










Figures 3 and 4 provide an overview of the activity in the network observed in our 84

simulations. The network is initially balanced by the homeostatic inhibitory STDP 85

mechanism, which results in establishing its physiological state where it displays low 86

frequency AI firing similar to cortical neurons [41] (t < 1500 s in Figs. 3B, 3C and 4A, 87

and panel 1 in Figs. 3A and 4B). Once this AI state is achieved, homeostatic structural 88

plasticity is enabled, and it is confirmed that the network maintains its balanced state 89

under the combined action of the two homeostatic mechanisms (1500 s < t < 2000 s in 90

Figs. 3B, 3C and 4A). At (t = 2000 s), the network is deafferented by removing external 91

inputs to neurons in the LPZ. 92

In line with experimental findings, the immediate result of deafferentation is the loss 93

of activity in neurons of the LPZ. For neurons outside the LPZ, on the other hand, our 94

simulations show an increase in activity suggesting that the net effect of LPZ 95

deafferentation on these neurons is a loss of inhibition rather than excitation (t = 2000 s 96

in Fig. 3C). To our knowledge, this phenomenon has not yet been investigated in 97

experiments, and an increase in neuronal activity following deafferentation of a 98

neighbouring area is therefore the first testable prediction provided by our model. The 99

change in activity caused by deafferentation stimulates neurite turnover in neurons of 100

the network in accordance with our proposed activity dependent growth rules 101

(t > 2000 s). Over time, activity is gradually restored in the network to 102

pre-deafferentation levels (t = 18 000 s in Figs. 3B and 3C, and panel 4 in Figs. 3A 103

and 4B). In the following sections, we demonstrate that the alterations in network 104

connectivity during repair follow the same regime as reported in experiments, and we 105

derive our growth rules. 106

Even though the mean activity of neurons within and outside the LPZ returns to 107

pre-deprivation levels, the network reorganization by structural plasticity leads to 108

synchronous spiking in neurons in the LPZ, instead of the AI firing during the 109

pre-deprivation stages in our simulations (t > 4000 s in Fig. 4A, and panels 3 and 4 in 110

Fig. 4B). This predicted effect of network rewiring on the temporal characteristics of 111

neural activity should be an interesting subject for future experimental studies. 112

Furthermore, the observed lack of AI activity in the LPZ is expected to have functional 113

implications; this is another promising topic for future theoretical work. 114

Activity-dependent dynamics of post-synaptic structures 115

Since the activity of neurons depends on the inputs received through their post-synaptic 116

neurites, we first derived the growth rules for these neurites. All neurons in the LPZ, 117

excitatory and inhibitory, show near zero activity after deafferentation due to a net loss 118

in excitatory input (panel 2 in Figs. 3A and 4B, and t = 2000 s in Fig. 3B). 119

Experimental studies report that these neurons gain excitatory synapses on newly 120

formed dendritic spines [28] and lose inhibitory shaft synapses [11] to restore activity 121

after deprivation. The increase in lateral excitatory projections to these neurons 122

requires them to gain excitatory dendritic (postsynaptic) elements to serve as contact 123

points for excitatory axonal collaterals. At the same time, inhibitory synapses can be 124

lost by the retraction of inhibitory dendritic elements. This suggests that new 125

excitatory post-synaptic elements should be formed and inhibitory ones removed when 126

neuronal activity is less than its optimal level (([Ca2+] < ψ) in Fig. 5A): 127

dzEpost
dt

> 0 for [Ca2+] < ψ

dzIpost
dt

< 0 for [Ca2+] < ψ (4)
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Fig 3. Recovery of activity over time: (Mean firing rates of neurons are
calculated over a 2500 ms window): (A) shows the firing rates of the whole excitatory
population at t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}. These are marked by dashed
lines in the next graphs. (B) shows mean firing rate of neurons in LPZ-C; (C) shows
mean firing rate of neurons in peri-LPZ; The network is permitted to achieve its
balanced Asynchronous Irregular (AI) low frequency firing regime under the action of
inhibitory synaptic plasticity (t ≤ 1500 s). Our structural plasticity mechanism is then
activated to confirm that the network remains in its balanced AI state (panel 1 in
Fig. 3A). At (t = 2000 s), neurons in the LPZ are deafferented (panel 2 in Fig. 3A is at
t = 2001.5 s) and the network allowed to repair itself under the action of our structural
plasticity mechanism (panels 3 (t = 4000 s) and 4 (t = 18 000 s) in Fig. 3A).

While we were unable to find experimental evidence on the activity of excitatory or
inhibitory neurons just outside the LPZ, in our simulations, these neurons exhibit
increased activity after deafferentation (t = 2000 s in Fig. 3C). Unlike neurons in the
LPZ that suffer a net loss of excitation, these neurons appear to suffer a net loss of
inhibition, which indicates that they must gain inhibitory and lose excitatory inputs to
return to their balanced state. Hence, the formation of new inhibitory dendritic
elements and the removal of their excitatory counterparts occurs in a regime where
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Fig 4. Recovery of activity over time: population firing characteristics:
(Mean firing rates of neurons are calculated over a 2500 ms window): (A) shows the
coefficient of variation (CV ) of the inter-spike intervals of neurons in the LPZ-C and
peri-LPZ. The graph is discontinuous because ISI CV is undefined in the absence of
spikes in the LPZ C; (B) shows spike times of neurons in the LPZ C and peri-LPZ over
a 1 s period at t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}. The network is permitted to
achieve its balanced Asynchronous Irregular (AI) low frequency firing regime under the
action of inhibitory synaptic plasticity (t ≤ 1500 s). At (t = 2000 s), neurons in the LPZ
are deafferented (panel 2 in Fig. 4B is at t = 2001.5 s) and the network allowed to repair
itself under the action of our structural plasticity mechanism (panels 3 (t = 4000 s) and
4 (t = 18 000 s) in Fig. 4B). As can be seen here, the network does not return to its AI
state after repair.

neuronal activity exceeds the required amount (([Ca2+] > ψ) in Fig. 5A):

dzEpost
dt

< 0 for [Ca2+] > ψ

dzIpost
dt

> 0 for [Ca2+] > ψ (5)

The constraints described by equations Eqs. (2), (4) and (5) can be satisfied by 128

