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Neural circuits are structured with layers of converging and diverg-
ing connectivity, and selectivity-inducing nonlinearities at neurons
and synapses. These components have the potential to hamper an
accurate encoding of the circuit inputs. Past computational studies
have optimized the nonlinearities of single neurons, or connection
weights in networks, to maximize encoded information, but have not
grappled with the simultaneous impact of convergent circuit struc-
ture and nonlinear response functions for efficient coding. Our ap-
proach is to compare model circuits with different combinations of
convergence, divergence, and nonlinear neurons to discover how in-
teractions between these components affect coding efficiency. We
find that a convergent circuit with divergent parallel pathways can
encode more information with nonlinear subunits than with linear
subunits, despite the compressive loss induced by the convergence
and the nonlinearities when considered individually. These results
show that the combination of selective nonlinearities and a conver-
gent architecture - both elements that reduce information when act-
ing separately - can promote efficient coding.
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Sensory systems, by necessity, compress a wealth of infor-1

mation gathered by receptors into the smaller amount of2

information needed to guide behavior. In many systems, this3

compression occurs via common circuit motifs - namely con-4

vergence of multiple inputs to a single neuron and divergence5

of inputs to multiple parallel pathways (1). Selective nonlinear6

circuit elements transform inputs, selecting some parts of the7

signal while discarding others. Here we investigate how these8

motifs work together to determine how much information is9

retained in compressive neural circuits.10

These issues are highly relevant to signaling in the retina,11

because the bottleneck produced by the optic nerve ensures12

that considerable feedforward convergence occurs prior to the13

transmission of signals to central targets. This convergence14

reduces the dimension of signals as they traverse the retina.15

In total, signals from ∼ 100 million photoreceptors modulate16

the output of ∼ 1 million ganglion cells (2, 3). If the dynamic17

range of the ganglion cell is not sufficiently expanded beyond18

that of the photoreceptors and bipolar cells, this convergent19

circuit architecture could lead to a compression of input signals20

in which some information or stimulus resolution is lost -21

resulting in ambiguously encoded stimuli. It is estimated22

that the population of ganglion cells collectively transmits23

approximately 106 bits of information (3–5) and that this is24

much less than the amount of information available to the25

photoreceptors (2). However, not much is known about how26

neuron properties interact with a convergent circuit structure27

to drive or mitigate a loss of information.28

Receptive field subunits are a key feature of the retina’s29

convergent circuitry. Multiple bipolar cells converge onto30

a single ganglion cell - forming functional subunits within 31

the receptive field of the ganglion cell (6, 7). Ganglion cell 32

responses can often be modeled as a linear sum of a population 33

of nonlinear subunits. These subunit models have been used to 34

investigate center-surround interactions (8–12) and to explain 35

the nonlinear integration of signals across space (7, 10, 13–15). 36

While it is clear that subunits have the potential to com- 37

press inputs, it is not known whether this architecture sub- 38

serves an efficient code where inputs are encoded with minimal 39

ambiguity. For decades, information theory (16, 17) has been 40

used to quantify the amount of information that neurons en- 41

code (3, 5, 18–27). The efficient coding hypothesis proposes 42

that the distribution of neural responses should be one that 43

is maximally informative about the inputs (21, 22, 28). Take 44

the example of a stimulus variable, such as luminance, where 45

the brightness level is encoded by the number of spikes in the 46

response. An input/output mapping in which most of the 47

possible luminance levels are encoded by the same response 48

(i.e. the same number of spikes or firing rate) makes many 49

bright and dim inputs ambiguous and provides very little 50

information. 51

Information can be maximized at the level of a single neu- 52

ron by distributing the responses such that they optimally 53

disambiguate inputs (23). A nonlinear response function opti- 54

mized for the distribution of inputs can make the most of the 55

neuron’s dynamic range. Adaptive rescaling of the response 56

nonlinearity to changes in the input statistics can maintain 57
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maximal information in the output (29–31). Alternatively, in-58

