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Neural circuits are structured in layers of converging and di-
verging nonlinear neurons with selectivities and preferences.
These components have the potential to hamper an efficient en-
coding of the circuit inputs. Past computational studies have op-
timized the nonlinearities of single neurons, or the weights ma-
trices of networks, to maximize encoded information yet none
have grappled with simultaneously optimizing circuit structure
and neuron response functions for efficient coding. Rather than
an explicit optimization of that kind, our approach is to com-
pare circuit configurations with different combinations of these
suboptimal components to discover how the interactions of these
components affect the efficient coding of the neural circuit. We
construct computational model circuits with different configu-
rations and we compute and compare their response entropies.
We find that the circuit configuration with divergence, conver-
gence, and nonlinear subunits preserves the most information
despite the compressive loss induced by both the convergence
and the nonlinearities individually. These results show that the
combination of selective nonlinearities and a compressive archi-
tecture - both elements that induce lossy compression - can pro-
mote efficient coding in tandem.

Correspondence: ellag9@uw.edu

Introduction
Sensory systems by necessity compress a wealth of informa-
tion gathered by receptors into the smaller amount of infor-
mation needed to guide behavior. This compression occurs
via common circuit motifs - namely convergence of multiple
inputs onto a single output neuron and divergence of inputs to
multiple parallel pathways (Jeanne and Wilson, 2015). Here
we investigate how these motifs work together to dictate how
much and what information is retained in compressive neural
circuits.
These issues are particularly approachable in the retina, be-
cause the bottleneck provided by the optic nerve means that
considerable compression occurs prior to transmission of sig-
nals to central targets (Zhaoping, 2006; Nirenberg, et al.,
2001). Receptive field subunits are a key feature of the
retina’s compressive circuitry. Multiple bipolar cells con-
verge onto a single ganglion cell - forming functional sub-
units within the receptive field of the ganglion cell (Demb
and Singer, 2015; Enroth-Cugell and Robson, 1966). Gan-
glion cell responses can often be modeled as a linear sum
of a population of nonlinear subunits. These subunit mod-
els have been used to investigate center-surround interactions
(Enroth-Cugell and Freeman, 1987; Hochstein and Shapley,
1976; Barlow, 1953) and to determine how cells integrate
spatial inputs (Enroth-Cugell and Robson, 1966; Turner and
Rieke, 2016; Hartline, 1940; Freed and Sterling, 1988).
While it is clear that subunit coding imposes a compressive

circuit architecture, it is not known whether this architec-
ture subserves an efficient code. Since the 1950s, informa-
tion theory has been used to quantify the amount of infor-
mation that neurons encode. The efficient coding hypothe-
sis proposes that the distribution of neural responses should
be one that is maximally informative about the inputs (At-
tneave, 1954; Barlow, 1961). Inherent in these studies is the
use of Shannon’s entropy (Shannon and Weaver, 1998; Cover
and Thomas, 2006) as a measure of information in the neural
code.
In this paper, we explore how a combination of divergence
of inputs into multiple parallel pathways and convergence in
each pathway via nonlinear receptive field subunits impacts
coding efficiency. We find that the convergence of nonlinear
subunits minimizes the loss of information despite the selec-
tivity of the nonlinearities.

Results
We start by quantifying the effect of common signaling mo-
tifs, alone and in combination, on coding efficiency. We then
explore, geometrically, how nonlinear subunits shape the re-
sponse distribution to gain intuition as to how they can en-
hance information retention. Finally, we explore the implica-
tions of nonlinear subunits for which stimulus properties are
encoded.