Gaussian growth rules for excitatory and inhibitory dendritic elements, with εEpost = ψ 129

and ηIpost = ψ, respectively (Fig. 5A and Table 1). Given the distinct characteristics of 130

excitation and inhibition, the two growth rules were treated independently and the 131

parameters governing them were tuned iteratively over multiple simulation runs. For 132

example, sufficiently high values for the rate of formation of inhibitory dendritic 133

elements had to be selected for excitatory neurons to prevent the build up of excessive 134

excitation (Table 5). 135

Figures 6 and 7 show the time course of rewiring of excitatory and inhibitory 136

connections to excitatory neurons in the centre of the LPZ that results from the growth 137

curves in our simulations. As described in experimental studies, the loss of activity by 138

neurons in the LPZ is followed by an increase in excitatory input connections [13,28] 139

and a transient reduction in inhibitory input connections [11]. Specifically, as also found 140

in these experiments, the increase in excitatory inputs is dominated by an ingrowth of 141
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Fig 5. Activity-dependent dynamics of synaptic elements (dz/dt) as
functions of a neuron’s time averaged activity ([Ca2+]): (A) post-synaptic
elements: The balance between excitation and inhibition (E-I balance) received by a
neuron may be disturbed by a change in either of the two types of input. Post-synaptic
elements of a neuron react to deviations in activity from the optimal level (ψ) by
countering the changes in excitatory or inhibitory inputs to restore the E-I balance. For
both excitatory and inhibitory neurons, excitatory post-synaptic elements sprout when
the neuron experiences a reduction in its activity, and retract when the neuron has
received extra activity. Inhibitory post-synaptic elements for all neurons follow the
opposite rule: they sprout when the neuron has extra activity and retract when the
neuron is deprived of activity. (B) pre-synaptic elements. In excitatory neurons, axonal
sprouting is stimulated by extra activity. In inhibitory neurons, on the other hand,
deprivation in activity stimulates axonal sprouting. Synaptic elements that do not find
corresponding partners to form synapses (free synaptic elements) decay exponentially
with time. These graphs are for illustration only. Please refer to Table 5 for parameter
values.

lateral projections from outside the LPZ. Both of these features can be seen in Figs. 6A 142

and 6B. As shown in Figs. 8 and 9, neurons directly outside the LPZ lose excitatory and 143

gain inhibitory input connections to reduce their activity back to their optimal values. 144

Furthermore, in line with experimental observations, a significant contribution to the 145

new inhibitory inputs to these neurons is provided by new inhibitory projections from 146

within the LPZ. Given the small number of inhibitory neurons in the LPZ, however, 147

their inhibitory projections are insufficient to stabilise the large number of neurons 148

outside the LPZ in our simulations. Hence, inhibitory projections are also recruited 149

from inhibitory neurons outside the LPZ. 150

Post-synaptic growth rules stabilise individual neurons 151

Experimental evidence suggests that not just networks, but also individual neurons in 152

the brain maintain a finely tuned balance between excitation and 153

inhibition (E-I balance) [44–46]. This raises the question whether the complementary 154

nature of our excitatory and inhibitory post-synaptic growth rules is sufficient to ensure 155

stability at the level of single neurons. 156

Since the state of each neuron is tightly coupled to the states of other neurons in the 157

network, we modelled a neuron in isolation to investigate how its input connectivity 158

would be affected by changes in activity as per our post-synaptic growth curves 159

(Fig. 10A). The neuron is initialised with an input connectivity similar to a neuron from 160
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Table 1. Growth curve parameters for post-synaptic elements.

Excitatory Inhibitory

(ε = ψ) (η < ψ < ε) (ψ = η) (ε = ψ) (η < ψ < ε) (ψ = η)

Normal Yes No Yes Yes No Yes
Repair Yes No No Yes

For post-synaptic elements, only the derived families of growth curves allowed for both:
(a) stable function of network in the absence of any deafferentation; (b) restoration of
activity to the LPZ by an inward propagation of excitatory connections and an outward
growth of inhibitory projections.

the network in its steady state: it has the same number of excitatory (zEpost) and 161

inhibitory (zIpost) dendritic elements and receives the same mean conductances through 162

them (gEE , gIE). Thus, the [Ca2+] of the neuron in this state represents its optimal 163

activity (ψ = [Ca2+] at t = 0 s in Fig. 10B). In this scenario, the net input conductance 164

received by the neuron (gnet), which modulates its activity, can be estimated as the 165

difference of the total excitatory (gE) and inhibitory (gI) input conductances. 166

The activity of the neuron is then varied by an external sinusoidal current stimulus 167

(Fig. 10B). In addition, the deviation of the neuron’s excitatory (∆gE), inhibitory 168

(∆gI), and net input conductance (∆gnet) from baseline levels due to the formation or 169

removal of dendritic elements under the action of the growth curves is recorded 170

(Fig. 10C). We find that that modifications of the input connectivity of the neuron 171

result in alterations to its excitatory and inhibitory input such that the net change in its 172

input conductance counteracts changes in its activity: an increase in [Ca2+] due to the 173

external stimulus is followed by a decrease in net input conductance through the 174

post-synaptic elements and vice versa (dashed lines in Figs. 10B and 10C). These 175

simulation results show that even though the activity dependent growth rules of 176

excitatory and inhibitory post-synaptic elements are derived from network simulations, 177

they also serve a homeostatic function in single neurons. 178

Activity dependent dynamics of pre-synaptic structures 179

While the activity dependent formation and degradation of post-synaptic elements 180

provides a homeostatic mechanism for the stabilisation of activity in single neurons and 181

the network, the increase in excitatory or inhibitory input received by a neuron also 182

relies on the availability of pre-synaptic counterparts. We derive activity dependent 183

growth rules for excitatory (zEpre) and inhibitory (zIpre) pre-synaptic elements in a 184

similar manner to that used for post-synaptic elements. 185

Within the LPZ, the increase in excitation requires a corresponding increase in the
supply of excitatory pre-synaptic elements. Experimental evidence reports a sizeable
increase in the formation and removal of axonal structures in and around the LPZ [27],
with a marked addition of lateral projections from neurons outside the LPZ into it [6].
While an increase in pre-synaptic elements within the LPZ may contribute to repair, an
inflow of activity from the periphery of the LPZ to its centre has been observed in
experiments [6, 20,28], pointing to the inwards sprouting of excitatory axonal
projections from outside the LPZ as the major driver of homeostatic rewiring. For this
sprouting of excitatory projections from the non-deafferentated area into the LPZ to
take place in our simulations, the increase in activity in neurons outside the LPZ must
stimulate the formation of their excitatory axonal elements:

dzEpre
dt

> 0 for [Ca2+] > ψ (6)
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Fig 6. Excitatory projections to excitatory neurons in the centre of the
LPZ: (A) shows incoming excitatory projections to a randomly chosen neuron in the
centre of the LPZ at different stages of our simulations. From left to right: t = 2000 s,
t = 4000 s, and t = 18 000 s. (B) shows the total numbers of incoming excitatory
projections to neurons in the centre of the LPZ from different regions at different points
in time. Following our proposed growth rules for post-synaptic elements and consistent
with experimental reports, the deprived neurons in the LPZ C gain lateral excitatory
inputs from neurons outside the LPZ.