formation can be maximized by optimizing connection weights59

in the circuit, perhaps in combination with optimizing the60

nonlinearities (19, 32, 33). These past works, however, have61

not made explicit how the set of motifs found in most neural62

circuits, and in the retina in particular, combine to collectively63

influence coding efficiency.64

Our contribution here is to dissect a canonical neural circuit65

in silico, and to investigate how much each of its components66

contribute to or detract from the information encoded by the67

circuit about stimuli. These circuit components, considered68

individually, have the potential to discard information. We69

begin with the simplest motif of converging inputs to single70

neurons, and analyze the role of rectifying nonlinear subunits71

applied to each of these multiple inputs. We then add a72

diverging motif which splits the response into two opposing73

pathways. We find that rectifying nonlinear subunits mitigate74

the loss of information from convergence when compared to75

circuits with linear subunits. This is despite the fact that76

the rectifying nonlinear subunits, considered in isolation, lead77

to a loss of information. Moreover, this ability of nonlinear78

subunits to retain information stems from a reformatting of79

the inputs to encode distinct stimulus features compared with80

their linear counterparts. Our study contributes to a better81

understanding of how biologically-inspired circuit structures82

and neuron properties combine to impact coding efficiency in83

neural circuits.84

Results85

We start by quantifying the effect of common circuit mo-86

tifs, alone and in combination, on coding efficiency. We then87

explore, geometrically, how nonlinear subunits shape the re-88

sponse distribution to gain intuition as to how they can lead89

circuits to retain more information. Finally, we explore the90

implications of nonlinear subunits for encoding stimulus prop-91

erties. To emphasize the geometrical characterization of the92

encoding, we use an abstract circuit model without temporal93

dynamics.94

Common circuit components are lossy or inefficient. Our goal95

is to understand how the combination of divergence of inputs96

and convergence of nonlinear subunits impacts the retina’s97

ability to efficiently encode spatial inputs. We are particu-98

larly interested in the impact of selective nonlinearities on99

efficient coding. We use Shannon’s information to describe100

the maximum amount of information that a distribution of101

responses could contain about its inputs (16, 34). We consider102

deterministic circuits in which the mutual information between103

the stimulus and response reduces to the entropy of the re-104

sponse. Specifically, we use discrete entropy to compare the105

information content of continuous distributions of responses106

generated by different model circuits. We also confirm our107

results by computing the mutual information of noisy circuit108

responses (see SI Appendix). The parameters of the discretiza-109

tion were chosen so that the difference between the area under110

the discretized distribution and its continuous counterpart was111

minimized for a range of distinct distributions (see Methods).112

Many neural circuits are organized in layers of converging113

and diverging neurons and connections. In the retina (Fig.114

1A), this produces a compression and “re-formatting” of a high-115

dimensional visual input into a lower dimensional neural code116
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Fig. 1. Neural circuits are composed of inherently lossy components. (A) Schematic
of retina circuit with its convergent and divergent structure. (B) Converging two inputs
results in ambiguities. A 2-input stimulus space is reduced to a single output response
space in which one response (bottom: yellow and orange points) represents all stimuli
along an isoline (top: yellow and orange lines) where s1 + s2 = constant. All
entropy values shown are based on a discrete entropy computation (see Methods).
(C) Diverging a signal to two outputs can produce redundancies. (D) Nonlinear
transformation of a gaussian distributed stimulus input with a ReLU (rectified linear
unit) can distort the distribution, producing a compressed response in which some
portion of the stimulus information is discarded. (E-F) Convergent, divergent circuits
with (E) linear subunits, or (F) nonlinear subunits. Subunit responses are weighted by
1/

√
36. Example stimulus image is shown.

that can be interpreted by the brain. In addition, nonlinear 117

responses abound in the neurons that compose these layers. 118

These mechanisms may complicate the ability of the circuit to 119

retain information. For example, two converging inputs can 120

result in ambiguities. With linear convergence, the ability to 121

distinguish the stimulus combinations that sum to the same 122

value is lost and hence this is a form of lossy compression 123

(Fig. 1B). The entropy of the full two-input stimulus (Fig. 1B, 124

top) is 14.68 bits - meaning that a given point in the stimulus 125

space provides 14.68 bits of information about the identity 126

of the stimulus (given our choice of bin size, see Methods). 127

The entropy of the convergent response is smaller (7.87 bits; 128

Fig. 1B, bottom), thus indicating ambiguity in the stimulus 129

identity. 130

Diverging motifs are another common neural circuit con- 131

struction. In the example shown in Figure 1C, the divergent 132

responses are identical and the entropy of the 2-dimensional 133

response space (H = 7.37 bits) is the same as the entropy 134

of the 1-dimensional stimulus distribution shown in the top 135
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Fig. 2. (A) The encoding of the stimulus space (top) within each layer of a 2-subunit
convergent circuit configuration without divergence. Subunits (2nd row); summed sub-
units response distribution (3rd row); nonlinear output response distribution (4th row).
Left, linear subunits circuit; right, nonlinear subunits circuit. The output nonlinearity
does not have an additional effect on the summed nonlinear subunits without noise.
(B) Histograms of the output response for the NSC are shown for configurations with
3, 8, and 15 subunits.The subunit responses are normalized so that each subunit is
weighted by 1/

√
N where N is the number of subunits. The inputs [s1, s2, ..., sN ]

are independently drawn from a gaussian distribution (see Methods). (C) Normalized
entropy of output response as a function of number of convergent subunits where
subunits are normalized as in B and the circuit entropy is normalized by the entropy
of the summed linear subunits (see Methods). Black curve, NSC ; gray, LSC; dark
pink, nonlinear subunits with optimized sigmoidal output nonlinearity; light pink, linear
subunits with optimized sigmoidal output nonlinearity. Standard deviation of entropy
over 10 runs for each configuration is on the order of between 10−4 and 10−2 bits.

