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Abstract8

Reactivation of earlier perceptual activity is thought to underlie long-term memory recall. Despite evidence for9

this view, it is unknown whether mnemonic activity exhibits the same tuning properties as feedforward perceptual10

activity. Here, we leveraged population receptive field models to parameterize fMRI activity in human visual cortex11

during spatial memory retrieval. Though retinotopic organization was present during both perception and memory,12

large systematic differences in tuning were also evident. Notably, whereas there was a three-fold decline in spatial13

precision from early to late visual areas during perception, this property was entirely abolished during memory14

retrieval. This difference could not be explained by reduced signal-to-noise or poor performance on memory15

trials. Instead, by simulating top-down activity in a network model of cortex, we demonstrate that this property is16

well-explained by the hierarchical structure of the visual system. Our results provide insight into the computational17

constraints governing memory reactivation in sensory cortex.18

19
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Introduction22

Episodic memory retrieval allows humans to bring to mind the details of a previous experience. This process is23

hypothesized to involve reactivating sensory activity that was evoked during the initial event (James, 1890; Hebb,24

1968; Damasio, 1989; McClelland et al., 1995). For example, remembering a friend’s face is thought to involve25

reactivating neural activity that was present when seeing that face. There is considerable evidence from human26

neuroimaging demonstrating that the same visual cortical areas active during perception are also active during27

imagery and long-term memory retrieval (Kosslyn et al., 1995; O’Craven & Kanwisher, 2000; Wheeler et al., 2000;28

Slotnick et al., 2005; Polyn et al., 2005; Kuhl et al., 2011; Bosch et al., 2014; Waldhauser et al., 2016; Lee et al.,29

2018; Bone et al., 2018). These studies have found that mnemonic activity in early visual areas like V1 reflects30

the low-level visual features of remembered stimuli, such as spatial location and orientation (Kosslyn et al., 1995;31

Thirion et al., 2006; Bosch et al., 2014; Naselaris et al., 2015; Sutterer et al., 2019). Likewise, category-selective32

activity in high-level visual areas like FFA and PPA is observed when subjects remember or imagine faces and33

houses (O’Craven & Kanwisher, 2000; Polyn et al., 2005). The strength and pattern of visual cortex activity has34

been associated with retrieval success in memory tasks (Kuhl et al., 2011, 2013; Gordon et al., 2014), suggesting35

that cortical reactivation is relevant for behavior.36

These studies, and many others, have established similarities between the neural substrates of visual perception37

and visual memory. However, relatively less attention has been paid to identifying and explaining differences38

between activity patterns evoked during perception and memory. In the present work, we asked the following39

question: which properties of stimulus-driven activity are reproduced in visual cortex during memory retrieval and40

which are not? The extreme possibility–that all neurons in the visual system produce identical responses when41

perceiving vs remembering a given stimulus–can likely be rejected. Early studies demonstrated that sensory42
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responses were reduced during memory retrieval relative to perception (Wheeler et al., 2000), and perception and43

memory give rise to distinct subjective experiences. A more plausible proposal is that visual memory functions as a44

"weak" version of feedforward perception (Pearson et al., 2015; Pearson, 2019), with memory activity organized in45

the same fundamental way as perceptual activity, but with reduced signal-to-noise. This hypothesis is consistent46

with informal comparisons between perception and memory BOLD amplitudes and data suggesting that visual47

imagery produces similar behavioral effects to weak physical stimuli in many tasks (Ishai & Sagi, 1995; Pearson48

et al., 2008; Tartaglia et al., 2009; Winawer et al., 2010). A third possibility is that memory reactivation differs from49

stimulus-driven activation in predictable and systematic ways beyond signal-to-noise. Such differences could arise50

due to a change in the neural populations recruited, a change in those populations’ response properties, or a51

systematic loss of information during sensory encoding or post-sensory processing.52

One way to adjudicate between these possibilities is to make use of models from visual neuroscience that53

quantitatively parameterize the relationship between stimulus properties and the BOLD response. In the spatial54

domain, population receptive field models (pRF) define a 2D receptive field that transforms stimulus position on the55

retina to a voxel’s BOLD response (Dumoulin & Wandell, 2008; Wandell & Winawer, 2015). These models are based56

on well-understood physiological properties of the primate visual system and account for a large amount of variance57

in the BOLD signal observed in human visual cortex during perception (Kay et al., 2013b). Using these models to58

quantify memory-evoked activity in the visual system offers the opportunity to precisely model the properties of59

memory reactivation in visual cortex and their relationship to visual activation. In particular, the fact that pRF models60

describe neural activity in terms of stimulus properties may aid in interpreting differences between perception and61

memory activity patterns by projecting these differences onto a small number of interpretable physical dimensions.62

Here, we used pRF models to characterize the spatial tuning properties of mnemonic activity in human visual63

cortex. We first trained human subjects to associate spatially localized stimuli with colored fixation cues. We then64

measured stimulus-evoked and memory-evoked activity in visual cortex using fMRI. Separately, we fit pRF models65

to independent fMRI data, which allowed us to estimate receptive field location and size within multiple visual field66

maps for each subject. Using pRF-based analyses, we quantified the location, amplitude, and precision of neural67

activity within these visual field maps during perception and memory retrieval. Finally, we explored the cortical68

computations that could account for our observations by simulating neural responses using a stimulus-referred pRF69

model and a hierarchical model of neocortex.70

Results71

Behavior72

Prior to being scanned, subjects participated in a behavioral training session. During this session, subjects73

learned to associate four colored fixation dot cues with four stimuli. The four stimuli were unique radial frequency74

patterns presented at 45, 135, 225, or 315 degrees of polar angle and 2 degrees of eccentricity (Fig. 1a,b).75

Subjects alternated between study and test blocks (Fig. 1c). During study blocks, subjects were presented with the76

associations. During test blocks, subjects were presented with the cues and had to detect the associated stimulus77

pattern and polar angle location among similar lures (Fig. 1a,c; see Methods). All subjects completed a minimum of78

4 test blocks (mean = 4.33, range = 4–5), and continued the task until they reached 95% accuracy. Subjects’ overall79

performance improved over the course of training session (Fig. 1d). In particular, subjects showed improvements in80

the ability to reject similar lures from the first to the last test block (Fig. 1e).81

After subjects completed the behavioral training session, we collected fMRI data while subjects viewed and82

recalled the stimuli (Fig. 2a). During fMRI perception runs, subjects fixated on the central fixation dot cues and83

viewed the four stimuli in their learned spatial locations. Subjects performed a one-back task to encourage covert84

attention to the stimuli. Subjects were highly accurate at detecting repeated stimuli (mean = 86.9%, range =85

79.4%–93.2%). During fMRI memory runs, subjects fixated on the central fixation dot cues and recalled the86

associated stimuli in their spatial locations. On each trial, subjects made a judgment about the subjective vividness87

of their memory. Subjects reported that they experienced vivid memory on an average of 89.8% of trials (range:88

72.4%–99.5%), weak memory on 8.9% of trials (0.5%–25.0%), and no memory on 1.2% of trials (0.5%–2.6%).89
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Figure 1. Stimuli and behavioral training. (a) The four radial frequency patterns and polar angle locations used in the fMRI experiment are
outlined in blue. The intervening patterns and locations were used as lures during the behavioral training session. (b) Immediately prior to the
scan, subjects learned that each of four colored fixation dot cues was associated with a unique radial frequency pattern that appeared at a
unique location in the visual field. (c) During training, subjects alternated between study and test blocks. During study blocks, subjects were
presented with the associations while maintaining central fixation. During test blocks, subjects were presented with the cues followed by test
probes while maintaining central fixation. Subjects gave yes/no responses to whether the test probe was presented at the target polar angle and
whether it was the target pattern. (d) Accuracy of pattern and polar angle responses improved over the course of the training session. Lines
indicate average accuracy across subjects. Shaded region indicates 95% confidence interval. (e) Memory performance became more precise
from the first to the last test block. During the first block, false alarms were high for stimuli similar to the target. These instances decreased by
the last test block. Dots indicates probability of a ’yes’ response for all trials and subjects in either the first or last block. The x axis is organized
such that zero corresponds to the target and increasing values correspond to lures more dissimilar to the target.

Memory reactivation is spatially organized90

We used a GLM to estimate the BOLD response evoked by seeing and remembering each of the four spatially91

localized stimuli (Fig. 2a; see Methods). Separately, each subject participated in a retinotopic mapping session.92

We fit pRF models to these data to estimate pRF locations (x,y) and sizes (s) in multiple visual areas (Fig 2b). To93

more easily compare perception- and memory-evoked activity across visual areas, we transformed these responses94

from cortical surface coordinates into visual field coordinates using the pRF parameters. For each subject, ROI,95

and stimulus, we plotted the amplitude of the evoked response at the visual field position (x,y) estimated by the96

pRF model (Fig. 3a). We then interpolated these values over 2D space, z-scored the values, rotated all stimulus97

responses to the same polar angle, and averaged across stimuli and subjects (see Methods). These plots are useful98

for comparison across regions because they show the organization of the BOLD response in a common space that99

is undistorted by the size and magnification differences present in cortex.100

We generated these visual field plots for V1, V2, and V3 as an initial way to visualize the evoked responses101

during perception and memory. Readily apparent is the fact that stimulus-evoked responses during perception were102

robust and spatially-specific (Fig. 3b, top). The spatial spread of perceptual responses increased from V1 to V3,103

consistent with estimates of increasing receptive field size in these regions (Wandell & Winawer, 2015; Kay et al.,104

2013b). While the memory responses were weaker and more diffuse, they were also spatially organized, with peak105

activity in the same location as the perception responses (Fig. 3b, bottom).106
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Figure 2. fMRI task design and measurements. (a) Following training, subjects participated in two tasks while being scanned. During
perception runs, subjects viewed the colored fixation dot cues and associated stimuli while maintaining central fixation. Subjects performed a
one-back task on the stimuli to encourage covert attention to each stimulus. During memory runs, subjects viewed only the cues and recalled the
associated stimuli while maintaining central fixation. Subjects made a judgment about the vividness of their memory (vivid, weak, no memory) on
each trial. We used the perception and memory fMRI time series to perform a GLM analysis that estimated the response evoked by perceiving
and remembering each stimulus for each vertex on the cortical surface. Responses in visual cortex for an example subject and stimulus are
shown at bottom. (b) In a separate fMRI session on a different day, subjects participated in a retinotopic mapping session. During retinotopy
runs, subjects viewed bar apertures embedded with faces, scenes, and objects drifting across the visual field while they maintained central
fixation. Subjects performed a color change detection task on the fixation dot. We used the retinotopy fMRI time series to solve a pRF model that
estimated the receptive field parameters for each vertex on the cortical surface. A polar angle map is plotted for an example subject at bottom.

