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Abstract

Genome graphs can represent genetic variation and sequence uncertainty.
Aligning sequences to genome graphs is key to many applications, including error
correction, genome assembly, and genotyping of variants in a pan-genome graph.
Yet, so far this step is often prohibitively slow. We present GraphAligner, a tool
for aligning long reads to genome graphs. Compared to state-of-the-art tools,
GraphAligner is 12x faster and uses 5x less memory, making it as efficient as
aligning reads to linear reference genomes. When employing GraphAligner for
error correction, we find it to be almost 3x more accurate and over 15x faster
than extant tools.

Availability: Package manager:
https://anaconda.org/bioconda/graphaligner and source code:
https://github.com/maickrau/GraphAligner

Keywords: genome graphs; sequence alignment; pan-genome; error correction;
long reads

1 Background
Graphs provide a natural way of expressing variation or uncertainty in a genome [1,

2]. They have been used for diverse applications such as genome assembly [3, 4, 5],

error correction [6, 7, 8], short tandem repeat genotyping [9], structural variation

genotyping [10] and reference-free haplotype reconstruction [11]. With the growing

usage of graphs, methods for handling graphs efficiently are becoming a crucial

requirement for many applications.

Sequence alignment is one of the most fundamental operations in bioinformatics

and necessary for a wide range of analyses. Aligning a sequence to a sequence

is a well studied problem with many highly optimized tools [12, 13, 14, 15]. In

contrast, aligning sequences to graphs is a newer field and practical tools only start

to emerge, where most of the existing tools are specialized for one purpose such as

error correction [6, 7, 8], or hybrid genome assembly [4]. The VG toolkit [16] provides

a set of general-purpose tools to work with genome graphs. Although VG is capable

of mapping long reads to graphs, it was tuned for aligning short reads, leading to

slow runtimes for long read alignment. In summary, there is presently a lack of

general-purpose tools for aligning long third-generation sequencing reads to graphs.

Given the wide range of applications, including sequence assembly, error correction,

and variant calling, and the steep decline in prices for long read sequencing, closing

this gap is critical.

Outside of the bioinformatics community, an algorithm for aligning sequences to

an arbitrary graph with unit costs was already discovered in 2000 in the context
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of hypertext searching by Navarro [17]. An important property of Navarro’s algo-

rithm is that the runtime depends only on the number of nodes and edges and

the length of the query sequence. Thus complex cyclic graphs are (asymptotically)

just as easy as simple linear graphs of the same size. Recently it was proven that

the runtime of Navarro’s algorithm is in fact optimal unless the strong exponential

time hypothesis is false [18]. In 2002, partial order alignment [19] (POA), a special

case of Navarro’s algorithm for acyclic graphs, was published for multiple sequence

alignment. Although POA is defined only for acyclic graphs, it can be extended to

cyclic graphs by unfolding cyclic components, which is the approach taken by the

VG toolkit [16] and ExpansionHunter [9]. The practical efficiency of this unfolding

depends on the read length and the graph topology and complex cyclic areas can

lead to very large unfolded graphs [20]. V-Align [20] aligns to cyclic graphs but its

runtime depends on the graph’s feedback vertex set size. Some tools use heuris-

tic approaches for aligning to de Bruijn graphs using depth-first search [6, 21, 8].

Navarro’s algorithm has recently been generalized to arbitrary costs as well [22].

Our previous work [23] combined Navarro’s graph alignment algorithm with Myers’

bit-parallel algorithm [24], leading to speedups in practice between 5x-20x, but this

algorithm is designed to compute the full dynamic programming table, making it

unsuitable for aligning many reads to a large reference graph.

In contrast, most practical tools use a seed-and-extend strategy. Seeding depends

on finding matches between the read and the graph, and necessitates indexing the

graph in some manner. Although asymptotically optimal algorithms for graph align-

ment are known, the lower bound for indexing a graph is currently unknown. K-mer

based indices have been used in many de Bruijn graph alignment tools [6, 21, 25].

The Positional Burrows-Wheeler transform [26] is a method for indexing multiple se-

quence alignments between genomes, which can be viewed as a special class of graph

genomes. Indexing variation graphs is challenging because the number of possible

paths can be exponential in the number of variants encoded. Typical approaches to

handle this problem are to index only some of the variation by limiting the indexed

paths either heuristically [16, 27, 28] or by using panels of known haplotypes [29, 30].

A recent method avoids the exponential blowup by dynamically indexing the graph

and the reads, thereby exploiting that there can be exponentially many paths in

the graphs, but not in the set of reads to be queried [31].

Contributions. Here, we provide the first algorithm for banded sequence-to-graph

alignment that scales to align noisy long reads to de Bruijn graphs of whole human

genomes. We also apply a simple minimizer [32] based seeding method which exploits

the fact that long reads almost always span simple areas of the genome, unlike short

reads which are more prone to being entirely embedded within a variation-rich area.

We describe our sequence-to-graph long read alignment tool GraphAligner.

GraphAligner is designed to work with arbitrary graphs instead of specializing for

one type of graph. We compare GraphAligner to two well-optimized tools for linear

alignment [13, 14], and to the vg toolkit [16] for aligning to variation graphs. To

show how better alignment methods improve downstream applications, we present

a pipeline for error correcting long reads based on graph alignment, which we com-

pare to existing methods based on the same principle. Although using a similar
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Table 1 Results of the linear comparison experiment. PacBio reads were aligned to the GRCh38
reference genome with minimap2, BWA mem and GraphAligner.

