61 
with the time axis is the age of the root node, and the coefficient of determination (R2) is the 62 
degree to which the data exhibit clocklike behaviour (Rambaut et al. 2016). Despite the 63 
practicality of root-to-tip regression, its use as a statistical tool for molecular dating has 64 
several well-known limitations. In particular, data points are not independent because they 65 
have shared ancestry (i.e., internal branches are traversed multiple times) and a strict 66 
clocklike behaviour is assumed by necessity.  67 
 68 
The past few decades have seen a surge in novel molecular clock models that explicitly use 69 
phylogenetic information. Bayesian methods have gained substantial popularity, largely due 70 
to the wide array of complex models that can be implemented and the fact that 71 
independent information, including calibrations, can be specified via prior distributions 72 
(Huelsenbeck et al. 2001; Nascimento et al. 2017). Of particular importance is the 73 
availability of molecular clock models that relax the assumption of a strict clock by explicitly 74 
modelling rate variation among lineages (reviewed by Ho and Duchene (2014) and by 75 
Bromham et al. (2018)).  76 
 77 
Regardless of the methodology used to analyse time-stamped sequence data, a sufficient 78 
amount of molecular evolution must have occurred over the sampling time window to 79 
warrant the use of sequence sampling times for calibration. In such cases, the population 80 
can be considered to be ‘measurably evolving’ (Drummond et al. 2003). The degree of 81 
‘temporal information’ in sequence data is determined by the sequence length, the 82 
evolutionary rate, the range of available sampling times, and the number of sequences. 83 
Some viruses evolve at a rate of around 5×10-3 subs/site/year (Duchene et al. 2014), such 84 
that samples collected over a few weeks can be sufficient to calibrate the molecular clock. 85 
In more slowly evolving organisms, such as mammals, a sampling window of tens of 86 
thousands of years might be necessary; this can be achieved by including ancient DNA 87 
sequences (Drummond et al. 2003; Biek et al. 2015). 88 
 89 
Testing for temporal signal is an important step prior to interpreting evolutionary rate 90 
estimates (Rieux and Balloux 2016). A data set is considered to have temporal signal if it 91 
can be treated as a measurably evolving population, defined by Drummond et al. (2003) as 92 
“populations from which molecular sequences can be taken at different points in time, 93 
among which there are a statistically significant number of genetic differences”. In general, 94 
the presence of temporal signal also implies that the data set will produce reliable 95 
divergence time estimates (Murray et al. 2015). A popular method to assess temporal signal 96 
is the date-randomization test that compares actual evolutionary rate estimates to those 97 
obtained by repeatedly permuting the sequence sampling times (Ramsden et al. 2009). A 98 
data set is considered to have strong temporal signal if the rate estimated using the correct 99 
sampling times does not overlap with those of the permutation replicates (Duchêne et al. 100 
2015; Murray et al. 2015; Duchene et al. 2018). An implementation of this test is also 101 
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available that performs the permutation during a single Bayesian analysis (Trovão et al. 102 
2015). The interpretation of the date-randomization test is essentially frequentist in nature, 103 
which leads to an inconsistent mixture of statistical frameworks when Bayesian 104 
phylogenetic methods are used. Moreover, the procedure is not applicable in cases with 105 
small numbers of sampling times, owing to the limited number of possible permutations 106 
(Duchêne et al. 2015). 107 
 108 
We propose a fully Bayesian model test, which we refer to as BETS (Bayesian Evaluation of 109 
Temporal Signal), to assess temporal signal based on previous analyses by Baele et al. 110 
(2012). The approach involves quantifying statistical support for two competing models: a 111 
model in which the data are accompanied by the actual sampling times (i.e., the data are 112 
treated as heterochronous) and a model in which the sampling times are contemporaneous 113 
(i.e., the data are treated as isochronous). Therefore, the sampling times are treated as part 114 
of the model and the test can be understood as a test of ultrametricity of the phylogenetic 115 
tree. If incorporating sampling times improves the statistical fit, then their use for clock 116 
calibration is warranted. The crux of BETS, as with Bayesian model selection, is that it 117 
requires calculating the marginal likelihood of the model in question. The marginal likelihood 118 
measures the evidence for a model given the data, and calculating it requires integration of 119 
its likelihood across all parameter values, weighted by the prior (Kass and Raftery 1995). 120 
 121 
Because the marginal likelihood is a measure of model evidence, the ratio of the marginal 122 
likelihoods of two competing models, known as the Bayes factor, is used to assess support 123 
for one model relative to the other. In the case of applying BETS, let Mhet represent the 124 
heterochronous model, Miso the isochronous model, and Y the sequence data, such that 125 
P(Y|Mhet) and P(Y|Miso) are their respective marginal likelihoods. These models differ in the 126 
number of parameters. In Miso the evolutionary rates and times are nonidentifiable, so the 127 
rate is fixed to an arbitrary value; in Mhet the rate is a free parameter. Differences in the 128 
number of parameters do not need to be taken into account separately, because accurate 129 
marginal likelihood estimators naturally penalize excessive parameterization. Kass and 130 
Raftery (1995) provide guidelines for interpreting Bayes factors, where a (log) Bayes factor 131 
log(P(Y|Mhet)) – log(P(Y|Miso)) of at least 5 indicates ‘very strong’ support for Mhet over Miso, a 132 
value of 3 indicates ‘strong’ support, and a value of 1 is considered as positive evidence for 133 
Mhet over Miso. 134 
 135 
The importance of model selection in Bayesian phylogenetics has prompted the 136 
development of various techniques to calculate log marginal likelihoods (reviewed by Baele 137 
et al. (2014) and by Oaks et al. (2019)). These techniques can be broadly classified into 138 
prior-based and/or posterior-based estimators and path sampling approaches. Prior- and 139 
posterior-based estimators, also known as importance sampling, include the widely used 140 
harmonic mean estimator (Newton and Raftery 1994) and the AICM and BICM (Bayesian 141 
analogues to the Akaike information criterion and the Bayesian information criterion, 142 
respectively) (Raftery et al. 2007). These scores are easy to compute because they only 143 
require samples from the posterior distribution as obtained through Markov chain Monte 144 
Carlo (MCMC) integration. However, the harmonic mean estimator has been shown to have 145 
unacceptably high variance when the prior is diffuse relative to the posterior, and, together 146 
with the AICM, has shown poor performance in practical settings (Baele et al. 2012, 2013). 147 
The BICM requires a sample size to be specified for each parameter, which is far from trivial 148 
for phylogenetic inference and therefore remains unexplored for such applications.  149 
 150 
Path sampling approaches include path sampling (originally introduced in phylogenetics as 151 
‘thermodynamic integration’) (Lartillot and Philippe 2006), stepping-stone sampling (Xie et 152 
al. 2011), and generalized stepping-stone (GSS) sampling (Fan et al. 2011; Baele et al. 153 
2016). These methods depend on drawing samples using MCMC from a range of power 154 
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posterior distributions that represent the path from the posterior to the (working) prior, and 155 
therefore require additional computation. Another numerical technique that was recently 156 
introduced to phylogenetics is nested sampling (NS) (Maturana et al. 2019), which 157 
approximates the log marginal likelihood by simplifying the marginal-likelihood function 158 
from a multi-dimensional to a one-dimensional integral over the cumulative distribution 159 
function of the log marginal likelihood (Skilling 2006). Fourment et al. (2020) recently 160 
compared the accuracy of a range of methods for estimating log marginal likelihoods and 161 
found GSS to be the most accurate, albeit at increased computational cost. Clearly, the 162 
reliability of the log marginal likelihood estimator is a key consideration for applying BETS. 163 
 164 
We conducted a simulation study to assess the reliability of BETS under a range of 165 
conditions that are typical for data sets of rapidly evolving organisms and of those that 166 
include ancient DNA. We also analysed five empirical data sets to showcase the 167 
performance of the test in practice. Our analyses demonstrate the utility of BETS in 168 
providing accurate evaluation of temporal signal across a wide range of situations.  169 
 170 
Results 171 