Common circuit components are lossy or inefficient.
Our goal is to understand how the convergence and diver-
gence of nonlinear subunits impacts the retina’s ability to effi-
ciently encode spatial inputs. The retina is organized in layers
that converge and diverge (Fig. 1A), ultimately leading to the
compression and re-formatting of a high-dimensional visual
input into a lower dimensional neural code that can be inter-
preted by the brain. In addition, nonlinear responses abound
in the neurons that compose these layers. These mechanisms
complicate the ability of the circuit to retain information. We
use entropy to describe the maximum amount of information
that a distribution of responses could contain about its inputs.
Specifically, we use discrete entropy to compare the informa-
tion content of (continuous) distributions of responses gen-
erated by different circuits. Although the discrete entropy
depends on the resolution of the discretization (see methods),
our qualitative conclusions are the same regardless of the res-
olution of this discretization.
Two converging inputs can result in ambiguities. The ability
to distinguish the stimulus combinations that sum to the same
value is lost, making linear convergence a form of lossy com-
pression in this case. (Fig. 1B). The entropy of the full two-
dimensional stimulus (Fig. 1B, top) is 19.85 bits - meaning
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Fig. 1. Neural circuits are composed of inherently lossy components. (A) schematic
of retina circuit with its convergent and divergent structure. (B) Converging two in-
puts results in ambiguities. A 2D stimulus space is reduced to a 1D response space
in which one response represents all stimuli along an isoline where s1 + s2 = con-
stant. (C) Diverging to two outputs can produce redundancies. (D) Nonlinear trans-
formation of a gaussian distributed input with a ReLU can distort the distribution,
producing a compressed response in which some portion of the stimulus informa-
tion is discarded. (E-F) Convergent, divergent circuits with (E) nonlinear outputs,
or (F) nonlinear subunits. Subunit responses are weighted by 1/

√
36. Example

stimulus image is shown.

that it would take 19.85 bits to convey a distinction between
any two points in the stimulus space with our choice of bin
size (see methods). The entropy of the convergent response
is smaller (12.50 bits; Fig. 1B, bottom).
Diverging motifs are another common neural circuit con-
struction. In the example shown in Figure 1C, the divergent
responses are identical and the entropy of the 2-dimensional
response space (H = 12.01 bits) is the same as the entropy
of the 1-dimensional stimulus distribution shown in the top
plot (H = 12.01 bits). Diverging an input into two neurons
may produce an inefficient neural architecture by producing
redundant signals.
Similarly to convergence, nonlinear transformations can lead
to loss of information by introducing ambiguities. Take the
example of a rectified-linear transformation that is thresh-

olded at zero (Fig. 1D). It is a non-invertible nonlinearity
where half of the stimulus distribution is encoded by one
response. Therefore, this nonlinearity induces lossy com-
pression because the information that would distinguish these
stimuli has been irretrievably discarded. The entropy of the
rectified-linear (ReLU) response (H = 6.50 bits) is nearly half
of that for the stimulus distribution (H = 12.01 bits).
Each of the common circuit motifs described above is in-
efficient or discards information when considered in isola-
tion (Figs. 1A-D). How much information can a neural cir-
cuit with all of these components retain? We sought func-
tional architectures that cause minimal information loss given
the constraint of compression. We constructed a model cir-
cuit that compresses a high-dimensional input into a low-
dimensional output. It has a 36-dimensional input structure
that diverges along two pathways, an ON and an OFF path-
way, each culminating in a single output neuron. The inputs
to each output neuron come from a layer of subunits - neu-
ral units that define the receptive field structure of the output
neuron. Each subunit receives input from one of the N stim-
ulus inputs that compose a stimulus image where each pixel
is independently drawn from a gaussian distribution. Within
each pathway, the normalized subunit responses linearly sum
at the output neuron and are then rectified.
The ON and OFF output responses are embedded in a 2-
dimensional space that corresponds to a low-dimensional
representation of the N-dimensional input. The entropy of
the 2-dimensional output response is computed after showing
many stimulus samples to the circuit. The circuit in Figure
1E has linear subunits. Its output has 12.01 bits of entropy.
The circuit in Figure 1F applies nonlinearities to the subunits
and its output response has 19.68 bits of entropy. The greater
entropy of the nonlinear subunit circuit is counterintuitive be-
cause the nonlinear elements considered in isolation lead to
a loss of information (Fig. 1D). This motivated us to inves-
tigate smaller motifs and to gradually build up to these full
circuits to understand how each component or structure in-
teracts with the other components. We next investigate how
convergence interacts with subunit nonlinearities.