We quantified these initial observations. Because our stimulus locations were isoeccentric, we reduced our107

responses to variance along one spatial dimension: polar angle. To do this, we restricted our ROIs to surface108

vertices with pRF locations near the stimulus eccentricity, rotated stimuli to a common polar angle, normalized the109

responses, and averaged across stimuli and subjects (see Methods). We then plotted the group average BOLD110

response in bins of polar angle distance from the stimulus (Fig. 4a). We generated these polar angle response111

functions for V1–V3 and for three mid-level visual areas: hV4, LO, and V3ab (Fig. 4b). To capture the pattern of112

positive and negative BOLD responses we observed, we fit the average data in each ROI with a difference of two113

von Mises distributions, where both the positive and the negative von Mises were centered at the same location.114

Visualizing the data and the von Mises fits (Fig. 4b), it’s clear that both perception and memory fits show a peak at115

0�, or the true location of the stimulus, in every region.116

To formally test this, we calculated bootstrapped confidence intervals for the location parameter of the von Mises117

distributions by resampling subjects with replacement (see Methods). We then compared the accuracy and reliability118

of location parameters between perception and memory (Fig. 4c, left). As expected, location parameters derived119

from perception data were highly accurate. 95% confidence intervals for perception location parameters overlapped120

0� of polar angle, or the true stimulus location, in all ROIs. These confidence intervals spanned only 7.0� on average121

(range: 3.9�–9.5�), demonstrating that there was low variability in location accuracy across subjects in every ROI.122

Critically, memory parameters were also highly accurate, with confidence intervals overlapping 0� in every ROI (Fig.123

4c, left). Thus, in every visual area measured, the spatial locations of the remembered stimuli could be accurately124

estimated from mnemonic activity. Memory confidence intervals spanned 17.6� on average (range = 11.0�–21.3�),125

indicating that location estimates were somewhat less reliable during memory during perception. However, even126

the widest memory confidence interval spanned only 21.3�. This is far less than the 90� separating each stimulus127

location, suggesting that there was no confusability between stimuli present in distributed memory activity. Because128

both perception and memory location parameters were highly accurate, and because differences in reliability were129

relatively small, there was no overall difference between perception and memory in the estimated location of peak130
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Figure 3. Perception and memory activity in visual field coordinates. (a) For a given subject, ROI, and stimulus, we plotted the perception-
or memory-evoked response (b ) in the visual field position estimated by the pRF model (x,y). We then interpolated over 2D space and z-scored
the responses. We rotated these representations by the polar angle location of the stimulus so that they aligned on the upper vertical meridian,
and then averaged over stimuli. This procedure produces an average activation map in visual field coordinates for each ROI and subject. This
map is plotted for V1 in an example subject, at right. (b) Plots of perception-evoked and memory-evoked activity, averaged across all subjects,
from V1, V2, and V3. These plots reproduce known features of spatial processing during perception, such as increasing receptive field size from
V1–V3. They also qualitatively demonstrate that perceptual activity is not perfectly reproduced during memory retrieval but that some retinotopic
organization is preserved.

activity (main effect of perception/memory: b = 0.14, 95% CI = [-6.72, 6.14], p = 0.94; Fig. 4c, left). These results131

provide strong evidence that memory-triggered activity in human visual cortex is spatially organized within known132

visual field maps, as it is during visual perception. These findings support prior reports of retinotopic activity during133

memory and imagery (Kosslyn et al., 1995; Slotnick et al., 2005; Thirion et al., 2006), but provide more quantitative134

estimates of this effect.135

Amplitude and precision differ between perceptual and mnemonic activity136

Aspects of perception and memory responses other than the peak location differed considerably. First, memory137

responses were lower in amplitude than perception responses (Fig. 4b). To quantify this observation, we derived a138

measure of amplitude from the difference of von Mises functions fit to our data (see Methods). We also computed139

bootstrapped confidence intervals for this amplitude metric, following the prior analysis. We then compared these140

estimates between perception and memory. First, response amplitudes for perception data were higher than141

for the memory data (main effect of perception/memory: b = 0.95, 95% CI = [0.80, 1.13], p = 0.013; Fig. 4c,142

middle). The average amplitude during perception was 0.92% signal change, and the average amplitude during143

memory was 0.26% signal change. Amplitude confidence intervals for perception and memory did not overlap in144

any ROI, indicating that these differences were highly significant in each region. Critically, the fact the perception145

amplitudes were larger than memory amplitudes does not imply that memory responses were at baseline. In146

fact, 95% confidence intervals for memory amplitudes did not overlap with zero in any region (Fig. 4c, middle),147
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Figure 4. Perception and memory have shared and distinct activation features. (a) We created 1D polar angle response functions by
restricting data to eccentricities near the stimulus, aligning stimuli to a common polar angle, and averaging responses into polar angle distance
bins. A difference of two von Mises distributions was fit to the group average response. Responses in cortical areas that have pRFs near the
stimulus position are plotted at x = 0. (b) Polar angle response functions, averaged across all subjects and stimuli, are plotted separately for
perception and memory. Dots represent average data across all stimuli and subjects. Lines represent the fit of the difference of two von Mises
distributions to the average data, and shading represents the 95% confidence interval around this fit. While the peak location of the response is
shared across perception and memory, there are clear differences in the amplitude and width of the responses. (c) Bootstrapped 68% (thick
lines) and 95% confidence intervals (thin lines) for the location, amplitude and FWHM of the difference of von Mises fits are plotted to quantify
the responses. In all ROIs, the peak location of the response is equivalent during perception and memory (at 0�, the stimulus location), while the
amplitude of the response is reliably lower during memory than during perception. The FWHM of the response increases across ROIs during
perception but not during memory, resulting in highly divergent FWHM for perception and memory in early visual areas.

demonstrating that responses were significantly above baseline in all areas measured. These results demonstrate148

that the amplitude of spatially-organized activity in visual cortex is attenuated (but present) during memory retrieval.149

Second, memory responses were wider than perception responses (Fig. 4b). We operationalized the precision150

of perception and memory responses by computing the full width at half maximum (FWHM) of the difference of von151

Mises fit to our data and by generating confidence intervals for this measure. Note that FWHM is not sensitive to the152

overall scale of the response function: a perception response function rescaled to have the same amplitude as the153

memory response function will have an unchanged FWHM. On average, FWHM during perception was significantly154

smaller than during memory (main effect of perception/memory: b = -75.2, 95% CI = [-138.5, -33.1], p = 0.0002; Fig.155

4c, right). However, these differences were not equivalent across ROIs (perception/memory x ROI interaction: b =156

18.8, 95% CI = [5.78, 35.5], p = 0.021). Specifically, perception FHWM increased moving up the visual hierarchy157

(main effect of ROI: b = 13.3, 95% CI = [10.3, 20.6], p = 0.0056), indicating increased width or decreased precision158

in later visual areas compared to early visual areas (Fig. 4c, right). For example, V1 had the narrowest (most159

precise) response during perception, with an average FWHM of 38.0�(95% CI: [32.0�, 45.0�]), while V3ab had the160

widest responses during perception, with a FWHM of 97.0�(95% CI: [78.0�, 132.5�]). This increasing pattern follows161

previously described increases in population receptive field size in these regions (Wandell & Winawer, 2015; Kay162

et al., 2013b). Note that a separate question, not addressed here, is the precision with which the stimulus can be163

decoded from a representation, which is not necessarily related to receptive field size.164

Strikingly, this pattern of increasing FWHM from early to late visual areas was abolished during memory (main165

effect of ROI: b = -5.49, 95% CI = [-18.7, 8.41], p = 0.20; Fig. 4c, right). For areas V1–hV4, the regions we can sort166

hierarchically with the most confidence, the pattern across ROIs trended toward being reversed, with the widest167

responses observed in the earliest areas (main effect of ROI: b = -15.7, 95% CI = [-39.8, 12.4], p = 0.083). These168

data demonstrate that fundamental aspects of spatial processing commonly observed during perception do not169

generalize to memory-evoked responses. Interestingly, the interaction between perception/memory and ROI yielded170

highly divergent perception and memory responses in the earliest visual areas but equivalent responses in the latest171
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visual areas (Fig. 4c, right). For example, V1 responses during memory had an average FWHM of 131.0� (95%172

CI: [66.9�, 225.0�]), and were thus 3.45 times wider than V1 responses during perception. In V2 and V3, memory173

FWHM exceeded perception FWHM by an average of 1.98 times and 1.67 times, respectively. Unlike in V1-V3,174

confidence intervals for perception and memory were highly overlapping in hV4, LO, and V3ab (Fig. 4c, right). In175

these later areas, memory responses were only 0.84–1.04 times wider during memory than during perception.176

These data raise the interesting possibility that later stages of perceptual processing serve as a bottleneck on177

mnemonic activity precision. Taken together, these results provide evidence for reliable and striking differences in178

the precision of perception and memory activity across different levels of the visual system. More broadly, these179

findings indicate that there are fundamentally different constraints on the properties of feedforward perceptual180

activity and top-down mnemonic activity in human visual cortex.181

Differences between perception and memory responses are not explained by noise182