plot (H = 7.37 bits). This demonstrates that divergence of136

an input into two neurons may produce an inefficient neural137

architecture by producing redundant or correlated signals.138

Nonlinearities are abundant in neural circuits, and firing139

rates generally have a nonlinear relationship to inputs. On a140

more granular level, synaptic and spike generation mechanisms141

are often nonlinear and can be approximated by thresholded142

functions. The rectified linear nonlinearity is a tractable rep-143

resentation that captures key features of neural nonlinearities,144

including the selectivity for some inputs over others. The145

subunits in our model most closely represent bipolar cells,146

and we interpret the subunit nonlinearities as the relationship147

between input and excitatory synaptic output. The output148

units in our model most closely represent ganglion cells, and149

we interpret the output nonlinearities as occurring in spike 150

generation. 151

Similarly to convergence, nonlinear transformations can 152

lead to loss of information by introducing ambiguities. Take 153

the example of a rectified-linear transformation that is thresh- 154

olded at zero and is therefore selective for positive inputs 155

(Fig. 1D). It is a non-invertible nonlinearity where half of the 156

stimulus distribution is encoded faithfully and half is mapped 157

to an output of 0 by the thresholded response. Therefore, this 158

nonlinearity induces lossy compression: the information that 159

would distinguish these thresholded stimuli has been irretriev- 160

ably discarded. Correspondingly, the entropy of the rectifying 161

nonlinear response (H = 4.11 bits) is around half of that for 162

the stimulus distribution (H = 7.37 bits). 163

Each of the common circuit motifs described above is in- 164

efficient or discards information when considered in isolation 165

(Figs. 1A-D). How much information can a neural circuit 166

with all of these components retain? We constructed a model 167

circuit that compresses a high-dimensional spatial input into 168

a low-dimensional output. It has an N-dimensional input 169

structure that diverges along two pathways, an ON and an 170

OFF pathway, each culminating in a single output neuron. 171

The inputs to each output neuron come from a layer of sub- 172

units - the building blocks for the receptive field structure of 173

the output neuron. Each subunit receives input from one of 174

the N stimulus inputs that compose a stimulus image, and 175

each stimulus input is independently drawn from a gaussian 176

distribution. Within each pathway, the normalized subunit 177

responses linearly sum at the output neuron and are then 178

rectified. 179

The ON and OFF output responses lie in a 2-dimensional 180

space, and form a low-dimensional representation of the 181

N-dimensional input. We compute the entropy of the 2- 182

dimensional output response after showing many stimulus 183

samples to the circuit. In our study, circuits have rectifying 184

output neurons which model the rectifying responses of gan- 185

glion cells. We wanted to know whether the subunits - which 186

represent non-spiking bipolar cells - reduce or enhance the 187

information encoded by the circuit when their responses are 188

also rectifying compared to when subunit responses are linear. 189

For a 36-dimensional input space, the circuit with linear sub- 190

units (LSC: linear subunits circuit) has 7.37 bits of entropy 191

(Fig. 1E), while the circuit with nonlinear subunits (NSC: 192

nonlinear subunits circuit) has 12.87 bits of entropy (Fig. 1F). 193

The greater entropy of the NSC is counterintuitive because 194

the nonlinear neurons considered in isolation lead to a loss of 195

information (Fig. 1D). 196

This unexpected result motivated us to consider how each 197

circuit component interacts with the others to determine the 198

encoded information. Our claim is that nonlinear subunits, to- 199

gether with nonlinear output neurons, retain more information 200

than linear subunits together with nonlinear output neurons. 201

This necessarily differs from a claim that the NSC produces 202

more information than what is available in the stimulus, as 203

no processing operation can increase the information content 204

of an input signal (Data Processing Inequality, 17). Neither 205

circuit in Figure 1E,F retains the full amount of information 206

in the 36-dimensional input signal which has a much higher 207

entropy (H = 265.28 bits, see Methods) than the 2-dimensional 208

outputs produced by either circuit. The convergence of the 209

inputs necessarily limits the information in the output (17). 210
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To illustrate, the population of ON linear subunits contains211