Lossy nonlinear subunits benefit from convergence.
To understand how nonlinear subunits interact with a con-
vergent architecture to increase encoded information, we ex-
amined circuit configurations with a single pathway, i.e. no
divergence (Fig. 2). All stimuli that sum to the same value
(as highlighted in the top plot of Fig. 2) are represented by
the same response in the circuit pathway with linear subunits
because the subunits do not transform or scale the inputs (Fig.
2, left, 3rd and 4th rows). The nonlinear subunits transform
the stimulus space such that all points are compressed into
a single quadrant (Fig. 2 right, 2nd row). When the sub-
units are summed (Fig. 2, right, 3rd row), this allows the
ambiguous stimuli to have a more distributed representation
in the output response - meaning that they are represented
more distinctly by the nonlinear subunits pathway than the
pathway with linear subunits.
If there were only a single subunit, the linear and nonlin-
ear subunits circuits would have identical output responses so
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Fig. 2. The encoding of the stimulus space (top) within each circuit layer (subunits,
2nd row; linearly summed response, 3rd row; nonlinear output response, 4th row)
of a 2-subunit pathway configuration without divergence. Left, linear subunits path-
way; right, nonlinear subunits pathway. The output nonlinearity does not have an
additional effect on the summed nonlinear subunits without noise.

long as there remained an output nonlinearity. The 2-subunit
example in Figure 2 showed improved information transmis-
sion in the case of two nonlinear subunits, and prompted
us to ask whether there would be a continued improvement
with additional nonlinear subunits. We computed the entropy
of the output responses for the linear and nonlinear subunit
configurations for a range of subunit dimensions. With in-
creasing subunit dimension, more subunit responses are com-
pressed into the output response. To observe a relative change
in entropy, the subunits were normalized. Consequently, for
the linear subunits configuration, the output response distri-
bution is invariant to the number of subunits (Fig. 3A). The
distribution of output responses for the nonlinear subunits
pathway, however, qualitatively changes with the number of
subunits (Fig. 3B). With few subunits, the output response
distribution resembles the truncated gaussian seen for the rec-
tified output response in Figures 1D and 3A. With increasing
numbers of subunits, the output response distribution approx-
imates a gaussian (due to the central limit theorem) with a
mean that shifts towards more positive values (Fig. 3B). The
mean shift is relevant because summing the nonlinear sub-
units allows the output distribution to escape the most detri-
mental part of the subunit nonlinearity. In other words, each
nonlinear subunit is negatively impacted by its own thresh-
old, but collectively, they pull the output response distribu-
tion away from the rectification that each one is individually
responsible for.
The entropy for the nonlinear subunits pathway is the only
one that increases with increasing subunit dimension (Fig.

3C). It saturates before reaching the entropy of the fully lin-
ear pathway - which is to say that, although convergence im-
proves the information retention of nonlinear subunits, the
convergence of linear subunits still contains more informa-
tion about the stimulus than any single pathway configuration
that includes nonlinearities.
Figures 2 and 3 show that convergence reduces the impact of
the subunit nonlinearity on the entropy of the circuit. Further-
more, the nonlinear subunits circuit encodes different parts of
the full stimulus distribution than the linear subunits circuit.
These results only partially explain why the divergent non-
linear subunits circuit in Figure 1F has higher entropy than
the divergent linear subunits circuit (Fig. 1E). Recall, those
circuits had two complementary, diverging pathways - an ON
and an OFF pathway while Figure 3C considers only a single
pathway. The divergent ON and OFF linear subunits circuit
with output nonlinearities (as in Figure 1F) encodes comple-
mentary aspects of the stimuli - i.e. those that sum to positive
or negative values. Because the OFF pathway encodes the
stimuli that are discarded by the ON pathway and vice versa,
one might expect this circuit to perform as well as, if not bet-
ter than, the divergent circuit with nonlinear subunits - yet it
does not. Hence we next explore the impact of divergence on
information coding with nonlinear subunits.

