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Abstract

Scratch assays are routinely used to study collective cell behaviour in vitro. Typical
experimental protocols do not vary the initial density of cells, and typical mathe-
matical modelling approaches describe cell motility and proliferation based on as-
sumptions of linear diffusion and logistic growth. Jin et al. (2016) find that the
behaviour of cells in scratch assays is density dependent, and showed that stan-
dard modelling approaches cannot simultaneously describe data initiated across a
range of initial densities. To address this limitation, we calibrate an individual based
model to scratch assay data across a large range of initial densities. Our model al-
lows proliferation, motility and a direction bias to depend on interactions between
neighbouring cells. By considering a hierarchy of models where we sequentially
remove interactions, we perform model selection analysis to identify the minimum
interactions required for the model to simultaneously describe data across all initial
densities. The calibrated model is able to match the experimental data across all den-
sities and captures details about the spatial structure of cells. Our primary findings
provide strong evidence to suggest that motility is density-dependent in these ex-
periments. On the other hand, we do not see the effect of crowding on proliferation
in these experiments. These results are significant as they are precisely the opposite
of the assumptions in standard continuum models, such as the Fisher-Kolmogorov
equation and generalisations of the Fisher-Kolmogorov equation.
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1 Introduction

Scratch assays are routinely used to study collective cell behaviour in vitro [1–5]. These
experiments are conducted by placing a monolayer of cells on a two-dimensional sub-
strate and creating an artificial wound, or scratch, in the centre of the population (fig-
ure 1a–d) [3]. Typical experimental protocols do not vary the initial density of cells
between experiments, which limits the amount of information that can be obtained
about any density-dependence of cell migration or proliferation. We consider novel
experimental data where we deliberately vary the initial density of cells between ex-
periments. The variation in the initial cell density in our experiments is large: the initial
population in the highest density experiment is greater than the the population after
36 h in the lowest density experiment.

Logistic growth and linear diffusion are often assumed to be the key mechanisms
governing collective cell behaviour in a range of in vitro and in vivo conditions [3,6–11].
Mean-field mathematical models that incorporate one or both of these mechanisms are
routinely used to model tumour spheroids [12]; cells in living tissues [13, 14]; and sim-
ple in vitro experiments such as scratch [3], migration [15] and proliferation [16] assays.
While calibrating these models to experimental data often leads to a good match [6],
these models make the standard assumption that the parameters are independent of
both initial condition and cell density. For example, the Fisher-Kolmogorov equation

∂c
∂t

= D∇2c︸ ︷︷ ︸
Linear

diffusion

+ λc
(

1− c
K

)
︸ ︷︷ ︸

Logistic
growth

, (1)

is commonly used to model scratch assay experiments [3, 17] and describes density-
independent motility, characterised by a constant diffusivity D; and density-dependent
proliferation, characterised by a constant proliferation rate λ and a constant carrying
capacity K. Jin et al. [3] find that calibrating equation (1) to scratch assay data yields
vastly different estimates of D for each initial condition considered. The assumption of
density-independent motility may be, therefore, inappropriate.

In this work we describe the cell behaviour with a lattice-free individual based
model (IBM) [16,18,19]. The IBM represents cells as agents that take locations in contin-
uous space, and so we can specify the initial agent locations in the model to precisely
match the initial cell locations in the experiments. This choice also allows the model
to capture local details—such as spatial structure and clustering—which are neglected
by standard continuum modelling approaches [3, 9]. The agents in the IBM undergo
random proliferation and movement events, the rates of which we assume depend ex-
plicitly on interactions between neighbouring agents. We quantify these interactions
with kernels that depend on the distance between pairs of cells. Directional bias is also
incorporated, so that agents are more likely to move either away from, or towards, re-
gions of high density [18,20]. A key advantage of the IBM is its flexibility: it is trivial to
add and remove mechanisms, which we do to study the interactions required for the
model to simultaneously match all experiments. Finally, the IBM is stochastic and so
naturally describes the variation between experiments.

