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Abstract10

Several homeostatic mechanisms enable the brain to maintain desired levels of neuronal ac-11

tivity. One of these, homeostatic structural plasticity, has been reported to restore activity in net-12

works disrupted by peripheral lesions by altering their neuronal connectivity. While multiple13

lesion experiments have studied the changes in neurite morphology that underlie modifications14

of synapses in these networks, the underlying mechanisms that drive these changes are yet to15

be explained. Evidence suggests that neuronal activity modulates neurite morphology and may16

stimulate neurites to selective sprout or retract to restore network activity levels. We developed17

a new spiking network model, simulations of which accurately reproduce network rewiring after18

peripheral lesions as reported in experiments, to study these activity dependent growth regimes of19

neurites. To ensure that our simulations closely resemble the behaviour of networks in the brain,20

we deafferent a biologically realistic network model that exhibits low frequency Asynchronous21

Irregular (AI) activity as observed in cerebral cortex.22

Our simulation results indicate that the re-establishment of activity in neurons both within and23

outside the deprived region, the Lesion Projection Zone (LPZ), requires opposite activity depen-24

dent growth rules for excitatory and inhibitory post-synaptic elements. Analysis of these growth25

regimes indicates that they also contribute to the maintenance of activity levels in individual neu-26

rons. Furthermore, in our model, the directional formation of synapses that is observed in exper-27

iments requires that pre-synaptic excitatory and inhibitory elements also follow opposite growth28

rules. Lastly, we observe that our proposed model of homeostatic structural plasticity and the in-29

hibitory synaptic plasticity mechanism that also balances our AI network are both necessary for30

successful rewiring of the network.31
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1 Introduction49

Multiple plasticity mechanisms act simultaneously and at differing time scales on neuronal net-50

works in the brain. Whilst synaptic plasticity is limited to the changes in efficacy of pre-existing51

synapses, structural plasticity includes the formation and removal of whole neurites and synapses.52

Thus, structural plasticity can cause major changes in network function through alterations in con-53

nectivity. Along with confirmation of structural plasticity in the adult brain [Kno+02; Lee+05;54

MNS06; May11], recent work has also shown that axonal boutons and branches [De +06; Ste+06;55

GGC07; Mar+10; Che+11; Mar+14], and both inhibitory [Che+12; Vil+16] and excitatory dendritic56

structures [Tra+02; Hol+05] are highly dynamic even in physiological networks.57

Stability in spite of such continuous plasticity requires homeostatic forms of structural plastic-58

ity. A multitude of lesion experiments provide evidence for homeostatic structural plasticity [Ras82;59

WC84; All+91; HS91; Pon+91; Raj+93; DG94; DG95; Ros+95; Sal+95; FTK98; SK15]. A common60

feature observed in these studies is the substantial network reorganisation that follows deafferenta-61

tion. Recent time-lapse imaging studies of neurites in the cortex during the rewiring process show62

that both axonal [Yam+09; Mar+10; Che+11] and dendritic structures display increased turnover63

rates [Tra+02; HS05; Kec+08; Che+11] in and around the area deafferented by the peripheral le-64

sion, the LPZ. Specifically, while excitatory neurons outside the LPZ sprout new axonal collater-65

als into the LPZ, inhibitory neurons inside the LPZ extend new axons outwards [Mar+10]. Along66

with an increased excitatory dendritic spine gain [Kec+08] and a marked loss of inhibitory shaft67

synapses [Kec+11; Che+12] in the LPZ, the rewiring of synapses in the network successfully restores68

activity to deprived LPZ neurons in many cases.69

Access to such data and recent advances in simulation technology have enabled computational70

modelling of activity dependent structural plasticity [BVW09; Deg+12; BO13; BO14; BSO14a; BSO14b;71

OB17]. In their seminal work, Butz and van Ooyen introduced the Model of Structural Plastic-72

ity (MSP) framework [BVW09]. They demonstrated its utility by simulating a peripheral lesioning73

study to explore the activity dependent growth rules of neurites [BO13; BO14]. Their analysis sug-74

gests that the restoration of activity could only be caused by the experimentally noted increase in75

excitatory lateral projections into the LPZ if dendritic elements sprouted at a lower level of activity76

than their axonal counterparts. The MSP framework has since been partially implemented in the77

NEST simulator [Dia+16] and is an important tool for the computational modelling of structural78

plasticity [GR18; LGR18].79

While investigating the capacity of simplified cortical balanced AI spiking neural networks [Vog+11]80

to store and recall associative memories [Sin+15], we wondered how deafferentation and subsequent81

connectivity updates that accompany the network repair process would affect its performance. Since82

the peripheral lesion model proposed by Butz and van Ooyen [BO13] was not based on a balanced83

cortical network model with biologically realistic AI activity, their hypothesised growth rules did84

not elicit repair in our simulations. Additionally, while providing salient testable predictions, the85

original MSP growth rules have specifically been developed for excitatory neurites only—they do86

not provide activity dependent growth rules for inhibitory neurites, nor do they reproduce the ex-87

perimentally observed outgrowth of inhibitory axons from the LPZ. A complete, general computa-88

tional model of peripheral lesioning in cortical networks is therefore still lacking.89

Here, we present a novel computational model of peripheral lesioning and recovery in a sim-90

plified cortical spiking neural network with biologically realistic characteristics. In its physiological91

state, our network model is balanced by inhibitory Spike Timing Dependent Plasticity (STDP) so92

that it exhibits a low frequency AI spiking state similar to the mammalian cortex [Vog+11]. By93

deafferenting this network and reproducing a course of repair as reported in experimental work, we94

derive new independent activity dependent growth rules for all neurites—excitatory and inhibitory,95

pre-synaptic and post-synaptic.These growth rules result in the ingrowth of excitatory projections96

into and the outgrowth of inhibitory projections from the deafferented area that is observed in exper-97

iments. Although deduced from network simulations, we find that our growth rules also contribute98

to the stability of individual neurons by re-establishing their balance between excitation and inhibi-99

tion (E-I balance). Furthermore, we show that both homeostatic processes in our model—synaptic100

plasticity and structural plasticity—are necessary for repair. Our model provides a new platform to101

study the structural and functional consequences of peripheral lesions in cortical networks.102

2 Results103

2.1 A new model of recovery in simplified cortical AI networks after peripheral104

lesions105

Our network model consists of excitatory (E) and inhibitory (I) conductance based point neuron106

populations [MBG04] distributed in a continuous two-dimensional toroidal grid. Neurons in the107
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Figure 1. Overview of the model: (a) Excitatory (E) and Inhibitory (I) neurons (NE = 4NI (see Table 3)) are
initially connected via synapses with a connection probability of (p = 0.02). All synapses (EE, EI, II), other
than IE synapses, which are modulated by inhibitory spike-timing dependent plasticity, are static with
conductances gEE,gEI,gII, respectively. All synapse sets are modifiable by the structural plasticity
mechanism. External Poisson spike stimuli are provided to all excitatory and inhibitory neurons via static
synapses with conductances gEext and gIInh, respectively. To simulate deafferentation, the subset of these
synapses that project onto neurons in the Lesion Projection Zone (LPZ) (represented by dashed lines in the
figure) are disconnected. (b) Spatial classification of neurons in relation to the LPZ: LPZ C (centre of LPZ)
consists of 2.5% of the neuronal population; LPZ B (inner border of LPZ) consists of 2.5% of the neuronal
population; Peri-LPZ (outer border of LPZ) consists of 5% of the neuronal population; Other neurons consist
of the remaining 90% of the neuronal population. (Figure not to scale)

network are connected via synapses to simulate a simplified cortical AI network balanced by in-108

hibitory STDP [Vog+11] (Figure 1a). Apart from inhibitory synapses projecting from the inhibitory109

neurons to the excitatory ones (IE synapses), whose weights are modified by Vogels-Sprekeler sym-110

metric inhibitory STDP, all synaptic conductances (II, EI, EE) are static. Structural plasticity, how-111

ever, acts on all synapses in the network. We simulate a peripheral lesion in the balanced network112

by deafferenting a spatial selection of neurons to form the LPZ. For easier analysis, and as often113

done in experimental lesion studies, we divide the neuronal population into four regions relative to114

the LPZ (Figure 1b).115

As in Butz and van Ooyen’s MSP framework, each neuron possesses sets of both pre-synaptic
(axonal) and post-synaptic (dendritic) synaptic elements, the total numbers of which are represented
by (zpre) and (zpost), respectively. Excitatory and inhibitory neurons only possess excitatory (zEpre)
and inhibitory axonal elements (zIpre), respectively, but they can each host both excitatory and in-
hibitory dendritic elements (zEpost, z