Aligner Aligned (bp, %) Error rate (%)
CPU-time
(HH:mm:ss) Peak memory (Gb)

Original 48 825 600 292 100 - - -
minimap2 47 669 242 462 97.6 14.1986 19:00:22 43.7
BWA mem 47 174 318 479 96.6 13.8979 1752:17:25 13.1
GraphAligner 47 129 226 576 96.5 13.6979 20:36:10 29.8

process as existing tools, the better alignment strategy leads to an order of mag-

nitude speedup and error rates around one third of the current state-of-the-art for

whole human genome data.

2 Results
2.1 Comparison to linear aligners

Regular sequence-to-sequence alignment is a special case of sequence-to-graph align-

ment, where the graph consists of a linear chain of nodes. We compare GraphAligner

to two well-optimized sequence-to-sequence aligners, minimap2 [13] and BWA [14].

We use a PacBio dataset[1] from human individual HG00733, randomly subsampled

to 15x coverage. For minimap2 and BWA, we give the GRCh38 reference genome

as-is. For GraphAligner, we first split the reference at each non-ATCG character,

and then create a graph which has each contig of the reference as a node, without

any edges. Aligning to this graph is equivalent to aligning to the linear reference.

To measure the alignment quality, we measure the amount of sequence aligned and

the error rate of the alignments.

Table 1 shows the results. There are small differences in the amount aligned

and the error rate, showing that the aligners have slightly different tradeoffs be-

tween sensitivity and specificity, but all three aligners roughly agree on the amount

aligned and the error rate. On runtime, there is a large difference between BWA and

the two other aligners, about 90x between minimap2 and BWA, and 85x between

GraphAligner and BWA. GraphAligner is slightly slower than minimap. Overall the

results show that GraphAligner is competitive with the state of the art for linear

alignment.

2.2 Variation graph

In this experiment we built a variation graph of the human chromosome 22 and

compared GraphAligner and vg [16] on it. To build the graph, we took the GRCh38

reference and variants [33] called by the Human Genome Structural Variation Con-

sortium [33], and used vg to build the graph from the reference and the variants. We

first randomly subsampled the reads[2] to 15x coverage. Then we selected the reads

by first aligning the subsampled reads to the GRCh38 reference with minimap2,

then selecting reads which have an alignment to chromosome 22 containing at least

70% of the read, and no alignments to other chromosomes.

Table 2 shows the results. vg reported all base pairs as aligned while GraphAligner

clipped the read ends when the alignment score became too poor, which resulted

in 98.9% of all base pairs being aligned. GraphAligner’s runtime and peak memory

[1]SRA accession SRX4480530
[2]SRA accession SRX4480530
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Table 2 Results of the variation graph experiment. PacBio reads were aligned to a chromosome
22 variation graph using both GraphAligner and vg.

Aligner Aligned (bp, %)
CPU-time
(HH:mm:ss) Peak memory (Gb)

Original 413 001 450 100 - -
vg index - - 0:36:43 9.3
vg map 413 001 450 100 1:34:40 3.4
GraphAligner 408 662 977 98.9 0:10:32 1.7

includes both indexing and alignment. Despite including the indexing phase, we

see that GraphAligner is almost nine times faster than vg’s mapping phase. When

including vg’s indexing as well, GraphAligner is over twelve times faster than vg.

Peak memory use is five times smaller.

2.3 Error correction

We have implemented a hybrid error correction pipeline based on sequence-to-graph

alignment. Aligning reads to a de Bruijn graph (DBG) is a method of error correct-

ing long reads from short reads [6, 7]. The idea is to build a DBG from the short

reads and then find the best alignment between the long read and a path in the

DBG. The sequence of the path can then be used as the corrected long read.

Zhang et al. [34] performed an evaluation of 16 different error correction methods.

Based on their results, we chose FMLRC [8] as a fast and accurate hybrid error

corrector for comparison. We also compare to LoRDEC [6] since our pipeline uses

the same overall idea as they do.

LoRDEC [6] builds a de Bruijn graph from the short reads, then aligns the long

reads to it using a depth-first search and uses the path sequence as the corrected

read. FMLRC [8] also aligns the reads to a graph, except instead of building one

de Bruijn graph, it uses an FM-index which can represent all de Bruijn graphs and

dynamically vary the k-mer size. FMLRC then corrects the reads in two passes,

using different k-mer sizes. Our error correction pipeline is similar to LoRDEC. Fig-

ure 1 shows the pipeline. We first self-correct the Illumina reads using Lighter [35],

then build the de Bruijn graph using BCalm2 [36], align the long reads using

GraphAligner with default parameters and finally extract the path as the corrected

read.

Lighter bcalm2

GraphAligner

Short reads Corrected short reads de Bruijn graph

Long reads
Corrected long reads

Input
Output

Figure 1 Overview of the error correction pipeline. The circles represent data and the rectangles
programs.

Due to fluctuations and biases of Illumina coverage, some genomic areas are im-

possible to correct with short reads even in principle. Our pipeline has two modes:

either we output the full reads, keeping uncorrected areas as is; or clipped reads,

which remove the uncorrected areas and split the read into multiple corrected sub-

reads, if needed. In the results, we present the full reads as “GraphAligner”, and
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the clipped reads as “GraphAligner-clip”. We similarly report “LoRDEC” as full

reads and “LoRDEC-clip” as clipped reads. FMLRC does not offer an option to

clip the reads so we report only the full reads.