The primary goal of this study is to identify interactions which enable the model to
simultaneously describe experimental data across a range of initial densities. We take a
Bayesian approach to parameter estimation [16, 21–23], and identify interactions using
model selection [21]. We always force the model to simultaneously match data from all
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Experiment N(0) N(18) N(36) Fold
change

1 183 322 652 3.56
2 299 528 927 3.10
3 354 549 893 2.52
4 404 636 1121 2.77
5 427 657 1077 2.52
6 522 849 1414 2.71
7 677 1200 2013 2.97
8 692 1285 1853 2.67
9 731 1155 1974 2.70

Table 1: Summary of experimental data showing the cell count, N(t), and fold change,
N(36)/N(0), for all nine experiments.

nine experiments. The mathematical model is always initiated using the initial config-
uration of cells in each experiment, and we compare simulated and experimental data
at 18 h and 36 h, the latter which corresponds to the duration of the experiment. The
calibrated model is able to replicate the experimental data, and we find evidence of
density dependent motility, which is contrary to the usual assumption of linear diffu-
sion. Additionally, experimentation with summary statistics confirms the importance
of spatial structure, which is neglected by standard modelling and model calibration
approaches.

2 Materials and methods

2.1 Experimental methods

We consider a series of scratch assay experiments using the PC-3 prostate cancer cell
line [24], where we deliberately vary the initial number of cells. For full details of the
experimental technique, see Jin et al. [3]. In summary, a population of cells is seeded at a
density of approximately 8000, 10000 and 12000 cells in a 9000 µm diameter well within
a 96-well plate (figure 1a,b). Cells are grown overnight to create a spatially uniform
monolayer before a scratch is created (figure 1c). Images of the central 1440× 1900 µm
of each well are captured over a period of 48 hours after the monolayer is scratched
(figure 1d).

ImageJ [25] is used to determine the approximate coordinates of individual cells in
each image, this data is given in the supporting material. We exclude the first 12 hours
of experimental data from our analysis [16] to ensure that sufficient time has passed
so that the cells are migrating and proliferating after the scratch has been made. We
then record experimental images and we treat this as the beginning of the experiment,
t = 0 h. The variability in initial cell number is high: despite an initial seeding den-
sity of approximately 8000–12000 cells peer well, which corresponds to expected initial
number of cells within the field-of-view of 344–516, we find that the initial number of
cells within the field-of-view at t = 0 h ranges from 183 to 731 (figure 1f–i). This varia-
tion is also high between experiments of the same seeding density [26], due to the fact
that our field-of-view is relatively small and so that fluctuations about the expected
values are relatively large. We summarise the experimental data in figure 2 and table 1.
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Figure 1: (a)–(d) Schematic of the experimental geometry. (a) 96 well plate. (b) Each assay was performed by distributing a
monolayer of cells in a well of diameter 9000 µm. (c) An artificial wound (light region, not to scale) created within the monolayer
of cells. (d) Field-of-view of the experimental data, which is much smaller than each well (not to scale). (e),(j),(o) Experimental
data for the lowest density replicate (where N(0) = 183) at 0 h, 18 h and 36 h, respectively. In (e),(j) and (o) the green dash-dot
line represents the approximate centre of the scratch at t = 0 h; and, the white dashed lines represent the approximate edge of the
scratch at t = 0 h. Insets in (f),(k) and (p) show the lower-left region of respective images in (e),(j) and (o). The height and width
of the field-of-view in the insets is 500 µm. Subsequent columns show insets for experimental data at increasing densities where
N(0) = 354, 522 and 731. In each image, the location of each cell is indicated with a yellow marker with diameter ϕ = 24 µm (to
scale).

2.2 Mathematical model

We use a lattice-free individual based model (IBM) [16, 18] which we simulate with
the Gillespie algorithm [27]. The model includes density-dependent proliferation and
movement events, but does not consider death, which is not observed in the experi-
ments. To be consistent with previous experimental observations [20], the model incor-
porates a bias mechanism so that cells both move, and disperse daughter agents during
proliferation, in a direction either towards, or away, from crowded regions.