 172 
Simulations of Measurably Evolving Populations 173 

In our simulations we considered sequence data from heterochronous and isochronous 174 
trees. Heterochronous trees represent a situation where there is sufficient temporal signal, 175 
whereas isochronous trees lack temporal signal altogether. We simulated heterochronous 176 
phylogenetic trees under a stochastic birth-death process with between 90 and 110 tips 177 
(fig. 1A and 1B). To generate isochronous trees we used similar settings, but we assumed a 178 
single sampling time (fig. 1C). We then simulated evolutionary rates along the trees 179 
according to an uncorrelated relaxed clock with an underlying lognormal distribution with a 180 
mean of 5×10-3 subs/site/unit time and a standard deviation, σ, of 0.0, 0.1, 0.5, or 1, where 181 
σ=0.0 is equivalent to simulating under a strict clock. We then simulated sequence 182 
evolution using an HKY+Γ substitution model, with parameter values similar to those 183 
estimated for influenza virus (Hedge et al. 2013), to generate alignments of 4,000 184 
nucleotides.  185 
 186 
Our main simulation conditions produced data sets in which about 50% of the sites were 187 
variable. We refer to this simulation scenario as (i) ‘high evolutionary rate and wide sampling 188 
window’, and we considered three other simulation scenarios that involved (ii) a lower 189 
evolutionary rate of 10-5 subs/site/unit time, (iii) a narrower sampling window, and (iv) both 190 
of the previous two conditions. For a subset of conditions, we investigated the effect of 191 
phylo-temporal clustering, a situation in which sequences have been sampled at only a few 192 
specific time points and form monophyletic groups (fig. 1D). This pattern has been shown 193 
to be a confounding factor that misleads date-randomization tests of temporal signal and 194 
that often produces biased evolutionary rate estimates (Duchêne et al. 2015; Murray et al. 195 
2015; Tong et al. 2018).  196 
 197 
We analysed the sequence data using a strict clock and an uncorrelated relaxed clock with 198 
an underlying lognormal distribution (Drummond et al. 2006). We considered three 199 
configurations for sampling times: birth-death sampling times, which are correct for the 200 
heterochronous data but not for the isochronous data; identical sampling times, which is 201 
correct for isochronous data but not for the heterochronous data; and permuted birth-death 202 
sampling times, which are incorrect for both heterochronous and isochronous data. 203 
 204 
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We estimated the log marginal likelihoods of these six combinations of sampling times and 205 
clock models using NS and GSS as implemented in BEAST 2.5 (Bouckaert et al. 2019) and 206 
BEAST 1.10 (Suchard et al. 2018), respectively. Our BETS approach ranked the models 207 
according to their log marginal likelihoods and computed log Bayes factors of the best 208 
relative to the second-best model and of the best heterochronous model (Mhet) compared 209 
with the best isochronous model (Miso). 210 
 211 
(i) Simulations with High Evolutionary Rate and Wide Sampling Window 212 

Both NS and GSS correctly classified data sets as being heterochronous or isochronous in 213 
10 out of 10 simulations, including in the presence of a high degree of among-lineage rate 214 
variation (i.e., σ=1.0; figs. 2 and 3 for heterochronous data and supplementary figs. S1 and 215 
S2, Supplementary Material online, for isochronous data). Although both log marginal 216 
likelihood estimators detected temporal signal, NS supported the relaxed clock over the 217 
strict clock for three heterochronous data sets simulated without among-lineage rate 218 
variation (σ=0.0) and for six data sets simulated with low among-lineage rate variation (σ219 
=0.1). In the simulations of isochronous data, NS often favoured the relaxed clock over the 220 
strict clock when there was low among-lineage rate variation (σ=0.0 and σ=0.1), albeit 221 
mostly with log Bayes factors below 5 (supplementary fig. S2, Supplementary Material 222 
online). In contrast, GSS always selected the strict clock under these conditions 223 
(supplementary fig. S1, Supplementary Material online). 224 
 225 
For the heterochronous data sets, NS and GSS always displayed very strong support for 226 
Mhet over Miso, with log Bayes factors of at least 90. For the isochronous data sets, the log 227 
Bayes factors for Miso relative to Mhet were overall much lower, but still decisive, ranging 228 
from 30 to 50. Furthermore, log Bayes factors tended to decline with an increasing degree 229 
of among-lineage rate variation in the data. Another important observation is that in the 230 
heterochronous data, the relaxed clock was consistently selected over the strict clock when 231 
assuming that the data were isochronous, or when the sampling times had been permuted 232 
(fig. S3, Supplementary Material online). Moreover, the strict clock with permuted sampling 233 
times yielded the lowest log marginal likelihoods for heterochronous data. Both of these 234 
patterns are likely to be due to an apparently higher degree of among-lineage rate variation 235 
when sampling times are misspecified. 236 
 237 
(ii) Simulations with Low Evolutionary Rate and Wide Sampling Window 238 

Our simulations with a low evolutionary rate of 10-5 subs/site/unit time produced data sets 239 
that each had on average 10 variable sites (with several replicates only having as few as 4 240 
variable sites), which provides very little information to estimate evolutionary parameters 241 
and low power to differentiate between models. Marginal likelihood estimator variance adds 242 
to the difficulty in distinguishing between competing models in such conditions. For the 243 
heterochronous data sets, GSS selected the heterochronous model with correct dates in at 244 
least 7 out of 10 simulation replicates (fig. 2). Across the simulations with different clock 245 
models (40 in total), only in five heterochronous data sets did we find models with permuted 246 
sampling times to have the highest log marginal likelihoods. For NS, in 12 out of 40 247 
simulations, either isochronous models or those with random sampling times were 248 
incorrectly selected when heterochronous data sets were analysed (fig. 3).  249 
 250 
Log marginal likelihoods calculated using GSS tended to support models with sampling 251 
times (either permuted or those from the birth-death) for the isochronous data, whereas NS 252 
appeared to provide equal support for all models (supplementary figs. S1 and S2, 253 
Supplementary Material online). However, a critical feature of the results from the data sets 254 
with a low evolutionary rate is that the log marginal likelihoods for all models were more 255 
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similar to one another than those for the data sets with high evolutionary rate 256 
(supplementary fig. S4, Supplementary Material online; note that the log marginal likelihood 257 
scale in fig. S4 is smaller than that in fig. S3). As a case in point, for the isochronous data 258 
with σ=0.1 there were log Bayes factors of about 0.1 for the best model with birth-death 259 
sampling times relative to those with permuted sampling times. This result points to 260 
difficulties distinguishing between models due to estimator variance in the case of few 261 
unique site patterns. Additionally, this shows that comparing models with permuted 262 
sampling times might be useful for determining whether the data are informative about a 263 
particular set of sampling times. 264 
 265 
(iii) Simulations with High Evolutionary Rate and Narrow Sampling Window 266 