To evaluate the results, we use the evaluation methodology from Zhang et al. [34].

The long reads are first corrected, and then the evaluation pipeline is run for both

the raw reads and the corrected reads. The first step of the evaluation is removing

reads shorter than 500 bp. Note that the reads are removed during the evaluation

step, that is, they are corrected in the initial correction step and different reads may

be removed in the uncorrected and corrected sets. After this, the remaining reads

are aligned to the reference genome. The alignment yields several quality metrics,

including number of aligned reads and base pairs, read N50, error rate and genomic

coverage. Here, we report error rate as given by samtools stats instead of alignment

identity. Resource consumption is measured from CPU time and peak memory use.

We use the E. coli Illumina+PacBio dataset (E. coli, called D1-P + D1-I by Zhang et

al.) and the D. melanogaster Illumina+ONT dataset (Fruit fly, called D3-O + D3-I

by Zhang et al.) from Zhang et al. [34]. In addition, we use whole human genome

PacBio Sequel[3] and Illumina[4] data from HG00733, randomly subsampled to 15x

coverage for PacBio and 30x for Illumina. We use the diploid assembly from [33]

as the ground truth to evaluate against for HG00733. We did not include LoRDEC

in the fruit fly or HG00733 experiments as the results in [34] show that FMLRC

outperforms it in both speed and accuracy. Although we use the same evaluation

method, our results are slightly different. This is due to two factors: First, Zhang et

al. use LoRDEC version 0.8 with the default parameters, while we use version 0.9

with the parameters suggested for E. coli in the LoRDEC paper [6]. Second, Zhang

et al. use FMLRC version 0.1.2 and construct the BWT with msBWT [37], while

we use version 1.0.0 and construct the BWT with RopeBWT2 [38] as recommended

by the FMLRC documentation.

Table 3 shows the results. The amount of aligned sequence is similar in all cases.

The amount of corrected sequence is lower than the original in PacBio datasets and

higher in the ONT dataset. This is consistent with the observation that insertion

errors are more common than deletions in PacBio and vice versa for ONT [39]. The

number of reads is noticably higher and the N50 is lower for the clipped modes

for both LoRDEC and GraphAligner, showing that most reads contain uncorrected

areas and clipping the reads reduces read contiguity. In addition, the fruit fly and

human experiments show that clipping the reads significantly reduces the genome

fraction covered by the reads. The clipping is more pronounced in the more complex

genomes, with the reads in the whole human genome dataset being on average

cut into four pieces, around 5% of the genome lost due to clipping and a large

reduction in read N50. We see that GraphAligner is almost 23x faster and 2.7x

more accurate than LoRDEC for E. coli. GraphAligner is over eight times faster

than FMLRC in all datasets. When not clipping reads, GraphAligner’s error rate is

slightly worse then FMLRC for E. coli (0.52% vs. 0.30%), but substantially better

for D. melanogaster (1.4% vs. 2.3%) and human (2.6% vs. 7.1%). For the human

[3]SRA accession SRX4480530
[4]SRA accessions ERR899724, ERR899725, ERR899726
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Table 3 Results of the error correction experiment. Reads shorter than 500 base pairs are discarded.
The remaining reads were aligned to the reference using minimap2 [13] and the statistics were given
by samtools [40] stats, except N50 which is calculated by a script from Zhang et al [34] and resource
use which are measured by “/usr/bin/time -v”.

Dataset Method # Reads
Bases
(Mbp)

Aligned

reads
(%)

Aligned

bases
(%)

N50
(bp)

Genome
fraction
(%)

Error
rate
(%)

CPU time
(hh:mm:ss)

Peak
memory

(GB)
E. coli Original 85460 748.0 97.0 92.0 13990 100 13.1237 - -
PacBio LoRDEC 85316 716.5 97.9 92.9 13484 100 1.3902 10:11:28 5.0

LoRDEC-clip 129754 654.5 99.9 99.8 8206 100 0.0881 10:11:28 5.0
FMRLC 85260 706.5 97.7 94.8 13364 100 0.3016 4:16:43 2.6
GraphAligner 85281 710.8 97.7 93.8 13415 100 0.5186 0:26:37 5.8
GraphAligner-clip 91901 673.2 99.8 99.8 12133 100 0.0240 0:26:37 5.8

Fruit fly Original 642255 4609.5 84.4 82.5 11956 98.77 16.1650 - -
ONT FMRLC 641956 4646.9 89.6 85.1 12087 98.62 2.3250 65:17:52 9.2

GraphAligner 640466 4651.0 90.5 85.5 12108 98.57 1.4031 7:52:38 6.9
GraphAligner-clip 941012 4164.7 99.3 94.4 6957 96.97 0.6940 7:52:38 6.9

HG00733 Original 2394990 48801.0 95.6 92.8 33109 95.27 13.5384 - -
PacBio FMRLC 2392533 48229.9 98.3 92.7 32823 95.19 7.1210 2222:13:44 234.5

GraphAligner 2388573 48165.4 99.4 94.7 32870 94.83 2.6227 140:34:47 46.2
GraphAligner-clip 10000727 44153.4 99.7 98.4 7097 90.82 1.0068 140:34:47 46.2

genome HG00733, GraphAligner hence produces almost three times better error

rates while the runtime is over 15x times faster.

