
 1 

Network-based metrics of ecological memory and 1 

resilience in lake ecosystems 2 

David I. Armstrong McKay*1,2,3, James G. Dyke1,4, John A. Dearing1, 3 

C. Patrick Doncaster5, Rong Wang6 4 

1 Geography and Environmental Science, University of Southampton, Southampton, UK, 5 

SO17 1BJ (work started here) 6 

2 Stockholm Resilience Centre, Stockholm University, SE-10691 Stockholm, Sweden (current 7 

address DIAM) 8 

3 Bolin Centre for Climate Research, Stockholm University, SE-10691 Stockholm, Sweden 9 

4 Global Systems Institute, College of Life and Environmental Sciences, University of Exeter, 10 

Exeter, UK (current address JGD) 11 

5 School of Biological Sciences, University of Southampton, Southampton, UK, SO17 1BJ 12 

6 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and 13 

Limnology, Chinese Academy of Sciences, China, 210008 14 

*david.armstrongmckay@su.se 15 

Paper in review at: Royal Society Biology Letters  16 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 25, 2020. ; https://doi.org/10.1101/810762doi: bioRxiv preprint 

mailto:david.armstrongmckay@su.se
https://doi.org/10.1101/810762


 2 

Abstract 17 

Some ecosystems undergo abrupt transitions to a new regime after passing a tipping 18 

point in an exogenous stressor, for example lakes shifting from a clear to turbid ‘eutrophic’ 19 

state in response to nutrient-enrichment. Metrics-based resilience indicators have been 20 

developed as early warning signals of these shifts but have not always been reliable. 21 

Alternative approaches focus on changes in the structure and composition of an ecosystem, 22 

which can require long-term food-web observations that are typically beyond the scope of 23 

monitoring. Here we prototype a network-based algorithm for estimating ecosystem 24 

resilience, which reconstructs past ecological networks solely from palaeoecological 25 

abundance data. Resilience is estimated using local stability analysis, and eco-net energy: a 26 

neural network-based proxy for ‘ecological memory’. We test the algorithm on modelled 27 

(PCLake+) and empirical (lake Erhai) data. The metrics identify increasing diatom 28 

community instability during eutrophication in both cases, with eco-net energy revealing 29 

complex eco-memory dynamics. The concept of ecological memory opens a new dimension 30 

for understanding ecosystem resilience and regime shifts; further work is required to fully 31 

explore its drivers and implications. 32 
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1. Background 37 

The potential for stressed ecosystems to tip abruptly into a new regime has led to a 38 

proliferation of metrics attempting to quantify ecosystem resilience [1–10]. Lake 39 

eutrophication is a well-studied example of a regime shift, often with evidence of alternative 40 

stable states and hysteresis [11–13]. Eutrophication occurs when increasing nutrient loading 41 

triggers positive feedbacks, driving a rapid shift from clear to turbid conditions [14,15], with 42 

recovery to clear conditions often requiring nutrient levels reduced far below the original 43 

threshold [13]. Prior to tipping, the ecosystem experiences declining resilience, defined here 44 

as the weakening of negative relative to positive feedbacks resulting in greater sensitivity to 45 

small shocks [16]. Attempts to develop resilience indicators broadly fall into three 46 

approaches: time-series metrics, compositional analysis, and network-based. 47 

Many resilience indicators test for ‘critical slowing down’: a slowing recovery rate 48 

from perturbations and increasing variability, which can be detected in various environmental 49 

time-series [4–10]. These time-series metrics have had inconsistent success, however, as 50 

early-warning signals (EWS) of tipping points in freshwater [17] and other ecosystems [18–51 

21]. A key methodological issue is the need for prior knowledge of one response variable that 52 

captures the dynamics of the whole system. Other limitations include possible false positives 53 

or negatives (where EWS indicate an impending transition which never occurs, or is absent 54 

prior to a known transition), and sensitivity to subjective time-series analysis parameter 55 

choices [7,22,23]. These limitations are partially rectified by using multiple sensitivity-tested 56 

metrics as generic resilience indicators rather than as EWS of specific critical transitions 57 

[16,24]. Palaeorecords present additional problems, with variable temporal resolution from 58 

changing accumulation rates or compaction making robust time-series analysis challenging 59 