the same amount of information as the stimulus; however,212

that information will be reduced as soon as the subunits are213

summed. The rectification that follows the summation will214

further reduce the encoded information. In contrast, at the215

level of the population of nonlinear subunits, the encoded216

information will be reduced early on by the rectifying subunits.217

The same summation and output rectification follows, and218

the net result is that there is less information lost in the final219

output. This advantage is due to nonlinear processing at the220

subunit level.221

Our study concerns the reformatting of stimulus informa-222

tion by nonlinear subunits. We chose nonlinearities that are223

inherently selective for parts of the stimulus inputs (i.e. ON,224

OFF rectification) as a generic model for the selectivities in225

bipolar cells. As discussed above, such selective nonlineari-226

ties discard information at the single neuron level. Rather227

than optimizing circuit weights or input biases to maximize228

information, our goal is to explore the contribution of generic,229

fixed nonlinearities that operate independently on signals in230

each subunit within a parallel circuit. We next investigate231

how convergence interacts with these subunit nonlinearities.232

Lossy nonlinear subunits benefit from convergence. To un-233

derstand the joint impact of nonlinear subunits and conver-234

gent connectivity on encoded information, we examined circuit235

configurations with a single pathway, i.e. without divergence236

(Fig. 2). Pathways with two subunits permit visualization of237

the input and response spaces. Stimuli that sum to the same238

value (example highlighted with dark purple in the top plot239

of Fig. 2A) elicit the same response in the circuit pathway240

with linear subunits because the subunits do not transform241

the inputs (Fig. 2A, left, 3rd and 4th rows). The nonlinear242

subunits transform the stimulus space such that all points243

are compressed into a single quadrant (Fig. 2A right, 2nd244

row). Summing the nonlinear subunits (Fig. 2A, right, 3rd245

row) allows the potentially ambiguous stimuli to have a more246

distributed representation in the output response - meaning247

that they are represented more distinctly by the nonlinear248

subunits pathway than the pathway with linear subunits.249

For a configuration with a single subunit, the LSC and250

NSC would have identical output responses so long as there re-251

mained an output nonlinearity. The 2-subunit circuit (Figure252

2A) showed improved information transmission with nonlinear253

subunits over linear subunits, and this prompted us to ask254

whether there would be a continued improvement with addi-255

tional nonlinear subunits. We computed the entropy of the256

output responses for the linear and nonlinear subunit configu-257

rations that converge to a single output for a range of subunit258

quantities (Fig. 2B,C; also see SI Appendix, Fig. S1A). With259

increasing numbers of subunits, more subunit responses are260

converged into the output response. To observe a relative261

change in entropy as the number of subunits is increased, the262

subunits were normalized; and to observe the dependence of263

this effect on the nonlinearities, the output response entropy264

was normalized by the entropy of the summed linear subunits265

(see Methods).266

The distribution of output responses for the nonlinear sub-267

units pathway qualitatively changes with the number of sub-268

units (Fig. 2B). With few subunits, the output response269

distribution resembles the truncated gaussian seen for the rec-270

tified output response in Figures 1D and 2A. With increasing271

numbers of subunits, the output response distribution approx- 272

imates a gaussian (due to the central limit theorem) with a 273

mean that shifts towards more positive values (Fig. 2B; also 274

see SI Appendix, Fig. S2). 275

The entropy for the nonlinear subunits pathway increases 276

with increasing subunit dimension (Fig. 2C, black line). It 277

saturates near a normalized value of 0.9, before ever reaching 278

the entropy of the converged linear subunits (where normalized 279

entropy is 1); thus, although increasing convergence improves 280

the information retention of nonlinear subunits, the entropy 281

of the converged nonlinear subunits is apparently bounded by 282

the entropy of the converged linear subunits. The nonlinear 283

subunits only encode positive inputs whereas the linear sub- 284

units encode positive and negative inputs. However, when the 285

summation of the linear subunits is followed by a nonlinear 286

rectification at the output, the response entropy is reduced 287

(H = 4.11 bits, Fig. 2C, grey line, normalized H = 0.56) and 288

does not increase beyond that regardless of the number of 289

convergent subunits. 290

The output nonlinearity reduces the entropy of the LSC 291

whereas in the NSC the output nonlinearity does not im- 292

pact the entropy of the summed nonlinear subunits since the 293

responses have already been rectified. The summed linear 294

subunits produce a gaussian distribution, and the summed 295

nonlinear subunits approach a gaussian distribution as greater 296

numbers of subunits are converged. The entropy of either 297

circuit could be maximized by replacing the output nonlin- 298

earity with a sigmoidal nonlinearity that is the cumulative 299

gaussian of the summed subunits distribution bounded by the 300

maximum and minimum values of that distribution (23, see 301

Methods). Doing so benefits the linear subunits motif more 302

than the rectified subunits motif (compare dark and light pink 303

curves, Fig. 2C ; and in SI Appendix, Fig. S1A) because the 304

variance of the full distribution of summed linear subunits is 305

greater than that for the distribution of summed nonlinear 306

subunits. 307

Figure 2 illustrates how the placement of the rectified non- 308

linearity within the circuit impacts the entropy of the response. 309

When the nonlinearity is placed within the subunits, less in- 310

formation is lost than when the nonlinearity is shifted further 311

down in the circuit after the summation of linear subunits. 312

These results continue to hold for the mutual information 313

between the output response and the stimulus when noise is 314

added after the subunit summation (SI Appendix, Fig. S1). 315

We wondered whether this effect of nonlinear convergence was 316

sufficient to explain why the divergent NSC in Figure 1F has 317

higher entropy than the divergent LSC (Fig. 1E). We next 318

explore the impact of divergence on information coding with 319

nonlinear subunits. 320

Divergent circuit structure leverages selectivity of nonlinear 321

subunits. To understand the combined impact of divergence, 322

convergence, and nonlinearities, we present a geometrical ex- 323

ploration of the transformations that take place in the different 324

layers of the circuit with either linear or nonlinear subunits. 325

Our demonstration uses circuits with two input dimensions 326

to facilitate visualization of the stimulus and subunit spaces 327

(Fig. 3). 328

To determine the optimal nonlinear thresholds, we swept 329

through a range of thresholds for ON and OFF subunits in a 330

divergent, convergent circuit with two inputs and computed 331

the response entropy for each combination of threshold values. 332

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gutierrez et al.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2020. ; https://doi.org/10.1101/811539doi: bioRxiv preprint 

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/811539
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Fig. 3. Visualization of stimulus and response mappings at each level of a convergent, divergent circuit with two inputs, two subunits for each pathway (ON and OFF pathways),
and a nonlinear output neuron for each pathway. The points in all subsequent plots are color-coded by the stimulus quadrant from which they originate. (A) The stimulus space
(top) has color-coded quadrants. The 2-input stimulus space maps onto a 2D linear subunit space for each pathway (second row, left: ON; right: OFF). The subunit spaces are
shown before subunit normalization. (B) The response space is shown for the linear sum of subunits before the output nonlinearity is applied and (C) after the nonlinear output
response. (D) The 2-input stimulus space (top) maps onto a 2D nonlinear subunit space for each pathway (second row, left: ON; right: OFF). (E) The output response space
for the NSC. Note that the output response before the output nonlinearity is applied (not shown) is identical to the output response after the output nonlinearity is applied for the
circuit with nonlinear subunits. (F) Normalized entropy of the output response for convergent, divergent circuits with increasing input and subunit dimension (subunit responses
are normalized as before). The circuit entropy is normalized by the entropy of the summed linear subunits. Gray, LSC in C; black, NSC in E; light pink, LSC with optimal
sigmoidal output nonlinearity; dark pink, NSC with optimal sigmoidal output nonlinearity.
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Very low thresholds approximate linear functions while high333