The field-of-view of the experimental data is rectangular, with dimensions 1440×
1900 µm (figure 1d), and we replicate this by using the same geometry in the model.
As the well in the tissue culture plate is much larger than this field-of-view, we apply
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Figure 2: Summary of experimental data showing the cell count, N(t), for all nine experiments.

periodic boundary conditions [16] (indicated in blue in figure 1c,d). Cells are modelled
as agents that have a point location but no physical size. In our previous work, we
find that, on average, these PC-3 prostate cancer cells have an area that corresponds
to a disc of diameter ϕ = 24 µm [16]. The interaction mechanisms we model are not
based on volume exclusion, but rather depend agent separation in such a way that
configurations wherein two agent centres are very close are unlikely. We denote the
agent locations xn = (x, y), n ∈ {1, ..., N(t)}, where N(t) denotes the number of agents
in the simulation. We specify the initial agent locations in each simulation to match the
experimental images at t = 0 h.

Directional bias
We quantify crowding by placing a bias kernel at the location of each agent to form a
crowding surface, B(x), as shown in figure 3c,d for the configuration of cells in figure 3a,b.
Mathematically, this is given by

B(x) =
N(t)

∑
i=1

w(b)(‖x− xi‖) (2)

and describes a measure of local crowding at x, where w(b)(r) is the bias kernel. The
contributions of each agent to B(x) depend on the distance between x and the location
of the ith agent, xi, given by r = ‖x − xi‖. In this study, we choose w(b)(r) to be a
Gaussian [28] of spread σ with an extremum of γb so that

w(b)(r) = γb exp
(
− r2

2σ2

)
. (3)

For computational efficiency, we truncate the kernel to zero for r ≥ 3σ [28].
For γb > 0, agents prefer to move and disperse daughter agents in the direction of

steepest descent on the crowding surface, which corresponds to regions of lower den-
sity (setting γb < 0 has the opposite effect). This preference depends on the steepness,
so that agents close to highly crowded regions are more likely to move and disperse
daughter agents in their preferred direction, demonstrated in figure 3e,f , where the red
agent has a stronger bias strength than the green agent. To do this, we define the bias
vector of agent n as

Bn = −∇B(xn), (4)
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Figure 3: (a)–(b) Experimental data at (a) low density; and, (b) high density. The location of each cell is indicated with a yellow
marker of diameter ϕ = 24 µm (to scale). (c)–(d) Example crowding surface, where agent locations are taken from experimental
data in (a) and (b), respectively. (e) Two-dimension inset of experimental image in (c), showing the bias distribution for two
agents in radial coordinates centred at each agent. The off-centredness of each circle therefore represents the strength of the bias,
which is stronger for the red cell than the green cell. (f) The bias distributions in (e) shown in Euclidean coordinates for clarity.
(g)–(h) Schematic of proliferation and movement events, respectively, where the black arrow indicates the sampled direction of
each cell. For a proliferation event in (g), the daughter cell is placed a distance of ϕ from the mother cell. For a movement event
in (h), the cell is moved a distance of ϕ.

which gives the magnitude and direction of steepest descent. The movement and pro-
liferation directions are then sampled from the von Mises distribution [29]

von Mises(arg(Bn), ‖Bn‖). (5)

The expected and most likely direction is, therefore, arg(Bn). The direction distribu-
tion becomes increasingly concentrated around arg(Bn) as ‖Bn‖ becomes large, and
approaches a uniform distribution on [0, 2π) as ‖Bn‖ → 0.

We illustrate the directional bias mechanism in figure 3c–f . The crowding surface
is constructed with a Gaussian kernel placed at the location of each agent (figure 3c,d).
In figure 3e we show the bias distribution and preferred direction for an agent in a low
(green) and high (red) density region. For each agent, the arrow shows the preferred
direction, and the corresponding von Mises distribution is plotted in radial coordinates
centred at the location of each agent. In figure 3f we show these distributions are shown
as a function of the angle, θ ∈ [0, 2π), for clarity.
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Proliferation and movement
Proliferation and movement events occur according to a Poisson process [30] with
density-dependent rates Pn ≥ 0 and Mn ≥ 0, respectively. These rates comprise con-
stant intrinsic rates p > 0 and m > 0, that are modified by interactions with neighbour-
ing agents. We quantify these interactions using kernels, w(·)(r), that depend on the
separation distance, r ≥ 0, between an agent and its neighbours, such that

Pn = max

(
0, p−

N(t)

∑
i 6=n

w(p)(r)

)
, (6)

and Mn = max

(
0, m−

N(t)