I
post) (Figure 2a). The rate of change of each type of synap-

tic element, (dz/dt), is modelled as a Gaussian function of the neuron’s “calcium concentration”
([Ca2+]):

dz

dt
= ν

2 exp
−

(
[Ca2+]−ξ

ζ

)2

−ω


ξ =

η+ ε

2
,

ζ =
η− ε

2
√

− ln (ω/2)
(1)

Here, ν is a scaling factor and η, ε define the width and location of the Gaussian curve on the x-axis.
Extending the original MSP framework, we add a new parameter ω that controls the location of
the curve on the y-axis. The relationship between η, ε and the optimal activity level of a neuron,
ψ, govern the activity-dependent dynamics of each type of synaptic element. A neuron should not
turn over neurites when its activity is optimal ([Ca2+] = ψ). This implies that the growth curves
must be placed such that dz/dt = 0 when [Ca2+] = ψ. Hence, ψ can take one of two values: (ψ = η)

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2019. ; https://doi.org/10.1101/810846doi: bioRxiv preprint 

https://doi.org/10.1101/810846
http://creativecommons.org/licenses/by/4.0/


a

zEpost zIpost

zEpre

zEpost zIpost

zIpre

b

η ε

ψ

−1

0

1

[Ca2+]

dz
dt

c

η ε

ψ

−1

0

1

[Ca2+]

dz
dt

Figure 2. Gaussian growth curves modulate the rate of turnover of synaptic elements (dzdt ) in a neuron as a
function of its [Ca2+]: (a) Excitatory: Blue; Inhibitory: Red; All neurons possess excitatory and inhibitory
post-synaptic elements (zEpost, z

I
post) but excitatory and inhibitory neurons can only bear excitatory and

inhibitory pre-synaptic elements, respectively (zEpre, zIpre); (b) and (c): Example Gaussian growth curves.
Constants η and ε control the width and positioning of the growth curve on the x-axis. ω (see Equation 1)
controls the positioning of the growth curve on the y-axis. ν (see Equation 1) is a scaling factor. ψ is the
optimal [Ca2+] for the neuron. The minimum and maximum values of dz/dt can be analytically deduced to
be −νω and ν(2 −ω) respectively (See Methods). The relationship between η, ε, and ψ regulates the activity
dependent dynamics of neurites.
(b) ψ = η = 5.0, ε = 15.0,ν = 1.0,ω = 1.0,−νω = −1.0,ν(2 −ω) = 1.0. Here, new neurites are formed when
the neuronal activity exceeds the required level and removed when it falls below it. (c)
η = 5.0,ψ = ε = 15.0,ν = 1.0,ω = 0.001,−νω = −0.001,ν(2 −ω) = 1.999. Here, the growth curve is shifted
up along the y-axis by decreasing the value ofω. New neurites are formed when the neuronal activity is less
than the homeostatic level and removed (at a very low rate) when it exceeds it.

or (ψ = ε), and the turnover of synaptic elements dz/dt is:

> 0 for η < [Ca2+] < ε

= 0 for [Ca2+] = {η, ε}

< 0 for [Ca2+] < η ∪ [Ca2+] > ε (2)

This is illustrated in Figure 2. Other than in a window between η and ε where new neurites sprout,116

they retract. The new parameter, ω, permits us to adjust the speed of sprouting and retraction117

(Figures 2b and 2c). In Figure 2b with (ψ = η), new neurites will only be formed when the neuron118

experiences activity that is greater than its homeostatic value (ψ < [Ca2+] < ε). Figure 2c, on the119

other hand, shows the case for (ψ = ε), where growth occurs when neuronal activity is less than120

optimal (η < [Ca2+] < ψ).121

The [Ca2+] for each neuron represents a time averaged measure of its electrical activity:122

d[Ca2+]

dt
=


−

[Ca2+]
τ
[Ca2+]

+β, if V > Vth

−
[Ca2+]
τ
[Ca2+]

, otherwise.
(3)

Here, τ[Ca2+] is the time constant with which [Ca2+] decays in the absence of a spike, β is the123

constant increase in [Ca2+] caused by each spike, V is the membrane potential of the neuron, and124

Vth is the threshold membrane potential.125

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2019. ; https://doi.org/10.1101/810846doi: bioRxiv preprint 

https://doi.org/10.1101/810846
http://creativecommons.org/licenses/by/4.0/


a

1

6

Fi
ri

ng
ra

te
(H

z)

b

0

2

4

6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Fi
ri

ng
ra

te
(H

z)

Time (s)

E I

c

0

2

4

6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Fi
ri

ng
ra

te
(H

z)

Time (s)

E I

d

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
V

(I
SI

)

Time (seconds)

LPZ C Peri-LPZ

e

LP
Z

C
P

LP
Z

Figure 3. Recovery of activity over time: (Mean firing rates of neurons are calculated over a 2500mswindow):
(a) shows the firing rates of the whole excitatory population at t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}. These
are marked by dashed lines in the next graphs. (b) shows mean firing rate of neurons in LPZ-C; (c) shows
mean firing rate of neurons in peri-LPZ; (d) shows the coefficient of variation (CV) of the inter-spike intervals
of neurons in the LPZ-C and peri-LPZ. The graph is discontinuous because ISI CV is undefined in the absence
of spikes in the LPZ C; (e) shows spike times of neurons in the LPZ C and peri-LPZ over a 1 s period at
t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}. The network is permitted to achieve its balanced Asynchronous
Irregular (AI) low frequency firing regime under the action of inhibitory synaptic plasticity (t 6 1500 s). Our
structural plasticity mechanism is then activated to confirm that the network remains in its balanced AI state
(panel 1 in Figure 3a). At (t = 2000 s), neurons in the LPZ are deafferented (panel 2 in Figures 3a and 3e are at
t = 2001.5 s) and the network allowed to repair itself under the action of our structural plasticity mechanism
(panels 3 (t = 4000 s) and 4 (t = 18 000 s) in Figures 3a and 3e).
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Figure 4. Activity-dependent dynamics of synaptic elements (dz/dt) as functions of a neuron’s time
averaged activity ([Ca2+]): (a) post-synaptic elements: The balance between excitation and
inhibition (E-I balance) received by a neuron may be disturbed by a change in either of the two types of input.
Post-synaptic elements of a neuron react to deviations in activity from the optimal level (ψ) by countering the
changes in excitatory or inhibitory inputs to restore the E-I balance. For both excitatory and inhibitory
neurons, excitatory post-synaptic elements sprout when the neuron experiences a reduction in its activity, and
retract when the neuron has received extra activity. Inhibitory post-synaptic elements for all neurons follow
the opposite rule: they sprout when the neuron has extra activity and retract when the neuron is deprived of
activity. (b) pre-synaptic elements. In excitatory neurons, axonal sprouting is stimulated by extra activity. In
inhibitory neurons, on the other hand, deprivation in activity stimulates axonal sprouting. Synaptic elements
that do not find corresponding partners to form synapses (free synaptic elements) decay exponentially with
time. These graphs are for illustration only. Please refer to Table 2 for parameter values.