One important consideration in interpreting our results is whether the differences we observed between perception183

and memory could be caused by differences in noise. For example, is it possible that perception and memory184

responses were actually equivalent other than noise level, but due to greater trial-to-trial noise, memory responses185

appeared to have systematically different tuning? In particular, we sought to understand whether differences in186

memory responses could be explained by three types of noise: 1) reduced fMRI signal-to-noise; 2) retrieval failure187

on a subset of trials; 3) memory error. If perception and memory have the same fundamental response properties,188

but memory is subject to more noise, then adding noise to the perception data should yield responses that look189

like what we observed during memory. Thus, we started with perception data (mean and variance of each voxel’s190

activity during perception) and tested whether we could generate responses that looked like memory data by adding191

one of the three types of noise. To simulate reduced fMRI signal-to-noise, we introduced additive noise to each192

voxel’s perception response (Fig. 5a, left; see Methods). To simulate retrieval failure, we created some trials where193

the mean response was zero (Fig. 5b, left). To simulate memory error, we added angular noise to the peak location194

of the perception responses (Fig. 5c, left). For each of these types of simulation, we considered multiple levels of195

noise. To assess the simulation results, we analyzed all simulated datasets with the same procedures used for the196

real data and then counted the proportion of times the von Mises parameters derived from a simulation fell within197

the 95% confidence interval of the actual memory data (Fig. 5a-c, right).198

First, using bootstrapped parameter estimates, we confirmed that the estimated signal-to-noise ratio (SNR)199

for perception parameter estimates was higher than for memory parameter estimates in every ROI. Perception200

SNR was between 1.3 and 1.6 times higher than memory SNR in each ROI, and between 2.2 and 4.3 times higher201

in vertices closest to the stimulus location. Given this, we simulated new perception data that precisely matched202

the empirical memory SNR for every surface vertex. We also simulated data with even lower SNR (higher noise)203

than what we observed during memory. As expected, simulating perception data with reduced SNR increased204

variance in the location, amplitude, and FWHM of the von Mises fits (Supplementary Fig. 1a). However, no level of205

SNR produced response profiles that matched the memory data well. In V1—the region where we observed the206

largest difference in FWHM between perception and memory—0% of the FWHM parameters in the memory SNR207

simulation approximated the actual memory data (Fig. 5a, right). In the noisiest simulation we performed (1/8 of208

the memory SNR), this figure was still only 10% (Fig. 5a, right). Similar results occurred for V2 and V3. These209

simulations demonstrate that low SNR cannot explain the pattern of memory responses we observed in early visual210

cortex.211

Our SNR simulations also demonstrate that there are fundamental tradeoffs between capturing memory FWHM212

in early visual cortex and in capturing other aspects of the data. First, at high levels of noise (low levels of SNR),213

any modest increase in ability to capture V1-V3 FWHM was accompanied by a decrease in ability to capture214

FWHM in later visual areas (Fig. 5a, right). In these regions, FWHM was already equivalent during perception and215

memory, and artificially adding noise to the perception data harms this equivalence. Second, high noise simulations216

generated more noise in the location parameters than was actually observed in the memory data (Fig. 5a, right),217

resulting in unreliable location parameters in all ROIs.218

We observed a similar pattern of results in the retrieval failure simulations. Very high rates of retrieval failure219
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Figure 5. Differences between perception and memory are not explained by noise (a) Left: We simulated the effect of low SNR by
introducing additive noise to our perception data and asked whether this was sufficient to produce responses similar to what we observed during
memory. Right: Proportion of simulations that produce location and FWHM parameters within the 95% confidence intervals of the memory data
are plotted for decreasing signal-to-noise ratios (SNR) and for each ROI. SNR values ranged from the empirical SNR of the perception data (p),
the empirical SNR of the memory data (m), or 1/2, 1/4, or 1/8 of the empirical SNR of the memory data. Even at extremely high noise levels, very
few simulations generate FWHM parameters within the confidence intervals of the memory data in V1–V3. (b) Left: We simulated the effect of
failing to perform the retrieval task by generating a perception dataset where a subset of trials had a mean BOLD response of zero. Right: Data
are plotted as in a, with increasing large numbers of failed trials on the x axis. As in a, even at extremely high rates of failed retrieval, FWHM
parameters in V1–V3 rarely fall within the memory confidence interval (c) Left: We simulated the effect of memory error by adding angular noise
to the peak location of the perception responses. Right: Data are plotted in a, with increasing large amounts of memory error on the x axis.
Implausibly large amounts of memory error are needed to generate FWHM parameters that fall within the memory confidence intervals >= 50%
of the time in V1–V3. In all panels, increased noise produced a worse match to memory FWHM in hV4, LO and V3ab, as well as unreliable
location parameters in all ROIs.

were required to generate any FWHM parameters that were sufficiently wide to match the memory data in V1220

(Supplementary Fig. 1b). Only when simulating retrieval failure in >=50% of all trials, did this number exceed221

0% (Fig. 5b, right). Similar to the SNR simulation, any improvement in ability to capture the V1 FWHM data with222

increased retrieval failure was offset by a decline in ability to capture FWHM in late visual areas (Fig. 5b, right),223

where responses became much wider than what was observed empirically during memory. Again, as in the SNR224

simulation, high rates of retrieval failure were also associated with location parameters that were far noisier than225

what we observed (Fig. 5b, right). Thus, subjects experiencing retrieval failure on a subset of trials does not explain226

our memory data.227

Finally, we considered the memory error simulation. Compared to the other simulations, this simulation produced228

a better match to memory FWHM in V1 when assuming high levels of noise (Supplementary Fig. 1c). Still, in the229

best performing simulation only 57% of the V1 FWHM parameters approximated the memory data (Fig. 5c, right).230

Critically, the magnitude of memory error in this simulation was implausibly high. The standard deviation of memory231

errors around the true value was 45�, meaning that simulated memories were within the correct quadrant only 68%232

of time. Given that subjects were trained to discriminate remembered locations up to 15� (see Methods), errors233

of this magnitude and frequency are exceedingly unlikely. At a more plausible 15� standard deviation of memory234

error, 0% of simulations approximated the memory data (Fig. 5c, right). Further, similar to the other simulations,235

improvements in the ability to capture V1 FWHM with high levels of angular error were accompanied by decreases236
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in the ability to capture FWHM in later areas and by decreases in location parameter reliability beyond what we237

observed empirically (Fig. 5c, right). Thus, subjects experiencing a small, variable amount of memory error does238

explain our memory data.239

Collectively, these simulations demonstrate that our results are unlikely to be caused by a simple source240

of measurement noise (reduced SNR) or cognitive noise (failed retrieval, memory error). In each of the three241

simulations, the amount of noise required to make even modest gains in our ability to account for the V1 memory242

FWHM was implausibly large. Further, in all three cases, increases in the ability to account for V1 FWHM were243

accompanied by decreases in the ability to account for FWHM in higher visual areas and to recover location244

parameters that were as reliable as our actual data.245

pRF models accurately predict perception but not memory responses246

Next, we evaluated how well perception and memory responses matched the predictions of a pRF model. To do247

this, we used a modified version of each subject’s pRF model to generate predicted cortical responses to each of248

the four experimental stimuli (Fig. 6a; see Methods). The pRF model we used to generate predictions is a novel249

variant of existing pRF models: we added a Difference of Gaussian pRF shape (Zuiderbaan et al., 2012) with a250

fixed positive to negative Gaussian size ratio (1:2) and amplitude ratio (2:1) to our solved nonlinear compressive251

spatial summation (CSS) model (Kay et al., 2013b). The predictions from the model were analyzed with the same252

procedure as the data, yielding von Mises fits to the predicted data (Fig. 6b). Model predictions from simpler pRF253

models are shown in Supplementary Figure 2.254

Figure 6. pRF forward model captures perception but not memory responses. (a) We used our pRF model to generate the predicted
BOLD response to each of our experimental stimuli. The model assumes a Difference of Gaussians pRF shape, with a fixed positive to negative
Gaussian size ratio (1:2) and amplitude ratio (2:1). The model also incorporates a compressive nonlinearity. (b) Predicted polar angle response
functions are plotted for the pRF model (green dashed lines), alongside the functions fit to the perception and memory data (dark and light
orange, reproduced from Fig. 4b). The model predictions are closer to the perception data than the memory data in all visual areas. (c) Predicted
versus observed amplitude (left) and FWHM (right), plotted separately for perception and memory. Each dot represents an ROI. The shaded
region is the 68% CI from bootstrapping linear fits across participants, and the thin lines indicate the 95% confidence intervals. For both the
amplitude and FWHM, the perception data lie relatively close to the pRF model predictions (dashed grey lines), whereas the memory data do not.
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Qualitatively, the pRF model predictions agree with the perception data but not the memory data (Fig. 6b).255

Several specific features of the perception data are well captured by the model. First, the model predicts the highest256

amplitude response at cortical sites with pRFs near the stimulus location (peak at 0�). Second, the model predicts257

increasingly wide response profiles from the early to late visual areas. Third, it predicts higher amplitudes in early258

compared to late areas. Finally, the model predicts negative responses in the surround locations of V1-V3 but not259

higher visual areas. This is particularly interesting given that all voxel pRFs were implemented with a negative260

surround of the same size and amplitude relative to the center Gaussian. This suggests that voxel-level parameters261

and population-level responses can diverge (Sprague & Serences, 2013, see also). Though not the focus of this262

analysis, we note that the model predictions are not perfect. The model predicts slightly lower amplitudes and263

larger FWHM than is observed in the perception data (Fig. 6b). These discrepancies may be due to differences264

between the stimuli used in the main experiment and those used in the pRF experiment or to differences in the task265

(attending fixation during the pRF experiment vs attending the stimulus during the main experiment).266

Critically, the model accurately captures the properties of memory responses that are shared with perception267

responses (the peak location), but not the distinct properties (Fig. 6b). These failures are especially clear when268

comparing the predicted amplitude and FWHM from the pRF model with the observed amplitudes and FWHMs for269

perception and memory. While there is a positive slope between the predicted amplitude and both the perception (b270