Divergent circuit structure leverages selectivity of
nonlinear subunits. Although divergence improves the in-
formation retention of both circuits, it is not enough to al-
low the linear subunits circuit to surpass the entropy of the
nonlinear subunits circuit. We present a geometrical explo-
ration of the transformations that take place in the different
layers of the circuit configurations with two divergent out-
put pathways. Our demonstration uses circuits with two in-
put dimensions to facilitate the visualization of the stimulus
and subunit spaces. Figure 4 shows a 2-dimensional stimu-
lus space that displays each stimulus quadrant in a different
color (top, Figs. 4A,D). The points in all subsequent plots are
color-coded by the stimulus quadrant from which they orig-
inate. The linear ON subunit space (Fig. 4A, 2nd row, left)
is identical to the stimulus space because no transformation
or compression has taken place through the linear subunits.
The OFF subunits receive a negative copy of the same stim-
ulus that the ON subunits receive which rotates the stimuli
by 180 degrees (Fig. 4A, 2nd row, right). When the linear
subunits are converged within their respective pathways, the
ON and OFF responses are compressed onto a diagonal line
because they are anti-correlated (Fig. 4B). When the output
nonlinearities are applied, this linear manifold is folded into
an L-shape (Fig. 4C).
The entropy for the output response of the linear subunits cir-
cuit with diverging pathways (H = 12.01 bits) is higher than
it was with just a single pathway (H = 6.50 bits, Fig. 3C,
black). However, it is only increased enough to match the en-
tropy of a single pathway response without any nonlinearities
in either the subunits or the output (H = 12.01 bits, Fig. 3C,
grey dashed). In other words, the OFF pathway in the linear
subunits circuit with output nonlinearities (Fig. 4C) is indeed
encoding the information discarded by the ON pathway, but
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it does not enable the full divergent circuit to do any better
than an ON pathway alone with no nonlinearities anywhere.
To understand how the nonlinear subunits produce an addi-
tional advantage, observe how the nonlinear subunits trans-
form the inputs (Fig. 4D). Unlike the linear subunits, the
nonlinear subunits actually compress the subunit space, but
they do so in complementary ways for the ON and OFF sub-
units. When these subunits are converged in their respective
pathways (Fig. 4E), the output response has some similarities
to that for the linear subunits circuit (Fig. 4C). The L-shaped
manifold is still present, but the points representing the stim-
ulus inputs with mixed sign have been projected off of it. By
virtue of having these points leave the manifold and fill out
the response space, entropy is increased. In fact, as more non-
linear subunits are converged in a divergent circuit, the en-
tropy continues to increase until saturation (Fig. 4F). It even
increases beyond that of the fully linear response (shown in
Fig. 4B) where there are no nonlinearities anywhere.
The output nonlinearities have the effect of decorrelating the
ON/OFF output response in the linear subunits circuit, while
for the nonlinear subunits circuit, it is the nonlinear subunits
themselves that decorrelate the output response and by about
the same amount (correlation coefficients: linear response =
-1, linear subunits, nonlinear output circuit = -0.4670, non-
linear subunits circuit = -0.4669). Indeed, although the out-
put nonlinearity decorrelates the ON/OFF outputs of the lin-
ear subunits circuit, this decorrelation does not produce any
gains in entropy relative to the linear subunits circuit before
output nonlinearities are applied. Furthermore, the ON/OFF
responses of the nonlinear subunits circuit are as decorrelated
as for the linear subunits circuit, however, it experiences an
entropy gain over the fully linear response unlike the linear
subunits circuit. The additional entropy conferred by diver-
gence for the nonlinear subunits circuit is due to how the non-
linear subunits decorrelate the ON and OFF pathways before
convergence, and not merely the fact that those outputs have
been decorrelated. It is this step that pulls responses off of
the linear manifold in the output response space leading to an
increase in response entropy.
Increased response entropy quantifies the fact that a circuit
encodes additional information about the stimulus, but does
not convey anything about which aspects of the stimulus are
encoded - only that the encoding has the potential to convey
more distinct states. For example, in principle it is possible
for increased entropy to simply relate an increase in the en-
coding resolution of a single stimulus feature, rather than the

encoding of additional stimulus features. We next show that
this is not the case here. Nonlinear subunits lead to the en-
coding of additional stimulus features.