Figure 3 provides an overview of the activity in the network observed in our simulations. The126

network is initially balanced by the homeostatic inhibitory STDP mechanism, which results in es-127

tablishing its physiological state where it displays low frequency AI firing similar to cortical neu-128

rons [Vog+11] (t < 1500 s in Figures 3b, 3c and 3d, and panel 1 in Figures 3a and 3e). Once this129

AI state is achieved, homeostatic structural plasticity is enabled, and it is confirmed that the net-130

work maintains its balanced state under the combined action of the two homeostatic mechanisms131

(1500 s < t < 2000 s in Figures 3b, 3c and 3d). At (t = 2000 s), the network is deafferented by132

removing external inputs to neurons in the LPZ.133

In line with experimental findings, the immediate result of deafferentation is the loss of activity134

in neurons of the LPZ. For neurons outside the LPZ, on the other hand, our simulations show an135

increase in activity suggesting that the net effect of LPZ deafferentation on these neurons is a loss of136

inhibition rather than excitation (t = 2000 s in Figure 3c). To our knowledge, this phenomenon has137

not yet been investigated in experiments, and an increase in neuronal activity following deafferenta-138

tion of a neighbouring area is therefore the first testable prediction provided by our model. The139

change in activity caused by deafferentation stimulates neurite turnover in neurons of the network140

in accordance with our proposed activity dependent growth rules (t > 2000 s). Over time, activity141

is gradually restored in the network to pre-deafferentation levels (t = 18 000 s in Figures 3b, 3c, and142

panel 4 in Figures 3a and 3e). In the following sections, we demonstrate that the alterations in net-143

work connectivity during repair follow the same regime as reported in experiments, and we derive144

our growth rules.145

Even though the mean activity of neurons within and outside the LPZ returns to pre-deprivation146

levels, the network reorganization by structural plasticity leads to synchronous spiking in neurons147

in the LPZ, instead of the AI firing during the pre-deprivation stages in our simulations (t > 4000 s148

in Figure 3d, and panels 3 and 4 in Figure 3e). This predicted effect of network rewiring on the149

temporal characteristics of neural activity should be an interesting subject for future experimental150

studies. Furthermore, the observed lack of AI activity in the LPZ is expected to have functional151

implications; this is another promising topic for future theoretical work.152

2.2 Activity-dependent dynamics of post-synaptic structures153

All neurons in the LPZ, excitatory and inhibitory, show near zero activity after deafferentation
due to a net loss in excitatory input (panel 2 in Figures 3a, 3e, and t = 2000 s in Figure 3b). Ex-
perimental studies report that these neurons gain excitatory synapses on newly formed dendritic
spines [Kec+08] and lose inhibitory shaft synapses [Che+12] to restore activity after deprivation.
The increase in lateral excitatory projections to these neurons requires them to gain excitatory den-
dritic (postsynaptic) elements to serve as contact points for excitatory axonal collaterals. At the
same time, inhibitory synapses can be lost by the retraction of inhibitory dendritic elements. This
suggests that new excitatory post-synaptic elements should be formed and inhibitory ones removed
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when neuronal activity is less than its optimal level (([Ca2+] < ψ) in Figure 4a):

dzEpost

dt
> 0 for [Ca2+] < ψ

dzIpost

dt
< 0 for [Ca2+] < ψ (4)

While we were unable to find experimental evidence on the activity of excitatory or inhibitory
neurons just outside the LPZ, in our simulations, these neurons exhibit increased activity after deaf-
ferentation (t = 2000 s in Figure 3c). Unlike neurons in the LPZ that suffer a net loss of excitation,
these neurons appear to suffer a net loss of inhibition, which indicates that they must gain inhibitory
and lose excitatory inputs to return to their balanced state. Hence, the formation of new inhibitory
dendritic elements and the removal of their excitatory counterparts occurs in a regime where neu-
ronal activity exceeds the required amount (([Ca2+] > ψ) in Figure 4a):

dzEpost

dt
< 0 for [Ca2+] > ψ

dzIpost

dt
> 0 for [Ca2+] > ψ (5)

The constraints described by equations 2, 4, and 5 can be satisfied by Gaussian growth rules for ex-154

citatory and inhibitory dendritic elements, with εEpost = ψ and ηIpost = ψ, respectively (Figure 4a).155

Given the distinct characteristics of excitation and inhibition, the two growth rules were treated in-156

dependently and the parameters governing them were tuned iteratively over multiple simulation157

runs. For example, sufficiently high values for the rate of formation of inhibitory dendritic elements158

had to be selected for excitatory neurons to prevent the build up of excessive excitation (Table 2).159

Figure 5 shows the time course of rewiring of excitatory and inhibitory connections to excita-160

tory neurons in the centre of the LPZ that results from the growth curves in our simulations. As161

described in experimental studies, the loss of activity by neurons in the LPZ is followed by an in-162

crease in excitatory input connections and a transient reduction in inhibitory input connections.163

Specifically, as also found in these experiments, the increase in excitatory inputs is dominated by164

an ingrowth of lateral projections from outside the LPZ. Both of these features can be seen in Fig-165

ures 5a and 5b. As shown in Figure 6, neurons directly outside the LPZ lose excitatory and gain166

inhibitory input connections to reduce their activity back to their optimal values. Furthermore, in167

line with experimental observations, a significant contribution to the new inhibitory inputs to these168

neurons is provided by new inhibitory projections from within the LPZ. Given the small number of169

inhibitory neurons in the LPZ, however, their inhibitory projections are insufficient to stabilise the170

large number of neurons outside the LPZ in our simulations. Hence, inhibitory projections are also171

recruited from inhibitory neurons outside the LPZ.172

2.3 Activity dependent dynamics of pre-synaptic structures173

While the activity dependent formation and degradation of post-synaptic elements provides a home-174

ostatic mechanism for the stabilisation of activity in single neurons and the network, the increase175

in excitatory or inhibitory input received by a neuron also relies on the availability of pre-synaptic176

counterparts. We derive activity dependent growth rules for excitatory (zEpre) and inhibitory (zIpre)177

pre-synaptic elements in a similar manner to that used for post-synaptic elements.178

Within the LPZ, the increase in excitation requires a corresponding increase in the supply of ex-
citatory pre-synaptic elements. Experimental evidence reports a sizeable increase in the formation
and removal of axonal structures in and around the LPZ [Yam+09], with a marked addition of lateral
projections from neurons outside the LPZ into it [Mar+10]. While an increase in pre-synaptic ele-
ments within the LPZ may contribute to repair, an inflow of activity from the periphery of the LPZ
to its centre has been observed in experiments [DG94; Kec+08; Mar+10], pointing to the inwards
sprouting of excitatory axonal projections from outside the LPZ as the major driver of homeostatic
rewiring. For this sprouting of excitatory projections from the non-deafferentated area into the LPZ
to take place in our simulations, the increase in activity in neurons outside the LPZ must stimulate
the formation of their excitatory axonal elements:

dzEpre

dt
> 0 for [Ca2+] > ψ (6)