Conversely, neurons outside the LPZ with increased activity need access to inhibitory
pre-synaptic elements in order to receive the required additional inhibitory input.
Deafferentation studies in mouse somatosensory cortex [6] report more than a 2.5 fold
increase in the lengths of inhibitory axons projecting out from inhibitory neurons in the
LPZ two days after the peripheral lesion. This outgrowth of inhibitory projections
preceded and was faster than the ingrowth of their excitatory analogues [6, 9]. In our
simulations, the experimentally observed outward protrusion of inhibitory axons from
the LPZ requires that the formation of inhibitory pre-synaptic elements is driven by
reduced neuronal activity:

dzIpre
dt

> 0 for [Ca2+] < ψ (7)

To further validate the derived pre-synaptic growth curves, shown in Fig. 5B and 186

Table 2, the complete set of possible pre-synaptic growth curves was tested. These are 187

labelled G0, G1, G2, G3, G4, and G5 and illustrated in Fig. 11: 188
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Fig 7. Inhibitory projections to excitatory neurons in the centre of the
LPZ: (A) shows incoming inhibitory projections to a randomly chosen neuron in the
centre of the LPZ at different stages of our simulations. From left to right: t = 2000 s,
t = 4000 s, and t = 18 000 s. (B) shows the total numbers of incoming inhibitory
projections to neurons in the centre of the LPZ from different regions at different points
in time. Also in line with biological observations, they temporarily experience
disinhibition after deafferentation. However, as these neurons gain activity from their
new lateral excitatory inputs, the number of their inhibitory input connections increases
again in order to restore the E-I balance.

• G0: control case where there are no growth curves, achieved by setting ν = 0, 189

• G1: both inhibitory and excitatory axons sprout when activity is more than 190

required, 191

• G2: (the selected growth curves shown in Fig. 5B fall into this category) 192

inhibitory axons sprout when activity is less than optimal, but excitatory axons 193

sprout when activity is more than required, 194

• G3: excitatory axons sprout when activity is less than optimal, but inhibitory 195

axons sprout when activity is more than required, 196

• G4: both excitatory and inhibitory axons sprout at optimal activity, and 197

• G5: both inhibitory and excitatory axons sprout when activity is less than 198

optimal. 199
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Fig 8. Excitatory projections to excitatory neurons in the peri-LPZ: (A)
shows incoming excitatory projections to a randomly chosen neuron in the peri-LPZ at
different stages of our simulations. From left to right: t = 2000 s, t = 4000 s, and
t = 18 000 s. (B) shows the total numbers of incoming excitatory projections to neurons
in the peri-LPZ from different regions at different points in time. In contrast to neurons
in the LPZ, neurons outside the LPZ experience an increase in activity in our
simulations. As a result of our growth rules, these neurons lose excitatory inputs.

As summarised in Table 3, only the previously derived pre-synaptic growth curves 200

reproduced all experimentally reported features of the repair process. While a few other 201

pre-synaptic growth curves did allow simulations to show an increase in activity in the 202

LPZ and a loss of activity outside it, the networks in these simulations did not 203

re-balance to a stable state. 204

Similar to the post-synaptic growth rules, the pre-synaptic growth rules for 205

excitatory and inhibitory neurons were also treated separately and their parameters 206

were tuned iteratively over repeated simulations. Since inhibitory neurons form only 207

one-fourth of the neuronal population, and only a small number of these fall into the 208

LPZ, in this study, simulations require the growth rates of inhibitory axonal elements to 209

be high enough to stabilise the large number of hyperactive neurons outside the LPZ 210

(Table 5). 211

Figures 12A and 12B show the rewiring of axonal projections from an excitatory 212

neuron in the peri-LPZ and an inhibitory neuron in the centre of the LPZ, respectively. 213

Following the growth functions derived above, our simulations correctly reproduce the 214

inward sprouting of excitatory axons into the LPZ and the outward sprouting of 215

inhibitory axons from the LPZ that is observed during the repair process. 216
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Fig 9. Inhibitory projections to excitatory neurons in the peri-LPZ: (A)
shows incoming inhibitory projections to a randomly chosen neuron in the peri-LPZ at
different stages of our simulations. From left to right: t = 2000 s, t = 4000 s, and
t = 18 000 s. (B) shows the total numbers of incoming excitatory projections to neurons
in the peri-LPZ from different regions at different points in time. In contrast to neurons
in the LPZ, neurons outside the LPZ experience an increase in activity in our
simulations. As a result of our growth rules, these neurons gain inhibitory inputs.

Synaptic and structural plasticity are both necessary for repair 217

In all our previous simulations, the network rewiring after deafferentation of the LPZ 218

occurred in the presence of both activity-dependent structural plasticity and inhibitory 219

synaptic plasticity. These results show that both types of homeostatic plasticity can 220

co-exist during successful network repair, but they do not indicate their respective 221

contributions to restoring activity in the network. In order to study the functional role 222

of the two plasticity mechanisms in the homeostatic regulation of activity after 223

peripheral lesions, we simulated our model with each the mechanisms enabled in 224

isolation (see Methods). 225

Results from our simulations where structural plasticity is disabled suggest that 226

inhibitory synaptic plasticity alone, while able to re-balance neurons outside the LPZ by 227

increasing the strength of their inhibitiory inputs, fails to restore activity in the 228

deprived neurons in the LPZ even after small peripheral lesions (Figs. 13A and 13D). 229

Although the homeostatic inhibitory synaptic plasticity on its own leads to a reduction 230

in conductances of the inhibitory synapses projecting onto neurons in the LPZ, this is 231

not sufficient to reactivate them. The stabilisation of activity in the neurons outside the 232
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Fig 10. Single neuron simulations show the homeostatic effect of the
post-synaptic growth rules: (A) A neuron in its steady state receives excitatory
(gE) and inhibitory (gI) conductance inputs through its excitatory (zEpost) and

inhibitory (zIpost) dendritic elements, respectively, such that its activity ([Ca2+]) is
maintained at its optimal level (ψ) by its net input conductance (gnet). (B) An
external sinusoidal current stimulus (Iext) is applied to the neuron to vary its activity
from the optimal level. (C) Under the action of our post-synaptic growth curves, the
neuron modifies its dendritic elements to change its excitatory (∆gE) and inhibitory
(∆gI) conductance inputs such that the net change in its input conductance (∆gnet)
counteracts the change in its activity: an increase in [Ca2+] due to the external
stimulus is followed by a decreas in net input conductance through the post-synaptic
elements and vice versa (dashed lines in Figs. 10B and 10C).