∑
i 6=n

w(m)(r)

)
. (7)

Again, we choose the kernels to be Gaussian, with spread σ, so that

w(p)(r) = γp exp
(
− r2

2σ2

)
, (8)

and w(m)(r) = γm exp
(
− r2

2σ2

)
. (9)

Here, γp and γm are the extrema of the proliferation and movement kernels, respec-
tively. A value of γ < 0 means that crowding increases motility or proliferation; a
value of γ > 0 means that crowding decreases motility or proliferation; and, a value of
γ = 0 means that motility or proliferation is independent of local density. Again, for
computational efficiency, we truncate the kernels to zero for r ≥ 3σ [28].

When an agent at xn proliferates, the daughter agent is dispersed to a location of
distance ϕ (approximately one cell diameter) from xn, with the direction sampled from
the bias distribution for that agent (figure 3e,f ). This is demonstrated in figure 3g.

When an agent at xn moves, it is moved to a location of distance ϕ (approximately
one cell diameter) from xn, with the direction sampled from the bias distribution for
that agent (figure 3e,f ). This is demonstrated in figure 3h.

2.3 Summary statistics

To match model simulations to the experimental data, we record the locations of agents
at both t = 18 h and t = 36 h. We denote the experimental data at both time points from
experiment i ∈ {1, ..., 9} as X(i)

obs, and simulation data from experiment i as X(i)
sim. In this

section, we detail how we summarise the high dimensional data X into lower dimen-
sional summary statistics. This allows us to define a distance function, d(Xobs, Xsim),
that represents the distance between experimental and simulation data.

We aim to capture three key pieces of information in the experiments: (1) the pop-
ulation size; (2) the spatial structure; and, (3) the density profile. The first two pieces
of information are related to the first two spatial moments [28], and the last piece of in-
formation relates to the wound closure, total population and the spatial distribution of
cells. The first spatial moment, the average density, is the number of agents in the pop-
ulation, N(t). The second spatial moment describes the spatial distribution of agents,
often characterised by a pair correlation function [2, 18, 28]. In summary, the pair cor-
relation function describes the number of pairs of agents separated by a distance r,
relative to if the population were uniformly distributed. Since the data are discrete, we
define the pair correlation, P(j, t), j ∈ N, which describes the relative number of pairs

7

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2019. ; https://doi.org/10.1101/811257doi: bioRxiv preprint 

https://doi.org/10.1101/811257
http://creativecommons.org/licenses/by-nd/4.0/


0 1900

(a)

0

1

2

0 100

(b) Pair correlation function

0 1900
0

(c) Density profile

400 μm 400 μm 
r (μm)x (μm) x (μm)

2
Experimental image

Figure 4: (a) Experimental image. The location of each cell is indicated with a yellow marker of diameter ϕ = 24 µm (to scale).
(b) Pair correlation function calculated from the distribution in cells in (a). P is the average of PL and PR, calculated using the
agents in the 400 µm to the far-left and far-right (red region) of the experimental data in (a), respectively. Therefore, P contains
information about the spatial distribution of cells, but not about the scratched region. (c) The density profile, calculated by
counting the number of cells in subregions of width 1900/80 µm and dividing by the area of each subregion. The sub-regions are
indicated as the axis ticks in (a). Only the central 41 bins are used to compare experimental and simulated data. Green dash-dot
lines in (a) and (c) indicate the approximate centre of the scratch at t = 0 h and dashed lines indicated the approximate boundary
of this region at t = 0 h.

separated by a distances ranging from (j− 1)∆r < r < j∆r. This is given by

P(j, t) =
LW

N(t)2π∆r(2j + ∆r)

N(t)

∑
n=1

N(t)

∑
i=1
i 6=n

1(j−1)∆r≤‖xn−xi‖<j∆r, (10)

where L and W are the dimensions of the region and 1 is the indicator function. In
this study, we choose ∆r = 5 µm, and consider the pair correlation up to a distance of
100 µm such that j ≤ 20. Smaller values of ∆r lead to a noisier pair correlation function,
and larger values of ∆r hide information.