= 0.84, 95% CI: [0.56, 1.15]) and memory amplitudes (b = 0.17, 95% CI: [0.056, 0.32]), the slopes differ substantially271

(Fig. 6c). The perception amplitudes have a slope closer to 1, indicating good agreement with the model predictions,272

while the memory data have a slope closer to 0, indicating weak agreement. Similarly, the predicted FWHM is273

strongly and positively related to the perception FWHM (b = 0.50, 95% CI: [0.36, 0.76]), but weakly and negatively274

related to the memory FWHM (b = -0.20, 95% CI: [-0.67, 0.26]; Fig. 6c). These analyses strongly support our275

interpretation of the data in Figure 4b,c to mean that memory and perception have distinct spatial tuning properties.276

The critical advantage of using pRF models is that they explicitly incorporate known properties of feedforward spatial277

processing in visual cortex. Because our pRF model fails to account for the memory responses we observed, we278

can conclude that memory reactivation violates the assumptions of feedforward processes that well characterize279

perceptual activation. A plausible explanation for this failure is that memory retrieval involves a fundamentally280

different origin and cascade of information through visual cortex, a possibility we explore in detail in the next section.281

Perception and memory responses can be simulated with a bidirectional hierarchical model282

Cortical activity during perception arises from a primarily feedforward process that originates with the retina and that283

accumulates additional spatial pooling in each cortical area, resulting in increasingly large receptive fields (Gattass284

et al., 2005; Wandell & Winawer, 2015). In contrast, memory reinstatement is hypothesized to begin with the285

hippocampus (Marr, 1971; O’Reilly & McClelland, 1994), a region bidirectionally connected to high-level visual areas286

in ventral temporal cortex via the medial temporal lobe cortex (Van Hoesen & Pandya, 1975; Felleman & Essen,287

1991; Suzuki & Amaral, 1994). Reinstated cortical activity is then thought to propagate backwards through visual288

cortex (Naya et al., 2001; Linde-Domingo et al., 2019; Dijkstra et al., 2019; Hindy et al., 2016). Here, we explored289

whether a simple hierarchical model with spatial pooling could be adapted to account for both our perception and290

memory results by manipulating the direction of information flow.291

We first constructed a linear feedforward hierarchical model of spatial processing in neocortex. In this model, the292

activity in each layer was created by convolving the activity from the previous layer with a fixed Gaussian kernel293

(Fig. 7a; see Methods). Beginning with a boxcar stimulus, we cascaded this convolutional operation to simulate 8294

layers of the network (Fig. 7b). In this simple demonstration, the size of the convolutional kernel was fixed, not fit to295

the data. Nonetheless, the pattern of feedforward responses qualitatively matches our fMRI observations during296

perception. The location of the peak response is unchanged across layers, but response functions become wider297

and lower in amplitude in higher layers (Fig. 7b,c)–precisely as we observed in our actual data (Fig. 4b,c).298

We then explored whether backwards propagation of reinstated activity in our hierarchical model could account299

for our memory data. To do this, we assumed that feedforward and feedback connections in the model were300

reciprocal, meaning that the convolutional kernel was the same in feedforward and feedback direction. We assumed301

perfect reinstatement in the top layer, and thus began the feedback simulation by duplicating the feedforward activity302
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Figure 7. Perception and memory responses can be simulated with a bidirectional hierarchical model. (a) Illustration of stimulus-driven
activity propagating through a linear hierarchical network model in the feedforward direction (left) and mnemonic activity propagating through the
model in the feedback direction (right). In both cases, a given layer’s activity is generated by convolving the previously active layer’s activity
with a fixed Gaussian kernel. The feedforward simulation began with a boxcar stimulus. The feedback simulation began with duplication of the
feedforward activity from the final layer. (b) Results from feedforward and feedback simulations in an 8 layer network, plotted in the conventions
of Figure 4b. The feedforward simulation parallels our observations during perception, and the feedback simulation parallels our observations
during memory. (c) Location, amplitude, and FWHM parameters for each layer, plotted separately for feedforward and feedback simulations.
Location is preserved across layers in the feedforward and feedback direction. Note that FWHM become progressively wider in later layers in the
feedforward direction and in earlier layers in the feedback direction. This results in large differences in FWHM between feedforward and feedback
activity in early layers. These trends closely follow our observations in Figure 4c.

from the final layer. Starting with this final layer activity, we convolved each layer’s activity with the same Gaussian303

kernel to generate earlier layers’ activity (Fig. 7a). The properties of the simulated activity (Fig. 7b,c) bear a304

striking resemblance to the those of the observed memory data (Fig. 4b,c). First, simulated feedback activity had305

a preserved peak location across layers (Fig. 7c, left), similar to the memory data. Second, simulated feedback306

activity was wider and lower amplitude than feedforward activity overall (Fig. 7c, middle and right)–just as the307

memory data had wider and lower amplitude responses than the perception data. Third, the increase in FWHM308

across layers was smaller in the feedback direction than in the feedforward direction, and it reversed direction with309

respect to the visual hierarchy (Fig. 7c, right). This small effect of reversal is particularly interesting given that310

this trend was numerically present in our memory data but not statistically reliable at our sample size. Finally, the311

difference between feedforward and feedback FWHM was maximal in the earliest layers (Fig. 7c, right), just as312

the difference between our perception and memory data was maximal in V1. This simulation suggests that the313

distinct spatial profile of mnemonic responses in visual cortex may be a straightforward consequence of reversing314

the flow of information in a system with hierarchical structure and reciprocal connectivity, and that spatial pooling315

accumulated during feedforward processing may not be inverted during reinstatement. More broadly, these results316

demonstrate that models of the visual system may be useful for probing the mechanisms that support and constrain317

visual memory.318
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Discussion319

In the current work, we combined empirical and modeling approaches to explore how long-term spatial memories320

are represented in the human visual system. By using computational models of spatial encoding to compare321

perceptual and mnemonic BOLD activity, we provide strong evidence that visual memory, like visual perception,322

produces retinotopically-mapped activation throughout visual cortex. Critically, however, we also identified systematic323

differences in the population spatial tuning properties of perceptual and mnemonic activity. Compared to perceptual324

responses, mnemonic responses were lower in amplitude in all visual areas. Further, while we observed a three-325

fold change in spatial precision from early to late visual areas during perception, mnemonic responses violated326

this pattern. Instead, mnemonic responses displayed consistent spatial precision across visual areas. Notably,327

simulations showed that neither reduced SNR, nor failure to retrieve on some trials, nor memory error could328

account for this difference. We speculate, instead, that this difference arises from a reversal of information flow in a329

hierarchically organized and reciprocally connected visual cortex. To support this, we show that top-down activation330

in a simple hierarchical model elicits a systematically different pattern of responses than bottom-up activation. These331

simulations reproduce the properties we observe during both perception and memory. Together, these results reveal332

novel properties of memory-driven activity in visual cortex that suggest specific computational processes governing333

visual cortical responses during memory retrieval.334

Advantages of using encoding models to parameterize memory representations335

Much work in neuroscience has been dedicated to the question of how internally-generated stimulus representations336

are coded in the brain. Early neuroimaging work established that sensory cortices are recruited during imagery and337

memory tasks (Kosslyn et al., 1995; O’Craven & Kanwisher, 2000; Wheeler et al., 2000), moving the field away338

from purely symbolic accounts of memory (e.g. Pylyshyn, 2002). More recently, memory researchers have favored339

decoding and pattern similarity approaches over univariate activation analyses to examine the content of retrieved340

memories (Polyn et al., 2005; Kuhl et al., 2011; Favila et al., 2018). While these approaches are powerful, they do341

not explicitly specify the form mnemonic activity should take, and many activation schemes can lead to successful342

decoding or changes in pattern correlations. In the present work, we leveraged encoding models from visual343

neuroscience, specifically stimulus-referred pRF models, to examine and account for memory-triggered activity in344

visual cortex. In contrast to decoding or pattern similarity approaches, encoding models predict the activity evoked345

in single voxels in response to sensory or cognitive manipulations using a set of explicit mathematical operations346

(Naselaris et al., 2011). Spatial encoding models have proved particularly powerful because space is coded in the347

human brain at a scale that is well-matched to the millimeter sampling resolution of fMRI (Engel et al., 1994; Sereno348

et al., 1995; Dougherty et al., 2003). Despite the power of such encoding models, relatively little work has applied349

these models to questions about long-term memory (c.f. Thirion et al., 2006; Naselaris et al., 2015; Breedlove et al.,350

2018). Here, using this approach, we revealed novel properties of memory responses in visual cortex that decoding351

approaches have missed. Most notably, we found that memory activity was characterized by a different pattern352

of spatial precision across regions than perceptual activity. Because spatial parameters such as polar angle are353

explicitly modeled in pRF models, we were able to quantify and interpret these differences.354

Our results have important implications for the study of memory reactivation. First, our findings suggest that the355

specific architecture of a sensory system may constrain what memory reactivation looks like in that system. Though356

memory reactivation is often studied in sensory domains, the architecture of these systems is not usually considered357

when interpreting reactivation effects. Here, we propose that hierarchical spatial pooling in visual cortex produces a358

systematic and distinct pattern of memory reactivation that cannot be attributed to retrieval failure or memory error.359

However, whether this architecture has any consequences for memory behavior is not clear from the present study.360

This question will be critical for future studies to address. Second, our results advocate for shifting away from the361

concept of memory reactivation as it has been understood and applied in the field of neuroimaging. Most previous362

work has focused on identifying similarities between the neural substrates of visual perception and visual memory.363

These studies have been successful in that they have produced many positive findings of memory reactivation364

in human visual cortex (Kosslyn et al., 1995; O’Craven & Kanwisher, 2000; Wheeler et al., 2000; Slotnick et al.,365