thresholds are extremely rectifying. We found that the optimal334

combination of ON and OFF subunit thresholds meet at zero335

(SI Appendix, Fig. S3). These zero-crossing nonlinearities336

are used for all other figures in the main text. Furthermore,337

when output responses are considered abstractly as static firing338

rates, this position of thresholds produces low mean output339

responses that are comparable to those from the most rectified340

subunits (SI Appendix, Fig. S2 and S4).341

As before, the linear ON subunit space (Fig. 3A, 2nd row,342

left) is identical to the stimulus space (Fig. 3A, top) because343

no transformation or compression has taken place through the344

linear subunits. The OFF subunits receive a negative copy of345

the same stimulus that the ON subunits receive which reflects346

the stimuli about the diagonal (Fig. 3A, 2nd row, right).347

When the linear subunits converge within their respective348

pathways, the ON and OFF responses are compressed onto a349

diagonal line because they are anti-correlated (Fig. 3B). This350

emphasizes the fact that the ON and OFF linear subunits do351

not have stimulus selectivities in the strictest sense. When352

the output nonlinearities are applied, this linear manifold is353

folded into an L-shape (Fig. 3C).354

The entropy for the output response of the LSC with di-355

verging pathways (H = 7.35 bits) is higher than it was with356

just a single pathway (H = 4.11 bits, Fig. 2A). However, it357

is only increased enough to nearly match the entropy of a358

single pathway response without any nonlinearities in either359

the subunits or the output (H = 7.37 bits). In other words, the360

OFF pathway in the LSC with output nonlinearities (Fig. 3C)361

encodes the information discarded by the output nonlinearity362

in the ON pathway, but it does not enable the divergent LSC363

in Figure 3C to do any better than the convergence of only364

ON linear subunits (Fig. 2A). This is because the linear sub-365

units do not select for anything specific and nothing is lost to366

selectivity; instead the loss of entropy (relative to the entropy367

of the stimuli) occurs from convergence. Furthermore, when368

the convergence of the ON linear subunits is followed by a369

nonlinearity, only the positive-summing stimuli are selected. A370

divergent OFF pathway selects the negative-summing stimuli371

that the ON pathway discards. Visually, one can see that372

nothing is lost by folding the linear response space into an373

L. The divergent LSC recovers what is lost by the output374

nonlinearities, but not what is lost by convergence.375

Unlike the linear subunits, the stimulus undergoes a trans-376

formation within the nonlinear subunits layer (Fig. 3D), pro-377

ducing a complimentary compression for the ON and OFF378

pathways. When these subunits converge in their respective379

pathways (Fig. 3E), the output response has some similarities380

to that for the LSC (Fig. 3C). The L-shaped manifold is still381

present, but the points representing the stimulus inputs with382

mixed sign have been projected off it. By virtue of having383

these points leave the manifold and fill out the response space,384

entropy is increased. In fact, as more nonlinear subunits con-385

verge in a divergent circuit, a greater portion of points are386

projected off the manifold along the axes, and as a result387

the entropy continues to increase until saturation (Fig. 3F,388

black curve). These results continue to hold for the mutual389

information between the output response and the stimulus390

when independent noise is added to the subunit summation391

in each pathway (SI Appendix, Fig. S1B).392

The NSC does nothing to save the dually positive (blue393

quadrant) or dually negative (yellow quadrant) stimuli from 394

information loss by convergence. Those are ultimately en- 395

coded in the same way as by the LSC. In fact, the circuit 396

entropy is less sensitive to the subunit thresholds when the 397

stimuli corresponding to different subunits are correlated (i.e. 398

between s1 and s2) than when the stimuli are anti-correlated 399

(SI Appendix, Fig. S5). The advantage conferred by the diver- 400

gent nonlinear subunits is to preserve the variance among the 401

mixed sign stimuli, not only within a single pathway, but also 402

across ON and OFF pathways (this is why adding a bias to 403

the summed linear subunits to evade the output nonlinearity 404

will not match or surpass the entropy of the NSC). As the 405

stimulus dimension is increased, the mixed sign stimuli make 406

up a larger and larger proportion of all stimuli, resulting in 407

the increasing advantage of the NSC and its saturation. 408

To show that the nonlinear subunits themselves confer a 409

unique advantage, we once again replace the output nonlin- 410

earities with optimal sigmoidal nonlinearities that are the 411

cumulative gaussian of the summed subunit distribution. The 412

entropy of the LSC is increased (Fig. 3F, light pink), how- 413

ever, it is not increased beyond the entropy of the NSC with 414

(Fig. 3F, dark pink) or without (Fig. 3F, black) optimal 415

output nonlinearities. This demonstrates that the entropy 416

of the convergent, divergent circuit can be increased beyond 417

an optimization of the output nonlinearities by implementing 418

selective nonlinear subunits. 419

The rectified output nonlinearities have the effect of decorre- 420

lating the ON and OFF output responses in the LSC, while for 421

the NSC, it is the nonlinear subunits themselves that decor- 422

relate the output responses (correlation coefficients: linear 423

response = -1, Fig. 3B; LSC = -0.4670, Fig. 3C; NSC = 424

-0.4669, Fig. 3E). Indeed, although the output nonlinearity 425

decorrelates the ON and OFF outputs of the LSC, this decor- 426

relation does not produce any gains in entropy relative to the 427

LSC before output nonlinearities are applied. Furthermore, 428

the ON and OFF responses of the NSC are as decorrelated as 429

for the LSC, but unlike the LSC, it experiences an entropy gain 430

over the converged linear subunits alone. Complementing the 431

geometrical explanations above, SI Appendix II presents an 432