We conducted a set of simulations similar to those described in scenario (i) but where 267 
sequence sampling spanned only the last 10% of the age of the tree (0.5 units of time, 268 
compared with 5 units of time for the simulations with a wide sampling window; fig. 1B). 269 
These conditions reflect those of organisms with deep evolutionary histories and for which 270 
samples are available for only a small (recent) portion of this time. Since in these trees the 271 
samples were collected over a narrower time window, we used a higher sampling 272 
probability to obtain about 100 samples, as in our other simulations. For these analyses we 273 
only considered heterochronous data because the isochronous case is identical to the one 274 
in scenario (i). 275 
 276 
Both GSS and NS showed excellent performance in detecting temporal signal in this 277 
scenario, with GSS always selecting models with correct sampling times (fig. 2 and fig. 3). 278 
The exceptions to this pattern occurred for one data set with σ=0.5 and for two data sets 279 
with σ=1.0 for NS (fig. 3). Differentiating between the strict clock and relaxed clock 280 
appeared somewhat more difficult, particularly for NS, where the relaxed clock with correct 281 
sampling times yielded log marginal likelihoods very similar to those for the strict clock for 282 
data with low among-lineage rate variation (σ of 0.0 or 0.1). Although NS and GSS 283 
performed well in these simulations, the log Bayes factors for Mhet relative to Miso were 284 
much lower than those for data with a high evolutionary rate and a wide sampling window 285 
in (i). One obvious example is in the data with σ=0.0, where the mean log Bayes factors for 286 
Mhet over Miso using GSS was 203.15 with a wide sampling window, but decreased to 35.77 287 
when sampling spanned a narrow time window (supplementary fig. S5, Supplementary 288 
Material online). 289 
 290 
(iv) Simulations with Low Evolutionary Rate and Narrow Sampling Window 291 

We considered data sets with a narrow sampling window, as in scenario (iii), and with a low 292 
evolutionary rate of 10-5 subs/site/unit time, as in scenario (ii). We generated only 293 
heterochronous trees under these conditions, because the isochronous case would be 294 
identical to (ii). 295 
 296 
Estimates of log marginal likelihoods with GSS and NS were very similar among models, 297 
with mean log Bayes factors among data sets of less than 1 for the two models with 298 
highest log marginal likelihoods for GSS (supplementary fig. S6, Supplementary Material 299 
online). In the data sets with σ=0.0, GSS and NS always preferred a heterochronous 300 
model. However, in a few cases (three for GSS and one for NS) the model with permuted 301 
sampling times was selected, indicating that temporal signal was not detected (figs. 2 and 302 
3). As with the data sets with low evolutionary rate and constant sampling (ii), the relaxed 303 
clock was occasionally preferred over the strict clock, even when the data sets had no rate 304 
variation among lineages. 305 
 306 
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Accuracy of evolutionary rate estimates  307 

We compared the accuracy and precision in rate estimates for our heterochronous 308 
simulations with conditions (i) through (iv) using the correct sampling times and the strict 309 
and uncorrelated relaxed lognormal clock models. In data sets simulated under a high 310 
evolutionary rate and wide sampling window, i.e. condition (i), analyses of all simulation 311 
replicates with σ=0.0 and σ=0.1 had 95% highest posterior density (HPD) intervals that 312 
included the true value of the clock rate used to generate the data, 5×10-3 subs/site/unit 313 
time (fig. 4). When σ=0.5, the accuracy was lower, with four data sets analysed under the 314 
strict clock and three under the relaxed clock with 95% HPD intervals that included the true 315 
value. With σ=1.0, only one replicate using the strict clock included this true value in its 316 
HPD interval. Importantly, however, under these simulation conditions the HPD intervals of 317 
all estimates were within the 95-percentile width of a lognormal distribution with mean 318 
5×10-3 and σ=0.1 or 0.5 (fig. 4), such that they overlap the evolutionary rate distribution 319 
used to generate the data. 320 
 321 
Most evolutionary rate estimates from the simulations with low evolutionary rate, condition 322 
(ii), had 95% HPD intervals that included the true mean value used to generate the data, 10-323 
5 subs/site/unit time, at the expense of very wide 95% HPD intervals, compared with those 324 
in condition (i). Our analyses of data sets with a high evolutionary rate and narrow sampling 325 
window, condition (iii), had HPD intervals that were wider than those for condition (i), but 326 
narrower than those of condition (ii). All replicates with σ=0.0 or 0.1 had estimates that 327 
included the true mean value used to generate the data. In contrast, three data sets with σ328 
=0.5 analysed under a strict clock yielded HPD intervals that did not include the true value. 329 
For data generated under σ=1.0, seven analyses under the strict clock and three under the 330 
relaxed clock also failed to recover the true value, although they always overlapped with the 331 
95-percentile width of a lognormal distribution with mean 5×10-3 and σ=0.5. Analyses of 332 
the data with low evolutionary rate and narrow sampling window produced estimates that 333 
always included the true value of 10-3 subs/site/unit time in every case, but with very high 334 
uncertainty (fig. 4).  335 
 336 
Comparison with Root-to-tip Regression 337 
Using a subset of the heterochronous data sets, we conducted root-to-tip regression using 338 
phylogenetic trees inferred using maximum likelihood as implemented in PhyML 3.1 339 
(Guindon et al. 2010) with the same substitution model as in our BEAST analyses, and with 340 
the placement of the root chosen to maximize R2 in TempEst (Rambaut et al. 2016). We 341 
selected data sets generated with a high evolutionary rate and with both constant and 342 
narrow sampling windows. Because GSS and NS correctly detected temporal signal under 343 
these conditions, these regressions demonstrate the extent to which this informal 344 
regression assessment matches the BETS approach. We did not attempt to provide a 345 
thorough benchmarking of the two methods here. 346 
 347 
All regressions had R2 values that matched our expectation from the degree of among-348 
lineage rate variation, that is, higher values of σ corresponded to lower values of R2 (fig. 5). 349 
The data with a wide sampling window yielded regression slopes ranging from 7.3×10-3 to 350 
5.4×10-3 subs/site/unit time, which is similar to the evolutionary rate values used to 351 
generate the data. Although the root-to-tip regression is sometimes used to assess 352 
temporal signal, it has no cut-off values to make this decision. This becomes critical when 353 
considering the data with a narrow sampling window, for which the R2 was between 0.13 354 
and 0.02. For example, the regression for a data set with σ=1 and narrow sampling 355 
window had an R2 of 0.02, which is sometimes considered sufficiently low as to preclude 356 
molecular clock analyses (Rieux and Balloux 2016). However, BETS supported temporal 357 
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signal under a relaxed clock, with a log Bayes factor of 5.48 for this particular data set, 358 
which matches the simulation conditions. More importantly, even with such high rate 359 
variation, the evolutionary rate estimated using a relaxed clock and the correct sampling 360 
times included the true value used to generate the data (5×10-3 subs/site/unit time), with a 361 
95% HPD interval of 2.15×10-3 to 1.90×10-2 subs/site/unit time, while the regression slope 362 
was 2.22×10-2 subs/site/unit time. A key implication of these comparisons is that BETS 363 
provides a formal assessment of temporal signal, unlike statistics computed from the 364 
regression. Moreover, the root-to-tip regression appears to be uninformative when the data 365 
have been sampled over a narrow time window and there is some rate variation among 366 
lineages. 367 
 368 
Simulations with phylo-temporal clustering 369 