Conversely, neurons outside the LPZ with increased activity need access to inhibitory pre-synaptic
elements in order to receive the required additional inhibitory input. Deafferentation studies in
mouse somatosensory cortex [Mar+10] report more than a 2.5 fold increase in the lengths of in-
hibitory axons projecting out from inhibitory neurons in the LPZ two days after the peripheral le-
sion. This outgrowth of inhibitory projections preceded and was faster than the ingrowth of their
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Figure 5. Input connectivity of excitatory neurons in the centre of the LPZ: (a) and (c) show incoming
excitatory and inhibitory projections to the same randomly chosen neuron in the centre of the LPZ at different
stages of our simulations. From left to right: t = 2000 s, t = 4000 s, and t = 18 000 s. (b) and (d) show total
numbers of incoming excitatory and inhibitory projections to these neurons from different regions at different
points in time. Following our proposed growth rules for post-synaptic elements and consistent with
experimental reports, the deprived neurons in the LPZ C gain lateral excitatory inputs from neurons outside
the LPZ. Also in line with biological observations, they temporarily experience disinhibition after
deafferentation. However, as these neurons gain activity from their new lateral excitatory inputs, the number
of their inhibitory input connections increases again in order to restore the E-I balance.
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Figure 6. Input connectivity of excitatory neurons in the peri-LPZ: (a) and (c) show the incoming excitatory
and inhibitory projections to the same randomly chosen neuron in the peri-LPZ at different stages in our
simulation. From left to right: t = 2000 s, t = 4000 s, and t = 18 000 s. (b) and (d) show total numbers of
incoming excitatory and inhibitory projections to these neurons from different regions at different points in
time. In contrast to neurons in the LPZ, neurons outside the LPZ experience an increase in activity in our
simulations. As a result of our growth rules, these neurons lose excitatory inputs and gain inhibitory ones so
that their activity is reduced back to pre-lesion levels.

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2019. ; https://doi.org/10.1101/810846doi: bioRxiv preprint 

https://doi.org/10.1101/810846
http://creativecommons.org/licenses/by/4.0/


a
Excitatory

b
Inhibitory

Figure 7. Outgoing projections: (a) shows the outgoing (axonal) projections of an excitatory neuron in the
peri-LPZ. (b) shows the outgoing (axonal) projections of an inhibitory neuron in the LPZ C. From left to right:
t = 2000 s, t = 4000 s, and t = 18 000 s. As per our suggested growth rules for pre-synaptic elements,
excitatory neurons produce new pre-synaptic elements and sprout axonal projections when they experience
extra activity, while inhibitory neurons form new pre-synaptic elements and grow axons when they are
deprived of activity. As a consequence and in line with experimental data, following deafferentation of the
LPZ, excitatory neurons in the peri-LPZ sprout new outgoing projections that help transfer excitatory activity
to neurons in the LPZ. Also in accordance with experimental work, inhibitory neurons inside the LPZ form
new outgoing connections that transmit inhibition to neurons outside the LPZ.

excitatory analogues [Mar+10; Mar+14]. In our simulations, the experimentally observed outward
protrusion of inhibitory axons from the LPZ requires that the formation of inhibitory pre-synaptic
elements is driven by reduced neuronal activity:

dzIpre

dt
> 0 for [Ca2+] < ψ (7)

Similar to the post-synaptic growth rules, the pre-synaptic growth rules for excitatory and in-179

hibitory neurons were also treated separately and their parameters were tuned iteratively over re-180

peated simulations. Since inhibitory neurons form only one-fourth of the neuronal population, and181

only a small number of these fall into the LPZ, our simulations require the growth rates of inhibitory182

axonal elements to be high enough to stabilise the large number of hyperactive neurons outside the183

LPZ (Table 2).184

Figures 7a and 7b show the rewiring of axonal projections from an excitatory neuron in the peri-185

LPZ and an inhibitory neuron in the centre of the LPZ, respectively. Following the growth functions186

derived above, our simulations correctly reproduce the inward sprouting of excitatory axons into187

the LPZ and the outward sprouting of inhibitory axons from the LPZ that is observed during the188

repair process.189

2.4 Post-synaptic growth rules stabilise individual neurons190

Experimental evidence suggests that not just networks, but also individual neurons in the brain191

maintain a finely tuned balance between excitation and inhibition (E-I balance) [OL08; OL09; IS11].192

This raises the question whether the complementary nature of our excitatory and inhibitory post-193

synaptic growth rules is sufficient to ensure stability at the level of single neurons.194

Since the state of each neuron is tightly coupled to the states of other neurons in the network,195

we modelled a neuron in isolation to investigate how its input connectivity would be affected by196

changes in activity as per our post-synaptic growth curves (Figure 8a). The neuron is initialised197

with an input connectivity similar to a neuron from the network in its steady state: it has the same198

number of excitatory (zEpost) and inhibitory (zIpost) dendritic elements and receives the same mean199

conductances through them (gEE,gIE). Thus, the [Ca2+] of the neuron in this state represents its200

optimal activity (ψ = [Ca2+] at t = 0 s in Figure 8b). In this scenario, the net input conductance201
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Figure 8. Single neuron simulations show the homeostatic effect of the post-synaptic growth rules: (a) A
neuron in its steady state receives excitatory (gE) and inhibitory (gI) conductance inputs through its excitatory
(zEpost) and inhibitory (zIpost) dendritic elements, respectively, such that its activity ([Ca2+]) is maintained at
its optimal level (ψ) by its net input conductance (gnet). (b) An external sinusoidal current stimulus (Iext) is
applied to the neuron to vary its activity from the optimal level. (c) Under the action of our post-synaptic
growth curves, the neuron modifies its dendritic elements to change its excitatory (∆gE) and inhibitory (∆gI)
conductance inputs such that the net change in its input conductance (∆gnet) counteracts the change in its
activity: an increase in [Ca2+] due to the external stimulus is followed by a decreas in net input conductance
through the post-synaptic elements and vice versa (dashed lines in Figures 8b and 8c).

received by the neuron (gnet), which modulates its activity, can be estimated as the difference of the202

total excitatory (gE) and inhibitory (gI) input conductances.203

The activity of the neuron is then varied by an external sinusoidal current stimulus (Figure 8b). In204

addition, the deviation of the neuron’s excitatory (∆gE), inhibitory (∆gI), and net input conductance205

(∆gnet) from baseline levels due to the formation or removal of dendritic elements under the action206

of the growth curves is recorded (Figure 8c). We find that that modifications of the input connectivity207

of the neuron result in alterations to its excitatory and inhibitory input such that the net change in208

its input conductance counteracts changes in its activity: an increase in [Ca2+] due to the external209

stimulus is followed by a decrease in net input conductance through the post-synaptic elements210

and vice versa (dashed lines in Figures 8b and 8c). These simulation results show that even though211

the activity dependent growth rules of excitatory and inhibitory post-synaptic elements are derived212

from network simulations, they also serve a homeostatic function in single neurons.213

2.5 Synaptic and structural plasticity are both necessary for repair214

In all our previous simulations, the network rewiring after deafferentation of the LPZ occurred in215

the presence of both activity-dependent structural plasticity and inhibitory synaptic plasticity. These216

results show that both types of homeostatic plasticity can co-exist during successful network repair,217

but they do not indicate their respective contributions to restoring activity in the network. In order218

to study the functional role of the two plasticity mechanisms in the homeostatic regulation of activity219

after peripheral lesions, we simulated our model with each the mechanisms enabled in isolation (see220