Our pipeline is a large improvement in runtime over the state-of-the-art. The error

rates are competitive for simpler genomes and significantly better for more complex

genomes. We hypothesize that the two-pass method used by FMLRC can in principle

enable better correction than a single k-mer size graph, but FMLRC’s performance

with the larger genomes is limited by their alignment method, while GraphAligner

can handle the more complex genomes. When using the clipped mode, that is,

when only considering parts of the reads that have been corrected, the accuracy

in the corrected areas can approach or exceed the accuracy of short reads. This

emphasizes the value of this clipped mode to users. The main source of errors are

in fact uncorrected areas without sufficient short read coverage.

3 Discussion
We have presented GraphAligner, a tool for aligning long reads to sequence graphs.

Although GraphAligner is designed for graphs, it can also align to trivial linear

graphs, and the performance is comparable to state of the art linear mappers. How-

ever, for linear alignment we recommend using linear mappers due to the different

data formats used for graph alignment (GAM[16] instead of BAM[40]), which stan-

dard downstream tools normally do not accept. In non-trivial variation graphs,

GraphAligner outperforms vg by a factor of 12 in runtime.

GraphAligner is presently geared towards aligning long reads, which was our focus

due to the absence of methods for this. The current seeding strategy can system-

atically fail to handle short reads in variation-dense regions. However, the core

algorithmic components of GraphAligner could likely be used to also align short

reads. To this end, we plan to integrate GraphAligner with PSI [31], a novel seed-

ing approach that we developed recently to facilitate efficient and full-sensitivity

seed finding across node boundaries.

As sequence alignment is a very fundamental operation and long reads are rapidly

becoming more affordable to produce, we anticipate that GraphAligner will be used
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widely and will improve the performance and runtime of many downstream appli-

cations. Here, we have shown one example of this with our error correction experi-

ment, where our pipeline improves on the state of the art and enables correcting long

reads in mammalian scale genomes to high accuracy. It would be possible to com-

bine GraphAligner’s alignment with the FM-index based graph as used by FMLRC,

which might yield an error correction pipeline as fast as and more accurate than our

current results, which is an interesting avenue for future developments. Other appli-

cations such as graph-based hybrid genome assembly also align reads to a graph, ei-

ther explicitly [4] or by reducing the problem to sequence-to-sequence alignment [5].

It is likely that improved alignment methods will lead to improved results here as

well, and we are currently investigating this further. Lastly, GraphAligner might en-

able scaling the haplotype-resolved genome assembly method that we demonstrated

for yeast genomes [11] to mammalian genomes.

4 Conclusions
We have implemented the sequence-to-graph alignment tool GraphAligner. As

genome graphs become more common, efficient methods for aligning reads to

genome graphs become more important. GraphAligner is competitive with well-

optimized linear aligners when aligning to a linear genome, and outperforms exist-

ing graph alignment tools 12x in runtime. We have implemented a long read error

correction pipeline using GraphAligner, and show that the method outperforms the

current state-of-the-art, with an almost 3x improvement in error rate and over 15x

improvement in runtime for whole human genomes.

5 Methods
Figure 2 shows an overview of GraphAligner. One IO thread reads sequences, which

are passed to an arbitrary number of worker threads. Each worker thread aligns

reads one at a time. The alignment algorithm uses a seed-and-extend method. Seeds

are found by matching the read with the node sequences, and then extended in-

dependently of each others with a bit-parallel banded dynamic programming algo-

rithm. Finally the primary and supplementary alignments are selected and passed

to a second IO thread, which writes the results to a file.

5.1 Data formats

We designed GraphAligner to use the most common file formats, and specifically be

interoperable with vg [16] to leverage existing graph-based operations and pipelines.

Graphs are inputed either in the binary vg graph format [16] or the human-readable

graphical fragment assembly (gfa) format [41]. By allowing gfa, GraphAligner is

moreover able to handle graphs with overlapping node labels, which is presently

not supported by the vg file format. Reads are inputed in fasta or fastq, and op-

tionally gzip-compressed. Alignments are outputed in vg’s binary gam format, a

generalization of SAM/BAM format [40] to graphs. Alignments can also be out-

puted in an equivalent human-readable JSON format.

5.2 Graph model

GraphAligner inputs bidirected graphs [16], which are capable of representing

genome graphs commonly used in bioinformatics, including de Bruijn graphs [42,
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...ATCAGAATACACGTACGTACA...

Seed hits

Extend seeds
with banded DP

Select primary

Alignment
paths

Read...ATCAGAATACACGTACGTACA...

Figure 2 Overview of GraphAligner. Reads are aligned independently of the other reads. Seed
hits are found by matching the sequence of the read to sequences inside nodes (small blue and
green bars). Seed hits are then extended independently of each other (small dotted boxes) with a
banded dynamic programming algorithm, using Viterbi’s algorithm to decide when to clip the
alignment (red X). Each seed hit can result in an alignment (blue and green paths). Alignments
that overlap with an another, larger alignment are classified as secondary. Secondary alignments
are discarded by default (red X) but can be included in the output with an optional parameter.
The output is then written to a file either as alignments or corrected reads.
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CTAGC