LPZ, however, is successful due to the strengthening of IE synapses by STDP. In the 233

absence of network rewiring by structural plasticity, this leads to a network where the 234

neurons outside the LPZ retain their functionality while the LPZ is effectively lost. 235

This indicates that the larger deviations from the desired activity that result from 236

deafferentation in our balanced network model require the reconfiguration of network 237

connectivity by structural plasticity to re-establish a functional balance. 238

Simulations where homeostatic synaptic plasticity was disabled, on the other hand, 239

also failed to re-establish the balanced state of the network before the peripheral lesion 240

(Figs. 13C and 13D). While the activity of the deprived neurons in the LPZ initially 241

increased back to pre-lesion levels, under the action of structural plasticity only, the 242

network eventually started exhibiting abnormally high firing rates instead of settling in 243

the desired low firing rate regime. These results suggest that inhibitory synaptic 244

plasticity is required to finely tune inputs to neurons so that the network can achieve its 245

balanced state. 246
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Fig 11. Axonal growth curves investigated in the study (where applicable,
Red: inhibitory, Blue: excitatory).
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Table 2. Growth curve parameters for pre-synaptic elements.

Excitatory Inhibitory

(ε = ψ) (η < ψ < ε) (ψ = η) (ε = ψ) (η < ψ < ε) (ψ = η)

Normal Yes No Yes Yes No Yes
Repair No Yes Yes No

For pre-synaptic elements, only the derived families of growth curves allowed for both:
(a) stable function of network in the absence of any deafferentation; (b) restoration of
activity to the LPZ by an inward propagation of excitatory connections and an outward
growth of inhibitory projections.

Thus, our simulations predict that both homeostatic processes are required for 247

successful repair—structural plasticity for larger changes in network connectivity and 248

synaptic plasticity for the fine tuning of conductances that establishes stable activity in 249

the network. These results support the idea that multiple plasticity mechanisms work in 250

harmony to sustain functional brain networks at varying time scales. 251

Discussion 252

A better understanding of the factors that influence dynamic alterations in the 253

morphology and connectivity of neuronal axons and dendrites is necessary to improve 254

our knowledge of the processes that shape the development and reorganisation of 255

neuronal circuitry in the adult brain. Here, we present a new, spiking neural network 256

model of peripheral lesioning in a simplified cortical balanced asynchronous irregular 257

network (Figs. 1 and 2). We show that our simulations reproduce the time course of 258

changes in network connectivity as reported in experimental work (Fig. 3), and we 259

provide a number of testable predictions. 260

First, our model suggests that deafferentation does not necessarily result in the loss 261

or even a decrease of activity in all neurons of the network. Neurons outside the LPZ 262

experience a gain in activity because of a net loss in inhibition in our simulations. This 263

prediction should be tested in future experiments that investigate neuronal activity just 264

outside the LPZ. 265

Secondly, our model suggests that while the network may restore its mean activity, 266

the temporal fine structure of the activity, and in particular the AI firing characteristic 267

of the network are permanently disturbed by deafferentation. This change in firing 268

patterns of the network also merits experimental validation, especially given its 269

implications for network function. Synchronous firing in the network may not be 270

evident in studies of the mapping between peripheral inputs and network activity. 271

However, in combination with the change in network connectivity, it can affect other 272

types of network function, such as the storage and recall of associative memory. By 273

storing Hebbian assemblies in the network and testing their recall after deafferentation 274

and repair, we are currently exploring this phenomenon. 275

Thirdly, as the main objective of our work, we suggest different growth rules for 276

differnt types of neurite (Fig. 5). While derived from network lesion experiments that 277

were not aimed at studying the relation between activity and neurite 278

turnover [6, 9, 10,13,27–30], evidence from other work seems to support our proposals. 279

Our growth rule for excitatory dendritic elements is coherent with results from an 280

experimental study in hippocampal slice cultures. In their study, Richards et al. note 281

that reduced neuronal activity resulted in the extension of glutamate 282

receptor-dependent processes from dendritic spines of CA1 pyramidal neurons [47]. 283

Furthermore, the predicted growth function for inhibitory dendritic elements is 284
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Table 3. Summary of axonal growth curves tested in the model.

G0 G1 G2 G3 G4 G5

Initially remains stable Y Y Y Y N Y
LPZ gains activity Y Y Y N NA N
Outside LPZ loses activity Y Y Y NA NA NA
Returns to balanced state N N Y NA NA NA
LPZ B restores before LPZ C NA NA Y NA NA NA
Ingrowth of excitatory projections NA NA Y NA NA NA
Outgrowth of inhibitory projections NA NA Y NA NA NA
Disinhibition in LPZ NA NA Y NA NA NA

Each row represents a feature that is observed in experiments: 1. Initially remains
stable: the network should remain stable without deafferentation; 2. LPZ gains activ-
ity: increase in activity of LPZ neurons to pre-deafferentation levels; 3. Outside LPZ
loses activity: decrease in activity of neurons outside the LPZ to pre-deafferentation
levels; 4. Returns to balanced state: the network should return to its balanced
stable state after activity of all neurons has been restored to pre-deafferentation levels;
5. LPZ B restores before LPZ C: activity should be restored to the LPZ B neurons
before the LPZ C neurons; 6. Ingrowth of axonal projections: there should be
ingrowth of excitatory axons to the LPZ; 7. Outgrowth of inhibitory projections:
outgrowth of inhibitory axons from the LPZ should stabilise neurons outside the LPZ; 8.
Disinhibition in LPZ: disinhibition should be observed in the LPZ neurons.
Each column represents a set of growth curves (illustrated in Fig. 11):
G0: no growth curves (no sprouting or retraction); G1: both inhibitory and excitatory
axons sprout when activity is more than required; G2: inhibitory axons sprout when
activity is less than optimal, but excitatory axons sprout when activity is more than
required; G3: excitatory axons sprout when activity is less than optimal, but inhibitory
axons sprout when activity is more than required; G4: both excitatory and inhibitory
axons sprout at optimal activity. G5: both inhibitory and excitatory axons sprout when
activity is less than optimal;

supported by a study by Knott et. al [3], which reports an increase in inhibitory inputs 285

to spines in adult mice after their activity was increased by whisker stimulation [3]. 286

On the pre-synaptic side, axonal turnover and guidance has been investigated in 287

much detail, and is known to be a highly complex process incorporating multiple 288

biochemical pathways [48,49]. Our hypothesis regarding excitatory pre-synaptic 289

structures is supported by a report by Perez et al. who find that CA1 pyramidal cells, 290

which become hyper-excitable following hippocampal kainate lesions, sprout excitatory 291

axons that may contribute to the epileptiform activity in the region [50]. For inhibitory 292

pre-synaptic elements, we refer to Schuemann et al. who report that enhanced network 293

activity reduced the number of persistent inhibitory boutons [51] over short periods of 294

time (30 minutes) in organotypic hippocampal slice cultures. However, these 295

experiments also found that prolonged blockade of activity (over seven days) did not 296

affect inhibitory synapses, contrary to the reports from peripheral lesion studies [11, 30]. 297