2005; Polyn et al., 2005; Kuhl et al., 2011; Bosch et al., 2014; Waldhauser et al., 2016; Lee et al., 2018; Bone366
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et al., 2018). However, much of this work implicitly assumes that any mismatch between perception and memory367

is due to the fact that memory reactivation is either inherently low fidelity or susceptible to noise (Pearson et al.,368

2015), or is a subset of the perceptual response (Wheeler et al., 2000). Our results demonstrate that, at least369

in the spatial domain, this is not the case, and that systematic differences beyond noise exist. These results are370

broadly consistent with other recent findings suggesting computational differences between perception and memory371

derived from behavior (Bloem et al., 2018) and multivoxel pattern differences in perceived and remembered object372

representations measured with fMRI (Lee et al., 2012). Ultimately, the field should strive to identify, quantify, and373

explain these differences in order to fully understand the neural basis of memory. Using encoding models borrowed374

from sensory neuroscience to parameterize the differences between perception and memory may prove a fruitful375

way of making progress on this goal.376

Why do perceptual and mnemonic representations differ in visual cortex?377

Despite the usefulness of encoding models like pRF models for quantifying neural responses in a stimulus-referred378

space, these models may not provide a natural explanation for why perception and memory responses differ.379

We show in Figure 6 that pRF models fail to capture the aspects of memory responses that are distinct from380

perceptual responses: namely, the dramatic change in spatial precision. While it would be possible to fit separate381

pRF parameters to memory data to improve the ability of the model to accurately predict memory responses, this still382

would not explain why these parameters or responses differ. How then can we account for this? We were particularly383

intrigued by the possibility that differences between memory and perception activity are a direct consequence of the384

direction of processing in hierarchically-organized cortex. Hierarchical structure and feedback processing are not385

typically directly simulated in a pRF model but there is considerable evidence to suggest these factors are of interest.386

Studies of anatomical connectivity provide evidence that the visual system is organized approximately hierarchically387

(Felleman & Essen, 1991; Barone et al., 2000; for other perspectives see Zeki, 2015; Hilgetag & Goulas, 2020),388

and that most connections within the visual system are reciprocal (Felleman & Essen, 1991). Studies also show389

that the hippocampus sits atop the highest stage of the visual hierarchy, with reciprocal connections to high-level390

visual regions via the medial temporal lobe cortex (Van Hoesen & Pandya, 1975; Felleman & Essen, 1991; Suzuki391

& Amaral, 1994). These observations make the prediction that initial drive from the hippocampus during memory392

retrieval should propagate backwards through the visual system. Neural recordings from the macaque (Naya et al.,393

2001) and human (Hindy et al., 2016; Linde-Domingo et al., 2019; Dijkstra et al., 2019), as well as computational394

modeling (Horikawa & Kamitani, 2017) support this idea.395

Based on these observations and our hypothesis, we constructed a hierarchical network model in which we could396

simulate top-down activity. Though this model shares some features of hierarchical models of object recognition397

(Riesenhuber & Poggio, 1999; Serre et al., 2007), we emphasize that it is much simpler. Our model is entirely398

linear, its parameters are fixed a priori (not the result of training), and it encodes only one stimulus feature: space399

(Kay et al., 2013b). Critically, in contrast to pRF models, which express each region’s activity as a function of the400

stimulus, our model expresses each region’s activity as a function of the previous region’s activity (Fukushima, 1980;401

Riesenhuber & Poggio, 1999), and can therefore simulate both feedforward and feedback processes (Heeger, 2017).402

While highly simplified, the simulations we performed in this network captured the dominant features of our data,403

providing a parsimonious explanation for our observations. Interestingly, our simulations also indicate that some404

trends present in our data warrant further investigation. For instance, while we could not conclude that the earliest405

visual cortical areas had the least precise responses during memory (a reversal of the perception pattern), our406

simulations suggest that this effect should be present, albeit significantly weaker than in the feedforward direction.407

Future work should target this small effect with a sufficiently powered experiment.408

Our simulations also raise interesting questions and predictions about the consequences of visual cortical409

architecture for cognition. First, why have a hierarchical architecture in which the detailed information present in410

early layers cannot be reactivated? The hierarchical organization of the visual system is thought to give rise to the411

low-level feature invariance required for object recognition (Riesenhuber & Poggio, 1999; Serre et al., 2007). Our412

results raise the possibility that the benefits of such an architecture for recognition outweigh the cost of reduced413

precision in top-down responses. Whether the extent of this tradeoff differs between healthy individuals or between414

healthy and neuropsychiatric populations, and what consequences this structure has for behavior, are interesting415
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questions for future research. Second, how is it that humans have spatially precise memories if visual cortical416

responses do not reflect this? One possibility is that read-out mechanisms are not sensitive to all of the properties417

of mnemonic activity we measured. For instance, memory decisions could be driven exclusively by the neural418

population with the strongest response (e.g. those at the peak of the polar angle response functions). Another419

possibility is that regions without hierarchical structure do not exhibit these properties and reactivation in these420

other regions is preferentially used to guide memory-based behavior. These, and other possibilities should be421

directly explored in future work. Finally, our hierarchical simulations highlight the need to carefully separate the422

contribution of visual cortical architecture on reactivation from the effects of cognitive manipulations or effects423

occurring upstream of visual cortex (e.g. in the hippocampus).424

Relation to other forms of memory and attention425

Sensory reactivation during long-term memory retrieval has parallels to sensory engagement in other forms of426

memory such as iconic memory and working memory. Nonetheless there may also be differences in the specific427

way that sensory circuits are used across these forms of memory. One critical factor may be how recently the428

sensory circuit was activated by a stimulus at the time of memory retrieval. In iconic memory studies, very detailed429

information can be retrieved if probed within a second of the sensory input (Sperling, 1960). In working memory430

studies, sensory activity is thought to be maintained by active mechanisms from stimulus encoding through a431

seconds-long delay. Using similar methods to the ones we use here (Sprague & Serences, 2013; Ester et al., 2013),432

many working memory studies have shown that early visual areas contain retinotopically specific signals throughout433

a delay period (Sprague & Serences, 2013; Sprague et al., 2014; Rahmati et al., 2017), paralleling our findings. In434

imagery studies, eye-specific circuits presumed to be in V1 can be re-engaged if there is a delay of 5 minutes or435

less from when the subject viewed stimuli through the same eye, but not if there is a delay of 10 minutes (Ishai436

& Sagi, 1995). Hippocampally-dependent memory retrieval is thought to be capable of engaging visual cortex at437

much longer delays. Given that the mechanism for engaging sensory cortex may differ across these different forms438

of memory, the question of how similar sensory activation is across these timescales remains an important open439

question. For example, shorter-term forms of memory might, in principle, cause more spatially-specific reactivation440

in early visual cortex than what we observed in long-term memory. Informal comparisons between our data and441

stimulus reconstructions made from working memory delay period activity (Sprague & Serences, 2013; Rahmati442

et al., 2017; Rademaker et al., 2019) suggest this may be the case, but a direct comparison is warranted. The443

current study offers a quantitative approach for directly comparing spatial tuning properties across different cognitive444

processes, and could be extended to include multiple forms of memory within the same experiment.445

Are the spatial responses we observed during memory retrieval better characterized as long-term memory446

reactivation or as a special case of (memory-guided) spatial attention? Our results raise interesting questions447

about whether long-term spatial memory and endogenous spatial attention share mechanisms for modulating the448

response of visual cortical populations. In typical endogenous spatial attention tasks, subjects are explicitly cued to449

the most likely location of an upcoming stimulus prior to being presented with a difficult visual judgment (Carrasco,450

2011). fMRI studies have repeatedly found that spatial attention enhances visually-evoked responses in visual451

cortex (Somers et al., 1999; Gandhi et al., 1999; Buracas & Boynton, 2007; Li et al., 2008). Similar to our results,452

spatial attention has also been shown to elicit spatially localized activation in the absence of any visual stimulation453

(Luck et al., 1997; Kastner et al., 1999; Chawla et al., 1999; Ress et al., 2000). It is at least logically possible for454

attention and memory to dissociate. Most endogenous attention tasks have no memory component since the cue455

explicitly represents the attended location. In contrast, in most episodic memory tasks the association between a456

cue and a stimulus is intentionally arbitrary so that it must be acquired and retrieved in a hippocampally-dependent457

manner. However, it is possible that spatial attention and memory processes only differ in their dependency on458

the hippocampus to retrieve the target location. Once this target location is determined, the same mechanisms459

could be used to initiate enhanced processing of the target location in sensory areas. Future experiments and460

modeling efforts should determine whether memory-driven and attention-driven activations in visual cortex differ,461

and whether it’s possible to develop a model of top-down processing in visual cortex that can account for both sets462

of observations.463
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Conclusion464

In the current work, we provide novel empirical evidence that memory retrieval elicits systematically different465

activation in human visual cortex compared to visual perception. Using simulations and a network model of cortex,466

we argue that these distinctions arise from a reversal of information flow within a hierarchically structured visual467

system. Collectively, this work makes progress on providing a detailed account of reactivation in visual cortex and468

sheds light on the broader computational principles that guide top-down processes in sensory systems.469

Methods470

Subjects471

Nine human subjects participated in the experiment (5 males, 22–46 years old). All subjects had normal or472

correct-to-normal visual acuity, normal color vision, and no MRI contraindications. Subjects were recruited from473

the New York University community and included author S.E.F and author J.W. All subjects gave written informed474

consent to procedures approved by the New York University Institutional Review Board prior to participation. No475

subjects were excluded from data analysis.476

Stimuli477

Experimental stimuli included nine unique radial frequency patterns (Fig. 1a). We first generated patterns that478

differed along two dimensions: radial frequency and amplitude. We chose stimuli that tiled a one dimensional479

subspace of this two dimensional space, with radial frequency inversely proportional to amplitude. The nine chosen480

stimuli took radial frequency and amplitude values of: [2, .9], [3, .8], [4, .7], [5, .6], [6, .5], [7, .4], [8, .3], [9, .2], [10,481

