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Abstract 
 
Polygenic risk scores (PRSs) have wide applications in human genetics research. Notably, most 
PRS models include tuning parameters which improve predictive performance when properly 
selected. However, existing model-tuning methods require individual-level genetic data as the 
training dataset or as a validation dataset independent from both training and testing samples. 
These data rarely exist in practice, creating a significant gap between PRS methodology and 
applications. Here, we introduce PUMAS (Parameter-tuning Using Marginal Association 
Statistics), a novel method to fine-tune PRS models using summary statistics from genome-wide 
association studies (GWASs). Through extensive simulations, external validations, and analysis 
of 65 traits, we demonstrate that PUMAS can perform a variety of model-tuning procedures (e.g. 
cross-validation) using GWAS summary statistics and can effectively benchmark and optimize 
PRS models under diverse genetic architecture. On average, PUMAS improves the predictive R2 
by 205.6% and 62.5% compared to PRSs with arbitrary p-value cutoffs of 0.01 and 1, respectively. 
Applied to 211 neuroimaging traits and Alzheimer’s disease, we show that fine-tuned PRSs will 
significantly improve statistical power in downstream association analysis. We believe our method 
resolves a fundamental problem without a current solution and will greatly benefit genetic 
prediction applications.  
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Introduction 
 
Accurate prediction of complex traits with genetic data is a major goal in human genetics research 
and precision medicine.1 In the past decade, advancements in genotyping and imputation 
techniques have greatly accelerated discoveries in genome-wide association studies (GWASs) 
for numerous complex diseases and traits.2 These data have also enabled statistical learning 
applications that leverage genome-wide data in genetic risk prediction.3-8 However, despite these 
advances, it remains challenging to access, store, and process individual-level genetic data at a 
large scale due to privacy concerns and high computational burden. With increasingly accessible 
GWAS summary statistics for a variety of complex traits,9 polygenic risk scores (PRSs) that use 
marginal association statistics as input enjoy great popularity and have had success in diverse 
applications.10-12  
 
With great popularity there also come great challenges. Prediction accuracy of PRS remains 
moderate for most phenotypes.13 Methods have been developed to improve PRS performance by 
explicitly modeling linkage disequilibrium (LD),14 incorporating functional annotations and 
pleiotropy,15,16 and improving effect estimates through statistical shrinkage.17 Notably, most PRS 
models have tuning parameters, including the p-value threshold in traditional PRS, the penalty 
strength in penalized regression models, and the proportion of causal variants in LDpred.14 Tuning 
parameters are very common in predictive modeling. When properly selected, these parameters 
add flexibility to the model and improve prediction accuracy. This is a well-understood problem 
with a rich literature – a well-known solution is cross-validation.18 However, most model-tuning 
methods require individual-level genetic data either as the training dataset or as a validation 
dataset independent from both the input GWAS and the testing samples. In practice, these data 
rarely exist, especially when PRS is generated using GWAS summary statistics in the public 
domain. This has created a significant gap between current conventions in PRS construction and 
optimal methodologies. Without a method to fine-tune models using summary statistics, it is 
challenging to benchmark and optimize PRS, thus limiting its clinical utility.  
 
We introduce PUMAS (Parameter-tuning Using Marginal Association Statistics), a novel method 
to fine-tune PRS models using GWAS summary data. As a general framework, PUMAS can 
conduct a variety of model-tuning procedures on PRS, including training-testing data split, cross-
validation, and repeated learning. Through extensive simulations on realistic genetic architecture, 
we demonstrate that the performance of PUMAS is as good as methods based on individual-level 
data. Additionally, we apply PUMAS to GWAS traits with distinct types of genetic architecture and 
validate our results using well-powered external datasets. Further, we systematically benchmark 
and optimize PRS for numerous diseases and traits and showcase the immediate benefits of fine-
tuned PRSs in downstream applications. 
 
 
 
Results 
 
Method overview 
 
Here, we outline the PUMAS framework. Detailed derivations and technical discussions are 
included in the Methods section. There are two key steps in our proposed model-tuning 
framework (Figure 1). First, we sample marginal association statistics for a subset of individuals 
based on the complete GWAS summary data. Using this approach, we can generate summary 
statistics for independent training and testing sets without actually partitioning the samples. 
Second, we propose an approach to evaluate the predictive performance (e.g. predictive R2) of 
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PRS using summary statistics in the validation set so that we can select the best model based on 
its superior performance. These two steps together make it possible to select the best-performing 
model with only one set of GWAS summary statistics as input. 
 