AGT

GCTAGGCGC

GCGC

4

11

GCTAGGCGC

ACTGCGCTAGTCAT

GCGCTAGTCATTCAGACGTTGACG

ACTGCGCTAGTCAT

ATGACTAGCGC

CGTCAACGTCTGAATGACTAGCGC

GCGC TAGTCAT TCAGACGTTGACG

Figure 3 Converting a bidirected graph with variable edge overlaps to an alignment graph. Top:
a bidirected graph with three nodes. The edges are labeled by their overlap. The red colored bars
represent the same sequence, which should not be duplicated during traversal. Similarly, the
orange colored bars represent the same sequence. Bottom: the alignment graph created from the
top graph. The colors of the base pairs show how they match between the two graphs, with each
sequence in the original graph represented by the same color in the alignment graph twice, once
for the forward strand and once for the reverse complement. Similarly to the bidirected graph, the
red and orange bars represent the same sequences. There are two subgraphs, one representing the
forward traversal (top) and one the backward traversal (bottom) with reverse complemented node
labels. Each edge introduces a breakpoint in the target node, splitting the node at the boundary
of the overlap. The alignment graph then connects the ends of the overlap such that the
overlapping sequence is only traversed once.

36], assembly graphs [43, 3, 44], pan-genomes [1], and variation graphs [2, 16]. Bidi-

rected graphs model the double-stranded nature of DNA. The sequence is stored

in the nodes, which can be traversed in two directions; either left to right with the

node label, or right to left with the reverse complement of the label. The edges con-

nect to either the left end or the right end of a node. A path through a bidirected

graph enters a node from one end, traverses through the node, and then leaves via

an edge in the opposite end.

The bidirected graph is first converted into a directed node-labeled graph which

we call the alignment graph, with a mapping between the bidirected graph and the

alignment graph. The read is then aligned to the alignment graph, and the mapping

is used to convert the alignment back into the bidirected graph.

The bidirected graph allows an overlap between edges, representing for example

overlapping k − 1-mers of a de Bruijn graph, or the read overlap in an assembly

graph. Here, we consider the edges to be labeled by the number of overlapping

nucleotides. When traversing via an edge with an overlap of n nucleotides, the path

must skip the first n nucleotides of the target node. The overlaps can also vary

between edges. Edge overlaps are handled by chopping the node into pieces at each

overlap boundary. The alignment graph then has edges connecting the end of a

node to the chopped boundary of the neighbor. This allows a path that ends at one

node to enter the neighboring node without traversing the overlap twice. Figure 3

shows an example of the edge chopping for edges with variable overlaps. In addition

to this, nodes longer than 64 base pairs will be chopped to multiple nodes, each

containing up to 64 base pairs.
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A node in the bidirected graph with l nucleotides adds 2d l
64e nodes to the align-

ment graph, d l
64e for the forward traversal and d l

64e for the backward traversal,

and each edge can split up to two nodes and add up to four edges in the alignment

graph. The number of nucleotides in the alignment graph is exactly twice the num-

ber of nucleotides in the bidirected graph. Therefore the transformation produces

an alignment graph whose size is within a constant factor of the bidirected graph.

Both the read and the graph are allowed to contain ambiguous nucleotides (B, R,

N, etc.) The alignment extension considers two ambiguous nucleotides a match if

any of the possible nucleotides match; eg, R (A or G) matches W (A or T) because

both of them could be A, but R (A or G) does not match Y (C or T) because

there is no overlap. Only the non-ambiguous characters A, T, C and G are used for

seeding.

5.3 Seeding

The first part of the seed-and-extend algorithm is finding seed hits. Here, we define

seeds as exact matches between a read and a node sequence, but other definitions

exist in the literature.

Typical alignment approaches [13] chain seeds to find the approximate position

of the alignments. For linear sequences, seed chaining is solved with the co-linear

chaining problem that exploits the fact that calculating the distance between seeds

in a linear sequence is trivial. However, for graphs, the distance between seeds

can be ambiguous as there are multiple paths connecting the seeds, and finding the

distance in a graph is computationally more expensive than in a linear sequence [45].

For these reasons, GraphAligner uses a different approach: Seeds are not chained,

but instead each seed is extended separately, starting with the most promising

seed. The alignment algorithm used for this extension step decides which paths to

explore and when to end the alignment (detailed in Section 5.4). Seeds included

in alignments from previously explored seeds are skipped. This strategy leads to

relaxed requirements for the seeding algorithm; instead of requiring seeds along the

entire valid alignment, it is enough to find at least one valid seed per read from

which to extend.

GraphAligner uses a simple method for transforming text matching in graphs to

text matching in strings. Instead of matching reads to paths in the graph, reads are

matched to node sequences in the graph. The nodes can be treated as a collection of

strings which enables using efficient string matching algorithms. Figure 4 shows an

example of matching a read to nodes in a graph. Note that we use the node sequences

from the original bidirected graph, not from the directed alignment graph. Reverse

complement matches are also allowed.

This approach finds only seed hits which are entirely contained in a node. For the

special case of de Bruijn graphs, we hence finds hits of length up to k due to the

overlap between the nodes. However, in general it misses seeds which cross a node

boundary. We have noticed that in practice this is not an important limitation for

long reads, since the read almost always crosses linear parts of the graph which

can be used for finding at least one seed hit. For example, in the chromosome 22

variation graph experiment, 99.8% of reads had at least one seed hit and 99.99% of

the base pairs were contained in a read with at least one seed hit.
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Read

Figure 4 Seeding. Top: A graph with four nodes. Middle: The node sequences are extracted from
the nodes. The arrows represent a mapping between the strings and nodes. Bottom: A read.
Highlighted in red: Matches between the read and a string are transformed into a match inside a
node using the mapping.