Phylo-temporal clustering sometimes occurs in empirical data due to limited opportunities 370 
for sample collection or varying degrees of population structure. We investigated the effects 371 
of phylo-temporal clustering by performing an additional set of simulations in which we 372 
specified five clades of 20 tips. To generate heterochronous data within each clade we set 373 
five possible sampling times that corresponded to the quantiles of sampling times from a 374 
birth-death process with the same exponential growth rate as in our birth-death 375 
simulations. We simulated trees conditioned on these clades and their sampling times. To 376 
generate the sequence data, we setσ=0.0 and σ=1.0. We estimated log marginal 377 
likelihoods using only GSS, owing to its accuracy. 378 
 379 
Using GSS, BETS correctly identified temporal signal and the correct clock model in all 380 
simulations of heterochronous data. However, evolutionary rates were often overestimated 381 
for these data (fig. 6), a pattern that has been demonstrated previously (Duchêne et al. 382 
2015; Murray et al. 2015). When the data were isochronous, BETS has lower performance, 383 
identifying the correct model in eight cases when σ=0.0 and seven cases when σ=1.0 384 
(supplementary fig. S7, Supplementary Material online).  385 
 386 
Sensitivity and specificity 387 
We investigated the extent to which detecting temporal signal could improve by using 388 
different cut-offs for the log Bayes factors. From a practical point of view, the main concern 389 
is that a data set with no temporal signal, for example when simulated here under 390 
isochronous trees, would be classified as heterochronous (i.e., false positives), resulting in 391 
spurious estimates of evolutionary rates and times. This problem was apparent in our 392 
simulations with a low evolutionary rate, where a number of isochronous data sets were 393 
classified as heterochronous. To determine such a possible cut-off value, we fit receiver 394 
operating characteristic (ROC) curves and calculated sensitivity and specificity (i.e., true 395 
positive and true negative rates, respectively).  396 
 397 
Our simulations with high evolutionary rates were correctly classified, with sensitivity and 398 
specificity of 1.0 (fig. 7). Those with low evolutionary rates had a sensitivity and specificity 399 
of 0.68 and 0.85 with a wide sampling window and of 0.68 and 0.45 with a narrow sampling 400 
window. Importantly, these values correspond to a log Bayes factor cut-off optimized in the 401 
ROC curve fitting and is determined to be 1.04 for the simulations with a wide sampling 402 
window and 0.16 for those with a narrow sampling window. A more conservative approach 403 
to guard against false positives is to consider a higher cut-off value. A log Bayes factor of 3 404 
is generally considered to be ‘strong’ evidence in favour of a model (Kass and Raftery 405 
1995). In our simulations with low evolutionary rate this cut-off results in a specificity of 406 
0.95, meaning that 95% of isochronous data sets were classified as such, at the expense of 407 
a low sensitivity of 0.43 for the data simulated with a wide sampling window, and of 0.0 for 408 
those with a narrow sampling window (note that sensitivity for the simulations with a low 409 
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evolutionary rate and narrow sampling window using Bayes factor cut-off of 0.0 is already 410 
low, at 0.68). Importantly, using a log Bayes factor cut-off of 3 would still result in a 411 
specificity and sensitivity of 1.0 in our simulations with a high evolutionary rate. 412 
 413 
A key point about our data sets simulated with a low evolutionary rate is that they contain 414 
(very) low numbers of variable sites and unique site patterns (varying between 4 and 13), 415 
which can make model selection challenging. In order to increase accuracy, one could 416 
invest significant computational efforts to reduce estimator variance when repeated 417 
analyses prove inconclusive. The log Bayes factors for these data are much lower than for 418 
those generated using a higher evolutionary rate. We conducted another set of simulations 419 
with the same low evolutionary rate, but with much longer sequence alignments (10,000 420 
nucleotides) to increase the number of variable sites and unique site patterns. For these 421 
longer alignments, the ROC curve indicated better performance of BETS, with sensitivity 422 
and specificity both equal to 0.83 with an optimal log Bayes factor of 1.39 (fig 8). 423 
 424 
 425 
Analyses of Empirical Data Sets 426 

We analysed five empirical data sets with similar configurations of sampling times as in our 427 
simulation study (Table 1). Two data sets consisted of rapidly evolving pathogens: A/H1N1 428 
influenza virus (Hedge et al. 2013) and Bordetella pertussis (Bart et al. 2014). We also 429 
analysed a data set with highly divergent sequences of coronaviruses (Wertheim et al. 430 
2013), and two data sets with ancient DNA: Hepatitis B virus (Patterson Ross et al. 2018) 431 
and mitochondrial genomes of dog species (Thalmann et al. 2013). Due to the 432 
demonstrated higher accuracy of GSS over NS (Fourment et al. 2019), we applied the BETS 433 
approach using the former method only. 434 
 435 
The A/H1N1 influenza virus data demonstrated clear temporal signal, with the strict clock 436 
and relaxed clock with the correct sampling times having the highest log marginal 437 
likelihoods, and a log Bayes factor of Mhet with respect to Miso of 150 (fig. 9). The strict clock 438 
had higher support than the relaxed clock for the correct sampling times (log Bayes factor 439 
3.41). Broadly, this result is consistent with previous evidence of strong temporal signal and 440 
clocklike behaviour in this data set (Hedge et al. 2013). Using the strict clock with correct 441 
sampling times we estimated an evolutionary rate of 3.37×10-3 subs/site/year (95% HPD: 442 
2.98×10-3 to 3.78×10-3). 443 
 444 
We detected temporal signal in the Bordetella pertussis data set (fig. 9). The relaxed clock 445 
with the correct sampling times generated the highest log marginal likelihood, with a log 446 
Bayes factor relative to the strict clock of 28.86. The log Bayes factor for Mhet relative to Miso 447 
was 47.40. These results echo previous assessments of these data using a date-448 
randomization test (Duchene et al. 2016). We estimated a mean evolutionary rate using the 449 
best model of 1.65×10-7 subs/site/year (95% HPD: 1.36×10-7 to 2.00×10-7). 450 
 451 
Our analyses did not detect temporal signal in the coronavirus data, for which the strict 452 
clock and relaxed clock with no sampling times had the highest log marginal likelihoods. 453 
The log Bayes factor of Mhet relative to Miso was -16.82, indicating very strong support for 454 
the isochronous model. The relaxed clock was supported over the strict clock, with a log 455 
Bayes factor of 19.25 (fig. 10). The lack of temporal signal precludes any interpretation of 456 
our estimates of evolutionary rates and timescales. Previous analyses of these data 457 
suggested an ancient origin for this group of viruses using a substitution model that 458 
accounts for the effect of purifying selection over time (Wertheim et al. 2013), a model that 459 
we did not use here. 460 
 461 
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The Hepatitis B virus data set included several human genotypes with complete genomes, 462 
where 135 were modern sequences collected from 1963 to 2013 and two were ancient 463 
samples from human mummies from the 16th century. Previous studies have not found any 464 
temporal signal in these data using different approaches, despite the inclusion of ancient 465 
sequences. Our estimates of log marginal likelihoods were consistent with a lack of 466 
temporal signal, with a log Bayes factor of -101.51 for Mhet relative to Miso. 467 
 468 
The dog mitochondrial genome data contained samples from up to 36,000 years before the 469 
present. BETS detected temporal signal in these data, with a log Bayes factor of 38.77 for 470 
Mhet relative to Miso; this result is consistent with that of a date-randomization test in a 471 
previous study (Tong et al. 2018). The estimated evolutionary rate for these data using the 472 
best model had a mean of 1.08×10-7 subs/site/year (95% HPD: 7.49×10-8 to 1.52×10-7).  473 
 474 
Discussion 475 