 
Figure 1. A workflow of model-tuning strategies.  (A) Traditional approaches split individual-level data into training 
and validation subsets to fine-tune prediction models. (B) Our method directly generates training and testing summary 
statistics without using individual-level information and use simulated summary statistics as input to select the best 
model. 
 
 
Simulation results 
 
We conducted simulations to investigate if PUMAS can achieve similar performance compared 
to classic model-tuning procedures. We simulated both genotype and phenotype data with varying 
sample size, proportion of causal variants, and heritability (Methods). We used these data to 
calculate marginal association statistics and ranked SNPs based on association p-values. Next, 
we applied PUMAS to perform 4-fold repeated learning on marginal association statistics and 
selected the optimal number of SNPs to include in the prediction model by maximizing the average 
𝑅" across folds. Additionally, we implemented a traditional repeated learning approach with the 
same simulated individual-level data as a reference. The two approaches yielded highly 
consistent results (Figure 2 and Supplementary Figure 1; Supplementary Table 1). Since SNP 
effects were randomly sampled from a normal distribution, it is expected that some weak effects 
are dropped from the optimal PRS model, leading to a lower number of selected predictors 
compared to the number of true causal variants, especially when sample size and heritability are 
low. Across all simulation settings, our summary statistics-based approach showed nearly 
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identical results compared to a state-of-the-art model-tuning approach based on individual-level 
data and could effectively select the optimal tuning parameter (i.e. number of SNPs in the PRS).  
 

 
Figure 2. Comparing the performance of two model-tuning strategies. The first two panels illustrate the model-
tuning performance of (A) PUMAS and (B) repeated learning approach based on individual-level data (N=100,000, 
h2=0.2). Panels (C-D) shows the performance of PUMAS and repeated learning on 20,000 samples when heritability 
is 0.8. The X-axis shows the value of tuning parameter (i.e. number of variants to include in the model) in these 
simulations. The Y-axis shows the predictive 𝑅". The three curves in each panel represent three different levels of 
sparsity and genetic architecture. Results for other settings are summarized in Supplementary Figure 1. 
 
 
PUMAS effectively fine-tunes PRS models based on genetic architecture  
 
Next, we demonstrate our method’s performance using a gold-standard approach – we apply 
PUMAS to the summary statistics from well-powered GWASs to select the optimal p-value cutoffs 
in PRS models and validate their performance on large independent cohorts. First, we applied 
PUMAS to a recent GWAS of educational attainment (EA) conducted by the Social Science 
Genetic Association Consortium (N=742,903).19 4,775 samples with European ancestry in the 
National Longitudinal Study of Adolescent to Adult Health (Add Health)20 and 10,214 European 
samples in the Health and Retirement Study (HRS)21 were used as two independent validation 
sets to assess the predictive performance of EA PRS. We used GWAS of Alzheimer’s disease 
(AD) as a second example. We applied PUMAS to the stage-1 summary statistics from the 2013 
study conducted by the International Genomics of Alzheimer’s Project (IGAP; N=54,162) to 
optimize PRS models for AD. These PRSs were then evaluated on 7,050 independent samples22 
from the Alzheimer’s Disease Genetics Consortium (ADGC) and 355,583 samples in the UK 
Biobank with a family history-based proxy phenotype for AD (Methods).23  
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Our summary statistics-based analyses showed highly consistent results compared with external 
validations (Figure 3; Supplementary Table 2). Our analysis clearly suggested that a model with 
a large number of SNPs tend to be more predictive for EA, a pattern validated in both Add Health 
and HRS cohorts. The EA PRS based on p-value cutoffs of 0.8, 0.8, and 0.7 were the most 
predictive models suggested by PUMAS, HRS, and Add Health cohorts, respectively. Results on 
AD were also consistent between PUMAS and external validations. The optimal p-value cutoffs 
suggested by PUMAS, ADGC validation, and UK Biobank validation were 5e-7, 5e-8, and 1e-10, 
respectively. PRS models based on p-value cutoffs more stringent than 1e-5 showed good 
predictive performance in two validation sets for AD. Notably, as more SNPs are included in the 
model, predictive performance of PRS sharply declines. Our model-tuning results based on 
GWAS summary statistics accurately predicted this pattern. Additionally, since we used an AD 
proxy phenotype in the UK Biobank, the reduced predictive R2 is expected. But the trend of 
predictive performance remained consistent with the validation result in case-control data from 
the ADGC.  
 

 
Figure 3. Model-tuning performance on real GWAS data. (A) PUMAS performance on the EA training set. (B) 
Prediction performance on two validation sets for EA. (C) PUMAS performance on the AD training set. (D) Prediction 
performance on two validation sets for AD. The X-axis shows the log-transformed p-value cutoffs in PRS which is the 
tuning parameter of interest. The Y-axis indicates predictive 𝑅". EA: educational attainment; AD: Alzheimer’s disease. 
 