The default method for finding matches is by using minimizers [32]. A window

of w base pairs is slid through the text and the smallest k-mers of each window

according to a hash function are picked as the minimizers. For the seeding string,

the minimizers are kept in a hash table that keeps the count and locations for each k-

mer. For the read, the minimizers are further split into c-base pair chunks, and the n

least frequently appearing k-mers in each chunk are kept as seed hits. The chunking

ensures that there are seed hits along the entire read, and the least frequently

appearing k-mers are more likely to be correct seeds. Figure 5 shows this process.

The default values use k = 19, w = 30, n = 5 and c = 100. These values were chosen

empirically after aligning reads to a whole human genome variation graph with

different parameter sets. The index is implemented with succinct data structures

from the SDSL library [46] and minimal perfect hashing from BBHash [47].

In addition to the built-in seeding methods, seeds can be inputed from a file,

allowing an arbitrary external method to be used for seeding. The seeds must then

be provided in GAM format [16], containing a position in the read, a position in the

graph and a match length. The match length is only used for deciding an ordering

for the seeds, and does not need to actually correspond to the length of the match.

A heuristic method is used to decide which seeds are extended. Starting from the

least frequent seed hit, the alignment is extended as far as possible. Then, for each

more frequent seed, if the seed is inside a part of the read which has already been

aligned, the seed is discarded. There is an optional switch to extend those seeds as

well, which is off by default.

Finally, GraphAligner has a mode for aligning without seeds. In this case, the ex-

tension algorithm is initialized with the entire first row of the dynamic programming

table being considered and then proceeding as usual (see next section for details).

In this way, the alignment algorithm would implicitly scan the whole graph. The

runtime is dependent on the graph size, so this mode is only practical for graphs

up to a few million base pairs in size.
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2,31,2,3
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1
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Read

Selected minimizer hits

All minimizer hits

Figure 5 Minimizer seed selection. The read is represented by the thick black line and the
minimizer hits are represented by the small colored lines. The numbers above a minimizer
represent positions in the graph that match the minimizer. The frequency of a minimizer is the
count of positions in the graph that match the minimizer. The read is divided into chunks of up
to c base pairs (dotted lines), and minimizers are assigned into the chunks according to their
position in the read. In each chunk, n (here n = 3) minimizer matches are selected from the least
frequent minimizers, with ties broken arbitrarily. The thin black lines show how the selected
minimizers correspond to the minimizer hits.

5.4 Extension

GraphAligner uses a dynamic programming (DP) algorithm to extend the seeds.

The starting point of the DP is the well known Needleman-Wunsch algorithm for

sequence alignment [48]. This algorithm has been generalized to sequence-to-graph

alignment by Navarro [17]. In a previous work [23] we further generalized Myers’

bit-parallel method [24] to sequence-to-graph alignment to improve the runtime.

In short, the algorithm calculates a DP matrix whose scores describe the edit

distance of an alignment ending at a specific position in the read and a specific

position in the graph. The calculation proceeds in a sliced manner, first calculating

a horizontal slice of the topmost 64 rows, then calculating the next topmost slice

and so on. For details on how to calculate the DP matrix for graphs in a bit-

parallel manner, we refer the reader to [23]. In the following focus on describing

the extensions over this previous work that were necessary to make GraphAligner

scale to large graphs: first, a faster algorithm for merging bitvectors; second, how to

apply banded alignment [49] to graphs, reducing the area in the DP matrix which

needs to be calculated and greatly reducing runtime and memory use; and third,

how to efficiently store a partial DP matrix of a graph.

5.5 Bit-parallel operations

The DP extension algorithm requires merging bitvectors at nodes with an in-degree

of at least two. In our previous work [23] we described an O(logw) algorithm for

merging two bitvectors. We have refined this operation further and created an al-

gorithm which is much faster in practice but with a theoretically slower runtime

of O(w). In practice, the O(w) algorithm takes on average around 50 instructions

per merge, while the O(logw) algorithm takes on average around 300 instructions

per merge for 64-bit bitvectors. The code and detailed explanation of the merging

algorithm is in the supplementary material.
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Figure 6 Left: regular banded alignment with b = 3. The reference is on top and the query on
the left. The gray cells are inside the band and are calculated. The blue line shows the traceback
of the optimal alignment. Right: score based banding with b = 1. The reference is on top and the
query on the left. The gray cells are inside the band and the blue line is the traceback. The red
circled cells are the minimum for each row, which are discovered during the calculation of the
matrix and define whether a cell is inside the band or not; a cell is inside the band if its score is
within b of the minimum score in the same row. The cells with a number on a white background
are calculated to discover the end of the band, but they are not inside the band and are ignored
when calculating the next row. The band can wander around the DP matrix and change size,
automatically spreading wider in high error areas and narrower in low error areas. Note that the
score based banding parameter is 1 in comparison to 3 in the regular banding to the left. The
implementation uses a coarser band of 64 x 64 blocks instead of individual cells.