In a scratch assay the central region of the experimental field-of-view is approx-
imately devoid of agents (figure 4a). To account for this, we calculate pair correla-
tion functions for sub-region of width 400 µm in the far-left, and far-right, of the do-
main (figure 4a, indicated in red) denoted P (L)(j, t) and P (R)(j, t), respectively. We
apply periodic boundary conditions on these sub-regions, so that the separation of
a pair of agents is the smallest possible distance accounting for the periodic bound-
ary conditions. The pair correlation function that summarises the entire experiment is
P(j, t) = (P (L)(j, t) + P (R)(j, t))/2 (figure 4b).

The final piece of information, the density profile, describes the wound closure, to-
tal population and spatial structure. We subdivide the field-of-view in figure 4a into 80
vertical sub-regions, each of width ∆x = 1900/80 = 23.75 µm. We define the density
profile D(j, t) to be the number of agents with an x-coordinate between (j− 1)∆x and
j∆x, divided by the area of the sub-region, giving the density. This density profile is
shown in figure 4c. To avoid capturing excessive noise in our measurement of wound
closure, we do not include the entire density profile in the distance metric. Rather, we
manually approximate the x-coordinate of the centre of the scratch at t = 0 h for each
experiment, denoting I(i)mid as the bin index of the centre the scratch in experiment i.
We include the central 41-subregions which, in effect, surround the initially scratched
region of each experiment. This region is indicated in figure 4c and avoids the fluctua-
tions in density outside this region.
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The distance metric, d(Xobs, Xsim), is given by

d(Xobs, Xsim) = ∑
t∈{18,30}

(
[Nsim(t)− Nobs(t)]2

Nobs(t)2

+
∑20

j=1[Psim(j, t)−Pobs(j, t)]2

∑20
j=1 Pobs(j, t)2

+
∑Imid+20

j=Imid−20[Dsim(j, t)−Dobs(j, t)]2

∑Imid+20
j=Imid−20Dobs(j, t)2

)
,

(11)

and includes information from all three summary statistics, at t = 18 h and t = 30 h.
Therefore, d(Xobs, Xsim) is the relative square error of the simulation from the experi-
ment. For P and D, the contributions to d(Xobs, Xsim) approximate the relative square
error in the integral of each summary statistic, given the spatial discretisation we have
applied to each.

2.4 Approximate Bayesian computation and model selection

We consider a hierarchy of models. The full model, which we denote as Model 1, con-
tains the five unknown parameters θ1 = (m, p, γm, γp, γb). Models 2 to 5 are subsets
of the full model, where we progressively restrict various combinations of the interac-
tion strength parameters γm, γp and γb to be zero, effectively removing them from the
model. We summarise these five models in table 2, where we denote θk as the unknown
parameter combination for Model k.

θk Density Dependence
Model 1 (m, p, γm, γp, γb) Proliferation, Motility and Direction
Model 2 (m, p, γp, γb) Proliferation and Direction
Model 3 (m, p, γm, γp) Proliferation and Motility
Model 4 (m, p, γp) Proliferation only (Fisher-Kolmogorov)
Model 5 (m, p) None (Skellam’s model [31])

Table 2: The hierarchy of models considered. The full model (Model 1) contains a parameter
governing the: motility rate, m; proliferation rate, p; motility interaction strength, γm; prolifera-
tion interaction strength, γp; and, directional bias strength, γb. In subsequent models, we restrict
various combinations of the parameters to zero, effectively removing them from the model.

We treat the unknown parameters in each model as a random variable, θ. In the
absence of experimental observations, our knowledge of θ is characterised by specified
prior distributions. When included in the model, the priors were chosen to be inde-
pendent and are as follows: π(m) = U(0, 10)/h; π(p) = U(0.02, 0.05)/h; π(γm) =