EA is known to be extremely polygenic – more than 1,200 independent genetic associations have 
been identified for EA to date.19 AD has a very different genetic architecture compared to EA. The 
APOE locus has an unusually large effect on AD risk.24 In addition to APOE, about 30 independent 
loci have been implicated in AD GWASs.25 Our method correctly suggested that the EA PRS 
would perform better if more SNPs are in the model (87,985 SNPs were included) while a 
substantially sparser model with 29 SNPs would yield better predictive performance for AD. These 
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results showcased our method’s ability to adaptively choose the optimal tuning parameter for 
traits with different patterns of genetic architecture. These results also highlighted the importance 
of model tuning. An AD PRS based on an arbitrary p-value cutoff of 0.01 can have a 5-fold 
reduction in predictive 𝑅" compared to the fine-tuned PRS.  
 

 
Figure 4. Technical issues involving sample size and LD clumping. (A) PUMAS results on LDL cholesterol and 
EA with various sample size specifications. The two grey dashed lines represent the optimal p-value cutoffs selected 
by the ‘QCed’ setting for LDL and EA, respectively. (B)  Predictive performance on external validation for AD PRS 
based on pruned and clumped summary statistics. Two grey dashed lines mark the optimal p-value cutoffs inferred by 
PUMAS on pruned and clumped summary statistics. LDL: low-density lipoprotein; EA: educational attainment; AD: 
Alzheimer’s disease. 
 
 
Some technical considerations 
 
We discuss two unique technical issues that may arise in summary statistics-based model tuning. 
First, sample sizes for different SNPs in a GWAS meta-analysis may vary due to technical 
differences across cohorts. However, it is not uncommon for a GWAS to only report the maximum 
sample size. Here, we investigate the robustness of PUMAS when sample size is mis-specified. 
We use two GWAS datasets that provided accurate sample size for each SNP: summary statistics 
for low-density lipoprotein (LDL) cholesterol from the Global Lipids Genetics Consortium (GLGC; 
N=188,577)26 and the same EA GWAS summary statistics we have described before. We 
compared PUMAS results based on four different approaches. The first approach uses the 
accurate sample size reported in the summary statistics (‘original’); The second approach 
removes SNPs with sample size below the 30% quantile of its distribution and uses the accurate 
sample size for remaining SNPs (‘QCed’). The third and fourth approaches apply the maximum 
or minimum sample size to all SNPs (‘Uniform large/small N’). For the ‘original’ and ‘QCed’ 
approaches where precise sample size is available for each SNP, we assigned 25% of the 
minimal N value as the sample size for the validation dataset and used the remaining samples of 
each SNP in the training subset. Overall, PUMAS results showed consistent patterns under these 
four scenarios (Figure 4A). Although the R2 estimates can inflate or deflate if the sample size is 
mis-specified, the optimal p-value cutoffs selected by PUMAS remained stable. Thus, PUMAS 
can still select the best-performing model even if accurate sample size information is unavailable. 
In practice, performing quality control to remove SNPs with outlier sample size may make the R2 
estimates most interpretable. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2019. ; https://doi.org/10.1101/810713doi: bioRxiv preprint 

https://doi.org/10.1101/810713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
The second issue is to see if PUMAS can be applied to clumped GWAS summary statistics. In 
PRS applications, it is a common practice to clump the data by removing SNPs in strong LD with 
the most significant SNP in a region. However, since p-values based on the full sample have been 
used during LD clumping, directly applying the same model-tuning methods to clumped data may 
lead to information leak and overfitting.  We applied PUMAS to clumped summary statistics of the 
IGAP 2013 AD GWAS (Supplementary Figure 2). The model-tuning results in PUMAS were 
completely inconsistent with the optimal models in external validation (Figure 4B), confirming that 
PUMAS should not be applied to clumped data. However, we note that the predictive curves were 
very similar in external validations no matter if pruned or clumped data were used as input. 
Therefore, in practice, it may be plausible to apply PUMAS to pruned GWAS summary data and 
obtain the optimal p-value threshold. This way, p-values based on the complete sample will not 
influence the model-tuning procedure. Then, we can apply this selected p-value cutoff with 
clumped GWAS summary statistics to calculate PRS.  
 