[25,26]. 60 

As an alternative to metric-based EWS, analysis of ecosystem composition seeks to 61 

detect changes in community functional dynamics without having to select or understand the 62 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 25, 2020. ; https://doi.org/10.1101/810762doi: bioRxiv preprint 

https://doi.org/10.1101/810762


 4 

full trophic ecology of any one species. To this end Doncaster et al. [27] quantified the 63 

compositional disorder of diatoms and chironomids from sediment cores in three Chinese 64 

lakes, where low disorder signifies highly-nested sequential compositions. Several decades 65 

prior to a critical transition, the correlation of disorder with biodiversity becomes negative and 66 

strengthens towards the tipping point. Theory and simulations suggested that nutrient loading 67 

shifted competitive balance from ‘weedy’ (weakly competitive, fast-replicating) towards 68 

‘keystone’ (strongly competitive, slow-replicating) species. This correlative approach avoids 69 

issues of variable temporal resolution, but the link with ecosystem resilience is indirect and 70 

the competition dynamics remain hypothetical. Another recent composition-based method 71 

identified negative skewness in nodal degree of diatoms as a response to increasing nutrient 72 

input into Chinese lake ecosystems [28], which is compatible with rising keystone dominance 73 

with exogenous stress. 74 

Network-based approaches perform local stability analysis on reconstructions of the 75 

lake food-webs. Kuiper et al. [29] showed that food-web data in the form of material flux 76 

descriptions can be used to reconstruct the interaction strengths between different species, 77 

which correspond to the interaction coefficients of a Lotka-Volterra ecosystem model (Figure 78 

1a). This is equivalent to a dynamical system’s Jacobian matrix, which is considered stable if 79 

the real part of the Jacobian’s eigenvalues remain negative (representing net-negative 80 

feedbacks) [29–31]. Given food-web measurements, the food-web’s local stability can be 81 

estimated from the intraspecific interaction strengths, and is closely related to the Jacobian’s 82 

dominant eigenvalue (λd) [29,32–34]. λd increases with post-perturbation recovery times from 83 

weakened net-negative feedbacks, and so tracks ecosystem resilience. This approach enabled 84 

destabilising food-web reorganisations prior to eutrophication to be tracked in the PCLake 85 

model [29].  86 

Although network-based methods depends less on temporal resolution than time-series 87 

analysis [29] and avoids reliance on a single variable, it requires gathering detailed food-web 88 
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data at regular intervals during eutrophication, a laborious [35] and often unmanageable task 89 

for real-world lakes. Nevertheless, many lakes have palaeoecological records of species 90 

abundances obtained from sediment cores. If past ecosystem interactions can be reconstructed 91 

from this data, it becomes possible to estimate past changes in ecosystem resilience. Here we 92 

prototype and test an algorithm in R [36] for reconstructing ecological networks (eco-nets) 93 

from palaeoecological data using network inference [37–40]. This technique for 94 

characterising interspecific interactions comes from microbial metagenomics, where it 95 

provides an alternative to the unreliable proxy of relative abundance correlations. Network 96 

inference instead uses multilinear regression to infer the interaction matrix of a discrete-time 97 

Lotka-Volterra ecosystem model from abundance data (Figure 1a), with nodes representing 98 

individual species or functional groups and edges their interactions, and is less dependent on 99 

regular temporal resolution [38]. 100 

We then explore ecosystem resilience using two different approaches. Firstly, we 101 

perform local stability analysis on the inferred interaction matrix with a rolling temporal 102 

window, in order to track changes in λd. We test this on two different datasets of 103 

eutrophication-induced regime shifts: output from a commonly-used lake ecosystem model 104 

(PCLake+) for a hypothetical lake on a whole-ecosystem level, and empirical community-105 

level data from lake Erhai where a critical transition was observed in 2001. For comparison, 106 

we also calculate time-series metrics (TSMs: AR1, standard deviation (SD), skewness, and 107 

kurtosis), biodiversity, and for empirical data sequential disorder-biodiversity correlation. 108 

Secondly, we develop a novel neural network-based method of resilience analysis. 109 

Analyses of Lotka-Volterra systems demonstrate how an ecosystem can retain a distributed 110 

‘memory’ of past states as a result of a process akin to unsupervised Hebbian learning in a 111 

neural network [41,42]. In Hopfield Networks, frequent correlations between neurones 112 