U(−2, 2)/h; π(γp) = U(0, 0.02)/h; and π(γb) = U(0, 100) µm. Initially, we also treat
σ as an unknown parameter where π(σ) = U(2, 30) µm. This initial analysis provides
strong evidence for the value of σ, so we set σ = ϕ/2 = 12 µm to decrease the di-
mensionality of the parameter space. In the supporting material, we also investigate
σ = ϕ = 24 µm, since this is a natural choice in a lattice-based framework where the
migration distance and dispersal distance are also the same as the average agent diam-
eter. We apply approximate Bayesian computation (ABC) [14, 16, 21, 23] to update our
knowledge of the parameters using experimental observations, Xobs, from all nine ex-
periments, to produce posterior distributions, π(θ|Xobs). Since this model is known to
be computationally expensive [16] and we have a high-dimensional parameter space,
we apply an ABC method based on sequential Monte-Carlo (SMC) [21, 23, 32].
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In this study, we aim to find parameter combinations that simultaneously match
all nine experimental data sets, such that Xobs = {X(i)

obs}
9
i=1. For each prior sample in

the ABC rejection algorithm we simulate a model realisation using each experimental
initial condition, to obtain Xsim = {X(i)

sim}9
i=1. We then compare observed data, Xobs, to

simulated data, Xsim, using the discrepancy measure

ρ(Xobs,Xsim) =
9

∑
i=1

d
(

X(i)
obs, X(i)

sim

)
, (12)

where d(·, ·) is given in equation (11). In ABC techniques, we accept a proposal as a
posterior sample if ρ(Xobs,Xsim) < ε for some threshold ε. As d(·, ·) ≥ 0, the sum
in equation (12) is non-decreasing in i. We therefore implement early rejection [33] by
sequentially producing model realisations for i ∈ {1, ..., 9}. If, at any time, the partial
sum up to a value i exceeds the threshold ε, we immediately reject the sample. In
practise, this saves considerable computation time by reducing the number of times
the model must be simulated using high-density initial conditions.

The principle behind ABC SMC is to propagate a series of prior samples, called
particles, through a sequence of distributions π(θ|ρ(Xobs,Xsim) < εu), u = {1, ..., U}
[21, 23, 32]. The thresholds εu satisfy εu > εu+1, so that the distribution gradually
evolves to the target distribution π(θ|ρ(Xobs,Xsim) < εU) ≈ π(θ|Xobs). To obtain
a sequence of thresholds, and an estimate of the smallest discrepancy possible in all
models, we first perform a pilot run using ABC rejection [16, 23] with Model 1 (sup-
porting material, section 1.1). From 100,000 prior samples, this provides an estimate
of the probabilities Pr(ρ(Xobs,Xsim) < εu), given θ is simulated from the prior. We
choose the sequence {εu}U

u=1 by examining a quantile plot (supporting material, sec-
tion 3). We choose εU to corresponds to an acceptance rate of approximately 1% under
ABC rejection. The sequence of discrepancies, and details of the ABC rejection and
SMC algorithms are given in the supporting material (sections 1 and 3).

We follow the ABC SMC algorithm of Toni et al. [21] to perform parameter inference
and model selection. Under this algorithm, we place a prior distribution on the model
index, π(Mk), which we choose to be a discrete uniform distribution so that each model
is equiprobable. ABC SMC is then used to estimate the posterior probability of each
model, π(Mk|Xobs). We detail this algorithm in the supporting material (section 1.2).
A key feature of this technique is to implicitly penalise models with a higher number
of parameters. We compare models by computing the Bayes factor, Bk [34], which
describe the evidence in favour of Model k over the full model, Model 1. As a uniform
prior is placed on the model index, the Bayes factor is given by

Bk =
π(Mk|Xobs)

π(M1|Xobs)
. (13)

Here, π(Mk|Xobs) denotes the marginal posterior density of Mk (Model k). A value
Bk > 1 indicates evidence in favour of Model k compared to the full model, and vice-
versa for Bk < 1. The Bayes factor is therefore simply the ratio of the posterior density
for Models k and 1, and provides evidence to compare models in a similar way to that
used in frequentist hypothesis testing.
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3 Results and Discussion

Common mean-field models, such as the Fisher-Kolmogorov equation and generalisa-
tions of the Fisher-Kolmogorov equation, are not able to simultaneously describe col-
lective cell behaviour in scratch assay experiments across a range of initial densities [3].
This suggests density-dependent behaviour in these experiments that is not captured
by linear diffusion. Our model allows interactions between cells to affect proliferation,
movement and direction. To identify the importance of each of these interactions, we
simultaneously calibrate our model to nine scratch assay experiments which we initiate
across a wide range of initial densities.