Methods).221

Results from our simulations where structural plasticity is disabled suggest that inhibitory synap-222

tic plasticity alone, while able to re-balance neurons outside the LPZ by increasing the strength of223

their inhibitiory inputs, fails to restore activity in the deprived neurons in the LPZ even after small224

peripheral lesions (Figure 9a, and 9d). Although the homeostatic inhibitory synaptic plasticity on225

its own leads to a reduction in conductances of the inhibitory synapses projecting onto neurons in226

the LPZ, this is not sufficient to reactivate them. The stabilisation of activity in the neurons outside227

the LPZ, however, is successful due to the strengthening of IE synapses by STDP. In the absence of228

network rewiring by structural plasticity, this leads to a network where the neurons outside the LPZ229
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Figure 9. Both structural and synaptic plasticity are required for restoration of activity after
deafferentation: (a), (b), (c) show firing rate snapshots of neurons at t = 1500 s, 2001.5 s, 4000 s, 18 000 s. (a)
Synaptic plasticity only: after the network has settled in its physiological state by means of synaptic plasticity,
structural plasticity is not enabled. With only synaptic plasticity present, the network is unable to restore
activity to neurons in the LPZ. Neurons outside the LPZ return to their balanced state, but the neurons in the
LPZ are effectively lost to the network. (b) Both structural and synaptic plasticity are enabled: neurons in the
LPZ regain their low firing rate as before deafferentation. (c) Structural plasticity only: after the network has
settled in its physiological state by means of synaptic plasticity, homeostatic synaptic plasticity is turned off
and only structural plasticity is enabled. With only structural plasticity present, activity returns to neurons in
the LPZ but does not stabilise in a low firing rate regime. The firing rate of these neurons continues to increase
and, as a result, these neurons continue to turn over synaptic elements. This cascades into increased activity in
neurons outside the LPZ, further causing undesired changes in network connectivity. (d) shows the mean
population firing rates of neurons in the centre of the LPZ for the three simulation configurations. (Panel 1 is
identical in all three simulation configurations because the same parameters are used to initialise all
simulations.)

retain their functionality while the LPZ is effectively lost. This indicates that the larger deviations230

from the desired activity that result from deafferentation in our balanced network model require the231

reconfiguration of network connectivity by structural plasticity to re-establish a functional balance.232

Simulations where homeostatic synaptic plasticity was disabled, on the other hand, also failed233

to re-establish the balanced state of the network before the peripheral lesion (Figure 9c, and 9d).234

While the activity of the deprived neurons in the LPZ initially increased back to pre-lesion levels,235

under the action of structural plasticity only, the network eventually started exhibiting abnormally236

high firing rates instead of settling in the desired low firing rate regime. These results suggest that237
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inhibitory synaptic plasticity is required to finely tune inputs to neurons so that the network can238

achieve its balanced state.239

Thus, our simulations predict that both homeostatic processes are required for successful repair—240

structural plasticity for larger changes in network connectivity and synaptic plasticity for the fine241

tuning of conductances that establishes stable activity in the network. These results support the242

idea that multiple plasticity mechanisms work in harmony to sustain functional brain networks at243

varying time scales.244

3 Discussion245

A better understanding of the factors that influence dynamic alterations in the morphology and con-246

nectivity of neuronal axons and dendrites is necessary to improve our knowledge of the processes247

that shape the development and reorganisation of neuronal circuitry in the adult brain. Here, we248

present a new, spiking neural network model of peripheral lesioning in a simplified cortical bal-249

anced asynchronous irregular network (Figure 1 and 2). We show that our simulations reproduce250

the time course of changes in network connectivity as reported in experimental work (Figure 3), and251

we provide a number of testable predictions.252

First, our model suggests that deafferentation does not necessarily result in the loss or even a253

decrease of activity in all neurons of the network. Neurons outside the LPZ experience a gain in254

activity because of a net loss in inhibition in our simulations. This prediction should be tested in255

future experiments that investigate neuronal activity just outside the LPZ.256

Secondly, our model suggests that while the network may restore its mean activity, the temporal257

fine structure of the activity, and in particular the AI firing characteristic of the network are per-258

manently disturbed by deafferentation. This change in firing patterns of the network also merits259

experimental validation, especially given its implications for network function. Synchronous firing260

in the network may not be evident in studies of the mapping between peripheral inputs and net-261

work activity. However, in combination with the change in network connectivity, it can affect other262

types of network function, such as the storage and recall of associative memory. By storing Hebbian263

assemblies in the network and testing their recall after deafferentation and repair, we are currently264

exploring this phenomenon.265

Thirdly, as the main objective of our work, we suggest different growth rules for differnt types266

of neurite (Figure 4). While derived from network lesion experiments that were not aimed at study-267

ing the relation between activity and neurite turnover [Tra+02; HS05; Kec+08; Yam+09; Mar+10;268

Che+11; Kec+11; Mar+14], evidence from other work seems to support our proposals. Our growth269

rule for excitatory dendritic elements is coherent with results from an experimental study in hip-270

pocampal slice cultures. In their study, Richards et al. note that reduced neuronal activity resulted271

in the extension of glutamate receptor-dependent processes from dendritic spines of CA1 pyrami-272

dal neurons [Ric+05]. Furthermore, the predicted growth function for inhibitory dendritic elements273

is supported by a study by Knott et. al [Kno+02], which reports an increase in inhibitory inputs to274

spines in adult mice after their activity was increased by whisker stimulation [Kno+02].275

On the pre-synaptic side, axonal turnover and guidance has been investigated in much detail,276

and is known to be a highly complex process incorporating multiple biochemical pathways [LV09;277

Goo13]. Our hypothesis regarding excitatory pre-synaptic structures is supported by a report by278

Perez et al. who find that CA1 pyramidal cells, which become hyper-excitable following hippocam-279

pal kainate lesions, sprout excitatory axons that may contribute to the epileptiform activity in the280

region [Per+96]. For inhibitory pre-synaptic elements, we refer to Schuemann et al. who report that281

enhanced network activity reduced the number of persistent inhibitory boutons [Sch+13] over short282

periods of time (30 minutes) in organotypic hippocampal slice cultures. However, these experiments283

also found that prolonged blockade of activity (over seven days) did not affect inhibitory synapses,284

contrary to the reports from peripheral lesion studies [Kec+11; Che+12].285

Indirect evidence on the temporal evolution of inhibitory projections to neurons in the LPZ fur-286

ther supports the inhibitory growth rules in our model (Figure 5d). While an initial disinhibition287

aids recovery in these deprived neurons, as activity is restored, a subsequent increase in inhibi-288

tion in our simulations re-establishes the E-I balance in the deafferented region. This is in line with289

evidence that the pharmacological reduction of inhibition restores structural plasticity in the vi-290

sual cortex [Vet+08]. Our simulations, therefore, support the proposed role of inhibition as control291

mechanism for the critical window for structural plasticity [GLK91; Ros+95; FH00; Mas+03; Hen05;292

Ver+12].293

Our simulation results do not imply that these are the only activity dependent growth rules that294

can underlie the turnover of neurites. Given the variety of neurons in the brain, many families of295

growth rules may apply to neurons. For example, Butz and van Ooyen proposed a different set of296

growth rules using a model of peripheral lesioning in fast spiking neurons that did not investigate297

the low firing AI state [BO13]. Different growth rules could therefore apply to brain regions with298

different neuronal types and firing characteristics.299
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Finally, our simulation results indicate that the suggested growth rules, while derived from net-300

work simulations, can contribute to the stability of activity in individual neurons (Figure 8). Since301

structural plasticity and synaptic plasticity are not independent processes in the brain, this is not a302

wholly surprising result. Structural plasticity of the volumes of spines and boutons underlies the303

modulation of synaptic efficacy by synaptic plasticity. Thus, given that synaptic plasticity mecha-304

nisms can stabilise the firing of individual neurons [Tur08; Kec+13], it follows that structural plastic-305

ity mechanisms could also be involved. Further, extending from the functional coupling of synaptic306

and structural plasticity, our simulations also require both structural and synaptic plasticity for suc-307

cessful network repair (Figure 9). Thus, our simulation results lend further support to the notion308

that multiple plasticity mechanisms function in a cooperative manner in the brain.309