Nonlinear subunits circuit encodes both mean and
contrast information. To determine whether increases in
entropy accompany an encoding of new stimulus features, we
once again did a visualization of the stimulus and response
spaces for the two circuit configurations. The stimulus in-
puts are assumed to represent relative luminance values and
the distributions are the same as before. We chose two ba-
sic features of visual stimuli to investigate: mean relative
luminance and contrast. In Figure 5A, the stimulus space
is color-coded by bands of mean luminance levels. In both
of the response spaces in Figure 5A, a banded structure is
preserved, indicating that there is a separation of the mean
luminance levels within the response spaces for the circuits
with linear subunits and with nonlinear subunits. This is em-
phasized by the separation of the red square and red circle
(which occupy different bands in the stimulus space) in the
response spaces. However, note that the red and cyan squares
overlap each other in the output response space for the lin-
ear subunits circuit (Fig. 5A, middle). These two symbols
represent stimuli with the same mean luminance but differ-
ent contrasts. Only the nonlinear subunits circuit represents
these stimuli with distinct output responses.
The nonlinear subunits circuit encodes stimulus contrast. The
bottom row explicitly shows how contrast is encoded by the
different circuits (Fig. 5B). The stimulus space is color-coded
for three contrast levels (Fig. 5B, left). The highest con-
trast areas of the space are in the mixed sign quadrants. The
representations for low, medium, and high contrast stimuli
overlap each other in the output response space of the linear
subunits circuits (Fig. 5B, middle). However, there is sepa-
ration of these contrast levels in the output response space of
the nonlinear subunits circuit (Fig. 5B, right). The nonlinear
subunits circuit encodes both mean and contrast information
whereas the linear subunits circuit only encodes mean lumi-
nance.

Discussion
We set out to understand how common neuron and circuit
properties impact information retention. We asked how much
stimulus information a compressive circuit could preserve if
it also has selective nonlinear subunits. To answer this ques-
tion, we built a circuit model and compared the entropy of lin-
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Fig. 4. Visualization of stimulus/response mappings at each level of a convergent, divergent circuit with two inputs, two subunits for each pathway (ON and OFF pathways),
and a nonlinear output neuron for each pathway. (A) The spaces are color-coded according to the 4 stimulus quadrants (top). The 2D stimulus space maps onto a 2D linear
subunit space for each pathway (second row, left: ON; right: OFF). The subunit spaces are shown before subunit normalization. (B) The response space is shown for the
linear sum of subunits before the nonlinearity is applied and (C) after the nonlinear output response. (D) The 2D stimulus space maps onto a 2D nonlinear subunit space for
each pathway (second row, left: ON; right: OFF). (E) The output response space for the nonlinear subunits circuit. Note that the output response before the output nonlinearity
is applied is the same as when the output nonlinearity is applied for the circuit with nonlinear subunits. (F) Entropy of the output response for convergent, divergent circuits
with increasing input and subunit dimension (subunits are normalized as before).

ear and nonlinear subunit configurations. We found that the
circuit with nonlinear subunits preserves more information
than the circuit with linear subunits despite the fact that the
nonlinear subunits, due to their selectivity, are compressive
themselves. Divergence, convergence, and non-invertible
nonlinear signal transformations each have a negative impact
on efficiency or information individually. However, when ar-
ranged together they can mitigate the loss of information and
encoding capacity that is imposed by the reduction in dimen-
sion from inputs to outputs.