Our first result is to identify the distance over which these interactions occur. We
quantify interactions using Gaussian kernels dependent on the distance between pairs
of agents [28], and characterised by a spread parameter σ (equations (3), (8) and (9)).
The interaction between a pair of agents separated by more than approximately 3σ

is, therefore, negligible. We expect σ to be of the same order of magnitude as ϕ =

24 µm, which is the approximate cell diameter [16]. We perform ABC rejection where
σ is sampled from the prior U(2, 30) (supporting material, section 1.1). These results
suggest that σ ≈ ϕ/2 = 12 µm, and we fix this for the rest of the study to reduce the
number of unknown parameters. This result suggests that interactions between cells
occurs over a relatively short distance, since the model predicts interactions between
cells separated by more than 3σ = 36 µm is negligible.

One of the most important aspects of the lattice-free IBM is its ability to describe, in
fine detail, the spatial structure of cells in the experiments, which we quantify using the
pair correlation function. In contrast, mean-field models consider only average prop-
erties of the cell population [17] and lattice-based methods [19, 22] are not able to pre-
cisely capture the initial agent configuration from the experiments. Lattice-based meth-
ods also, by definition, constrain the separation of agents to take discrete values, and
typically agents in these models cannot lie closer than one cell diameter. The pair cor-
relation describes the probability of finding pairs of agents separated by each distance,
and hence can provide information about the effect of interactions on the dynamics.
To show this, we repeat ABC rejection but exclude the pair correlation function from
the distance metric (supporting material, section 2.3). These results show that the pos-
terior distributions change significantly in this case, verifying that the pair-correlation
function contains a significant amount of information about these interactions.

To quantitatively determine the importance of each interaction, we consider a hi-
erarchy of models where we successively set interaction strength parameters (γm, γp

and γb) to zero to remove the corresponding interaction from the model. We use the
model selection algorithm of Toni et al. [21], and compare the evidence in favour of each
model over the full model (Model 1) using Bayes factors [21, 34]. We show the poste-
rior density for each model in figure 5a, and summarise the Bayes factors and evidence
in table 3. Overall, we find that Model 1 has the highest posterior density (figure 5a).
We find positive evidence in favour of Model 1 over Model 2 (where γm = 0 and so
motility is density-independent); and weak evidence in favour of Model 1 over Model
3 (where γb = 0 and so there is no directional bias). Importantly, we find that Models 4
and 5, where γm, γb = 0 and γm, γp, γb = 0, respectively, cannot match the experimen-
tal data (B4 = B5 = 0). Contrary to assumptions that are commonly made in models
such as the Fisher-Kolmogorov equation, these results provide evidence to suggest that
motility is density-dependent, as either a density dependent movement rate must be
included (Models 1 and 3) or a directional bias (Models 1 and 2).
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Bk Evidence
Model 1 1.000 −
Model 2 0.248 Positive
Model 3 0.482 Weak
Model 4 0.000 Very Strong
Model 5 0.000 Very Strong

Table 3: Bayes factor, Bk, for each model, which describes the evidence in favour of Model k over
Model 1, or vice versa. We also indicate the strength of the evidence in favour of Model 1 over
Model k [21].
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Figure 5: (a) Posterior for the model index, π(Mk|Xobs), showing that Model 1 (the full model) is the posterior mode. (b)–(f)
Marginal posterior distributions for each parameter in Model 1, shown as weighted histograms. In all cases, the posterior mode
is indicated in dark blue.