 
Figure 5. An atlas of optimized PRSs for complex diseases and traits. 45 diseases/traits with optimized R2 > 0.005 
are included in the figure. Each circle represents a disease or trait. The size of circles indicates the sample size of the 
study; colors mark the five trait categories. The X-axis indicates the negative log-transformed p-value cutoff in PRS 
which is also the tuning parameter of interest. The Y-axis indicates the optimal 𝑅". Information on all diseases and traits 
is summarized in Supplementary Table 3. 
 
 
Benchmarking and optimizing PRS for 65 diseases and traits 
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Next, we apply PUMAS to provide an atlas of optimized PRSs for complex diseases and traits 
(Figure 5). In total, we analyzed 65 GWASs with available summary statistics and documented 
each trait’s optimal p-value cutoff and predictive R2 (Supplementary Table 3). The average gain 
in predictive R2 with our method is 0.0106 (205.6% improvement) and 0.0034 (62.5% 
improvement) compared to PRSs with p-value cutoffs of 0.01 and 1, respectively 
(Supplementary Table 4 and Supplementary Figure 3). We annotated the traits into five 
categories: behavioral/social, metabolic/cardiovascular, psychiatric/neurological, immune, and 
other. Most behavioral/social traits and psychiatric/neurological disorders had optimal p-value 
cutoffs between 0.1 and 1 which is consistent with their extreme polygenic genetic architecture. 
The exceptions include alcoholism (drinks per week), smoking behavior (cigarettes per day), and 
AD. PRSs with fewer SNPs showed superior performance for these traits. Among immune 
diseases, systemic lupus erythematosus, primary biliary cirrhosis, rheumatoid arthritis, multiple 
sclerosis, and eczema all favored a sparse model, while the optimal PRSs for inflammatory bowel 
diseases and celiac disease had substantially more SNPs. We also note that molecular traits such 
as blood lipids and 25-hydorxyvitamin D favored sparse PRS models, possibly due to stronger 
genetic effects and more homogeneous genetic mechanisms. These results also shed light on 
the differences in the predictive power of diverse types of diseases and traits. PRSs for height, 
systemic lupus erythematosus, inflammatory bowel diseases, and schizophrenia showed 
substantially better predictive performance, while the R2 for most behavioral/social traits remained 
moderate despite the large sample size in those studies. 
 
 
Identifying neuroimaging associations for AD 
 
Finally, we demonstrate that fine-tuned PRS will lead to power gain in association analysis. We 
generated PRSs for 211 neuroimaging traits based on two recent studies conducted using 
samples from the UK Biobank (N=17,706 and 19,629 for diffusion tensor imaging traits and 
regional volume phenotypes, respectively).27,28 We optimized PRS for each imaging trait using 
PUMAS (Supplementary Table 5). For comparison, we also generated PRSs for all traits using 
an arbitrary p-value cutoff of 0.01. We applied the BADGERS29 approach to test associations 
between 211 neuroimaging trait PRSs with AD in two large, independent AD datasets: the 2019 
IGAP GWAS for AD (N=63,926) and the UK Biobank-based GWAS with a proxy phenotype for 
AD (N=318,773).23,30 Samples used in the neuroimaging GWAS were removed from the AD-proxy 
GWAS to avoid overfitting of PRS models (Methods; Supplementary Table 6 and 
Supplementary Figure 4). Association results in two AD datasets were meta-analyzed to 
improve statistical power. 
 
The complete association results of 211 neuroimaging traits with AD are summarized in 
Supplementary Table 7. Using fine-tuned PRSs, we identified 2 significant associations with AD 
under a stringent Bonferroni correction for multiple testing: fornix (cres) / stria terminalis mode of 
anisotropy (p=1.7E-05) and axial diffusivities (p=2.7E-05) whereby genetic risk for worse white 
matter integrity in the fornix was associated with risk of AD. No significant associations were 
identified using PRSs with an arbitrary p-value cutoff (Figure 6A). Association p-values based on 
optimized PRSs were significantly lower than those based on arbitrary PRSs (p=0.03; two-sample 
Kolmogorov-Smirnov test). Additionally, effect size estimates for top associations were consistent 
in two independent AD GWASs (Figure 6B). Although the effect sizes in two AD studies were not 
at the same scale due to the difference in AD phenotype definition, effect estimates showed strong 
concordance between two independent analyses (correlation=0.84). The fornix is a critical white 
matter tract projecting from the medial temporal lobe where pathology begins in AD, thus it is 
unsurprising that microstructural changes in the fornix measured with diffusion tensor imaging are 
observed in mild cognitive impairment and AD.31-33 Further, as a negative control, we applied the 
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same analysis to a well-powered breast cancer GWAS (N=228,951).34 Results for fine-tuned 
PRSs and arbitrary PRSs were consistent with the expectation under the null (Supplementary 
Figure 5). No significant associations were identified. These findings demonstrated that our 
model-tuning approach can increase the statistical power in PRS association analysis. 
 