Implications for artificial neural networks. Artificial
neural networks (ANNs) were inspired by the layered organi-
zation of biological neural networks. Practitioners of ANNs
are fond of the ReLU activation function which rectifies in-
puts before propagating outputs to subsequent layers. The
ReLU frequently has the best performance among other non-
linear activation functions (Glorot et al., 2011; LeCun et al.,
2015) in tasks ranging from the discrimination of handwrit-
ten digits to restricted Boltzmann machines (Nair and Hin-
ton, 2010). It is a typical choice because it preserves the lin-
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resentation and response spaces. The red square is an arbitrary reference point.
In the stimulus space, the cyan square has the same mean luminance as the red
square but a different contrast, while the red circle has the same contrast as the red
square but a different mean luminance. (B) Visualization of the stimulus contrast
representation and response spaces.

ear properties that make optimizing with gradient-descent as
easy as for a regular linear function (LeCun et al., 2015). The
geometrical interpretation presented here of the information
preserving capabilities of the ReLU within an architecture
that is reminiscent of a generic feedforward ANN may be
relevant to the field of machine learning. The separation of
stimulus features in the response space (Fig. 5) suggests that
the task of categorization using linear boundaries (i.e. a lin-
ear decoder) is made easier with nonlinear hidden units than
with linear hidden units. Furthermore, it eliminates the need
to expand the dimension of the output in order to make the
feature representations linearly separable.

Selectivity versus efficiency. Nonlinearities can have dif-
ferent functions in a neuron. Nonlinear transformations can
induce selectivity in that they can cause a neuron to encode a
very particular aspect of the stimulus or its inputs (Gollisch,
2013; Gollisch and Meister, 2010). Otherwise, nonlineari-
ties can optimize efficiency by maximizing the entropy of the
response distribution (Laughlin, 1981). The rectified linear
nonlinearity that we used does not maximize the response en-
tropy of the single neuron that receives gaussian-distributed
inputs, but it does enforce a strict selectivity for inputs above
threshold. Selectivity, however, is in conflict with efficient
coding in that discarding information is a poor way to max-
imize it. The selective coding of features is often conflated
with redundancy reduction, but it is important to make a dis-
tinction in the context of efficient coding - where a redun-
dancy reducing code is reversible and is expected to maxi-
mize information about the stimulus (Barlow, 2001). Selec-
tivity indicates that some stimulus information will be irre-
versibly discarded.
The existence of selective cell types that compute different
aspects of the visual scene appears to confound an efficient
coding framework (Pitkow and Meister, 2012). Yet, proper-
ties of selectivity are crucial to the functions of a diverse array
of cell types, such as object-selective cells in medial tempo-

ral lobe (Ison, et al., 2011), face-selective cells in the inferior
temporal cortex (Eifuku et al., 2004; Hasselmo, et al., 1989),
and direction-selective cells, orientation-selective cells, and
edge detector cells in the retina (Sanes and Masland, 2015).
Furthermore, many cell types in the retina and other circuits
have both an ON and an OFF variant (Gjorgjieva et al., 2014).
In our study, rather than optimizing the nonlinearities for in-
formation maximization, we chose non-invertible nonlinear-
ities that exhibit generic selectivity (ON or OFF) and that in-
duce lossy compression of stimuli with no inherent statistical
redundancy to exploit. Despite those properties, we found
that, within a convergent, divergent circuit architecture, se-
lective nonlinearities produced the most information. This
increase comes from a reformatting of the stimulus distribu-
tion in a manner that reduces the ambiguities produced by the
convergence of multiple inputs (Fig. 2). This reformatting fa-
cilitates the encoding of multiple stimulus features in Figure
5. Thus, in the circuits we study here, true efficient coding
can be achieved with selective nonlinear components.