We have proposed BETS, a method that explicitly assesses the statistical support for 476 
including sequence sampling times in a Bayesian framework. It is a test of the presence of 477 
the temporal signal in a data set, which is an important prerequisite for obtaining reliable 478 
inferences in phylodynamic analyses. BETS considers the model ensemble, such that the 479 
method can detect temporal signal using models that account for evolutionary rate variation 480 
among lineages. The results of our analyses demonstrate that our method is effective in a 481 
wide range of conditions, including when the evolutionary rate is low or when the sampling 482 
window represents a small portion of the timespan of the tree. 483 
 484 
BETS does not require date permutations, which sets it apart from the widely used date-485 
randomization test for temporal structure. Date-randomization tests address the question of 486 
whether a particular association between sequences and sampling times produces 487 
estimates different from those obtained from data sets with permuted sampling times 488 
(Duchêne et al. 2015; Murray et al. 2015). However, such an approach is not a formal test of 489 
temporal signal in the data because the permutations do not necessarily constitute an 490 
appropriate null model. Because our method does not require permutations, it has the 491 
benefit of being robust to using a limited number of sampling times. 492 
 493 
Accurate calculations of log marginal likelihoods are essential for BETS. In our simulation 494 
study, we found that GSS and NS correctly assessed the presence and absence of 495 
temporal signal in the data under most conditions. The correct clock model was also 496 
identified, although in a few instances NS preferred an overparameterized model. 497 
Conceivably, using different log marginal likelihood estimators might affect the actual model 498 
selected. Murray et al. (2015) also employed a Bayesian model-testing approach using the 499 
AICM to assess temporal signal. In their study, the AICM performed well in simulations, but 500 
failed to detect temporal signal in empirical data. We attribute this finding to the low 501 
accuracy of AICM compared with path sampling methods (Baele et al. 2012, 2013), and 502 
suggest careful consideration of the log marginal likelihood estimator for tests of temporal 503 
signal. In a recent review, Fourment et al. (2020) found GSS to be a highly accurate albeit 504 
computationally demanding log marginal likelihood estimator.  505 
 506 
A key benefit of BETS is that the complete model is considered. It is straightforward to use 507 
any model for which the log marginal likelihood can be calculated, including other models 508 
of among-lineage rate variation, unlike in simpler data exploration methods such as root-to-509 
tip regression. In the particular case of local clock models (Drummond and Suchard 2010; 510 
Worobey et al. 2014; Bletsa et al. 2019), the root-to-tip regression is uninformative because 511 
it assumes that the slope represents a single mean evolutionary rate.  512 
 513 
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We find that highly precise and accurate evolutionary rate estimates are associated with 514 
strong Bayes factor support for heterochronous models (fig. 4 and supplementary fig. 3, 515 
Supplementary Material Online). Bayes factors provide a coherent approach to identifying 516 
the presence of temporal signal, instead of providing a potentially subjective gradient of 517 
strength of such signal. In contrast, root-to-tip regression offers an important visual aid for 518 
uncovering problems with data quality and to inspect clocklike behaviour, but the absence 519 
of appropriate statistics means that there is no clear objective way of determining whether 520 
the data contain temporal information. Consider the regressions in figure 5 for data with a 521 
high evolutionary rate and narrow sampling window. Even when among-lineage rate 522 
variation is low (σ=0.1), the data points form a cloud, with a low R2 of 0.09. However, the 523 
apparent ‘noise’ around the regression line is probably the result of stochasticity in 524 
sequence evolution and of the narrow sampling window relative to the age of the root of the 525 
tree. In fact, for this particular data set the model with the highest log marginal likelihood is 526 
the strict clock with correct sampling times.  527 
 528 
In all of our analyses, we ensured that the priors for different models and configurations of 529 
sampling times were identical because, as with all Bayesian analyses, model comparison 530 
using log marginal likelihoods can depend on the choice of prior (Oaks et al. 2019). For 531 
example, the tree prior can affect inferences of temporal signal, as it is part of the full model 532 
specification. Here we used an exponential-growth coalescent tree prior, which closely 533 
matches the demographic dynamics of the birth-death process under which the data were 534 
simulated. The effect of using an inappropriate tree prior on tests of temporal signal 535 
requires further investigation, but previous studies have suggested that there is only a small 536 
impact on estimates of rates and times if the sequence data are informative (Ritchie et al. 537 
2017; Möller et al. 2018).  538 
 539 
An interesting finding is that statistical support for isochronous sampling times in truly 540 
isochronous data is lower than that for the correct sampling times in truly heterochronous 541 
data. This can potentially lead to an increased risk of incorrectly concluding the presence of 542 
temporal signal. In particular, in isochronous data simulated with a low evolutionary rate, 543 
and with very few variable sites, the best models were sometimes those that included 544 
sampling times, albeit with very low log Bayes factors (e.g., supplementary fig. S1 and fig. 545 
S2, Supplementary Material online). This probably occurs because stochastic error 546 
associated with a small amount of evolution leads to low power for model selection. While 547 
increasing the computational settings for (log) marginal likelihood estimation can alleviate 548 
these issues, this may not be feasible when analysing large data sets. Further, our 549 
sensitivity and specificity analyses demonstrate that a practical way to address this 550 
problem is to use a more conservative log Bayes factor cut-off of 3 as evidence of temporal 551 
structure, as opposed to simply choosing the model with the highest marginal likelihood. 552 
This cut-off matches ‘strong’ evidence in favour of a model as suggested by Kass and 553 
Raftery (1995).  554 
 555 
Permuting sampling times led to poor model fit, as expected. This procedure has 556 
substantial computing requirements, depending on the number of permutations that are 557 
performed, and we find that such date permutations are of limited value for model testing 558 
when the data are highly informative (e.g., figs. 2 and 3). However, in data sets with very 559 
low information content, such as those that were produced by simulations with a low 560 
evolutionary rate here, conducting a small number of date permutations might offer a 561 
conservative approach to determining whether model fit and parameter estimates are 562 
driven by a particular set of sampling times, as one would expect in the presence of 563 
temporal signal. 564 
 565 
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The nature of the BETS approach means that every parameter in the model has a prior 566 
probability, including the evolutionary rate. Because evolutionary rates and times are 567 
nonidentifiable, it is conceivable that an informative prior on the rate or on the age of an 568 
internal node might have a stronger effect than the sampling times on the posterior, for 569 
example if the samples span a very short window of time. Such analyses with informative 570 
evolutionary rate priors effectively include several simultaneous sources of calibration 571 
information (i.e., sampling times, internal nodes, and an informative rate prior). Using 572 
sampling times in addition to other sources of calibration information might still be 573 
warranted if such external sources of information are available. 574 
 575 
Most of our heterochronous simulations yielded evolutionary rate estimates that contained 576 
the true value used to generate the data, indicative of the accuracy of our estimations. 577 
However, it is important to note that all tests of temporal signal, including BETS, aim to 578 
determine whether there is an association between genetic divergence and time, which is 579 
not equivalent to asking whether evolutionary rate estimates are accurate, a question that 580 
depends on information content of the data and the extent to which the model describes 581 
the process that generated the data. Phylo-temporal clustering is a particular situation 582 
where temporal information in the data is very limited, leading to an upward bias in the 583 
evolutionary rate (Murray et al. 2015), even in the presence of temporal signal. As such, 584 
investigating the degree of phylo-temporal clustering is an important step prior to 585 
interpreting any inferences made using the molecular clock (Duchêne et al. 2016; Tong et 586 
al. 2018). 587 
 588 
Analyses with multiple calibrations can also allow uncertainty in sequence sampling times, 589 
especially in data sets that include ancient DNA, where sampling times can be treated as 590 
parameters in the model (Shapiro et al. 2011). BETS provides a coherent approach for 591 
assessing temporal structure in these circumstances, unlike date-randomization tests that 592 
typically use point values for sampling times. In fact, BETS can be used as a means to 593 
validate whether a sample is modern or ancient.  594 
 595 
In general, the increasing adoption of Bayesian model testing in phylogenetics has great 596 
potential for improving our confidence in estimates of evolutionary rates and timescales. 597 
The test that we have proposed here, BETS, provides a coherent and intuitive framework to 598 
test for temporal information in the data. 599 
 600 
Materials and Methods 601 