 
Figure 6. Identifying neuroimaging trait PRSs associated with AD. (A) QQ plot for the associations between 211 
neuroimaging trait PRSs and AD. P-values were based on the meta-analysis of IGAP 2019 GWAS and the UK Biobank 
with a proxy AD phenotype. (B) Effect size estimates for top associations. Imaging trait PRSs that reached a p-
value<0.01 in the meta-analysis are shown in the plot. X-axis: effect sizes of imaging trait PRSs on the AD-proxy 
phenotype in the UK Biobank; Y-axis: effect sizes on AD in the IGAP 2019 GWAS. Imaging traits whose p-value 
achieved Bonferroni-corrected significance in the meta-analysis are highlight in red. The dashed lines represent 
standard error of effect sizes estimates. 
 
 
 
Discussion 
 
Fine-tuning PRS models with GWAS summary statistics has long been considered an impossible 
task. In this work, we introduced a statistical framework to solve this challenging problem. First, 
using GWAS summary data as input, PUMAS simulates training and validation summary statistics 
without accessing individual-level information. Then, PUMAS evaluates and optimizes PRS 
models on the simulated validation summary statistics. Both steps in the PUMAS framework are 
statistically rigorous, computationally efficient, and highly novel. Through simulations and analysis 
of real GWAS data with diverse genetic architecture, we demonstrated that PUMAS can 
effectively conduct sophisticated model-tuning tasks using GWAS summary statistics. We also 
showed that optimizing PRSs improves the statistical power in downstream association analysis 
and identified neuroimaging traits significantly associated with AD.  
 
This work will bring multiple advances to the field. First, it is no longer necessary to leave one 
dataset out in the GWAS for model tuning purpose. With PUMAS, researchers can safely use 
effect size estimates from the largest available GWAS for PRS model training, which will lead to 
improved prediction accuracy. Second, when an independent validation set is not available, most 
studies in the literature select tuning parameters using one of the two strategies. Some studies 
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fine-tune PRSs on testing samples that are used again in downstream applications, creating an 
overfitting problem, while other studies use a subset of testing samples to tune the model, 
reducing the sample size and power in the testing data. PUMAS allows researchers to apply fine-
tuned PRS models to the full testing samples, thus avoiding overfitting and improving statistical 
power. Third, selecting the optimal tuning parameter is not the only application of PUMAS. Given 
a PRS model, our method allows researchers to calculate cross-validated predictive accuracy, 
providing a systematic approach to benchmark model performance without requiring external 
samples. 
 
So far, our analyses have focused on a classic PRS model with pruned SNPs and a varying p-
value cutoff that needs to be tuned. Despite the simplicity, it remains one of the most widely used 
PRS models in the field. However, more sophisticated PRS methods have emerged. Future work 
will focus on generalizing PUMAS to fine-tune parameters in other PRS models such as LDpred 
and benchmarking the performance of all models for different traits. Our results have provided 
strong evidence that it is possible to fine-tune PRS models with GWAS summary data. This new 
approach, in conjunction with widely available GWAS summary statistics, will have a long-lasting 
impact on future PRS model development and genetic prediction applications. 
 
 
 
Methods 
 
Subsampling GWAS association statistics 
 
We assume the quantitative trait Y follows a linear model: 

𝑌 = 𝑋𝛽 + 𝜖 
where 𝑋 denotes the SNP genotypes; 𝛽 is a 𝑝-dimensional vector representing SNP effect sizes; 
𝜖 is the error term following a normal distribution with zero mean. Let 𝑦 and 𝑥 = ,𝑥-,… , 𝑥01 denote 
the phenotypic and genotypic data of 𝑁 independent individuals. For simplicity, we assume 𝑦 and 
𝑥3 ’s are centered. The summary association statistics in GWAS are obtained from the marginal 
linear regressions. Then, for 𝑗 = 1,… , 𝑝, we can denote the regression coefficients and their 
standard errors as follows  

𝛽63 = ,𝑥37𝑥31
8-,𝑥37𝑦1 

SE,𝛽631 = ; <=>?<=>
(A8-)CD

?CD
, where 𝜖3̂ = 𝑦 − 𝑥3𝛽63 

If we have access to the full data set, most model-tuning approaches involve randomly sampling 
a subset of 𝑁 − 𝑛 individuals as the training set, i.e. 𝑦(HI)  and 𝑥(HI) . Naturally, the remaining 
subset of 𝑛 individuals will be the validation dataset denoted as 𝑦(J) and 𝑥(J). When only the 
summary statistics file based on the full dataset is provided, the traditional model-tuning 
approaches cannot be implemented. Instead, we propose a method to generate marginal 
summary statistics for the training and validating datasets from summary statistics of the full 
dataset. By central limit theorem, as sample size 𝑁 → ∞, we have 