Contribution of divergence to information maximiza-
tion. Past work (Brinkman et al., 2016; Gjorgjieva et al.,
2014; Kastner et al., 2015) has explored the optimal nonlin-
earities and configurations of divergent circuits - though none
have explicitly explored convergence or nonlinear compres-
sion as we did. Brinkman, et al, found that the optimal non-
linearities are highly dependant on the placement and magni-
tude of noise in the circuit. Our study did not include noise;
however, for low noise conditions, they found that the opti-
mal sigmoidal nonlinearities cross at the lower bend which
is similar to the crossing at threshold for the nonlinearities
in our study. In their study, noise had the effect of changing
the optimal nonlinearities, but it is unclear whether chang-
ing the convergence or divergence in a circuit structure like
ours would be more effective for maximizing information
than changing the properties of the nonlinearity. Our future
studies will investigate how noise impacts the efficiency of a
nonlinear subunit code.
A key finding in our work is that the efficiency of divergent
circuits is enhanced by nonlinearities that decorrelate the out-
puts (Gjorgjieva, et al., 2014; Kastner, et al., 2015). Indeed,
our findings show that divergence resulted in efficiency gains
for both the linear and nonlinear subunits circuits (compare
the entropies in the solid lines for the single pathway configu-
rations in Figure 3C to those for the corresponding divergent
circuits in Figure 4F). Our findings also show that nonlinear-
ities facilitate decorrelation among the ON and OFF outputs
when looking across divergent circuits (compare the fully lin-
ear circuit in Figure 4B (corr coef = -1) to the other circuits
in Figure 4C and 4E (corr coeff = -0.467 for both)). Despite
achieving the same amount of decorrelation, any efficiency
gains are dependent on the manner in which this decorrela-
tion is achieved. For the linear subunits circuit, the output
nonlinearities induced decorrelations among the outputs but
did not result in an increase in entropy beyond that for the
fully linear response. The decorrelations due to the nonlinear
subunits did, however, lead to an increase in entropy relative
to the fully linear response.
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Nonlinearities are known to have a special role in decorre-
lating and separating signals. Pitkow and Meister (2012)
show that nonlinear responses in ganglion cells have more of
an effect on decorrelating their responses than their center-
surround receptive field properties. However, as they point
out, weak correlation is not necessarily weak dependence. In
the divergent, convergent circuits in Figure 4, putting non-
linearities in either the outputs or the subunits decorrelates
the outputs by the same amount relative to the response with-
out any nonlinearities where the outputs are perfectly anti-
correlated. However, only by placing the nonlinearities in the
subunits does a gain in entropy result relative to the scenario
in which there are no nonlinearities in the circuit. Bell and
Sejnowski (1995) showed that nonlinearities have the effect
of reducing redundancy between output neurons by separat-
ing statistically independent parts of the inputs. Following
that, it was shown that the efficient encoding of natural sig-
nals is facilitated by a nonlinear decomposition whose im-
plementation is similar to the nonlinear behaviors observed
in neural circuits through divisive normalization (Schwartz
and Simoncelli, 2001). Our study contributes to this body
of work by showing how nonlinear processing contributes to
a more informative representation that has lower dimension
than the inputs.

Materials and Methods
We used Shannon’s entropy (Shannon and Weaver, 1998) to
quantify the information retention of our model circuits be-
cause it quantifies how many distinct neural responses are
possible given a particular stimulus distribution, and this re-
lates to the specificity of encoding even though it does not
indicate which specific stimulus features are encoded. Since
there was no noise anywhere in the circuit, the mutual in-
formation between the stimulus and the response reduces to
the entropy of the response. Mutual information is defined
as MI =H[r]−〈H[r|s]〉 (Cover and Thomas, 2006). In our
study, there is a deterministic relationship between the re-
sponse and the stimulus due to the lack of noise. The second
term of the MI goes to zero and one is left with the entropy of
the response. We were careful to avoid any effects that could
distort the interpretation of the entropy. The ReLU was ideal
here because it compresses the input signal without necessar-
ily scaling it, so the compression was entirely derived from
the non-invertibility of the nonlinearity and not a linear gain
factor.
The convergent structure of the retina reduces the dimension
of the high-resolution visual input it receives, placing an up-
per bound on the amount of information that is possible to
transmit through the optic nerve. The data compression im-
plemented by the circuit architecture may perform lossless or
lossy compression or some combination. In this study, we
focus on lossy compression. By using images of random pix-
els (i.e. no redundant structure), we place the inputs into a
regime where lossless compression is impossible or assumed
to have already taken place. Therefore, the circuit config-
uration that experiences less lossy compression has a higher
entropy than that which experiences more lossy compression.