As a computational modelling study, our work necessarily suffers from various limitations. For310

example, while the use of simple conductance based point neurons [MBG04] is sufficient for our311

network study, perhaps even necessary for its tractability [Izh04], it also limits our work. Unlike312

in the brain where calcium is compartmentalised in neurons [YMH00], a single compartment point313

neuron model only allows one value of [Ca2+] for all neurites in a neuron. Thus, each of the neurons314

in our model can only either sprout or retract a type of neurite at a point in time. This is not the case315

in biology where different parts of the neuron can undergo structural changes independently of each316

other. The growth regimes suggested in our work must be understood to address the net formation317

or removal of neurites only. Furthermore, since a simultaneous homeostatic regulation of different318

neuronal compartments would be expected to have a larger stabilising effect on the overall activity319

of the neuron, a single compartment neuron model may also limit the homeostatic effect of the320

structural plasticity mechanism. Point neurons also lack morphology, and our model is therefore321

unable to explicitly include the directional formation or removal of synapses. Axonal and dendritic322

arbors are not explicitly modelled and the directional turnover of synapses that represents axonal323

sprouting emerges merely from the numbers of connecting partner neurites. Additionally, while324

it was enough for neurons in our model to be distributed in a two dimensional grid to include a325

spatial component, this is clearly not true for the brain. Thus, while our model provides a simplified326

high level view, the investigation of our proposed activity dependent growth rules in more detailed327

models is an important avenue for future research.328

Finally, this work, and computational modelling of structural plasticity in general, are limited329

by the lack of supporting simulation tools. Most current simulators are designed for network mod-330

elling where synaptic connectivity remains constant. Even the NEST simulator [Jor+19], where the331

internal data structures are sufficiently flexible to allow for modification of synapses during sim-332

ulation [Jor+18], currently includes a limited implementation of the MSP algorithm [Dia+16]. To333

incorporate the missing pieces— spatial information and different network connectivity modifica-334

tion strategies, for example—we were required to repeatedly pause simulations to make connectiv-335

ity updates. This is far less efficient than NEST handling these changes in connectivity internally336

during continuous simulation runs and added a large overhead to the computational costs of our337

simulations. The development of companion tools for modelling structural plasticity is however,338

gradually gaining traction [Now+18] with discussions to allow NEST to communicate with stand339

alone structural plasticity tools via interfaces such as Connection Set Algebra [Dju12] ongoing.340

In conclusion, we present a new general model of peripheral lesioning and repair in simplified341

cortical spiking networks with biologically realistic AI activity that provides several experimentally342

testable predictions.343

4 Methods344

We build on and extend the MSP [BO13] framework to model the activity dependent dynamics345

of synaptic elements. We developed our new model using the NEST neural simulator [Epp+08;346

Pey+17]. NEST includes an early, partial implementation of the MSP [Dia+16]. It does not, for ex-347

ample, currently take spatial information into account while making connectivity updates. More im-348

portantly, at this time, the design of the C++ codebase also does not provide access to the lower level349

rules governing updates in connectivity via the Python API. Making modifications to these to exe-350

cute new structural plasticity connectivity rules, therefore, requires non-trivial changes to the NEST351

kernel. Given that work is on-going to modularise the implementation of structural plasticity in352

NEST such that the computation of changes in connectivity will be left to stand-alone tools that will353

communicate them to the simulator using interfaces such as the Connection Set Algebra [Dju12] (pri-354

vate communications with the NEST development team), we resorted to disabling connectivity up-355

dates in NEST. Instead, we generate connectivity based on our new hypotheses using native Python356

methods, and use the methods available in PyNEST to modify them in simulations. Our modified357

version of the NEST source code is available in our fork of the simulator available in a public repos-358

itory at https://github.com/sanjayankur31/nest-simulator/tree/disable-str-pl-updates.359

To honour our commitment to Open Science [Gle+17], we only made use of Free/Open source360

software for our work. The complete source code of all simulations run in this work are available361
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Table 1. Neuronal parameters

Parameter Symbol Value

LIF parameters

Refractory period tref 5ms
Reset potential Vreset −60mV
Threshold potential Vth −50mV
Capacitance C 200 pF
Leak conductance gL 10nS
Leak reversal potential EL −60mV
Inhibitory reversal potential Einh −80mV
Excitatory reversal potential Eexc 0mV
Excitatory time constant τexc 5ms
Inhibitory time constant τinh 10ms

[Ca2+] increase per spike β 0.1
[Ca2+] decay time constant τ[Ca2+] 50 s

External inputs

Poisson spike input to all neurons rext 10Hz

External projections to E neurons gEext 8nS

External projections to I neurons gIext 12nS

in GitHub repositories here and here (these repositories are currently private). The scripts used to362

analyse the data generated by the simulation are available in a separate GitHub repository here.363

These repositories are licensed under the Gnu GPL license (version 3 or later). The data generated364

by the simulations has been made available here (the data will be uploaded to a service suggested365

by the reviewers, such as Zenodo).366

4.1 Neuron model367

Neurons are modelled as leaky integrate and fire conductance based point neurons with exponential368

conductances [MBG04], the membrane potentials of which are governed by:369

C
dV

dt
= −gL(V − EL) − gexc(V − Eexc) − ginh(V − Einh) + Ie (8)

whereC is the membrane capacitance, V is the membrane potential, gL is the leak conductance, gexc370

is the excitatory conductance, ginh is the inhibitory conductance, EL is the leak reversal potential,371

Eexc is the excitatory reversal potential, Einh is the inhibitory reversal potential, and Ie is an external372

input current. Incoming spikes induce a post-synaptic change of conductance that is modelled by373

an exponential waveform following the equation:374

g(t) = ḡ exp
(
−
t− ts
τg

)
(9)

where τg is the decay time constant and ḡ is the maximum conductance as the result of a spike at375

time ts. Table 1 enumerates the constants related to the neuron model.376

Each neuron possesses sets of both pre- and post-synaptic synaptic elements, the total numbers377

of which are represented by (zpre) and (zpost) respectively. Excitatory and inhibitory neurons only378

possess excitatory (zEpre) and inhibitory axonal elements (zIpre) respectively, but they can each host379

both excitatory and inhibitory dendritic elements (zpost,E, zpost,I) (since the number of neurites380

must be a non-negative integer, the floor value of the continuous variable is used for connectivity381

updates). As in MSP, we model the rate of change of each type of synaptic element, (dz/dt), as a382

Gaussian function of the neuron’s “Calcium concentration” ([Ca2+]):383

d[Ca2+]

dt
=


−

[Ca2+]
τ
[Ca2+]

+β, if V > Vth

−
[Ca2+]
τ
[Ca2+]

, otherwise.
(10)

Here, τ[Ca2+] is the time constant with which the [Ca2+] decays in the absence of a spike, and β
is the constant increase in [Ca2+] caused by each spike. Based on evidence that the outgrowth of
synaptic structures depends on the concentration of intracellular calcium in neurons [LK89; KL95],
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Table 2. Growth rule parameters

Parameter Symbol Value

Optimal [Ca2+] ψ

Excitatory neurons

Scaling factor: pre-synaptic structures (zEpre) νEpre 15× 10−4
Vertical shift ωEpre 1× 10−2
X-axis parameters (ηEpre, εEpre) (ψ, 1.75×ψ)
Decay rate τEpre,free 0.01