(nodes) lead to an increase in their connection strength (edges) – a process described 113 

colloquially as “neurons that fire together, wire together” [43–46]. Over time this allows the 114 
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emergence of distributive associative memory of training input that can be recovered when 115 

given degraded input. Power et al. [41] proposed that eco-nets experience similar dynamics, 116 

with species (nodes) that frequently co-occur developing stronger interactions (edges), 117 

allowing emergence of a distributed associative “ecological memory” (eco-memory) of past 118 

environmental forcing (training input) that acts as a stable attractor (Figure 1b). Although 119 

memory strength has no direct metric, one can calculate its energy, which is minimised at 120 

metastable points. We estimate eco-net energy, EN, by treating the interaction matrix 121 

reconstructed by our network-inference algorithm as the weight matrix [41] of a continuous 122 

Hopfield Network [43–46]. We expect low EN for eco-nets that have ‘learnt’ from stable 123 

environmental conditions, and higher EN when destabilisation shifts the eco-net away from its 124 

learned state. To test these expectations, we calculate EN for both test-cases and compare to 125 

other resilience metrics. Detailed methods and scripts are available in the Supplementary 126 

Material. 127 

2. Results and Discussion 128 

2.1. PCLake+ 129 

We first apply the algorithm to output from a default setup of PCLake+ [47], an 130 

extension of the widely-used PCLake model of lake eutrophication, as a test-bed with well-131 

known dynamics and drivers for generating realistic artificial data (with 14 functional groups 132 

representing the whole ecosystem, and phosphorus input increased along its nonlinear but 133 

non-hysteretic load-response curve to induce eutrophication- see Supplementary Material). 134 

The impact of nutrient enrichment is clearly visible in lake conditions, biodiversity, local 135 

stability (λd), and eco-net energy (EN) as three distinct phases (Figure 2a-d, left). In phase 1, 136 

λd increases shortly after input begins, in conjunction with declining EN interrupted by a 137 

temporary peak at ~50-55 years ago (ya). However, following a plateau in both EN and λd in 138 

phase 2, λd re-stabilises after a second peak (~35 ya) and EN strongly decreases. EN begins to 139 
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recover following the transition, while λd remains moderately high relative to pre-140 

eutrophication levels. This pattern indicates complex eco-memory dynamics starting decades 141 

before the transition, with destabilisation away from memorised conditions (increasing λd, i.e. 142 

weakened net-negative feedbacks) accompanied and followed by a multi-phase “relearning” 143 

process (decreasing EN) as the eco-net adapts and restructures (increasing biodiversity) in 144 

response to new conditions. Increasing the accumulation rate does not alter the overall signal 145 

but reduces the resolution of deeper features (Supplementary Figure S1), indicating this 146 

methodology is not overly sensitive to temporal resolution. 147 

2.2. Lake Erhai 148 

Lake Erhai in south-western China has undergone eutrophication after decades of 149 

nutrient-enrichment, similar to our PCLake+ scenario. Data consist of relative diatom 150 

abundances sampled at regular radioisotope-dated intervals down sediment cores [27,48]. We 151 

focus on diatoms as they are well-preserved and belong to the same trophic level, but as they 152 

form only one functional group this means that unlike PCLake+ the whole ecosystem is not 153 

directly analysed. However, we posit that the community-level diatom λd acts as a proxy for 154 

whole-ecosystem resilience, as diatoms play a key role in the trophic loops involved in 155 

eutrophication [29] and are ecologically sensitive to water quality [49,50].  156 

Although real-world data exhibits more complexity than model results, we can observe 157 

similar phases of activity to PCLake+ (Figure 2a-d, right). Phase 1 begins with nutrient-158 

enrichment starting ~60-50 ya [48]. This is reflected by a shift to negative disorder-159 

biodiversity correlation indicative of destabilisation, declining EN, and culminates with a λd 160 

peak. In phase 2 both λd and EN plateau prior to the observed transition at ~8 ya, after which 161 

EN recovers, λd slightly drops, biodiversity sharply drops, and disorder-biodiversity 162 

correlation recovers. These patterns are broadly similar to the PCLake+ results, with phase 1 163 

marked by declining EN and increasing λd, suggesting the eco-net destabilising and relearning 164 
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decades before the transition, and a recovery in EN and stable λd post-transition. This 165 

similarity suggests diatoms can act as a community-level proxy for the whole lake ecosystem. 166 

However, the λd and EN trends are not as clear during phase 1 as for PCLake+, suggesting that 167 

the data are not sufficiently resolved to fully capture this phase (unlike disorder-biodiversity 168 

correlation). There is also no post-transition EN decline in lake Erhai, which may result from 169 

slower forcing (Supplementary Figure S2) or has yet to be observed. Biodiversity increases 170 

during destabilisation in both cases, but only during phase 2 in lake Erhai. 171 

2.3. Time-series metrics comparison 172 

TSM are shown for comparison as a legacy method. As a consistently sampled model 173 

lake with constant temporal resolution, PCLake+ provides idealised conditions for observing 174 