Indirect evidence on the temporal evolution of inhibitory projections to neurons in 298

the LPZ further supports the inhibitory growth rules in our model (Fig. 7B). While an 299

initial disinhibition aids recovery in these deprived neurons, as activity is restored, a 300

subsequent increase in inhibition in our simulations re-establishes the E-I balance in the 301

deafferented region. This is in line with evidence that the pharmacological reduction of 302

inhibition restores structural plasticity in the visual cortex [52]. Our simulations, 303

therefore, support the proposed role of inhibition as control mechanism for the critical 304

April 20, 2020 18/35

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/810846doi: bioRxiv preprint 

https://doi.org/10.1101/810846
http://creativecommons.org/licenses/by/4.0/


A
Excitatory

B
Inhibitory

Fig 12. Outgoing projections: (A) shows the outgoing (axonal) projections of an
excitatory neuron in the peri-LPZ. (B) shows the outgoing (axonal) projections of an
inhibitory neuron in the LPZ C. From left to right: t = 2000 s, t = 4000 s, and
t = 18 000 s. As per our suggested growth rules for pre-synaptic elements, excitatory
neurons produce new pre-synaptic elements and sprout axonal projections when they
experience extra activity, while inhibitory neurons form new pre-synaptic elements and
grow axons when they are deprived of activity. As a consequence and in line with
experimental data, following deafferentation of the LPZ, excitatory neurons in the
peri-LPZ sprout new outgoing projections that help transfer excitatory activity to
neurons in the LPZ. Also in accordance with experimental work, inhibitory neurons
inside the LPZ form new outgoing connections that transmit inhibition to neurons
outside the LPZ.

window for structural plasticity [15,53–57]. 305

Our simulation results do not imply that these are the only activity dependent 306

growth rules that can underlie the turnover of neurites. Given the variety of neurons in 307

the brain, many families of growth rules may apply to neurons. For example, Butz and 308

van Ooyen proposed a different set of growth rules using a model of peripheral lesioning 309

in fast spiking neurons that did not investigate the low firing AI state [33]. Different 310

growth rules could therefore apply to brain regions with different neuronal types and 311

firing characteristics. 312

Finally, our simulation results indicate that the suggested growth rules, while 313

derived from network simulations, can contribute to the stability of activity in 314

individual neurons (Fig. 10). Since structural plasticity and synaptic plasticity are not 315

independent processes in the brain, this is not a wholly surprising result. Structural 316

plasticity of the volumes of spines and boutons underlies the modulation of synaptic 317

efficacy by synaptic plasticity. Thus, given that synaptic plasticity mechanisms can 318

stabilise the firing of individual neurons [58,59], it follows that structural plasticity 319

mechanisms could also be involved. Further, extending from the functional coupling of 320

synaptic and structural plasticity, our simulations also require both structural and 321

synaptic plasticity for successful network repair (Fig. 13). Thus, our simulation results 322
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Fig 13. Both structural and synaptic plasticity are required for restoration
of activity after deafferentation: (A), (B), (C) show firing rate snapshots of
neurons at t = 1500 s, 2001.5 s, 4000 s, 18 000 s. (A) Synaptic plasticity only: after the
network has settled in its physiological state by means of synaptic plasticity, structural
plasticity is not enabled. With only synaptic plasticity present, the network is unable to
restore activity to neurons in the LPZ. Neurons outside the LPZ return to their
balanced state, but the neurons in the LPZ are effectively lost to the network. (B) Both
structural and synaptic plasticity are enabled: neurons in the LPZ regain their low firing
rate as before deafferentation. (C) Structural plasticity only: after the network has
settled in its physiological state by means of synaptic plasticity, homeostatic synaptic
plasticity is turned off and only structural plasticity is enabled. With only structural
plasticity present, activity returns to neurons in the LPZ but does not stabilise in a low
firing rate regime. The firing rate of these neurons continues to increase and, as a result,
these neurons continue to turn over synaptic elements. This cascades into increased
activity in neurons outside the LPZ, further causing undesired changes in network
connectivity. (D) shows the mean population firing rates of neurons in the centre of the
LPZ for the three simulation configurations. (Panel 1 is identical in all three simulation
configurations because the same parameters are used to initialise all simulations.)
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lend further support to the notion that multiple plasticity mechanisms function in a 323

cooperative manner in the brain. 324

As a computational modelling study, our work necessarily suffers from various 325

limitations. For example, while the use of simple conductance based point neurons [43] 326

is sufficient for our network study, perhaps even necessary for its tractability [60], it also 327

limits our work. Unlike in the brain where calcium is compartmentalised in neurons [61], 328

a single compartment point neuron model only allows one value of [Ca2+] for all 329

neurites in a neuron. Thus, each of the neurons in our model can only either sprout or 330

retract a type of neurite at a point in time. This is not the case in biology where 331

different parts of the neuron can undergo structural changes independently of each 332

other. The growth regimes suggested in our work must be understood to address the 333

net formation or removal of neurites only. Furthermore, since a simultaneous 334

homeostatic regulation of different neuronal compartments would be expected to have a 335

larger stabilising effect on the overall activity of the neuron, a single compartment 336

neuron model may also limit the homeostatic effect of the structural plasticity 337

mechanism. Point neurons also lack morphology, and our model is therefore unable to 338

explicitly include the directional formation or removal of synapses. Axonal and 339

dendritic arbors are not explicitly modelled and the directional turnover of synapses 340

that represents axonal sprouting emerges merely from the numbers of connecting 341

partner neurites. Additionally, while it was enough for neurons in our model to be 342

distributed in a two dimensional grid to include a spatial component, this is clearly not 343

true for the brain. Thus, while our model provides a simplified high level view, the 344

investigation of our proposed activity dependent growth rules in more detailed models is 345

an important avenue for future research. 346

Finally, this work, and computational modelling of structural plasticity in general, 347

are limited by the lack of supporting simulation tools. Most current simulators are 348

designed for network modelling where synaptic connectivity remains constant. Even the 349

NEST simulator [62], where the internal data structures are sufficiently flexible to allow 350

for modification of synapses during simulation [63], currently includes a limited 351

implementation of the MSP algorithm [38]. To incorporate the missing pieces— spatial 352

information and different network connectivity modification strategies, for example—we 353

were required to repeatedly pause simulations to make connectivity updates. This is far 354

less efficient than NEST handling these changes in connectivity internally during 355

continuous simulation runs and added a large overhead to the computational costs of 356

our simulations. The development of companion tools for modelling structural plasticity 357

is however, gradually gaining traction [64] with discussions to allow NEST to 358

communicate with stand alone structural plasticity tools via interfaces such as 359