Scaling factor: excitatory post-synaptic structures (zEpost,E) νEpost,E 3× 10−5

Vertical shift ωEpost,E 4× 10−1

X-axis parameters (ηEpost,E, εEpost,E) (0.25×ψ,ψ)
Decay rate τEpost,E,free 0.01

Scaling factor: inhibitory post-synaptic structures (zEpost,I) νEpost,I 3× 10−4

Vertical shift ωEpost,I 4× 10−2

X-axis parameters (ηEpost,I, ε
E
post,I) (ψ, 3.5×ψ)

Decay rate τEpost,I,free 0.01

Inhibitory neurons

Scaling factor: pre-synaptic structures (zIpre) νIpre 3× 10−2
Vertical shift ωIpre 4× 10−4
X-axis parameters (ηIpre, εIpre) (0.25×ψ,ψ)
Decay rate τIpre,free 0.01

Scaling factor: excitatory post-synaptic structures (zIpost,E) νIpost,E 3× 10−5

Vertical shift ωIpost,E 4× 10−1

X-axis parameters (ηIpost,E, εIpost,E) (0.25×ψ,ψ)
Decay rate τIpost,E,free 0.01

Scaling factor: inhibitory post-synaptic structures (zIpost,I) νIpost,I 3× 10−5

Vertical shift ωIpost,I 4× 10−1

X-axis parameters (ηIpost,I, ε
I
post,I) (ψ, 3.5×ψ)

Decay rate τIpost,I,free 0.01

the rate of change of each type of synaptic element, (dz/dt) is given by:

dz

dt
= ν

2 exp
−

(
[Ca2+]−ξ

ζ

)2

−ω


ξ =

η+ ε

2
, (11)

ζ =
η− ε

2
√
− ln (ω/2)

Here, ν is a scaling factor, ξ and ζ define the width and location of the Gaussian curve on the x-axis,
while ω controls the location of the curve on the y-axis (0 < ν, 0 < η < ε, 0 < ω < 2). Given that
([Ca2+] > 0), (dz/dt) is bound as:

min
(
dz

dt

)
= −νω for

(
[Ca2+]→∞)

max
(
dz

dt

)
= ν(2 −ω) for

(
[Ca2+] =

(
η+ ε

2

))
(12)

Within these bounds, as shown in Figure 2, (dz/dt) is:

> 0 for η < [Ca2+] < ε

= 0 for [Ca2+] = {η, ε} (13)

< 0 for [Ca2+] < η ∪ [Ca2+] > ε

If, based on its activity, a neuron has more synaptic elements of a particular type (z) than are cur-384

rently engaged in synapses (zconnected), the free elements (zfree) can participate in the formation385
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t = 0 t = t1 t = t2 t = tend

A: Network setup

synaptic

plasticity
only

structural &

synaptic
plasticity

B: Repair after deafferentation

I: structural plasticity only

II: structural &
synaptic plasticity

III: synaptic plasticity only

Figure 10. The simulation runs in 2 phases. Initially, the setup phase (0 s < t < t2) is run to set the network up
to the balanced AI state. At (t = t2), a subset of the neuronal population is deafferented to simulate a
peripheral lesion and the network is allowed to organise under the action of homeostatic mechanisms until
the end of the simulation at (t = tend). Each homeostatic mechanism can be enabled in a subset of neurons to
analyse its effects on the network after deafferentation.

of new synapses at the next connectivity update step:386

zfree = b(z− zconnected)c (14)

However, if they remain unconnected, they decay at each integration time step with a constant rate387

τfree:388

zfree = b(zfree − (τfreezfree))c (15)

On the other hand, a neuron will lose zloss synaptic connections if the number of a synaptic element389

type calculated by the growth rules (z) is less than the number of connected synaptic elements of390

the same type (zconnected):391

zloss = b(zconnected − z)c (16)

Table 2 lists the parameters governing the growth rules for all neurites.392

4.2 Network simulations393

Our network model is derived from the cortical network model proposed by Vogels et al. [Vog+11]394

that is balanced by inhibitory homeostatic STDP. Like the cortex, this network model is charac-395

terised by low frequency AI firing of neurons. Additionally, this network model has also been396

demonstrated to store attractorless associative memories for later recall. The simulation is divided397

into multiple phases, as shown in Figure 10. These are documented in the following sections in398

detail.399

4.2.1 Initial network structure400

We simulate a network of NE excitatory and NI inhibitory neurons (NE/NI = 4). Excitatory neu-401

rons are distributed in a two-dimensional rectangular plane such that the distance between two402

adjacent excitatory neurons is (µEd ± σ
E
d)µm. Inhibitory neurons are scattered such that they are403

evenly dispersed among the excitatory neurons such that the mean distance between adjacent in-404

hibitory neurons is (µId ± σ
I
d)µm. The rectangular plane is wrapped around as a toroid to prevent405

any edge effects from affecting the simulation. Table 3 summarises the parameters used to arrange406

the neurons.407

At (t = 0 s in Figure 10), neurons in the network are connected such that the network has a408

sparsity of p. For each neuron, nout targets are chosen from the complete set of possible post-409

synaptic neurons in a distance dependence manner as summarised in previous sections. Initially,410

static synapses in the network (II, IE, EI) are initialised to their mean conductances. The plastic (IE)411

synapses are subject to the homeostatic inhibitory synaptic plasticity mediated STDP rule proposed412

by Vogels, Sprekeler et al. [Vog+11] and are initialised to zero conductances.413

External input to each neuron is modelled as an independent Poisson spike train with a mean414

firing rate rext. These spike trains project on to excitatory and inhibitory neurons via static excita-415

tory synapses with conductances gEext and gIext respectively. Figure 1a shows the various sets of416

synapses in the network.417
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Table 3. Network simulation parameters

Parameter Symbol Value

Simulation parameters

Integration time step dt 0.1 s
Structural plasticity update interval 1 s

Network parameters

Number of E neurons NE 8000
Number of I neurons NI 2000
Dimension of 2D E neuron lattice 100× 80
Dimension of 2D I neuron lattice 50× 40
Mean distance between E neurons µEd 150µm
STD distance between E neurons σEd 15µm
Mean distance between I neurons µId 300µm
STD distance between I neurons σId 15µm
Neurons in LPZ C 2.5%
Neurons in LPZ B 2.5%
Neurons in P LPZ 5%
Remaining neurons 90%
Initial network sparsity p 0.02
Initial out-degree nout p× total possible targets

Simulation stages

Synaptic plasticity only 1500 s
Synaptic and structural plasticity 500 s
Network deafferented at 2000 s

4.2.2 Initial stabilisation to physiological state418

The simulation is then started and the network permitted to stabilise to its balanced AI state until419

(t = t2 in Figure 10). This phase consists of two simulation regimes. Initially, only inhibitory420

synaptic plasticity is activated to stabilise the network (t < t1 in Figure 10).421

As this state (t = t2 in Figure 10) is considered the normal physiological state of our network422

model, the network parameters obtained at this point are set as the steady state parameters of neu-423

rons and synapses in the network. The optimal activity of each neuron, ψ, is set to the activity424

achieved by the neuron at this point, and its growth curves are initialised in relation to it. The mean425

conductance for new IE synapses is also set as the mean conductance of the IE synapses obtained at426

this stage.427

Our implementation of homeostatic structural plasticity is then activated in the network at this428

point (t = t1 in Figure 10) to verify that the network continues to remain in its balanced AI state in429

the presence of both homeostatic mechanisms.430

4.2.3 Simulation of peripheral lesion431

Next at (t = t2 in Figure 10), the external Poisson spike train inputs are disconnected from excitatory432

and inhibitory neurons that fall in the LPZ to simulate a peripheral lesion in the network. For433

analysis, the neuronal plane is classified into four regions:434

• LPZ C: the centre of the LPZ (Red in Figure 1b).435

• LPZ B: the inner border of the LPZ (Yellow in Figure 1b).436

• P LPZ: peri-LPZ, the outer border of the LPZ (Green in Figure 1b).437

• Other neurons: neurons further away from the LPZ (Grey in Figure 1b).438

4.2.4 Network reorganisation439

The deafferented network is permitted to reorganise itself under the action of the active homeostatic440

mechanisms until the end of the simulation (t = tend in Figure 10). By selectively activating the two441

homeostatic mechanisms in different simulation runs, we were also able to investigate their effects442

on the network in isolation.443
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Table 4. Synapse parameters