analytic argument for why the NSC has greater entropy than 433

the LSC using the fact that the summed subunit distributions 434

in both circuits are gaussian in the limit of large N subunits. 435

The additional entropy conferred by divergence for the 436

NSC is due to how the nonlinear subunits decorrelate the 437

ON and OFF pathways, and not merely the fact that those 438

pathways have been decorrelated. It is this subunit processing 439

step that pulls responses off the linear manifold in the output 440

response space leading to an increase in response entropy. The 441

space of the responses in the linear case can be expanded by 442

manipulating the linear subunit weights; however, we find that 443

no rotation of the linear subunit weights can cause the entropy 444

of the LSC to surpass that of the NSC (SI Appendix, Figs. 445

S6 and S7). Furthermore, decorrelating the nonlinear subunit 446

weights confers limited benefit relative to decorrelating the 447

linear subunit weights (SI Appendix, Fig. S8). 448

To determine whether the increase in entropy for the NSC is 449

due to a “synergistic” effect whereby the ON and OFF output 450

responses convey more information together than the sum of 451

the information that each output contains individually (3, 35, 452

36), we computed the synergy (syn(R1, R2) = I(S; R1, R2) − 453

I(S; R1) − I(S; R2)) for the different circuit configurations 454

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gutierrez et al.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2020. ; https://doi.org/10.1101/811539doi: bioRxiv preprint 

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/811539
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

and for a range of subunit quantities (SI Appendix, Fig. S9).455

Positive values of this metric indicate synergy while negative456

values indicate redundancy. None of the circuits have synergy;457

however, the NSC has less redundancy than the LSC.458

Increased response entropy could reflect an increased preci-459

sion in encoding the same stimulus features or the encoding of460

new stimulus features. We next explore how the processing of461

mixed sign stimuli by nonlinear subunits creates sensitivity to462

stimulus features that are not encoded with linear subunits.463

Nonlinear subunits circuit encodes both mean and contrast464

information. To determine whether the boosted entropy of the465

NSC accompanies an encoding of additional stimulus features,466

we visualized the stimulus and response spaces for the linear467

and nonlinear circuit configurations. The stimulus inputs are468

assumed to represent luminance values and the distributions469

are the same as before. We chose two basic features of visual470

stimuli to investigate: mean luminance and contrast. In Fig-471

ure 4A, the stimulus space is color-coded by bands of mean472

luminance levels. In the response spaces for the LSC and NSC473

a banded structure is preserved (Fig. 4A), indicating that474

there is a separation of the mean luminance levels within the475

response spaces for both circuits.476

Contrast is encoded differently the two circuits (Fig. 4B).477

The stimulus space in Figure 4B (left) is color-coded for three478

contrast levels. The highest contrast areas of the space are479

in the mixed sign quadrants. The representations for low,480

medium, and high contrast stimuli overlap each other in the481

output response space of the LSC (Fig. 4B, middle). How-482

ever, there is separation of these contrast levels in the output483

response space of the NSC (Fig. 4B, right). As the number484

of inputs increase, so too does the proportion of mixed sign485

inputs, giving the NSC a continued advantage in encoding486

contrast over the LSC as more subunits are converged. This487

is reinforced by the result that the NSC is more sensitive to488

anti-correlated stimuli than the LSC (SI Appendix, Fig. S5,489

right panel). Thus, the NSC encodes both mean and contrast490

information whereas the LSC only encodes mean luminance.491

Discussion492

In a circuit like the retina, inputs diverge to distinct cell types493

while neurons receive converging inputs from many presynap-494

tic neurons. This combination of divergence and convergence495

reorganizes and compresses visual inputs. To determine the496

impact of these common circuit properties on information497

encoding, we built a circuit model and compared the response498

entropies of linear and nonlinear subunit configurations. Di-499

vergence, convergence, and non-invertible nonlinear signal500

transformations each have a negative impact on efficiency, or501

information, individually. However, when arranged together502

they can mitigate the loss of information that is imposed by503

the reduction in dimension from inputs to outputs.504

The advance made by our study is to demonstrate that505

rectified nonlinearities can increase the response entropy in506

a circuit with convergence and divergence, not merely by507

decorrelating inputs, but by re-coding them. We predict that508

the information encoded by neurons is maximized by circuit509

mechanisms that exploit such nonlinearities before inputs510

converge. This complements known mechanisms, such as511

adaptation and response equalization, that enhance coding512

efficiency by providing a good match between input stimuli513
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Fig. 4. Mean and contrast encoding of convergent, divergent circuits from Figure 3
(2 inputs, ON and OFF outputs). (A) Visualization of the stimulus mean and output
response spaces. For example, the bright mean stimulus band contains the 2-input
image samples that have the highest mean luminance. The red square is an arbitrary
reference point. In the stimulus space, the cyan square has the same mean luminance
as the red square but a different contrast, while the red circle has the same contrast
as the red square but a different mean luminance. (B) Visualization of the stimulus
contrast and output response spaces. The high contrast stimulus bands contain 2-
input image samples that have high contrast, whereas the low contrast band contains
2-input image samples where the input luminance is more correlated.