We consider higher entropy to be an indication of better per-
formance.

Model simulations and visualizations. All simulations,
visualizations, and entropy computations were done in Mat-
lab. The dimension of the stimulus always matches the di-
mension of the subunits within a pathway, and a stimulus
consists of N stimulus inputs. For example, if there are 5
subunits in each of the ON and OFF pathways, then the stim-
ulus has 5 stimulus inputs (sometimes referred to as pixels).
Each stimulus input was independently drawn from a gaus-
sian distribution with arbitrary units and a standard deviation
of 10 (µ = 0,σ2 = 100). Each subunit receives input from
one stimulus input. For all figures in this paper, linear sub-
units did not transform or scale stimulus inputs and therefore
the ON linear subunit response was equivalent to the stimulus
input and the OFF linear subunit response was the negative of
the stimulus input.
All weights were uniform with unit weights from stimulus
inputs to subunits and normalized weights from subunits to
outputs. The subunits were normalized so that the variance
of the linear sum of subunits is maintained. With N subunits,
each subunit weight is 1/

√
N . This normalization facilitated

a comparison between circuit configurations with linear and
nonlinear subunits. All circuit configurations are subject to
the same uniform weighting and subunit normalization here
and throughout the paper.
Each nonlinear unit applied a ReLU thresholded at zero with
unit slope to the stimulus input - effectively a positive-pass
filter for ON subunits, RON subunit i, and a negative-pass
filter for OFF subunits, ROFF subunit i,. The output neuron
linearly sums the subunit responses in its pathway and then
applies the nonlinearity. The output response, RON output

or ROFF output, to a given stimulus image, Υ, was a single
value that represents a steady state response, as this model
did not have temporal dynamics.

RON subunit i(si) =
{
si, if si > 0
0, otherwise (1)

ROFF subunit i(si) =
{
−si, if si < 0
0, otherwise (2)

RON output(~RON subunit) = (3){∑N
i RON subunit i, if

∑N
i RON subunit i > 0

0, otherwise
(4)

ROFF output(~ROFF subunit) = (5){∑N
i ROFF subunit i, if

∑N
i ROFF subunit i > 0

0, otherwise
(6)

Visualizations in stimulus, subunit, and response
spaces. Each quadrant was color-coded such that:
s1 > 0,s2 > 0 : blue,s1 > 0,s2 < 0 : purple, etc. Out-
put response histograms in Figure 4 are also color-coded
in this way to show which response bins represent which
stimuli. For mean luminance and contrast visualization,
spaces were color-coded to indicate evenly spaced bands
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of mean stimulus luminances, M , and stimulus contrasts,
Λ. Each stimulus image, Υ, consists of N stimulus inputs,
Υ = [s1,s2, ...,sN ]. In Figures 4 and 5, N = 2.

M(Υ) = s1 +s2 + ...+sN
N

(7)

Λ(Υ) =

∣∣∣∣∣
√

1
2
∑
i

(si−〈s〉)2

∣∣∣∣∣ (8)

Entropy calculations. Information entropy is defined as
H = −

∑
P [r]logP [r]. Discrete entropy was used even

though stimulus and response distributions were continuous.
Because stimuli that fall into the same bin are ambiguous,
the discretization has a similar effect as noise. A consistent
bin width of 0.01 was used for all entropy calculations to fa-
cilitate comparison. This bin width was used for all dimen-
sions. For example, in a 2D response space, bins would be
boxes that are 0.01 x 0.01. Entropy computations were done
by simulating the circuit responses to batches of 105 stimu-
lus samples, binning the responses, and computing response
probabilities to enter into the entropy equation. The entropy
quantities presented come from the average over five batches.
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