.1]. We selected four of these stimuli to train subjects on in the behavioral training session and to appear in the482

fMRI session. For every subject, those stimuli were: [3, .8], [5, .6], [7, .4], [9, .2]; (radial frequency, amplitude). The483

remaining five stimuli were used as lures in the test trials of the behavioral training session. Stimuli were saved as484

images and cropped to the same size.485

Experimental procedure486

The experiment began with a behavioral training session, during which subjects learned four paired associates (Fig.487

1). Specifically, subjects learned that four colored fixation dot cues were uniquely associated with four spatially488

localized radial frequency patterns. An fMRI session immediately followed completion of the behavioral session489

(Fig. 2a). During the scan, subjects participated in two types of functional runs (approximately 3.5 min each): (1)490

perception, where they viewed the cues and associated spatial stimuli; and (2) memory, where they viewed only the491

fixation cues and recalled the associated spatial stimuli. Details for each of these phases are described below. A492

separate retinotopic mapping session was also performed for each subject (Fig. 2b), which is described in the next493

section.494

Behavioral training495

For each subject, the four radial frequency patterns were first randomly assigned to one of four polar angle locations496

in the visual field (45�, 135�, 225�, or 315�) and to one of four colored cues (orange, magenta, blue, green; Fig. 1b).497

Immediately before scanning, subjects learned the association between the four colored cues and the four spatially498

localized stimuli through interleaved study and test blocks (Fig. 1c). Subjects alternated between study and test499

blocks, completing a minimum of four blocks of each type. Subjects were required to reach at least 95% accuracy,500

and performed additional rounds of study-test if they did not reach this threshold after four test blocks.501

During study blocks, subjects were presented with the associations. Subjects were instructed to maintain central502

fixation and to learn each of the four associations in anticipation of a memory test. At the start of each study trial503

(Fig. 1c), a central white fixation dot (radius = 0.1 dva) switched to one of the four cue colors. After a 1 sec delay,504

the associated radial frequency pattern appeared at 2� of eccentricity and its assigned polar angle location in the505
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visual field. Each pattern image subtended 1.5 dva and was presented for 2 sec. The fixation dot then returned506

to white, and the next trial began after a 2 sec interval. No subject responses were required. Each study block507

contained 16 trials (4 trials per association), presented in random order.508

During test blocks, subjects were presented with the colored fixation dot cues and tested on their memory for the509

associated stimulus pattern and spatial location. Subjects were instructed to maintain central fixation and to try to510

covertly recall each stimulus when cued, and then to respond to the test probe when prompted. At the start of each511

test trial (Fig. 1c), the central white fixation dot switched to one of the four cue colors. This cue remained on the512

screen for 2.5 sec while subjects attempted to covertly retrieve the associated stimulus. At the end of this period,513

a test stimulus was presented at 2� of eccentricity for 2 sec. Then, subjects were cued to make two consecutive514

responses to the test stimulus: whether it was the correct radial frequency pattern (yes/no) and whether it was515

presented at the correct polar angle location (yes/no). Each test stimulus had a 50% probability of being the correct516

pattern. Incorrect patterns were drawn randomly from the three patterns associated with other cues and the five lure517

patterns (Fig. 1a). Each test stimulus had a 50% probability of being in the correct polar angle location, which was518

independent from the probability of being the correct pattern. Incorrect polar angle locations were drawn from the519

three locations assigned to the other patterns and 20 other evenly spaced locations around the visual field (Fig. 1a).520

This placed the closest spatial lure at 15� of polar angle away from the correct location. Responses were solicited521

from the subject with the words "Correct pattern?" or "Correct location?" displayed centrally in white text. The order522

of these queries was counterbalanced across test blocks. Subjects responses were recorded on a keyboard with523

a maximum response window of 2 sec. Immediately after a response was made or the response window closed,524

the color of the text turned black to indicate an incorrect response if one was made. After this occurred for both525

queries, subjects were presented with the colored fixation dot cue and correct spatially localized pattern for 1 sec as526

feedback. This feedback occurred for every trial, regardless of subject responses to the probe. Each test block527

contained 16 trials (4 trials per association), presented in random order.528

fMRI session529

During the fMRI session, subjects participated in two types of functional runs: perception and memory retrieval (Fig.530

2a). Subjects completed 5–6 runs each of perception and memory in an interleaved order. This amounted to 40–48531

repetitions of perceiving each stimulus and of remembering each stimulus per subject.532

During perception runs, subjects viewed the colored fixation dot cues and the radial frequency patterns in their533

learned locations. Subjects were instructed to maintain central fixation and to perform a one-back task on the534

stimuli. The purpose of the one-back task was to encourage covert stimulus-directed attention on each trial. At535

the start of each perception trial (Fig. 2a, top), a central white fixation dot (radius = 0.1 dva) switched to one of536

the four cue colors. After a 0.5 sec delay, the associated radial frequency pattern appeared at 2� of eccentricity537

and its assigned polar angle location in the visual field. Each pattern subtended 1.5 dva and was presented for 2.5538

sec. The fixation dot then returned to white and the next trial began after a variable interval. Intervals were drawn539

from an approximately geometric distribution sampled at 3, 4, 5, and 6 sec with probabilities of 0.5625, 0.25, 0.125,540

and 0.0625 respectively. Subjects indicated when a stimulus repeated from the previous trial using a button box.541

Responses were accepted during the stimulus presentation or during the interstimulus interval. Each perception run542

contained 32 trials (8 trials per stimulus). The trial order was randomized for each run, separately for every subject.543

During memory runs, subjects viewed the colored fixation dot cues and recalled the associated patterns in544

their learned spatial locations. Subjects were instructed to maintain central fixation, to use the cues to initiate545

recollection, and to make a subjective judgment about the vividness of their memory on each trial. The purpose of546

the vividness task was to enforce attention to the remembered stimulus on each trial. At the start of each memory547

trial (Fig. 2a, top), the central white fixation dot switched to one of the four cue colors. This cue remained on the548

screen for a recollection period of 3 sec. The fixation dot then returned to white and the next trial began after a549

variable interval. Subjects indicated whether the stimulus associated with the cue was vividly remembered, weakly550

remembered, or not remembered using a button box. Responses were accepted during the cue presentation or551

during the interstimulus interval. Each memory run contained 32 trials (8 trials per stimulus). For a given subject,552

each memory run’s trial order and trial onsets were exactly matched to one of the perception runs. The order of553

these matched memory runs was scrambled relative to the order of the perception runs.554
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Retinotopic mapping procedure555

Each subject completed either 6 or 12 identical retinotopic mapping runs in a separate fMRI session from the556

main experiment (Fig. 2b, top). Stimuli and procedures for the retinotopic mapping session were based on those557

used by the Human Connectome Project (Benson et al., 2018) and were identical to those reported in Benson &558

Winawer (2018). During each functional run, bar apertures on a uniform gray background swept across the central559

24 degrees of the subject’s visual field (circular aperture with a radius of 12 dva). Bar apertures were a constant560

width (1.5 dva) at all eccentricities. Each sweep began at one of eight equally spaced positions around the edge561

of the circular aperture, oriented perpendicularly to the direction of the sweep. Horizontal and vertical sweeps562

traversed the entire diameter of the circular aperture while diagonal sweeps stopped halfway and were followed by563

a blank period. A full-field sweep or half-field sweep plus blank period took 24 s to complete. One functional run564

contained 8 sweeps, taking 192 s in total. Bar apertures contained a grayscale pink noise background with randomly565

placed faces, scenes, objects, and words at a variety of sizes. Noise background and stimuli were updated at a566

frequency of 3 Hz. Each run of the task had an identical design. Subjects were instructed to maintain fixation on a567

central dot and to use a button box to report whenever the dot changed color. Color changes occurred on average568

every 3 s.569

MRI acquisition570

Images were acquired on a 3T Siemens Prisma MRI system at the Center for Brain Imaging at New York University.571

Functional images were acquired with a T2*-weighted multiband EPI sequence with whole-brain coverage (repetition572

time = 1 s, echo time = 37 ms, flip angle = 68�, 66 slices, 2 x 2 x 2 mm voxels, multiband acceleration factor573

= 6, phase-encoding = posterior-anterior) and a Siemens 64-channel head/neck coil. Spin echo images with574

anterior-posterior and posterior-anterior phase-encoding were collected to estimate the susceptibility-induced575

distortion present in the functional EPIs. Between one and three whole-brain T1-weighted MPRAGE 3D anatomical576

volumes (.8 x .8 x .8 mm voxels) were also acquired for seven subjects. For two subjects, previously acquired577

MPRAGE volumes (1 x 1 x 1 mm voxels) from a 3T Siemens Allegra head-only MRI system were used.578

MRI processing579

Preprocessing580

Anatomical and functional images were preprocessed using FSL v5.0.10 (Smith et al., 2004) and Freesurfer v5.3.0581

(Fischl, 2012) tools implemented in a Nipype workflow (Gorgolewski et al., 2011). To correct for head motion, each582

functional image acquired in a session was realigned to a single band reference image and then registered to583

the spin echo distortion scan acquired with the same phase encoding direction. The two spin echo images with584

reversed phase encoding were used to estimate the susceptibility-induced distortion present in the EPIs. For each585

EPI volume, this nonlinear unwarping function was concatenated with the previous spatial registrations and applied586

with a single interpolation. Freesurfer was used to perform segmentation and cortical surface reconstruction on587

each subject’s average anatomical volume. Registration from the functional images to each subject’s anatomical588

volume was performed using boundary-based registration. Preprocessed functional time series were then projected589

onto each subject’s reconstructed cortical surface.590

GLM analyses591

Beginning with each subject’s surface-based time series, we used GLMdenoise (Kay et al., 2013a) to estimate the592

neural pattern of activity evoked by perceiving and remembering every stimulus (Fig. 2a). GLMdenoise improves593

signal-to-noise ratios in GLM analyses by identifying a pool of noise voxels whose responses are unrelated to the594

task and regressing them out of the time series. This technique first converts all time series to percent signal change595

and determines an optimal hemodynamic response function for all vertices using an iterative linear fitting procedure.596