Connection Set Algebra [65] ongoing. 360

In conclusion, we present a new general model of peripheral lesioning and repair in 361

simplified cortical spiking networks with biologically realistic AI activity that provides 362

several experimentally testable predictions. 363

Methods 364

We build on and extend the MSP [33] framework to model the activity dependent 365

dynamics of synaptic elements. We developed our new model using the NEST neural 366

simulator [66,67]. NEST includes an early, partial implementation of the MSP [38]. It 367

does not, for example, currently take spatial information into account while making 368

connectivity updates. More importantly, at this time, the design of the C++ codebase 369

also does not provide access to the lower level rules governing updates in connectivity 370

via the Python API. Making modifications to these to execute new structural plasticity 371

connectivity rules, therefore, requires non-trivial changes to the NEST kernel. Given 372
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Table 4. Neuronal parameters

Parameter Symbol Value

LIF parameters

Refractory period tref 5 ms
Reset potential Vreset −60 mV
Threshold potential Vth −50 mV
Capacitance C 200 pF
Leak conductance gL 10 nS
Leak reversal potential EL −60 mV
Inhibitory reversal potential Einh −80 mV
Excitatory reversal potential Eexc 0 mV
Excitatory time constant τexc 5 ms
Inhibitory time constant τinh 10 ms
[Ca2+] increase per spike β 0.1
[Ca2+] decay time constant τ[Ca2+] 50 s

External inputs

Poisson spike input to all neurons rext 10 Hz
External projections to E neurons gEext 8 nS
External projections to I neurons gIext 12 nS

that work is on-going to modularise the implementation of structural plasticity in NEST 373

such that the computation of changes in connectivity will be left to stand-alone tools 374

that will communicate them to the simulator using interfaces such as the Connection 375

Set Algebra [65] (private communications with the NEST development team), we 376

resorted to disabling connectivity updates in NEST. Instead, we generate connectivity 377

based on our new hypotheses using native Python methods, and use the methods 378

available in PyNEST to modify them in simulations. Our modified version of the NEST 379

source code is available in our fork of the simulator available in a public repository here. 380

To honour our commitment to Open Science [68], we only made use of Free/Open 381

source software for our work. The complete source code of all simulations run in this 382

work are available on GitHub here. The scripts used to analyse the data generated by 383

the simulation are available in a separate GitHub repository here. These repositories are 384

licensed under the Gnu GPL license (version 3 or later). The data generated by the 385

simulations used in this paper, along with the individual GNUPlot scripts used to 386

generate each figure, will be made available on Zenodo. 387

Neuron model 388

Neurons are modelled as leaky integrate and fire conductance based point neurons with 389

exponential conductances [43], the membrane potentials of which are governed by: 390

C
dV

dt
= −gL(V − EL)− gexc(V − Eexc)− ginh(V − Einh) + Ie (8)

where C is the membrane capacitance, V is the membrane potential, gL is the leak 391

conductance, gexc is the excitatory conductance, ginh is the inhibitory conductance, EL 392

is the leak reversal potential, Eexc is the excitatory reversal potential, Einh is the 393

inhibitory reversal potential, and Ie is an external input current. Incoming spikes 394

induce a post-synaptic change of conductance that is modelled by an exponential 395
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waveform following the equation: 396

g(t) = ḡ exp

(
− t− ts

τg

)
(9)

where τg is the decay time constant and ḡ is the maximum conductance as the result of 397

a spike at time ts. Table 4 enumerates the constants related to the neuron model. 398

Each neuron possesses sets of both pre- and post-synaptic synaptic elements, the 399

total numbers of which are represented by (zpre) and (zpost) respectively. Excitatory 400

and inhibitory neurons only possess excitatory (zEpre) and inhibitory axonal elements 401

(zIpre) respectively, but they can each host both excitatory and inhibitory dendritic 402

elements (zpost,E , zpost,I) (since the number of neurites must be a non-negative integer, 403

the floor value of the continuous variable is used for connectivity updates). As in MSP, 404

we model the rate of change of each type of synaptic element, (dz/dt), as a Gaussian 405

function of the neuron’s “Calcium concentration” ([Ca2+]): 406

d[Ca2+]

dt
=

−
[Ca2+]
τ[Ca2+]

+ β, if V ≥ Vth
− [Ca2+]
τ[Ca2+]

, otherwise.
(10)

Here, τ[Ca2+] is the time constant with which the [Ca2+] decays in the absence of a
spike, and β is the constant increase in [Ca2+] caused by each spike. Based on evidence
that the outgrowth of synaptic structures depends on the concentration of intracellular
calcium in neurons [69, 70], the rate of change of each type of synaptic element, (dz/dt)
is given by:

dz

dt
= ν

(
2 exp

−
(

[Ca2+]−ξ
ζ

)2

−ω

)
ξ =

η + ε

2
, (11)

ζ =
η − ε

2
√
− ln (ω/2)

Here, ν is a scaling factor, ξ and ζ define the width and location of the Gaussian curve
on the x-axis, while ω controls the location of the curve on the y-axis
(0 < ν, 0 < η < ε, 0 < ω < 2). Given that ([Ca2+] > 0), (dz/dt) is bound as:

min

(
dz

dt

)
= −νω for

(
[Ca2+]→∞

)
max

(
dz

dt

)
= ν(2− ω) for

(
[Ca2+] =

(
η + ε

2

))
(12)

Within these bounds, as shown in Fig. 2, (dz/dt) is:

> 0 for η < [Ca2+] < ε

= 0 for [Ca2+] = {η, ε} (13)

< 0 for [Ca2+] < η ∪ [Ca2+] > ε

If, based on its activity, a neuron has more synaptic elements of a particular type (z) 407

than are currently engaged in synapses (zconnected), the free elements (zfree) can 408

participate in the formation of new synapses at the next connectivity update step: 409

zfree = b(z − zconnected)c (14)
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t = 0 t = t1 t = t2 t = tend

A: Network setup

synaptic

plasticity
only

structural &

synaptic
plasticity

B: Repair after deafferentation

I: structural plasticity only

II: structural &
synaptic plasticity

III: synaptic plasticity only

Fig 14. The simulation runs in 2 phases. Initially, the setup phase (0 s < t < t2) is run
to set the network up to the balanced AI state. At (t = t2), a subset of the neuronal
population is deafferented to simulate a peripheral lesion and the network is allowed to
organise under the action of homeostatic mechanisms until the end of the simulation at
(t = tend). Each homeostatic mechanism can be enabled in a subset of neurons to
analyse its effects on the network after deafferentation.