5.6 Banded alignment on graphs

In sequence-to-sequence alignment, banded alignment [49, 50] is a technique for

speeding up the alignment while guaranteeing that the optimal alignment is still

found as long as the number of errors is small. The idea is that given a start

position of the alignment and a maximum edit distance, a diagonal parallelogram is

selected, and the DP matrix is calculated only inside the parallelogram [50]. Given a

banding parameter b, the width of the parallelogram is 2b and the optimal alignment

is guaranteed to be found if it has at most b errors. The runtime of the alignment

no longer depends on the size of the reference, leading to a large speedup.

The parallelogram technique cannot be used in graphs due to the non-linear struc-

ture. At each fork, the parallelogram should continue to both paths. This would

mean that the size of the band could grow very large and the bookkeeping involved

in tracking the band would introduce heavy overhead, possibly exponential to the

size of the graph.

Instead we introduce a novel dynamic banding approach based on the scores in

the DP matrix. The principle is that for each row, we define a cell to be inside

the band if its score is within b of the minimum score for that row. This handles

arbitrary graph topologies without any extra bookkeeping or special cases. Figure

6 shows an example. Since the band depends on the minimum score in a row, we do

not initially know which parts of the DP matrix are included in the band. Instead,

we “discover” the minimum score and the edges of the band as we calculate the DP

matrix.

Figure 7 shows how the dynamic score-based banding handles different topological

features. At each fork, the band spreads to all out-neighbors. This explores the

different paths the alignment could take, while the score comparison implicitly limits

how far the exploration proceeds.
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D
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A B C D E

Figure 7 Dynamic score-based banding applied on a graph. Top: an alignment graph. Bottom:
The DP matrix for aligning a read to the above graph. The arrows show the correspondence
between nodes in the graph and columns in the DP matrix. The dotted lines separate the nodes.
The gray area represents parts of the DP matrix which are calculated, and the parts in the white
area are not calculated. At each fork, the band spreads to all out-neighbors. The score-based
banding implicitly limits the exploration of the alternate paths; as the scores in the alternate paths
become worse than the optimal path, the explored part shrinks until finally the exploration stops
completely. The blue line shows the backtrace path.

Due to the bitvector-based calculation, the implementation is slightly different

from the theoretical description above. The band is defined over blocks in the DP

matrix (see Figure 9) instead of individual cells in the DP matrix. In addition, a

block’s minimum score is compared to the minimum score in the last row of a 64-row

slice.

Since b represents a score difference, the score guarantee is now stronger than in

the linear case. The optimal alignment is found as long as the optimal alignment’s

score at any row is within b of the minimum score of that row. This trivially includes

the case that the optimal alignment has b errors.

However, the size of the band is no longer bounded by b. This means that the score-

based banding can lead to an impractically large band in certain cases. Figure 8

shows a subgraph of a human whole genome de Bruijn graph. In this case, including

all cells with a low score difference will contain a very large part of the subgraph,

increasing both runtime and memory use. To handle these cases, we introduce a

second banding parameter, the tangle effort C. This determines how much effort

the DP extension spends in tangled areas of the graph. As we calculate the DP

matrix, we keep track of how many cells have been calculated in the current slice.

Once this number grows above C, we stop calculating the current slice and move
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Figure 8 A tangled subgraph of a whole human genome de Bruijn graph. Visualized with
Bandage [51].

to the next slice. This bounds the runtime in tangled regions. However, this is a

heuristic method which depends on the assumption that the correct path will be

calculated before false positive paths.

In our previous work [23] we used the minimum changed value to decide the

order in which we calculate the DP matrix. If the parameter C is not given, the

DP extension uses the minimum changed value as described in the earlier work.

However, if the parameter C is given, we use a different order, the minimum changed

priority value of a cell to decide the order. We define the priority value of a cell

based on the observed error rate of the best alignment so far. With an error rate

e, a DP cell at row m with a score of k has a priority value of k
e −m, or 64k −m

if e ≤ 1
64 . When recalculating a column, the changed priority value of a cell is the

priority value of a cell in that column which changed, and the minimum changed

priority value of a column is the minimum of the changed priority values. The

intuition is that the priority value of a cell describes “how good” the alignment

at a cell is; a value of 0 means as good as the best alignment so far, negative is

better than that and positive worse than that. The minimum changed priority value

is essentially a greedy heuristic for exploring the most promising paths first. The

result is that the minimum changed priority value leads to a higher probability

of correctly aligning through a tangle than the minimum changed value when the

tangle effort is limited. Without a limit on the tangle effort, using the minimum

changed priority value would lead to the scores eventually converging to the same

values as the minimum changed value, but the worst case runtime bounds are worse

than for the minimum changed value.

5.7 Storing a partial DP matrix

In sequence-to-sequence alignment, the banded DP matrix can efficiently be stored

as a two-dimensional matrix with 2b diagonals, where b is the width of the band.

However in sequence-to-graph alignment, the banded matrix cannot be stored con-

tiguously due to the non-linear nature of graphs. We conceptually treat the DP
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64

up to 64

Figure 9 Sparse storage of the DP matrix. Each node is stored in blocks of 64 rows and up to 64
columns. The scores of the corner cells (solid black) are stored explicitly, using 4 bytes per cell.
The border cells (gray) are stored with a score difference, using 2 bits per cell. The middle cells
(white) are not stored.

matrix as a sparse three-dimensional matrix, with one dimension for node ID, one

for node offset and one for read offset.

The implementation stores the DP matrix as a hash table from node IDs to a

sparse representation of the alignment between a substring of the read and the

sequence of a node. The sparse representation explicitly stores scores at the “bot-

tom corners”, and the score differences between the left, right, and bottom “border

cells”. Figure 9 shows an example of this. The middle cells are not stored at all.