𝑥7𝑦 ∼ 𝐍,𝑁E(𝑋𝑌), 𝑁Var(𝑋𝑌)1 
𝑥(HI)

7
𝑦(HI) ∼ 𝐍	,(𝑁 − 𝑛)E(𝑋𝑌), (𝑁 − 𝑛)Var(𝑋𝑌)1 
𝑥(J)

7
𝑦(J) ∼ 𝐍	,𝑛E(𝑋𝑌), 𝑛Var(𝑋𝑌)1 

where 𝐍(𝜇, Σ	) denotes a normal distribution with mean 𝜇 and covariance matrix Σ. It can be 
shown that 
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𝑥(HI)
7
𝑦(HI) ∣ 𝑥7𝑦 ∼ 𝐍V

(𝑁 − 𝑛)
𝑁 𝑥7𝑦,

(𝑁 − 𝑛)𝑛
𝑁 Var(𝑋𝑌)W 

where ⋅	∣	⋅ denotes the conditional distribution. This framework does not depend on the linkage 
equilibrium assumption. However, under simple scenarios where the SNPs are independent (i.e. 
GWAS summary statistics is pruned), Var(𝑋𝑌) is a symmetric matrix whose diagonal and non-
diagonal elements can be denoted as  

Σ3 = 𝛽3"Var,𝑋3"1 + E,𝜖3"1E,𝑋3"1 
Σ3Y = 𝛽3𝛽YE,𝑋3"1E,𝑋Y"1 

Consequently, we can obtain the validating summary statistics by 
𝑥(J)

7
𝑦(J) = 𝑥7𝑦 − 𝑥(HI)

7
𝑦(HI). 

Here, E(𝜖3") can be estimated by the mean squared error in marginal regressions, which can be 
further approximated by 𝑁[SE,𝛽\] 1^

"
E(𝑋3"). In addition, each SNP’s effect size (i.e. 𝛽3) is typically 

very small in GWAS and E,𝑋3"1 only depends on each SNP’s minor allele frequency (MAF) which 
is commonly provided in GWAS summary statistics or can be estimated from a reference panel 
such as the 1000 Genomes Project.35  Taken together, Var(𝑋𝑌) can be estimated with  

Σ_3 = 𝑁[SE,𝛽631𝜎a3"^
"
, for 𝑗 = 1,… , 𝑝 

Σ_3Y = 𝛽63𝛽6Y𝜎a3"𝜎aY", for 𝑖 ≠ 𝑗 
where 𝜎a3" is an MAF-based estimator of E(𝑋3"). After generating 𝑥(HI)

7
𝑦(HI) terms as described 

above from the conditional distribution, the subsampled summary statistics can be estimated by  
𝛽63
(HI) = [(𝑁 − 𝑛)𝜎a3"^

8-𝑥3
(HI)7𝑦(HI), 

SE d𝛽\]
(HI)e = ; 𝑁

𝑁 − 𝑛 SE(𝛽\
] ) 

 
 
Evaluating model performance using GWAS summary data 
 
Being able to generate summary statistics for the training and validation datasets resolves a 
critical issue in model tuning. However, challenges remain in evaluating PRS performance on the 
testing set without individual-level data. Almost all the PRS approaches in the literature use a 
linear prediction model as follows   

	𝑌_ = 𝑋𝑤, 
where 𝑤7 = ,𝑤-,… ,𝑤01 is the weight for SNPs in PRS. In a traditional PRS, marginal regression 
coefficients from GWAS are used as the weight values, i.e. 𝑤 = 𝛽6, while in other PRS models the 
weight can be more sophisticated. Here, we demonstrate how to calculate 𝑅", a commonly used 
metric to quantify PRS predictive performance, from subsampled GWAS summary data, but our 
method can be extended to other metrics (e.g. AUC36) as well. 𝑅"  on the validation dataset 
(𝑦(J), 𝑥(J)) can be calculated as  

𝑅" =
d∑ 𝑦Y

(J)𝑦hi
(J)j

Yk- − 𝑛𝑦(J)lllll		𝑦i (J)lllllle
"

∑ d𝑦Y
(J) − 𝑦(J)llllle

"
j
Yk- ∑ d𝑦aY

(J) − 𝑦a(J)llllle
"

j
Yk-

	 

where  𝑦a(J) = 𝑥(J)𝑤	and	𝑦(J)lllll is the sample mean of 𝑦a(J). If the SNPs are pruned, it can be shown 
that the empirical variance of 𝑌_ can be approximated by 
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1
𝑛
od𝑦aY