However, if they remain unconnected, they decay at each integration time step with a 410

constant rate τfree: 411

zfree = b(zfree − (τfreezfree))c (15)

On the other hand, a neuron will lose zloss synaptic connections if the number of a 412

synaptic element type calculated by the growth rules (z) is less than the number of 413

connected synaptic elements of the same type (zconnected): 414

zloss = b(zconnected − z)c (16)

Table 5 lists the parameters governing the growth rules for all neurites. 415

Network simulations 416

Our network model is derived from the cortical network model proposed by Vogels et 417

al. [41] that is balanced by inhibitory homeostatic STDP. Like the cortex, this network 418

model is characterised by low frequency AI firing of neurons. Additionally, this network 419

model has also been demonstrated to store attractorless associative memories for later 420

recall. The simulation is divided into multiple phases, as shown in Fig. 14. These are 421

documented in the following sections in detail. 422

Initial network structure 423

We simulate a network of NE excitatory and NI inhibitory neurons (NE/NI = 4). 424

Excitatory neurons are distributed in a two-dimensional rectangular plane such that the 425

distance between two adjacent excitatory neurons is (µEd ± σEd )µm. Inhibitory neurons 426

are scattered such that they are evenly dispersed among the excitatory neurons such 427

that the mean distance between adjacent inhibitory neurons is (µId ± σId)µm. The 428

rectangular plane is wrapped around as a toroid to prevent any edge effects from 429
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affecting the simulation. Table 6 summarises the parameters used to arrange the 430

neurons. 431

At (t = 0 s in Fig. 14), neurons in the network are connected such that the network 432

has a sparsity of p. For each neuron, nout targets are chosen from the complete set of 433

possible post-synaptic neurons in a distance dependence manner as summarised in 434

previous sections. Initially, static synapses in the network (II, IE, EI) are initialised to 435

their mean conductances. The plastic (IE) synapses are subject to the homeostatic 436

inhibitory synaptic plasticity mediated STDP rule proposed by Vogels, Sprekeler et 437

al. [41] and are initialised to zero conductances. 438

External input to each neuron is modelled as an independent Poisson spike train 439

with a mean firing rate rext. These spike trains project on to excitatory and inhibitory 440

neurons via static excitatory synapses with conductances gEext and gIext respectively. 441

Figure 1A shows the various sets of synapses in the network. 442

Initial stabilisation to physiological state 443

The simulation is then started and the network permitted to stabilise to its balanced AI 444

state until (t = t2 in Fig. 14). This phase consists of two simulation regimes. Initially, 445

only inhibitory synaptic plasticity is activated to stabilise the network (t < t1 in 446

Fig. 14). 447

As this state (t = t2 in Fig. 14) is considered the normal physiological state of our 448

network model, the network parameters obtained at this point are set as the steady 449

state parameters of neurons and synapses in the network. The optimal activity of each 450

neuron, ψ, is set to the activity achieved by the neuron at this point, and its growth 451

curves are initialised in relation to it. The mean conductance for new IE synapses is 452

also set as the mean conductance of the IE synapses obtained at this stage. 453

Our implementation of homeostatic structural plasticity is then activated in the 454

network at this point (t = t1 in Fig. 14) to verify that the network continues to remain 455

in its balanced AI state in the presence of both homeostatic mechanisms. 456

Simulation of peripheral lesion 457

Next at (t = t2 in Fig. 14), the external Poisson spike train inputs are disconnected 458

from excitatory and inhibitory neurons that fall in the LPZ to simulate a peripheral 459

lesion in the network. For analysis, the neuronal plane is classified into four regions: 460

• LPZ C: the centre of the LPZ (Red in Fig. 1B). 461

• LPZ B: the inner border of the LPZ (Yellow in Fig. 1B). 462

• P LPZ: peri-LPZ, the outer border of the LPZ (Green in Fig. 1B). 463

• Other neurons: neurons further away from the LPZ (Grey in Fig. 1B). 464

Network reorganisation 465

The deafferented network is permitted to reorganise itself under the action of the active 466

homeostatic mechanisms until the end of the simulation (t = tend in Fig. 14). By 467

selectively activating the two homeostatic mechanisms in different simulation runs, we 468

were also able to investigate their effects on the network in isolation. 469

Structural plasticity mediated connectivity updates All synapses in the 470

network, except the connections that project the external stimulus on to the neuronal 471

population, are subject to structural plasticity (Fig. 1A). 472
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Free excitatory pre-synaptic and excitatory post-synaptic elements can combine to 473

form excitatory synapses (EE, EI). Analogously, inhibitory pre-synaptic and inhibitory 474

post-synaptic elements can plug together to form inhibitory synapses (II, IE). The set of 475

possible partners for a neuron, therefore, comprises of all other neurons in the network 476

that have free synaptic elements of the required type. From this set, zfree partners are 477

chosen based on a probability of formation, pform, which is a Gaussian function of the 478

distance between the pair, d: 479

pform = p̂ exp−(d/(wµEd ))
2

(17)

Here, p̂ ∈ {p̂E , p̂I} is the maximum probability, µEd is the mean distance between two 480

adjacent excitatory neurons, and w ∈ {wE , wI} is a multiplier that controls the spatial 481

extent of new synaptic connections. 482

Investigations indicate that lateral connections in the primary visual cortex are 483

organised in a “Mexican hat” pattern. While experimental work does support the 484

presence of the “Mexican hat” pattern [71,72], anatomical research suggests that 485

inhibitory connections are more localised than excitatory ones, contradicting the 486

traditional use of shorter excitatory and longer inhibitory connections in computer 487

models [73]. Analysis of the local cortical circuit of the primary visual cortex suggests 488

that the “Mexican hat” pattern can either be generated by narrow but fast inhibition, 489

or broad and slower inhibition that may be provided by longer axons of GABAergic 490

basket cells [74, 75]. Investigations into the maintenance of the “Mexican hat” pattern 491

are beyond the scope of this study. We therefore, limit ourselves to the traditional 492

model of longer inhibitory connections and shorter local excitatory connections in this 493

work by using a larger multiplier for inhibitory synapses, wI , than for excitatory 494

synapses, wE , (wE < wI). 495

New synapses that are added to the network are initialised with conductances similar 496

to that of existing synapses in the balanced network. Their conductance values are 497

taken from a Gaussian distribution centred at the mean conductance for that synapse 498

type. Since new synapses can, therefore, be weaker or stronger than existing ones, this 499

prevents the same set of synapses from being modified in each connectivity update. 500

In spite of them being plastic, the same method is also used for IE synapses. IE 501

synapses are initialised with zero conductances at the start of the simulation and modify 502

their strengths based on STDP [41]. When the network has achieved the balanced AI 503

state, these conductances also settle at higher values. If new IE synapses formed after 504

this point by structural plasticity were to be initialised to zero conductances, they 505

would most likely be selected for deletion repeatedly as the weakest ones. STDP does 506

not modulate inactive synapses either—synapses between pairs of neurons that have 507

both been rendered inactive by deafferentation will not be weakened, and may not be 508

lost. Therefore, to ensure the turnover of a diverse set of IE synapses also, new 509

connections of this type are supplied with conductances similar to that of existing stable 510