and responses at the level of the output neuron (23, 30–32, 37). 514

Transforming convergent inputs enhances circuit efficiency. 515

For a single neuron receiving a single input with a known 516

distribution, classical and influential studies prescribe how 517

transmitted information can be maximized by matching the 518

response function to that distribution (23, 30, 31). We con- 519

sider a complementary question here: when there are multiple 520

inputs converging to a neuron, how should those inputs be 521

transformed to maximize the information that a neuron – or 522

that multiple neurons within a divergent output population – 523

can transmit? 524

The weights with which inputs are combined is often a key 525

factor in the information encoded by a circuit and this issue 526

has been studied extensively (19, 33). Here, we highlight an 527

alternative factor: selective “subunit” transformations that 528

are applied to each input separately before they are combined. 529

We chose non-invertible nonlinearities that exhibit generic 530

selectivity (ON or OFF) and that, individually, induce lossy 531

compression of stimuli with no inherent spatial statistical 532

redundancy to exploit. Despite these properties, we found 533

that a circuit with convergent, divergent architecture encoded 534

more information with rectified subunit nonlinearities than 535

with linear subunits. 536

This increase comes from a reformatting of the stimulus 537

distribution in a manner that reduces the ambiguities produced 538

by the convergence of multiple inputs (Fig. 2). In the LSC, 539

it was possible to spread out the circuit responses by tuning 540

the subunit weights (SI Appendix, Fig. S6) such that the 541

ON subunits could be made independent of the OFF subunits. 542

After applying the output nonlinearities, the response space 543

for the LSC resembles that for the NSC. However, the entropy 544

for the LSC still does not surpass that of the NSC (see SI 545

Appendix, Figs. S6 and S7) because it does not reformat the 546

mixed sign inputs as the NSC does (SI Appendix, Fig. S6). 547

This reformatting facilitates the encoding of multiple stimulus 548

features (mean luminance and contrast) in Figure 4. Thus, 549

in the circuits we study here, efficient coding can be achieved 550
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with non-invertible nonlinear components. We note that even551