Parameter Symbol Value

Unit conductance ḡ (0.5± 0.1)nS
EE synapse conductance gEE ḡ
EI synapse conductance gEI ḡ
II synapse conductance gII 10ḡ
IE synapse conductance gIE Vogels-Sprekeler STDP
STDP rule time constant τSTDP 20ms
Target constant αSTDP 0.12
STDP learning rate ηSTDP 0.05
Width multiplier: excitatory synapses wE 8
Width multiplier: inhibitory synapses wI 24
Maximum probability of formation: excitatory synapses p̂E 0.8
Maximum probability of formation: inhibitory synapses p̂I 0.3
Conductance threshold for deletion: inhibitory synapses gth

Structural plasticity mediated connectivity updates All synapses in the network, except the con-444

nections that project the external stimulus on to the neuronal population, are subject to structural445

plasticity (Figure 1a).446

Free excitatory pre-synaptic and excitatory post-synaptic elements can combine to form excita-447

tory synapses (EE, EI). Analogously, inhibitory pre-synaptic and inhibitory post-synaptic elements448

can plug together to form inhibitory synapses (II, IE). The set of possible partners for a neuron,449

therefore, comprises of all other neurons in the network that have free synaptic elements of the re-450

quired type. From this set, zfree partners are chosen based on a probability of formation, pform,451

which is a Gaussian function of the distance between the pair, d:452

pform = p̂ exp−(d/(wµEd))
2

(17)

Here, p̂ ∈ {p̂E, p̂I} is the maximum probability, µEd is the mean distance between two adjacent ex-453

citatory neurons, and w ∈ {wE,wI} is a multiplier that controls the spatial extent of new synaptic454

connections.455

Investigations indicate that lateral connections in the primary visual cortex are organised in a456

“Mexican hat” pattern. While experimental work does support the presence of the “Mexican hat”457

pattern [Liu+11; HHC13], anatomical research suggests that inhibitory connections are more lo-458

calised than excitatory ones, contradicting the traditional use of shorter excitatory and longer in-459

hibitory connections in computer models [Ste+09]. Analysis of the local cortical circuit of the pri-460

mary visual cortex suggests that the “Mexican hat” pattern can either be generated by narrow but461

fast inhibition, or broad and slower inhibition that may be provided by longer axons of GABAer-462

gic basket cells [KSS03; Rud+13]. Investigations into the maintenance of the “Mexican hat” pattern463

are beyond the scope of this study. We therefore, limit ourselves to the traditional model of longer464

inhibitory connections and shorter local excitatory connections in this work by using a larger multi-465

plier for inhibitory synapses, wI, than for excitatory synapses, wE, (wE < wI).466

New synapses that are added to the network are initialised with conductances similar to that467

of existing synapses in the balanced network. Their conductance values are taken from a Gaussian468

distribution centred at the mean conductance for that synapse type. Since new synapses can, there-469

fore, be weaker or stronger than existing ones, this prevents the same set of synapses from being470

modified in each connectivity update.471

In spite of them being plastic, the same method is also used for IE synapses. IE synapses are472

initialised with zero conductances at the start of the simulation and modify their strengths based473

on STDP [Vog+11]. When the network has achieved the balanced AI state, these conductances also474

settle at higher values. If new IE synapses formed after this point by structural plasticity were to475

be initialised to zero conductances, they would most likely be selected for deletion repeatedly as476

the weakest ones. STDP does not modulate inactive synapses either—synapses between pairs of477

neurons that have both been rendered inactive by deafferentation will not be weakened, and may478

not be lost. Therefore, to ensure the turnover of a diverse set of IE synapses also, new connections of479

this type are supplied with conductances similar to that of existing stable IE synapses in the balanced480

network.481

Experimental evidence suggests that the stability of synapses is proportional to their efficacy [Tra+02;482

Kno+06]. Taking this into account, we calculate the probability of deletion of a synapse, pdel, as a483

function of its conductance g:484

pdel = exp
−
(

g
(2gth)

)2

(18)
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Here, gth is a threshold conductance value calculated during the simulation, synapses stronger than485

which are considered immune to activity dependent changes in stability. They are removed from the486

list of options from which zloss synapses are selected for deletion and are therefore, not considered487

for deletion at all.488

For simplicity, for static excitatory synapses that all have similar conductances (EI, EE), we do not489

use this method of deletion. Instead, for these, zloss connections are randomly selected for deletion490

from the set of available candidates. While II synapses are also static, the deletion of an inhibitory491

synapse by the loss of an inhibitory post-synaptic element can occur by the removal of either an IE492

or an II synapse. Therefore, to permit competition between II and IE synapses for removal, we apply493

weight based deletion to both these synapse sets.494

The numbers of synaptic elements are updated at every simulator integration time step inter-495

nally in NEST. Connectivity updates to the network, however, require updates to internal NEST496

data structures and can only be made when the simulation is paused. This increases the computa-497

tional cost of the simulation, and we only make these updates at 1 s intervals. Gathering data on498

conductances, connectivity, and neuronal variables like [Ca2+] also require explicit NEST function499

calls while the simulation is paused. Therefore, we also limit dumping the required data to files to500

regular intervals. Table 4 summarises the various synaptic parameters used in the simulation.501

4.3 Single cell simulations502

We also studied the effects of our structural plasticity hypotheses in individual neurons using single503

neuron simulations. Figure 8a shows a schematic of our single neuron simulations.504

The neuron is initialised to a steady state where it exhibits an indegree similar to neurons in505

the network simulations when in their AI state. To do so, a constant baseline input current Iext506

is supplied to the neuron to provide it with activity. The [Ca2+] obtained by the neuron at this507

time is assumed as its optimal level, ψ. Using identical values of η and ε but different ν values for508

excitatory and inhibitory post-synaptic elements (νEpost = 4νIpost to mimic the initial indegree of509

neurons in our network simulations), and an input current that deviates the activity of the neuron510

off its optimal level (< Iext), the neuron is made to sprout zEpost, z
I
post excitatory and inhibitory511

post-synaptic elements respectively (zEpost = 4zIpost). By assuming that each dendritic element512

receives inputs via conductances as observed in network simulations (gEE,gIE), the net input to the513

neuron that results in its activity can be approximated as:514

gnet = z
E
postgEE − zIpostgIE (19)

At this stage, the neuron resembles a one in network simulations in its balanced state before515

deafferentation. The current input is returned to its baseline value, thus returning the [Ca2+] to516

its optimal value, ψ. In addition, the growth curves for the neuron are restored as per our activity517

dependent structural plasticity hypotheses to verify that the neuron does not undergo any structural518

changes at its optimal activity level.519

The external current input to the neuron is modulated sinusoidally to fluctuate the neurons520

[Ca2+] (Figure 8b), and resultant changes in the numbers of its post-synaptic elements are recorded.521

As the neuron modifies its neurites, the change in excitatory and inhibitory input conductance re-522

ceived as a result is calculated (Figure 8c).523
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