IE synapses in the balanced network. 511

Experimental evidence suggests that the stability of synapses is proportional to their 512

efficacy [13,76]. Taking this into account, we calculate the probability of deletion of a 513

synapse, pdel, as a function of its conductance g: 514

pdel = exp
−
(

g
(2gth)

)2

(18)

Here, gth is a threshold conductance value calculated during the simulation, synapses 515

stronger than which are considered immune to activity dependent changes in stability. 516

They are removed from the list of options from which zloss synapses are selected for 517

deletion and are therefore, not considered for deletion at all. 518

For simplicity, for static excitatory synapses that all have similar conductances (EI, 519

EE), we do not use this method of deletion. Instead, for these, zloss connections are 520
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randomly selected for deletion from the set of available candidates. While II synapses 521

are also static, the deletion of an inhibitory synapse by the loss of an inhibitory 522

post-synaptic element can occur by the removal of either an IE or an II synapse. 523

Therefore, to permit competition between II and IE synapses for removal, we apply 524

weight based deletion to both these synapse sets. 525

The numbers of synaptic elements are updated at every simulator integration time 526

step internally in NEST. Connectivity updates to the network, however, require updates 527

to internal NEST data structures and can only be made when the simulation is paused. 528

This increases the computational cost of the simulation, and we only make these 529

updates at 1 s intervals. Gathering data on conductances, connectivity, and neuronal 530

variables like [Ca2+] also require explicit NEST function calls while the simulation is 531

paused. Therefore, we also limit dumping the required data to files to regular intervals. 532

Table 7 summarises the various synaptic parameters used in the simulation. 533

Single cell simulations 534

We also studied the effects of our structural plasticity hypotheses in individual neurons 535

using single neuron simulations. Figure 10A shows a schematic of our single neuron 536

simulations. 537

The neuron is initialised to a steady state where it exhibits an indegree similar to 538

neurons in the network simulations when in their AI state. To do so, a constant baseline 539

input current Iext is supplied to the neuron to provide it with activity. The [Ca2+] 540

obtained by the neuron at this time is assumed as its optimal level, ψ. Using identical 541

values of η and ε but different ν values for excitatory and inhibitory post-synaptic 542

elements (νEpost = 4νIpost to mimic the initial indegree of neurons in our network 543

simulations), and an input current that deviates the activity of the neuron off its 544

optimal level (< Iext), the neuron is made to sprout zEpost, z
I
post excitatory and inhibitory 545

post-synaptic elements respectively (zEpost = 4zIpost). By assuming that each dendritic 546

element receives inputs via conductances as observed in network simulations (gEE , gIE), 547

the net input to the neuron that results in its activity can be approximated as: 548

gnet = zEpostgEE − zIpostgIE (19)

At this stage, the neuron resembles a one in network simulations in its balanced state 549

before deafferentation. The current input is returned to its baseline value, thus returning 550

the [Ca2+] to its optimal value, ψ. In addition, the growth curves for the neuron are 551

restored as per our activity dependent structural plasticity hypotheses to verify that the 552

neuron does not undergo any structural changes at its optimal activity level. 553

The external current input to the neuron is modulated sinusoidally to fluctuate the 554

neurons [Ca2+] (Fig. 10B), and resultant changes in the numbers of its post-synaptic 555

elements are recorded. As the neuron modifies its neurites, the change in excitatory and 556

inhibitory input conductance received as a result is calculated (Fig. 10C). 557
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Table 5. Growth rule parameters

Parameter Symbol Value

Optimal [Ca2+] ψ

Excitatory neurons

Scaling factor: pre-synaptic structures (zEpre) νEpre 15× 10−4

Vertical shift ωEpre 1× 10−2

X-axis parameters (ηEpre, ε
E
pre) (ψ, 1.75× ψ)

Decay rate τEpre,free 0.01

Scaling factor: excitatory post-synaptic structures
(zEpost,E)

νEpost,E 3× 10−5

Vertical shift ωEpost,E 4× 10−1

X-axis parameters (ηEpost,E , ε
E
post,E) (0.25× ψ,ψ)

Decay rate τEpost,E,free 0.01

Scaling factor: inhibitory post-synaptic structures
(zEpost,I)

νEpost,I 3× 10−4

Vertical shift ωEpost,I 4× 10−2

X-axis parameters (ηEpost,I , ε
E
post,I) (ψ, 3.5× ψ)

Decay rate τEpost,I,free 0.01

Inhibitory neurons

Scaling factor: pre-synaptic structures (zIpre) νIpre 3× 10−2

Vertical shift ωIpre 4× 10−4

X-axis parameters (ηIpre, ε
I
pre) (0.25× ψ,ψ)

Decay rate τ Ipre,free 0.01

Scaling factor: excitatory post-synaptic structures
(zIpost,E)

νIpost,E 3× 10−5

Vertical shift ωIpost,E 4× 10−1

X-axis parameters (ηIpost,E , ε
I
post,E) (0.25× ψ,ψ)

Decay rate τ Ipost,E,free 0.01

Scaling factor: inhibitory post-synaptic structures
(zIpost,I)

νIpost,I 3× 10−5

Vertical shift ωIpost,I 4× 10−1

X-axis parameters (ηIpost,I , ε
I
post,I) (ψ, 3.5× ψ)

Decay rate τ Ipost,I,free 0.01
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Table 6. Network simulation parameters

Parameter Symbol Value

Simulation parameters

Integration time step dt 0.1 s
Structural plasticity update interval 1 s

Network parameters

Number of E neurons NE 8000
Number of I neurons NI 2000
Dimension of 2D E neuron lattice 100× 80
Dimension of 2D I neuron lattice 50× 40
Mean distance between E neurons µEd 150 µm
STD distance between E neurons σEd 15 µm
Mean distance between I neurons µId 300 µm
STD distance between I neurons σId 15 µm
Neurons in LPZ C 2.5 %
Neurons in LPZ B 2.5 %
Neurons in P LPZ 5 %
Remaining neurons 90 %
Initial network sparsity p 0.02
Initial out-degree nout p× total possible targets

Simulation stages

Synaptic plasticity only 1500 s
Synaptic and structural plasticity 500 s
Network deafferented at 2000 s

Table 7. Synapse parameters

Parameter Symbol Value

Unit conductance ḡ (0.5± 0.1) nS
EE synapse conductance gEE ḡ
EI synapse conductance gEI ḡ
II synapse conductance gII 10ḡ
IE synapse conductance gIE Vogels-Sprekeler STDP
STDP rule time constant τSTDP 20 ms
Target constant αSTDP 0.12
STDP learning rate ηSTDP 0.05
Width multiplier: excitatory synapses wE 8
Width multiplier: inhibitory synapses wI 24
Maximum probability of formation: excitatory
synapses

p̂E 0.8

Maximum probability of formation: inhibitory
synapses

p̂I 0.3

Conductance threshold for deletion: inhibitory
synapses

gth
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