Instead, the explicitly stored cells allow recalculating the middle cells when needed.

This only happens when recalculating cyclic areas, which requires recalculating the

middle cells anyway; and during the backtrace, which requires recalculating only

the path taken by the backtrace. The sparse representation requires 56 bytes per

node, plus memory overhead from the hash table, while using the same data rep-

resentation that the bit-parallel calculation uses and having no runtime overhead

from compression or conversion between different formats. For comparison, the in-

formation theoretic lower bound for storing all cells in the DP matrix for one node

with optimal compression is log2 364∗64

8 ≈ 812 bytes, and storing only the border cells

is log2 364+64+62

8 ≈ 38 bytes.

5.8 Partial alignments

During alignment, we use Viterbi’s algorithm [52] to estimate the correctness at each

slice boundary. The observations of the algorithm are the minimum scores at the

end of each slice. The two hidden states are correctly aligned and wrongly aligned.

We expect that the correctly aligned state outputs an error rate of 20% and the

wrongly aligned an error rate of 50%. These error rates were selected empirically by

aligning Oxford Nanopore reads to either the correct or the wrong genomic position.

Given the Viterbi estimate, we define a slice as guaranteed correct as slices where the

backtrace for the wrong state is from the correct state. We also define guaranteed

wrong slices where the backtrace for the correct state is from the wrong state.

We use the Viterbi estimate to vary the banding parameters. We use two param-

eters, an initial banding parameter b and a ramp banding parameter B > b. Once

the probability of the wrongly aligned state is higher than the probability of the

correctly aligned state, we backtrace to the last guaranteed correct slice, switch to
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the higher ramp banding parameter, and re-align until we have reached the original

slice.

We also use the Viterbi estimate to end the alignment. Once we have reached a

guaranteed wrong state, the extension can no longer produce anything useful. In

this case, we backtrace to the last correct slice and return the partial alignment of

the read up to that position.

After extending the seed hits, we are left with a list of partial alignments. We

then select a non-overlapping subset of primary and supplementary alignments in a

heuristic manner. We greedily pick alignments from longest to shortest, and include

an alignment as long as it does not overlap with a previously picked alignment. The

primary and supplementary alignments are then written as output. The overlapping

alignments are considered secondary and discarded by default, with an optional

switch to output secondary alignments as well.

5.9 Parallelism

GraphAligner uses a trivial parallelization method by giving each read to a separate

thread. Two IO threads handle disk access, and an arbitrary number of worker

threads align. One IO thread reads the input reads from a file, and passes them to

a single-producer multiple-consumer queue. Each worker thread then takes reads

from the queue one at a time and aligns them. Once a worker thread has finished

processing a read, it outputs the result into a multiple-producer single-consumer

queue. This is then read by the second IO thread which writes the results to a file.

The alignment of individual reads is not parallelized.

5.10 Experimental setup

All experiments were ran on a computing server with 48 Intel(R) Xeon(R) E7-8857

v2 CPUs and 1.5Tb of RAM. Every program was given 40 threads in the command

line invocation. Runtime and memory use was measured with “/usr/bin/time -v”

in all experiments.

In the linear comparison experiment, we ran minimap2 with the command “min-

imap2 -x map-pb -a -t 40”, and BWA with “bwa index” and “bwa mem -x pacbio

-t 40”, both corresponding to the recommended parameters for PacBio reads and

40 threads. We ran GraphAligner with “GraphAligner -t 40”, using 40 threads.

We used minimap2 version 2.17-r941, BWA version 0.7.17-r1188 and GraphAligner

version 1.0.9. The alignment error rates for minimap2 and BWA measured using

“samtools stats”. For GraphAligner, the error rate was measured from the output

sequence and edit distance fields.

In the variation graph experiment, we “chopped” the graph we gave vg as sug-

gested in the vg documentation, splitting nodes into sub-nodes of at most 32 base

pairs. For GraphAligner, we did not chop the graph, and kept the long nodes intact.

This is due to the seeding strategy (see Section 5.3), which only finds seeds totally

contained inside a node. We ran GraphAligner with parameters “GraphAligner -t

40”, using 40 threads. For vg [16], we first indexed the graph with the command

“vg index -t 40 -x graph.xg -g graph.gcsa” using 40 threads, and then aligned with

the command “vg map -m long -t 40” as suggested for long read alignment and

using 40 threads. We used vg version 1.19.0 and GraphAligner version 1.0.9.
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23. Rautiainen, M., Mäkinen, V., Marschall, T.: Bit-parallel sequence-to-graph alignment. Bioinformatics (2019).

doi:10.1093/bioinformatics/btz162. http://oup.prod.sis.lan/bioinformatics/advance-article-

pdf/doi/10.1093/bioinformatics/btz162/28492158/btz162.pdf

24. Myers, G.: A fast bit-vector algorithm for approximate string matching based on dynamic programming. Journal

of the ACM (JACM) 46(3), 395–415 (1999)

25. Liu, B., Guo, H., Brudno, M., Wang, Y.: debga: read alignment with de bruijn graph-based seed and extension.

Bioinformatics 32(21), 3224–3232 (2016)

26. Durbin, R.: Efficient haplotype matching and storage using the positional burrows–wheeler transform (pbwt).

Bioinformatics 30(9), 1266–1272 (2014)
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