Simulations 602 
We simulated phylogenetic trees under a stochastic birth-death process using MASTER 603 
v6.1 (Vaughan and Drummond 2013), by specifying birth rate λ=1.5, death rate μ=0.5, 604 
and sampling rate ψ=0.5. This corresponds to an exponentially growing infectious 605 
outbreak with reproductive number R0=1.5 and a wide sampling window. We set the 606 
simulation time to 5 units of time, which corresponds to the time of origin of the process. 607 
For isochronous trees, we used similar settings, but instead of using the sampling rate, we 608 
sampled each tip with probabilityρ=0.5 when the process was stopped after 5 units of time 609 
(i.e. μ=1.0 and ψ=0.0). Some of our analyses consisted of artificially specifying sampling 610 
times for isochronous trees, which we set to those that we would have obtained from a 611 
birth-death process with μ=0.5 and ψ=0.5.  612 
 613 
In a second set of simulations of heterochronous trees, we generated trees with a narrow 614 
sampling window. We specified two intervals for μ andψ. The first interval spanned 4.5 615 
units of time with μ=1.0 and ψ=0.0, and the second interval 0.5 units of time with μ=0.1 616 
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and ψ=0.9. As a result, the process still had a constant become-uninfectious rate (μ+ψ), 617 
but samples were only collected in the second interval. The high sampling rate in the 618 
second interval resulted in trees with similar numbers of tips to those with a wide sampling 619 
window, but where their ages only spanned 0.5 units of time.  620 
 621 
We only considered the simulated trees that contained between 90 and 110 tips. The trees 622 
generated in MASTER are chronograms (with branch lengths in units of time), so we 623 
simulated evolutionary rates to generate phylograms (with branch lengths in units of 624 
subs/site). To do this we specified the uncorrelated lognormal relaxed clock with a mean 625 
rate of 5×10-3 or 10-5 subs/site/unit time and a standard deviation σ of 0.0 (corresponding 626 
to a strict clock), 0.1, 0.5, or 1.0. We simulated sequence evolution along these phylograms 627 
under the HKY nucleotide substitution model (Hasegawa et al. 1985). We added among-site 628 
rate variation using a discretized gamma distribution (Yang 1994, 1996) using Phangorn 629 
v2.5 (Schliep 2011) to generate sequence alignments of 4,000 and 10,000 nucleotides. We 630 
set the transition-to-transversion ratio of the HKY model to 10 and the shape of the gamma 631 
distribution to 1, which is similar to estimates of these parameters in influenza viruses 632 
(Duchene et al. 2014; Hedge and Wilson 2014). For each simulation scenario we generated 633 
10 sequence alignments. 634 
 635 
To simulate data under phylo-temporal clustering we specified five clades with 20 tips each 636 
to generate trees of 100 tips. For the heterochronous data, we specified one of five 637 
possible sampling times for each clade, which corresponded to quantiles from a birth-death 638 
process as used in our simulations above. For the isochronous data we constrained the tips 639 
to have identical sampling times. We specified these clades and sampling times in BEAST 640 
as monophyletic groups and sampled trees from the prior under a coalescent process with 641 
exponential growth parameterized with λ=1.5 and δ=1, such that it has the same growth 642 
rate as the birth-death trees. We conducted these simulations under the coalescent, rather 643 
than the birth-death, because this process is typically conditioned on the number and age 644 
of samples, whereas the birth-death explicitly models sampling over time. We simulated 645 
sequence data sets as above, but in this case we only considered an evolutionary rate of 646 
5×10-3 subs/site/year and aσ of 0.0 or 1.0. 647 
 648 
Estimation of Log Marginal Likelihoods Using Nested Sampling 649 

We analysed the data in BEAST 2.5 using the matching substitution model, the exponential-650 
growth coalescent tree prior, the strict clock or relaxed clock, and different configurations 651 
of sampling times. We chose the exponential-growth coalescent tree prior, instead of the 652 
birth-death tree prior, because it is conditioned on the samples instead of assuming a 653 
sampling process; this ensures that the marginal likelihoods for isochronous and 654 
heterochronous trees are comparable.  655 
 656 
We specified proper priors on all parameters, which is essential for accurate estimation of 657 
log marginal likelihoods (Baele et al., 2013). In our heterochronous analyses the prior on the 658 
evolutionary rate had a uniform distribution bounded between 0 and 1. We made this 659 
arbitrary choice to set a somewhat uninformative prior and because the default prior in 660 
BEAST 2.5 is a uniform distribution between 0 and infinity, which is improper. Owing to the 661 
non-identifiability of evolutionary rates and times, neither can be inferred in the absence of 662 
calibrating information, so in our isochronous analyses we fixed the value of the 663 
evolutionary rate to 1. The initial NS chain length was chosen so as to draw 20,000 664 
samples, with 20,000 steps, 32 particles, and a subchain length of 5,000 (note that NS is 665 
not equivalent to standard MCMC, nor is the definition of an iteration/step). The chain 666 
length and its accompanying sampling frequency were adjusted to obtain effective sample 667 
sizes for key parameters of at least 200 (computed in the NS output in BEAST 2.5). 668 
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Examples of MASTER files and BEAST 2.5 input files for NS are available online 669 
(supplementary data, Supplementary Material online). 670 
 671 
Estimation of Log Marginal Likelihoods Using Generalized Stepping-Stone Sampling 672 

We used BEAST 1.10 with the same model specifications and priors as in BEAST2, except 673 
for the prior on the evolutionary rate, for which we used the approximate continuous-time 674 
Markov chain (CTMC) reference prior (Ferreira and Suchard 2008). Because our simulation 675 
analyses of GSS and NS differ in this prior, the log marginal likelihood estimates are not 676 
directly comparable, so for each simulation we report log Bayes factors of competing 677 
models instead of the individual log marginal likelihoods. The GSS implementation in 678 
BEAST 1.10 has two different working priors for the tree generative process: a matching 679 
tree prior and a product of exponentials. The latter approach is the most generally 680 
applicable and is the one that we used here (Baele et al. 2016).  681 
 682 
We used an initial MCMC chain length of 5×107 steps sampling every 5000 steps. After 683 
discarding 10% of the samples obtained, the remaining samples were used to construct 684 
the working distributions for the GSS analysis through kernel density estimation. The log 685 
marginal likelihood estimation comprised 100 path steps distributed according to quantiles 686 
from a β distribution with α=0.3, with each of the 101 resulting power posterior inferences 687 
running for 5×105 iterations. We assessed sufficient sampling for the initial MCMC analysis 688 
by verifying that the effective sample sizes for key parameters were at least 200 in Coda 689 
v0.19 (Plummer et al. 2006). If this condition was not met, we doubled the length of the 690 
MCMC and reduced sampling frequency accordingly. Examples of MASTER files and 691 
BEAST 1.10 input files for GSS are available online (supplementary data, Supplementary 692 
Material online). 693 
 694 
Receiver Operating Characteristic (ROC) Curves 695 
ROC curves are generated by plotting the true positive rate (TPR, i.e. the sensitivity) against 696 
the false positive rate (FPR, i.e. 1 – specificity) at a range of selected thresholds and allows 697 
assessment of the performance of a binary classifier system. We fit ROC curves to the 698 
different simulation scenarios using the R package ROCR (Sing et al. 2005). We classified 699 
data as ‘positives’ and ‘negatives’ if they were generated under a heterochronous or 700 
isochronous (i.e., no temporal signal) model, respectively. In order to determine the optimal 701 
cut-off value, we determined the point on the ROC curve closest to a TPR of 1 and an FPR 702 
of 0 (i.e. we assigned equal importance to sensitivity and specificity). We did not explore 703 
assigning different costs to false positives and false negatives. 704 
 705 
Analyses of Empirical Data Sets 706 