It then identifies noise vertices as vertices with negative R2 values in the task-based model. Then, it derives noise597

regressors from the noise pool time series using principal components analysis and iteratively projects them out of598

the time series of all vertices, one noise regressor at a time. The optimal number of noise regressors is determined599

17/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2020. ; https://doi.org/10.1101/811331doi: bioRxiv preprint 

https://doi.org/10.1101/811331
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on cross-validated R2 improvement for the task-based model. We estimated two models using this procedure.600

We constructed design matrices for the perception model to have four regressors of interest (one per stimulus),601

with events corresponding to stimulus presentation. Design matrices for the memory model were constructed the602

same way, with events corresponding to the the cued retrieval period. These models returned parameter estimates603

reflecting the BOLD amplitude evoked by perceiving or remembering a given stimulus versus baseline for every604

vertex on a subject’s cortical surface (Fig. 2a, bottom).605

Fitting pRF models606

Images from the retinotopic mapping session were preprocessed as above, but omitting the final step of projecting607

the time series to the cortical surface. Using these time series, nonlinear symmetric 2D Gaussian population608

receptive field (pRF) models were estimated in Vistasoft (Fig. 2b), as described previously (Dumoulin & Wandell,609

2008; Kay et al., 2013b). We refer to this nonlinear version of the pRF model as the compressive spatial summation610

(CSS) model, following Kay et al. (2013b). Briefly, we estimated the receptive field parameters that, when applied to611

the drifting bar stimulus images, minimized the difference between the observed and predicted BOLD time series.612

First, stimulus images were converted to contrast apertures and downsampled to 101 x 101 grids. time series613

from each retinotopy run were resampled to anatomical space and restricted to gray matter voxels. time series614

were then averaged across runs. pRF models were solved using a two stage coarse-to-fine fit on the average615

time series. The first stage of the model fit was a coarse grid fit, which was used to find an approximate solution616

robust to local minima. This stage was solved on a volume-based time series that was first temporally decimated,617

spatially blurred on the cortical surface, and spatially subsampled. The parameters obtained with this fit were618

interpolated and then used as a seed for subsequent nonlinear optimization, or fine fit. This procedure yielded four619

final parameters of interest for every voxel: eccentricity (r), polar angle (q ), sigma (s ), exponent (n). The eccentricity620

and polar angle parameters describe the location of the receptive field in space, the sigma parameter describes the621

size of the receptive field, and the exponent describes the amount of compressive spatial summation applied to622

responses from the receptive field. Eccentricity and polar angle parameters were converted from polar coordinates623

to rectangular coordinates (x, y) for some analyses. Variance explained by the pRF model with these parameters624

was also calculated for each voxel. All parameters were then projected from each subject’s anatomical volume to625

the cortical surface (Fig. 2b, bottom).626

ROI definitions627

Regions of interest were defined by hand-drawing boundaries at polar angle reversals on each subject’s cortical628

surface, following established practice (Wandell et al., 2007). We used this method to define six ROIs spanning629

early to mid-level visual cortex: V1, V2, V3, hV4, LO (LO1 and LO2), and V3ab (V3a and V3b).630

We further restricted each ROI by preferred eccentricity in order to isolate vertices responsive to our stimuli. We631

excluded vertices with eccentricity values less than 0.5� and greater than 8�. This procedure excluded vertices632

responding primarily to the fixation dot and vertices near the maximal extent of visual stimulation in the scanner. We633

also excluded vertices whose variance explained by the pRF model (R2) was less than 0.1, indicating poor spatial634

selectivity. All measures used to exclude vertices from ROIs were independent of the measurements made during635

the perception and memory tasks.636

Analyses quantifying perception and memory activity637

Our main empirical analyses examined the evoked BOLD response to our experimental stimuli during perception638

and memory as a function of visual field parameters estimated from the pRF model. Our first step was to visualize639

evoked activity during perception and memory in visual field coordinates (Fig. 3a). Transforming the data in this640

way allowed us to view the activity in a common reference frame across all brain regions, rather than on the641

cortical surface, where comparisons are made difficult by the fact that surface area and cortical magnification differ642

substantially from one area to the next. To do this, we selected the (x,y) parameters for each surface vertex from the643

retinotopy model and the b parameters from the GLM analysis. Separately for a given ROI, subject, stimulus, and644

task (perception/memory), we interpolated the b values over (x,y) space. We rotated each of these representations645
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according to the polar angle location of the stimulus so that they would be aligned at the upper vertical meridian.646

We then z-scored each representation before averaging across stimuli and subjects. We used these images to gain647

intuition about the response profiles and to guide subsequent quantitative analyses.648

Before quantifying these representations, we simplified them further. Because our stimuli were all presented649

at the same eccentricity, we reduced our 2D stimulus coordinate representations to 1D dimensional responses650

functions on the polar angle dimension (Fig. 4a). We did this by selecting surface vertices whose (x,y) coordinates651

were within one s of the stimulus eccentricity (2�) for each ROI. We then binned the evoked BOLD response into652

18 bins of polar angle distance from the stimulus and averaged within each bin to produce polar angle response653

functions for each subject. We divided each subject’s response function by the norm of the response vector before654

averaging across subjects and then multiplying by the average vector norm to get the correct units back. This655

procedure prevents a subject with a high BOLD response across all polar angles from dominating the average656

response. The resulting average polar angle response functions showed clear surround suppression for polar657

angles near the stimulus during perception. Given this, we fit a difference of two von Mises distributions to the658

average data, with the location parameters (µ) for the two von Mises distributions fixed to be equal, but the spread659

(k) and scale allowed to differ.660

We quantitatively assessed the similarities and differences between perception and memory responses using661

these fits. We examined the location parameter of the two von Mises distributions, and also computed the amplitude662

and FWHM of the fit. We repeated the fitting procedure 500 times, drawing subjects with replacement, to create663

bootstrapped 68% and 95% confidence intervals for both perception and memory location, amplitude, and FWHM664

parameters. To assess main effects of ROI, main effects of perception vs memory, and the interaction of these665

variables on location, amplitude, and FWHM values, we ran two-way ANOVAs. In all models, ROI was coded as an666

ordinal variable (V1 < V2 < V3 < hV4 < LO < V3ab) and perception/memory as a categorical variable. Because667

location, amplitude, and FWHM, were computed at the group-level and not at the single-subject level, we ran these668

ANOVAs using group-level values. We re-ran the ANOVAs for all 500 subject resamplings to create bootstrapped669

confidence intervals for ANOVA regression coefficients. We computed p-values for these effects by performing670

randomization tests. To create null distributions, we randomly shuffled the assignment of the location, amplitude,671

or FWHM values with respect to the independent variables of interest (ROI, perception/memory). We did this672

for every possible shuffling or a subset of 10,000 different shufflings, whichever was smaller. We then computed673

two-tailed p-values according to the position of the true regression coefficient in the null distribution. Statistical data674

visualizations for these analyses and those subsequently described were made using seaborn v0.9.0 (Waskom675

et al., 2018).676

Noise simulations677

We performed three simulations designed to test whether differences in noise between perception and memory data678

could explain differences in the responses we observed. To this end, we identified three potential types of noise that679

were present in our memory data but not our perception data: 1) reduced SNR; 2) retrieval failure; 3) memory error.680

We then simulated the effect of these types of noise on our perception data and asked whether these noise sources681

could produce responses similar to the ones we observed during memory.682

SNR simulation683

To simulate reduced SNR, we created artificial datasets with different amounts of additive noise introduced to684

every vertex’s perception parameter estimate. Noise was added in five levels: noise needed to generate the685

empirical SNR of the perception data (p), noise needed to generate the empirical SNR of the memory data (m), or686

noise needed to generate 1/2, 1/4, or 1/8 the empirical SNR of the memory data. For each of these values, we687

simulated 100 independent datasets for every subject and ROI. We determined the amount of signal and noise688

actually observed for each vertex during perception and memory by examining bootstrapped parameter estimate689

distributions produced by GLMdenoise. We defined the median parameter estimate across bootstraps as the690

amount of signal and the standard error of this distribution as the amount of noise. To simulate new data for a691

vertex, we randomly drew a new parameter estimate from a normal distribution defined by the true signal value692
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(median) and the noise value (SE) needed to produce the target SNR. Critically, we made the draws correlated693

across vertices for each simulation. We did this by selecting a scale factor from a standard normal distribution694

which determined how many SEs away from the median every vertex’s simulated value would lie. This scale factor695

was shared across all vertices in an ROI for a given simulation. This procedure overcompensates for the spatial696

correlation present in BOLD data by assuming that SNR is 100% correlated across all vertices in an ROI. Note697

that if the noise were uncorrelated across vertices, it would have a much smaller effect on the population tuning698

curves. For each noise value and each of the 100 simulations, we analyzed the simulated data using the same699

procedure we applied to the actual data. This yielded 100 von Mises fits to the simulated data for each noise value700

and ROI (Supplementary Fig. 1a). We extracted the location, amplitude, and FWHM values from these fits. We701

evaluated whether location and FWHM values approximated the ones we observed during memory by calculating702

the proportion of simulations that fell within the 95% confidence intervals derived from the memory data (Fig. 5a).703

Retrieval failure simulation704

To simulate retrieval failure, we created artificial datasets that contained a variable number of perception trials705

with no signal. Retrieval failure was simulated in five levels: 0%, 25%, 50%, 75%, and 100% of trials. For each706

of these values, we simulated 100 independent datasets for every subject and ROI. Depending on the level of707

retrieval failure, zero, one, two, three, or all four stimuli were randomly designated as ’failed’ in each simulated708

dataset. For the failed stimuli, new parameter estimates were drawn from a distribution defined by zero signal during709

perception for every vertex. For the remaining stimuli, new parameter estimates were drawn from a distribution710

defined by the true perception signal for every vertex. Noise was equated for both trial types; for each vertex, we711

used the the amount of noise observed during perception. As in the SNR simulation, simulated data were correlated712

across vertices in an ROI and simulated data were analyzed using the same procedures as for the actual data. We713

evaluated whether simulated location and FWHM values approximated the ones we observed during memory by714

calculating the proportion of simulations that fell within the 95% confidence intervals derived from the memory data715