We now focus on results for the full model (Model 1), which has the highest poste-
rior density. In figure 5b–f we show marginal posterior distributions for each parameter
in Model 1, and in figure 6 we compare the experimental data from four of the nine ex-
periments to the calibrated model (in the supporting material, we show these results
for all nine experiments). Overall, we find an excellent match between the model and
experimental data, which has not been seen across a range of initial densities for this
kind of experimental data. In addition to matching the density profile (figure 6m–p) and
population (figure 6u–x), we find that the calibrated IBM is able to capture information
about the spatial structure of cells, specifically, the pair correlation function (figure 6q–
t). We perform a posterior predictive check for each summary statistic by producing
50% and 95% prediction intervals (PI) that characterise both the parameter uncertainty
and stochasticity described by the model. The summary statistics produced from the
experimental data almost always lie completely within the 95% PI, further indicating
that the calibrated model is consistent with the experimental data across the range of
initial densities. While we have not presented these results for Models 2 and 3, which
have non-zero posterior density, the nature of ABC means that all accepted samples lie
a similar distance to the experimental data.
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Results in figure 5c suggest that γm < 0, so that crowding increases motility. This is
consistent with mean-field models such as the porous Fisher equation [35] where the
diffusivity monotonically increases with local density, but contrasts to other non-linear
diffusion models where cell motility decreases with crowding [36]. This observation
also explains why model realisations with small values of the motility rate, m, are able
to match the data (this is seen in figure 5b), since a value γm < 0 allows motility in
crowded regions if m � 1. Interestingly, these results are less clear in the case where
the pair correlation function is neglected (supporting material, section 2.3), which again
highlights the importance of considering spatial structure when studying these inter-
actions. The increase of motility due to crowding may correspond to mechanical in-
teractions such as volume exclusion in very high density regions. It is trivial to add
mechanisms to the IBM, and future work may examine γm in the case volume exclu-
sion [19], or other kinds of mechanical interactions [37–39], are included as additional
mechanisms. Alternatively, the inclusion of non-monotonic interaction kernels [40]
may allow movement to increase for agents close together, and decrease in crowded
regions.

An interesting result is that the directional bias is included in the models with the
highest posterior density (Models 1 and 3), but examining the marginal posterior for
γb (figure 5f ), we see that the strength of this bias may not be identifiable: the posterior
distribution is relatively flat without a clear mode. These results might suggest that,
past a certain point, increasing the strength of the directional bias as negligible effect.
We verify these observations by widening the prior distribution for γb by a factor of
two in the supporting material (section 2.2). To obtain more information about the
strength of the directional bias, representing the propensity of cells to move away from
proximate neighbours, more detailed data, such as cell tracking data, may be required
[39].

Results in figure 5e indicate that the proliferation interaction strength, characterised
by γp, may also be unidentifiable. Figure 6u–x shows that population growth appears
to be exponential, and so we do not see crowding effects on proliferation in these ex-
periments. Early time data is often exponential for a variety of growth laws and ex-
periments must be run for a longer period of time to identify the appropriate growth
function [22]. We verify this by performing model selection with three additional mod-
els (Models 6–8) that respectively correspond to Models 1–3 with γp = 0 (supporting
material, section 4). These additional results show that the distributions for Models 6–8
are similar to those for Models 1–3 and confirm that crowding effects on proliferation
are simply not seen in these experiments.

4 Conclusion

The ability of common mean-field models, such as the Fisher-Kolmogorov equation
and generalisations of the Fisher-Kolmogorov equation, to match experimental data
across a range of densities is rarely tested as typical experimental protocols do not
vary the initial number of cells. These models typically assume either or both density-
dependent proliferation and density-independent motility [3,6–11]. By modelling density-
dependent interactions which effect motility, proliferation and directional bias, we cal-
ibrate a mathematical model that simultaneously describes scratch assay data across a
range of densities. Using model selection, we quantitatively assess which interactions
are most important. We find, in contrast to common mean-field models such as the
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Fisher-Kolmogorov equation and generalisations of the Fisher-Kolmogorov equation,
evidence to suggest that movement is density-dependent, while there is little evidence
of density-dependent proliferation. Additionally, our results confirm the importance
of spatial structure, which is neglected by standard modelling approaches.

In this study we study density-dependent interactions that effect proliferation, motil-
ity and directional bias. Applying SMC, which penalises models with high dimension-
ality of the unknown parameters, our study results in the minimal model required to
match the experimental data. Two of the primary advantages of the IBM is its ability to
precisely replicate the initial condition from experimental data; and, the ease of which
new mechanisms can be added. Our approach can, therefore, be applied to quantify
experimental evidence for more complex mechanisms including chemotaxis [14, 41];
mechanotaxis [42]; generalised growth laws [43], to name a few. However, we do not
pursue such extensions here since we find that our simpler modelling framework can
provide a good match to all our experimental data without including more complex
mechanisms.

Acknowledgements

M.J.S. is supported by the Australian Research Council, M.J.P. is partly supported by Te Pūnaha Matatini,
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