(J) − 𝑦a(J)llllle
"

j

Yk-

≈o 𝑤3"𝜎a3"
0

3k-
 

Although empirical variance of 𝑌 does not affect model tuning, it affects the scale of 𝑅" and is 
thus critical for interpreting the results. This term can be approximated by  

-
j
∑ d𝑦Y

(J) − 𝑦(J)llllle
"

j
Yk- = 𝛽3"E,𝑋3"1 + 𝐸(𝜖3")	,	for ∀𝑗 

Although Var(𝑌) is always greater than 𝐸(𝜖3") for any 𝑗, the gap between these two is negligible 
in real GWAS due to the small effect size of each individual SNP. Thus, a simple estimator for 
Var(𝑌) can be  

1
𝑛
od𝑦Y

(J) − 𝑦(J)llllle
"

j

Yk-

≈ max
3
[
1
𝑁 𝜖3̂

7𝜖3̂] ≈ 𝑁max
3
[SE,𝛽631

"
𝜎a3"]. 

Additionally, since we assumed data to be centered, the mean values in the numerator can be 
dropped. Taken together, 𝑅" can be estimated as 

𝑅" ≈
d1𝑛∑ 𝑤3𝑥3

(J)7𝑦(J)0
3k- e

"

𝑁max
3
wSE,𝛽631

"
𝜎a3"x∑ 𝑤3"

0
3k- 𝜎C=>

"
	 

In practice, we use the 90% quantile of (𝑁 − 1)8-𝜖3̂7𝜖3̂, 𝑗 = 1,2, …𝑝, as a more robust estimator for 
Var(𝑌). 
 
 
Model tuning strategies 
 
So far, we have introduced strategies to subsample association statistics on training and 
validation sets and evaluate model performance using GWAS summary statistics. Combining 
these two key steps, we will be able perform model tuning using GWAS summary data. Suppose 
a PRS model uses GWAS marginal estimates 𝛽6 as input and generates SNP weights 𝑤3(𝛽6, 𝜆) for 
each SNP. The goal is to find the optimal value of tuning parameter 𝜆  that maximizes the 
predictive accuracy. In the simple setting we introduced above, we will generate summary 
statistics for training and validation datasets. After specifying a tuning parameter 𝜆, SNP weights 
in PRS can be trained by applying the model to the training summary statistics. Then, the 
prediction accuracy 𝑅" on the validation summary statistics will be a function of 𝜆. Therefore, we 
can select 𝜆 so that it maximizes model performance.  

𝜆6 = argmax
|

,𝑅"(𝜆)1 

More generally, if the goal is to compare different models, both the summary statistics 
subsampling and performance evaluation steps remain unchanged. In this case, 𝑅"  will be a 
function of model and we can choose the best-performing model by optimizing 𝑅" 

𝑚i = argmax
~k-,",…,�

(𝑅"(model	𝑚)). 

Further, this framework can be used to conduct various types of model tuning procedures. What 
we have laid out above is the simple training-validation data split approach. If one is interested in 
applying repeated learning, they can simply repeat the procedure (i.e. resampling 
training/validation datasets and evaluating 𝑅"  on the validation set) K times. The average 𝑅" 
across K folds can be used to select the best model. Similarly, if K-fold cross-validation needs to 
be implemented, we can first independently simulate K-1 sets of training subsample 𝑥(HI,�)

7
𝑦(HI,�) 

with sample size N/K. Then we can obtain the 𝐾H� subsample by 
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𝑥(�,HI)
7
𝑦(�,HI) = 𝑥7𝑦 − o 𝑥(HI,�)

7
𝑦(HI,�)

�8-

�k-

 

Finally, rotate each one of the K subsamples as a validation sample and the rest as training 
sample, and use the average 𝑅" to select the best model. Taken together, PUMAS is a general 
framework that can perform a variety of model-tuning tasks. 
 
  
Simulation settings 
 
We assumed a linear model between a quantitative phenotype and genotypes 

𝑌 = 𝑋𝛽 + 𝜖 
After setting the sample size N and the total number of genetic variants M, we simulated a N´ M 
genotype matrix from independent binomial distribution 𝐵𝑖𝑛(2, 𝑓) where 𝑓 is the MAF of each 
SNP. These simulated genotypes were centered. Then, we generated effect sizes for m randomly 
selected causal variants from a normal distribution 𝐍(0, (ℎ"/𝑚)𝐼), with a predetermined number 
of causal variants m and total heritability ℎ". We set the effect sizes of the remaining non-effective 
SNPs to be 0. Error term 𝜖  were then randomly simulated from 𝐍(0, (1 − ℎ")𝐼) . Finally, we 
obtained the values of 𝑌 by adding up all the components in the linear model. 
 