We downloaded sequence alignments from their original publications (Table 1): complete 707 
genomes of the 2009 pandemic lineage of A/H1N1 influenza virus (Hedge et al. 2013), 708 
whole genome sequences of B. pertussis (Bart et al. 2014; Duchene et al. 2016), RdRP 709 
sequences of coronaviruses (Wertheim et al. 2013), complete genomes of Hepatitis B virus 710 
(Patterson Ross et al. 2018), and dog mitochondrial genomes (Thalmann et al. 2013). The 711 
data and BEAST input files are available in the Supplementary Material online. 712 
 713 
Briefly, we used similar settings as in our simulations to estimate log marginal likelihoods 714 
using GSS. For sequence sampling times we considered the correct sampling times, no 715 
sampling times (i.e., isochronous), and permuted sampling times. We also specified tree 716 
priors as follows: an exponential-growth coalescent for the A/H1N2 influenza virus, 717 
Bordetella pertussis, coronaviruses, and Hepatitis B virus data sets, and a constant-size 718 
coalescent for the dog mitochondrial genomes as used by Tong et al. (2018). We again 719 
chose the HKY+Γ substitution model, except in the analysis of Hepatitis B virus data, for 720 
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which we used the GTR+Γ model (Tavaré 1986), and in the analysis of the dog data set for 721 
which we used the SRD06 substitution model (Shapiro et al. 2006) for coding regions and 722 
the GTR+Γ for noncoding regions. 723 
 724 
Supplementary Material 725 

Supplementary data are available online. 726 
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Figure Legends 892 

FIG. 1. Four examples of phylogenetic trees used in simulations. Red dashed vertical lines 893 
indicate the times of the tips and therefore represent the sampling process over time. Trees 894 
A–C were simulated under a birth-death process with time of origin of 5, such that the sum 895 
of the tree height and the length of the stem branch leading to the root is always 5. Tree D 896 
was generated under a coalescent process with exponential growth. The coalescent and 897 
birth-death models have an exponential growth rate, r, defined as the difference between 898 
the birth rate,λ, and the become-uninfectious rate,δ, such that r = λ - δ. We set λ=1.5, 899 
and δ=1. In the birth-death model δ=μ+ψ, where μ is the death rate and ψ is the 900 
sampling rate upon death. Thus, the population growth rate is constant and the same 901 
across all trees. Tree A represents a constant sampling process and a wide sampling 902 
window (ψ=0.5 time units throughout the whole process), whereas in tree B sampling starts 903 
after 4.5 time units. Before this time the sampling rate, ψ0, is zero. After 4.5 time units the 904 
sampling rate ψ1 is 0.9 (and thus μ1= 0.1), resulting in a narrow sampling window. Tree C 905 
has samples drawn at a single point in time with a sampling probability at present, ρ, of 0.5 906 
(and thus ψ=0). Tree D represents a situation where tips with identical sampling times form 907 
monophyletic groups, a pattern known as phylo-temporal clustering. To generate these 908 
conditions, we used a coalescent model conditioned on the number of tips and their 909 
sampling times. These sampling times corresponded to 5 quantiles of a birth-death process 910 
with the same r. 911 
 912 
FIG. 2. Models selected for heterochronous data using generalized stepping-stone sampling 913 
under two evolutionary rates, shown in each panel and noted in the main text as conditions 914 
(i) and (ii), and four degrees of among-lineage rate variation as determined by the standard 915 
deviation of a lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a 916 
model, with bar heights (along the y-axis) representing the number of times each model 917 
was selected out of ten simulation replicates. The bars are coloured according to the 918 
settings in the analysis, based on combinations of two molecular clock models, strict clock 919 
(SC) and the uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), 920 
and three settings for sampling times: generated under the birth-death process (BD), 921 
identical sampling times (Isochronous; ISO), and permuted (Permuted; PER). 922 
 923 
FIG. 3. Models selected for heterochronous data using nested sampling under different 924 
simulation conditions; four combinations of evolutionary rate and width of the sampling 925 
window shown in each panel and noted in the main text as conditions (i) through (iv), and 926 
four degrees of among-lineage rate variation as determined by the standard deviation of a 927 
lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a model and 928 
their height (along the y-axis) represents the number of times each model was selected out 929 
of ten simulation replicates. The bars are coloured depending on the analyses settings with 930 
two molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an 931 
underlying lognormal distribution (UCLN), and three settings for sampling times: generated 932 
under the birth-death process (BD), identical sampling times (Isochronous; ISO), and 933 
permuted (Permuted; PER). 934 
 935 
FIG. 4. Evolutionary rate estimates for heterochronous data with correct sampling times 936 
using a strict clock (in dark blue) and an uncorrelated relaxed clock with an underlying 937 
lognormal distribution (in light blue). The panels correspond to the simulation conditions (i) 938 
through (iv), described in the main text. The x-axis denotes four degrees of among-lineage 939 
rate variation used to generate the data, as determined by the standard deviation of a 940 
lognormal distribution,σ. The y-axis corresponds to the evolutionary rate estimate. Solid 941 
grey lines correspond to the mean evolutionary rate value used to generate the data. 942 
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Dashed and dotted lines denote the 95-percentile width of a lognormal distribution with σ 943 
=0.1, and 0.5, respectively.  944 
 945 
FIG. 5. Root-to-tip regressions for a subset of data sets simulated with varying degrees of 946 
among-lineage rate variation (governed by the standard deviation σ of a lognormal 947 
distribution), using a high evolutionary rate and either a wide or narrow sampling window. 948 
The y-axis is the root-to-tip distance and the x-axis is the time from the youngest tip, where 949 
0 is the present. Each point corresponds to a tip in the tree and the solid line is the best-fit 950 
linear regression using least-squares. The coefficient of determination, R2, is shown in each 951 
case. For comparison, the log Bayes factors of the best heterochronous model relative to 952 
the best isochronous model, BF(Mhet -Miso), are also shown. 953 
 954 
FIG. 6. Results for heterochronous simulations with phylo-temporal clustering. The right-955 
hand panel denotes models selected using generalized stepping-stone sampling under two 956 
degrees of among-lineage rate variation as determined by the standard deviation of a 957 
lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a model and 958 
their height (along the y-axis) represents the number of times each model was selected out 959 
of ten simulation replicates. The bars are coloured depending on the analyses settings with 960 
two molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an 961 
underlying lognormal distribution (UCLN), and three settings for sampling times: generated 962 
under the birth-death process (BD), identical sampling times (Isochronous; ISO), and 963 
permuted (Permuted; PER). The left-hand panel shows evolutionary rate estimates for with 964 
correct sampling times using a strict clock and an uncorrelated relaxed clock with an 965 
underlying lognormal distribution. 966 
 967 
FIG. 7. Receiver operating characteristic (ROC) curves for data simulated with high 968 
evolutionary rate and wide sampling window (i), low evolutionary rate and wide sampling 969 
window (ii), high evolutionary rate and narrow sampling window (iii), and low evolutionary 970 
rate and narrow sampling window (iv). Sensitivity and specificity values are shown in each 971 
case. 972 
 973 
FIG. 8. Receiver operating characteristic (ROC) curves for data simulated with low 974 
evolutionary rate, wide sampling window, and long sequence length (10,000 nucleotides). 975 
Sensitivity and specificity values are shown. 976 
 977 
FIG. 9. Log marginal likelihoods estimated using generalized stepping-stone sampling for 978 
six analysis settings for sequence data from rapidly evolving pathogens, A/H1N1 Human 979 
influenza virus and Bordetella pertussis. The y-axis is the log marginal likelihood and the x-980 
axis shows the analysis settings, with two clock models, strict clock (SC) and the 981 
uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and three 982 
settings for sampling times: generated under the birth-death process (BD), identical 983 
sampling times (Isochronous), and permuted (Permuted). Solid points and dashed lines 984 
correspond to the log marginal likelihood estimates. The asterisk denotes the model with 985 
the highest log marginal likelihood. 986 
 987 
FIG. 10. Log marginal likelihoods estimated using generalized stepping-stone sampling for 988 
six analysis settings for data sets with ancient DNA or highly divergent sequences. The y-989 
axis is the log marginal likelihood and the x-axis shows the analysis settings, with two clock 990 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 991 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 992 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). Solid 993 
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points and dashed lines correspond to the log marginal likelihood estimates. The asterisk 994 
denotes the model with the highest log marginal likelihood. 995 
 996 
Supplementary Material 997 