(Supplementary Fig. 1b and Fig. 5b).716

Memory error simulation717

To simulate memory error, we created artificial datasets that contained a variable amount of angular error in the peak718

location of the perception polar angle response functions. Memory error was simulated in seven levels of standard719

deviation: 0, 15, 30, 45, 60, 75, and 90 degrees. For each of these values, we simulated 100 independent datasets720

for every subject and ROI. We assigned the amount of memory error for a given subject and stimulus by drawing a721

random value from a normal distribution centered at the true angular location of the stimulus and with the current722

standard deviation. We then used these memory error values to misalign simulated perception data. Specifically,723

we created new perception datasets based on the true signal and noise characteristics of our perception data724

(equivalent to SNR simulation with ’p’ noise or 0% retrieval failure simulation). As in prior simulations, simulated data725

were correlated across vertices in an ROI, and simulated data were analyzed according to the same procedure as726

for the actual data. Before averaging the simulated data across stimuli and subjects, we rotated each response by727

the chosen memory error value rather than by the location of that stimulus. That is, instead of rotating the response728

to a 45� stimulus by 45� to align all stimuli at 0� (as we did in our main analysis), we rotated the response by a729

value either close (generating using small standard deviations, representing small errors) or potentially quite far730

away (generating using large standard deviations, representing large errors). After averaging, we extracted location731

and FWHM values. We then evaluated whether simulated location and FWHM values approximated the ones we732

observed during memory by calculating the proportion of simulations that fell within the 95% confidence intervals733

derived from the memory data (Supplementary Fig. 1c and Fig. 5c).734

pRF forward model735

We evaluated the ability of our pRF model to account for our perception and memory measurements. To do this, we736

used our pRF model as a forward model. This means that we took the pRF model parameters fit to fMRI data from737

the retinotopy session (which used a drifting bar stimulus) and used them to generate predicted BOLD responses738

to our four experimental stimuli. The model takes processed stimulus images as input, and for each of these739

20/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2020. ; https://doi.org/10.1101/811331doi: bioRxiv preprint 

https://doi.org/10.1101/811331
http://creativecommons.org/licenses/by-nc-nd/4.0/


images, outputs a predicted BOLD response (in units of % signal change) for every cortical surface vertex. Before740

running the model, we transformed our experimental stimuli into binary contrast apertures with values of 1 where741

the stimulus was and values of 0 everywhere else. These images were downsampled to the same resolution as the742

images used to fit the pRF model (101 x 101).743

Model specification744

The pRF forward model has two fundamental operations. In the first operation, a stimulus contrast aperture image is745

multiplied by a voxel’s pRF. In the CSS and linear models, this pRF is defined as a circular symmetric 2D Gaussian,746

parameterized by a location in the visual field (x,y) and a size (s ). In the DoG+CSS version of the model, this pRF747

is defined as the difference of two such Gaussians, centered at the same location (see next paragraph). The second748

operation applies a power-law exponent (n) to the result of the multiplication, effectively boosting small responses.749

This nonlinear operation is the key component of the CSS model and improves model accuracy in high-level visual750

areas that are known to exhibit subadditive spatial summation (Kay et al., 2013b; Mackey et al., 2017). The values751

of the exponent range from 0 to 1, where a value of 1 returns the model to linear. The output of this nonlinear stage752

is multiplied by a final scale parameter (b ), which returns the units to % signal change (Fig. 6a).753

Because we observed negative surround responses in V1–V3 during perception, we focused mainly on the754

results of the DoG+CSS model. Prior work has shown that difference-of-Gaussians (DoG) pRF models can account755

for the center-surround structure we observed (Zuiderbaan et al., 2012). In order to construct DoG pRFs, we756

converted each pRF from the CSS model we fit to the retinotopy data to a DoG pRF. We chose this approach after757

encountering difficulty in fitting a DoG pRF model to the retinotopy data. First, we took every 2D Gaussian pRF from758

the CSS model, and we subtracted from it a second 2D Gaussian pRF that was centered at the same location but759

was twice as wide and half as high. This ratio of 2s and .5b between the negative and positive Gaussians was fixed760

for all voxels. In order to prevent the resulting DoG pRF from being systematically narrower and lower in amplitude761

than the original pRF, we rescaled the s and b of the original pRF before converting it to a DoG. We multiplied762

the original s by
p

2 and the original b by 2, resulting in a DoG pRF with equivalent FWHM and amplitude as the763

original pRF. Thus, the DoG pRF differed from the original pRF only in the presence of a suppressive surround.764

We compared the predicts of the DoG+CSS model to the results of the CSS model and to a linear model that we765

fit separately to the retinotopy data. In this linear model, no exponent parameter was fit. After generating a prediction766

for each subject, stimulus, and surface vertex, for each of our three forward models, we carried these predictions767

forward through the same analysis pipeline used to analyze our task-based data. This generated predicted polar768

angle response functions for each of the three pRF forward models (Fig. 6b and Supplementary Fig. 2). We769

generated bootstrapped predictions by conducting the same procedure on the bootstrapped datasets.770

Evaluating model predictions771

We next compared how well the DOG+CSS model predictions matched our perception versus memory measure-772

ments. We correlated the predicted location, amplitude, and FWHM parameters for each ROI with the actual773

perception and memory parameters. We evaluated these relationships by fitting a linear model to the predicted774

versus observed observations. To generate confidence intervals on these fits, we fit linear models to the 500775

bootstrapped perception and memory datasets and the yoked pRF predictions (Fig. 6c).776

We also compared the model accuracy of the DoG+CSS and CSS predictions alongside a linear prediction777

with no exponent parameter (Supplementary Fig. 2a). We calculated the coefficient of determination (R2) for the778

predicted polar angle response functions in each ROI, separately for the observed perception and memory polar779

angle response functions (Supplementary Fig. 2b). Under this measure, a model that predicts the mean observed780

response for every value of polar angle distance will have an R2 of zero, with better models producing positive values781

and worse models producing negative values. We generated confidence intervals for these accuracies by computing782

R2 values for each of the 500 bootstrapped perception and memory datasets and the yoked pRF predictions.783
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Hierarchical network model784

We assessed whether a simple instantiation of a single neural network model could account for both the perception785

and memory data. We implemented a fully linear hierarchical model of neocortex in which the activity from each786

layer was created by pooling activity from the previous layer. This model encodes 1D space only and its parameters787

are fixed (i.e. it is not trained). For the feedforward simulation, we began with a 1D square wave stimulus, which788

spanned -20 to 20 degrees of polar angle. We created a fixed Gaussian convolution kernel (µ = 0, s = 15), which789

we convolved with the stimulus to create the activity in layer 1. This layer 1 activity was convolved with the same790

Gaussian kernel to create the layer 2 activity, and this process was repeated recursively for 8 layers (Fig. 7a, left).791

In order to simulate memory-evoked responses in this network, we made two assumptions. First, we assumed792

that the feedback simulation began with the layer 8 activity from the feedforward simulation. That is, we assumed793

no information loss or distortion between perception and memory in the last layer. Second, we assumed that794

all connections were reciprocal and thus that the same Gaussian kernel was applied to transform layers in the795

feedback direction as in the feedforward direction (Fig. 7a, right). Thus, in the feedback simulation, we convolved796

the layer 8 activity with the Gaussian kernel to produce the layer 7 activity and repeated this procedure recursively,797

ending at layer 1 (Fig. 7b). Note that these computations can be performed with matrix multiplication rather than798

convolution by converting the convolutional kernel to a Toeplitz matrix, which is how we implemented it. In this case,799

the transpose of the Toeplitz matrix (itself, as it is symmetric) is used in the feedback direction. We plot the location,800

amplitude and FWHM for each layer’s activation in the same convention as the data (Fig. 7c).801
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Supplementary Figures979

Figure 1. Simulated V1 datasets with different noise levels. (a) Gray lines represent the fits to simulated V1 perception datasets with
different levels of SNR. Each panel contains 100 independently simulated datasets with the same noise level. Orange lines represent the fits to
the actual perception and memory data, reproduced from Figure 4b, and are the same for each SNR value. (b) Purple lines represent the fits to
simulated V1 perception datasets with different frequencies of failed retrieval. Other conventions as in (a). (c) Blues lines represent the fits to
simulated V1 perception datasets with different amounts of memory error. Other conventions as in (a).
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Figure 2. pRF model comparisons. (a) Predicted polar angle response functions are plotted for three pRF models: linear, CSS, and DoG+CSS.
Comparing these responses to perception data plotted in Figure 4b, the linear model did the poorest job of predicting perception responses.
Linear predictions underestimated the amplitude of the observed response, particularly in later visual areas. Both nonlinear models (CSS and
DOG+CSS) avoided this magnitude of failure. The DoG+CSS model selectively captured negative responses in V1–V3. (b) Model accuracy
(R2) of the predicted polar angle response functions for each pRF model, evaluated separately for perception and memory data in each ROI.
Error bars indicate 68% bootstrapped confidence intervals. Accuracy of the linear model in predicting perception data dropped steadily moving
away from V1, indicating poor fit. Model accuracies for the the CSS and DoG+CSS models were higher and more stable across ROIs, with the
DoG+CSS performing slightly better in every region. With the exception of the linear model in late visual areas, accuracy for all three models was
far worse for memory data than perception data.

28/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2020. ; https://doi.org/10.1101/811331doi: bioRxiv preprint 

https://doi.org/10.1101/811331
http://creativecommons.org/licenses/by-nc-nd/4.0/