We performed simulations under a total of 12 different settings. In all settings, we set M to be 
5,000 and 𝑓 to be 0.2. Different values were assigned to other parameters, including sample size 
(N=20,000 and 100,000), total heritability (ℎ"=0.2 and 0.8), and number of causal variants (m=50, 
1,000 and 4,000). We performed marginal linear regression on the simulated phenotype for each 
SNP and obtained the summary statistics. We applied PUMAS to perform 4-fold repeated learning 
on the marginal association statistics. In each fold, 75% of the samples were used as the training 
set and the remaining 25% were used as the validation set. Average 𝑅"  in four folds of the 
analysis was used to quantify the model performance. We compared the PUMAS approach to a 
similar 4-fold repeated learning procedure based on individual-level data – in each fold, we trained 
PRS on 75% of the samples and calculated 𝑅" on the rest 25% of samples. We repeated the 
procedure 4 times and report the average 𝑅". 
 
 
GWAS data 
 
GWAS summary statistics on EA was shared to us by Dr. Aysu Okbay. In this dataset, samples 
from Add Health, HRS, 23&me, and Wisconsin Longitudinal Study were excluded (N=742,903). 
Imputed genotype data for Add Health and HRS were accessed through dbGap (phs001367 and 
phs000428) and the EA phenotypes were defined following the SSGAC GWAS.37 4,775 Add 
Health samples and 10,214 HRS samples with self-reported European ancestry were used to 
validate EA PRS. SNPs with imputation quality score < 0.8 were removed from the analysis. The 
IGAP 2013 AD GWAS dataset was accessed through the IGAP website (http://web.pasteur-
lille.fr/en/recherche/u744/igap/igap_download.php). GWAS summary statistics for 7,050 ADGC 
samples can be accessed through the NIAGADS database (NG00076). Predictive performance 
on ADGC samples were assessed using summary statistics-based 𝑅".  Following a recent paper, 
we constructed the AD-proxy phenotype in the UK Biobank based on each sample’s AD status, 
AD history of parents, whether parents are still alive, and parental age (or age at death).38 Imputed 
genotype data were accessed through the UK Biobank. In addition, we applied PUMAS to 
benchmark PRS performance on 65 GWASs. Details on these studies are summarized in 
Supplementary Table 3.  
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For all PUMAS analysis throughout the paper, we first extracted SNPs intersected with the 1000 
Genome Phase III data of European ancestry,35 Then, we pruned GWAS summary statistics by 
a LD-block window size of 100 variants, a step size of 5 variants to shift windows, and a pairwise 
LD (i.e. 𝑟") threshold of 0.1. We used samples of European ancestry in the 1000 Genome Project 
Phase III as the reference panel to estimate LD. For GWASs that do not report MAF in the 
summary statistics, we estimated MAF from 1000 Genome project European samples. In addition, 
for the analysis of EA and AD, we also intersected GWAS summary statistics with SNPs in the 
validation set. A p-value grid was used to search for the optimal p-value cutoff (Supplementary 
Table 2). 
 
 
Identifying neuroimaging traits associated with AD 
 
GWAS results for imaging traits were accessed from (https://med.sites.unc.edu/bigs2/data/). The 
IGAP 2019 AD GWAS summary statistics was accessed via NIAGADS (NG00075). We 
constructed the AD-proxy phenotype in the UK Biobank following a recent paper.23 To avoid 
sample overlap between GWASs, we inferred individuals in the UK Biobank who have undergone 
brain MRI scans and removed them from the AD-proxy GWAS. All individuals who have visited 
at least one of the UKB imaging centers were removed from the analysis. 318,773 independent 
samples remained after removing imaging samples from the data. We performed GWAS with the 
first 12 principal components,39 age, sex, genotyping array, and assessment center as covariates. 
To test if our approach to remove overlapping samples between neuroimaging GWAS and the 
AD-proxy analysis was effective, we used cross-trait LD score regression to estimate the 
intercepts between 211 imaging traits and the AD-proxy GWAS (Supplementary Figure 4).40 
BADGERS software was used to conduct the imaging trait PRS-AD association analysis.29 Meta-
analysis was conducted using the sample size-weighted approach.41  
 
 
Code availability 
 
The PUMAS software is available at (https://github.com/qlu-lab/PUMAS). 
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