FIG. S1. Models selected for isochronous data using generalized stepping-stone sampling 998 
under two evolutionary rates, shown in each panel and noted in the main text as conditions 999 
(i) and (ii), and four degrees of among-lineage rate variation as determined by the standard 1000 
deviation of a lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a 1001 
model and their height (along the y-axis) represents the number of times each model was 1002 
selected out of ten simulation replicates. The bars are colored depending on the analyses 1003 
settings with two molecular clock models, strict clock (SC) and the uncorrelated relaxed 1004 
clock with an underlying lognormal distribution (UCLN), and three settings for sampling 1005 
times: generated under the birth-death process the using five quantiles (BD; i.e. correct 1006 
sampling times with phylo-temporal clustering), identical sampling times (Isochronous; 1007 
ISO), and permuted (Permuted; PER). 1008 
 1009 
FIG. S2. Models selected for isochronous data using nested sampling under two 1010 
evolutionary rates, shown in each panel and noted in the main text as conditions (i) and (ii), 1011 
and four degrees of among-lineage rate variation as determined by the standard deviation 1012 
of a lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a model 1013 
and their height (along the y-axis) represents the number of times each model was selected 1014 
out of ten simulation replicates. The bars are colored depending on the analyses settings 1015 
with two molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with 1016 
an underlying lognormal distribution (UCLN), and three settings for sampling times: 1017 
generated under the birth-death process (BD), identical sampling times (Isochronous; ISO), 1018 
and permuted (Permuted; PER). 1019 
 1020 
FIG. S3. Log Bayes factors of heterochronous data simulated with a high evolutionary rate 1021 
and a wide sampling window. Each panel shows the results for data sets simulated with a 1022 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 1023 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 1024 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 1025 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 1026 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 1027 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 1028 
the best model. Black circles correspond to estimates using generalized stepping-stone 1029 
sampling and grey circles correspond to estimates using nested sampling. We conducted 1030 
10 simulation replicates, with each replicate data set analysed under the six analysis 1031 
settings and two marginal likelihood estimators, such that stochastic error might cause 1032 
differences in the preferred model. The number next to each cloud of points denotes the 1033 
number of times (out of 10) that the corresponding model had the highest log marginal 1034 
likelihood with generalized stepping-stone sampling (in black) and nested sampling (in 1035 
grey). 1036 
 1037 
FIG. S4. Log Bayes factors of heterochronous data simulated with a low evolutionary rate 1038 
and a wide sampling window. Each panel shows the results for data sets simulated with a 1039 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 1040 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 1041 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 1042 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 1043 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 1044 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 1045 
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the best model. Black circles correspond to estimates using generalized stepping-stone 1046 
sampling and grey circles correspond to estimates using nested sampling. We conducted 1047 
10 simulation replicates, with each replicate data set analysed under the six analysis 1048 
settings and two marginal likelihood estimators, such that stochastic error might cause 1049 
differences in the preferred model. The number next to each cloud of points denotes the 1050 
number of times (out of 10) that the corresponding model had the highest log marginal 1051 
likelihood with generalized stepping-stone sampling (in black) and nested sampling (in 1052 
grey). 1053 
 1054 
FIG. S5. Log Bayes factors of heterochronous data simulated with a high evolutionary rate 1055 
and a narrow sampling window. Each panel shows the results for data sets simulated with a 1056 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 1057 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 1058 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 1059 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 1060 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 1061 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 1062 
the best model. Black circles correspond to estimates using generalized stepping-stone 1063 
sampling and grey circles correspond to estimates using nested sampling. We conducted 1064 
10 simulation replicates, with each replicate data set analysed under the six analysis 1065 
settings and two marginal likelihood estimators, such that stochastic error might cause 1066 
differences in the preferred model. The number next to each cloud of points denotes the 1067 
number of times (out of 10) that the corresponding model had the highest log marginal 1068 
likelihood with generalized stepping-stone sampling (in black) and nested sampling (in 1069 
grey). 1070 
 1071 
FIG. S6. Log Bayes factors of heterochronous data simulated with a low evolutionary rate 1072 
and a narrow sampling window. Each panel shows the results for data sets simulated with a 1073 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 1074 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 1075 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 1076 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 1077 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 1078 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 1079 
the best model. Black circles correspond to estimates using generalized stepping-stone 1080 
sampling and grey circles correspond to estimates using nested sampling. We conducted 1081 
10 simulation replicates, with each replicate data set analysed under the six analysis 1082 
settings and two marginal likelihood estimators, such that stochastic error might cause 1083 
differences in the preferred model. The number next to each cloud of points denotes the 1084 
number of times (out of 10) that the corresponding model had the highest log marginal 1085 
likelihood with generalized stepping-stone sampling (in black) and nested sampling (in 1086 
grey). 1087 
 1088 
FIG S7. Results for isochronous simulations with phylo-temporal clustering using 1089 
generalized stepping-stone sampling under two degrees of among-lineage rate variation as 1090 
determined by the standard deviation of a lognormal distribution,σ (along the x-axis). Each 1091 
set of bars corresponds to a model and their height (along the y-axis) represents the 1092 
number of times each model was selected out of ten simulation replicates. The bars are 1093 
colored depending on the analyses settings with two molecular clock models, strict clock 1094 
(SC) and the uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), 1095 
and three settings for sampling times: generated the birth-death process using five 1096 
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quantiles (BD; i.e. artificially producing phylo-temporal clustering), identical sampling times 1097 
(Isochronous; ISO), and permuted (Permuted; PER).  1098 
 1099 
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 1107 
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 1109 
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 1111 
 1112 
Tables 1113 
 1114 
 1115 
Table 1. Details of empirical data sets used in this study. 1116 
 1117 

Data set 
Number of 

sites 
(nucleotides) 

Number of 
samples Sampling time range Reference 

A/H1N1 
influenza virus 13,154 329 10 months (March to 

December 2009) 
Hedge et al. 

(2013) 
Bordetella 
pertussis 4.9×106 150 89 years (1920 to 2009) Bart et al. (2014) 

Coronaviruses 1,860 43 70 years (1941 to 2011) Wertheim et al. 
(2013) 

Hepatitis B 
virus 3,271 137 445 years (2103 to 1568) Patterson Ross 

et al. (2018) 

Dog mtDNA 14,596 50 36,000 years (to the 
present) 

Thalmann et al. 
(2013) 

 1118 
 1119 
 1120 
 1121 
 1122 
 1123 
 1124 
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 1126 
 1127 
 1128 
 1129 
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A.�Birth-death tree with constant sampling
�=1.5, �=0.5, �=0.5, origin=5 

B. Birth-death tree with variable sampling
�=1.5, �0=1.0, �0=0.0, �1=0.1, �1=0.9, 
origin=5, sampling time=4.5

C. Birth-death tree with a single sampling time point
�=1.5, �=1.0, �=0, �=0.5 origin=5 

D. Coalescent tree with exponential growth 
and phylo-temporal clustering (5 clades with
identical sampling times) 
�=1.5, �=1.0
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