TSM during eutrophication (Figure 2e). During phase 1 AR1, skewness, and kurtosis rapidly 175 

peak and SD begins to steadily increase, whilst in phase 2 all metrics apart from SD decline. 176 

Lake Erhai shows only early peaks in skewness and kurtosis at ~92-75 ya before phase 1, 177 

which may represent an unknown precursor event. Following this, SD steadily increases while 178 

kurtosis decreases, AR1 and skewness slightly increase during phase 1, and in phase 2 AR1 179 

stabilises while skewness declines. Both examples suggest SD consistently increases during 180 

destabilisation, but variable temporal resolution obscures this in real-world data 181 

(Supplementary Figure S1). However, due to the methodological limitations described earlier, 182 

TSM are not considered robust for lake Erhai without further sensitivity and significance 183 

testing. 184 

3. Further Development 185 

Several methodological limitations can be improved with future development. The 186 

algorithm works best with long, minimally-sparse datasets that resolve equilibrium population 187 

dynamics, but many palaeorecords do not meet these requirements. Further development will 188 

improve the algorithm’s capacity to analyse short or sparse datasets using innovative 189 
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techniques from metagenomic network inference [38]. We also assume these ecosystems fit a 190 

generalised Lotka-Volterra model, in which all abundance changes are caused by linear 191 

pairwise interspecific interactions and other processes simplified into a broad noise term. 192 

However, nonlinear interactions are expected in some ecosystems [37,51–55] and potentially 193 

allow a better representation of multiple alternative stable states [56,57], but are harder to 194 

parameterise. Future work will assess the feasibility of allowing nonlinear functional 195 

responses. The assumed model includes only biotic elements, with life-environment 196 

interactions implicit. Incorporating life-environment feedbacks explicitly would allow more 197 

realistic feedback loops critical to resilience to emerge (such as anoxia-driven phosphorus 198 

release from sediment), but the eco-net cannot simply be extended to include abiotic elements 199 

as the environment is assumed to be its training input. Possible solutions include neural 200 

networks that allow training input that is dynamic (e.g. continuous-time recurrent neural 201 

networks) and interacts with the eco-net (e.g. multi-layer or adversarial networks). 202 

4. Conclusions 203 

With refinement, our findings suggest that network-based methods can allow changes 204 

in past ecosystem resilience to be reconstructed from palaeoecological abundance datasets 205 

from various settings, and are less sensitive to data quality than time-series metrics. 206 

“Ecological memory” has only been applied to a simplified ecosystem model before now 207 

[41,42], but the development here of eco-net energy allows us to explore eco-memory in more 208 

realistic models and empirical data for the first time. Eco-memory opens a new dimension for 209 

understanding ecosystem resilience, with the formation of eco-memory potentially increasing 210 

resilience by allowing past stable eco-network states to be recovered after disruptions. Further 211 

work is required to fully understand the drivers and implications of eco-memory dynamics, 212 

and to disentangle the effects of eco-memory from other drivers of ecosystem resilience. 213 
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Figures 219 

 220 

Figure 1: Schematics illustrating: (a) how ecosystem interactions (left) are represented as an eco-

network (middle –lettered nodes represent individual species or functional groups, and edges their interactions), 

the structure of which forms an interaction matrix (right) suitable for resilience analysis (N.B. only symmetric 

interactions are shown; asymmetric interactions are common); and b) how networks can be trained using input 

(i.e. exogenous drivers; the Earth representing environmental forcing) which can be recovered when given new 

input (i.e. new drivers; white noise representing random forcing).  
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 221 

Figure 2: Results for PCLake+ (left) and lake Erhai (right), showing: (a) lake conditions (normalised 

concentrations/abundances – vegetation-zooplankton shift and increased chlorophyll in PCLake+ and increased 

keystone abundance in Erhai indicates eutrophication), (b) local instability λd, (c) eco-net energy EN, (d) 

biodiversity (inverse Simpson index) and (Erhai only) disorder-biodiversity correlation [27], and (e) normalised 

time-series metrics (TSM; for comparison only). Interpreted transition phases (1=green box, initial 

destabilisation; 2=orange, pre-transition) and observed regime shifts (red box; gradient indicates smooth non-

hysteretic transition, vertical line indicates critical transition) are marked.  
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