invertible nonlinearities, when followed by noise, will become552

difficult to invert and may thus behave like a non-invertible553

nonlinearity.554

Redundancy, correlation, and information. We find that the555

efficiency of divergent circuits can be enhanced by nonlin-556

earities that decorrelate the outputs, as others have found557

(32, 38). Indeed, our findings show that diverging ON and558

OFF pathways resulted in efficiency gains for both the linear559

and nonlinear subunits circuits (compare the entropies for560

the single pathway configurations in Figure 2C to those for561

the corresponding divergent circuits in Figure 3F). Nonlinear562

responses in ganglion cells have more of an effect on decor-563

relating their responses than their center-surround receptive564

field properties (39). However, as pointed out in (39), weak565

correlation is not necessarily weak dependence. In the diver-566

gent, convergent circuits in Figure 3, rectifying nonlinearities567

located either in the output neurons or in the subunits decor-568

relate the outputs to a similar extent. However, a circuit with569

subunit nonlinearities produces the greater increase in entropy570

relative to a summation of linear subunits.571

Maximizing information is often seen as equivalent to reduc-572

ing redundancy (25, 28, 35, 40, 41). The responses from the573

NSC in Figure 3 have more information than those from the574

LSC and less redundancy (SI Appendix, Fig. S9). This is true575

despite their having the same degree of correlation, indicating576

that the reduction in redundancy is due to nonlinear reshaping577

of response distributions. The neural code in the retina is578

highly redundant (3, 35), as the degree to which neighboring579

ganglion cells share information has been estimated as roughly580

ten-fold (40). Our results suggest that the level of redundancy581

can be tuned by the subunit nonlinearities.582

The connectivity structure and connection weights also583

have a role in reformatting inputs as they pass through a584

circuit. Compressed Sensing is a coding paradigm that has585

been used to model olfactory circuits in particular (42). In586

the presence of a compressive bottleneck in a neural circuit,587

Compressed Sensing is characterized by optimal connection588

weights that are sparse. Specifically, the highest levels of589

mutual information (or signal entropy) are obtained in these590

circuits when many of the weights potentially connecting in-591

puts to neurons in the bottleneck are set to zero. Studies592

of Compressed Sensing with nonlinear units have related the593

parameters of such optimal sparse connectivity to observations594

and predictions in neural circuits (43, 44). One such study595

found that information was maximized by receptors that are596

uncorrelated and that selectively respond to half of the inputs597

(45). In SI Appendix Figure 8, we corroborate these findings598

and extend them to circuits with subunit nonlinearities. In599

a sparse, compressive circuit configuration, the inclusion of600

rectifying subunit nonlinearities leads to increases in encoded601

information relative to a sparse, compressive circuit with linear602

subunits. Here, we employed uniform weights with a wide603

range of sparsity levels, so as to highlight the contribution of604

the rectifying nonlinear subunits to the efficiency of the circuit605

responses in varied circuit architectures.606

Bell and Sejnowski (19) showed that nonlinearities have607

the effect of reducing redundancy between output neurons608

by separating statistically independent parts of the inputs.609

Following that, it was shown that the efficient encoding of610

natural signals is facilitated by a nonlinear decomposition611

whose implementation is similar to the nonlinear behaviors 612

observed in neural circuits through divisive normalization (46). 613

Our study contributes to this body of work by showing how 614

a circuit with convergent, divergent structure can leverage 615

nonlinear subunits to contribute to a more informative, com- 616

pressed representation by reducing redundancy (SI Appendix 617

Fig. S9) independent of their effect on correlations. 618

Reconciling selectivity with efficiency. Nonlinearities can have 619

different functional consequences for neurons. Nonlinear trans- 620

formations can induce selectivity in that they can cause a 621

neuron to encode a very particular aspect of the stimulus 622

or its inputs (47, 48). Nonlinearities can otherwise optimize 623

efficiency by maximizing the entropy of the response distri- 624

bution (23). The rectified nonlinearity that we used does 625

not maximize the response entropy of the individual neuron 626

that receives gaussian-distributed inputs, but it does enforce a 627

strict selectivity for inputs above threshold. Selectivity would 628

appear to be in conflict with efficient coding in that discarding 629

information is a poor way to maximize it. Our results reveal 630

how selectivity can work in concert with a circuit structure of 631

parallel pathways to produce an efficient encoding of inputs. 632

The selective coding of features is often conflated with 633

redundancy reduction, but it is important to make a distinc- 634

tion in the context of efficient coding - where a redundancy 635

reducing code is reversible and is expected to maximize in- 636

formation about the stimulus (41). Selectivity indicates that 637

some stimulus information will be irreversibly discarded. The 638

existence of selective cell types that compute different aspects 639

of the visual scene appears to confound an efficient coding 640

framework (39). Yet, properties of selectivity are crucial to 641

the functions of a diverse array of cell types, such as object- 642

selective cells in medial temporal lobe (49), face-selective cells 643

in the inferior temporal cortex (50, 51), and direction-selective 644

cells, orientation-selective cells, and edge detector cells in the 645

retina (52). Furthermore, many cell types in the retina and 646

other circuits have both an ON and an OFF variant, indicating 647

that this kind of ON/OFF selectivity is beneficial to sensory 648

information processing (20, 32). 649

Implications for artificial neural networks. Although mean and 650

contrast are elementary features of visual inputs, the striations 651

seen in the response space in Figure 4 (NSC, right plots) 652

reflect the concept that hidden nonlinear neural units can 653

facilitate the categorization of stimulus features (53). In our 654

study simply inserting nonlinear subunits with uniform weights 655

immediately produced a representation that may enable linear 656

classification or decoding of the mean and contrast levels of 657

the input. 658

Feedforward artificial neural networks (ANNs) were inspired 659

by the layered organization of biological neural networks. Neu- 660

ral units have activation functions, or static nonlinearities, that 661

transform inputs. Rectified Linear Units (ReLU) such as those 662

used in our nonlinear neural units, enforce a strict selectiv- 663

ity for inputs above threshold; whereas smooth nonlinearities 664

implement a less rigid selectivity, if at all. In both cases, 665

selectivity is dependent on the bias and weight parameters, 666

which can be adjusted by learning, to offset the nonlinearity 667

such that it truncates the input distribution to various de- 668

grees. The ReLU frequently has the best performance among 669

other nonlinear activation functions (54, 55) in tasks ranging 670

from the discrimination of handwritten digits to restricted 671
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Boltzmann machines (56). The findings presented here of the672

information preserving capabilities of a selectivity-inducing673

nonlinear activation within an architecture that is reminis-674

cent of a feedforward ANN complement our knowledge of the675

ReLU’s favorable performance in machine learning and the676

remarkable classification capabilities of ANNs.677

Future directions. The interaction between noise and the non-678

linearities, convergence, and divergence studied here is poten-679

tially very interesting. Our results did not depend on noise680

explicitly; however, we note that the discretization of the re-681

sponse distributions effectuates a low level of output noise682

because stimuli that fall into the same discrete bin cannot683

be disambiguated. In SI Appendix Figure S1, we explicitly684

introduce weak noise after the subunit summation and confirm685

that our main results continue hold: the NSC maintains an686

advantage over the LSC.687

Overall, the magnitude and source of noise can have a688

large effect on a circuit’s ability to encode stimulus informa-689

tion. As a preliminary check, we confirmed that one of these690

known effects carries over to our convergent/divergent circuit.691

In a theoretical study of divergent ON/OFF neuron motifs,692

Brinkman et al (37) found that for low noise conditions, mutual693

information is optimized by nonlinearities that cross at their694

“lower bend,” similar to the default crossing at zero threshold695

for the rectifying ON and OFF nonlinearities in our study. For696

high noise conditions, the mutual information is optimized by697

nonlinearities that overlap, suggesting redundancy in these698

cases. We confirmed this effect in a convergent/divergent699

circuit with noise after the summed subunits (SI Appendix,700

Fig. S10). Our future studies will build on these preliminary701

explorations to more completely describe the effects of noise702

on optimal coding within these circuits.703

Additionally, our model did not include temporal dynamics.704

We opted for a granular, geometrical analysis of the set of all705

possible responses to a fixed and finite set of stimuli so that706

we could clearly ascertain the counterintuitive finding that a707

convergent, divergent circuit can preserve more information708

with rectified nonlinear subunits than with linear subunits.709

Despite the lack of temporal dynamics, we compared the effects710

of different output nonlinearities which abstractly approximate711

different spike generating mechanisms. Future studies will712

explicitly include time-dependence to investigate how adapting713

subunit nonlinearities impact the efficient encoding of inputs714

with changing stimulus statistics.715

Materials and Methods716

We used Shannon’s information (16) to quantify the information717

retention of our model circuits because it quantifies how many718

distinct neural responses are possible given a particular stimulus719

distribution, and this relates to the specificity of encoding even720

though it does not indicate which specific stimulus features are721

encoded. Since there was no noise anywhere in the circuit, the722

mutual information between the stimulus and the response reduces723

to the entropy of the response. Mutual information is defined as724

(17):725

MI = H[r]− 〈H[r|s]〉 [1]

Where r is the output response and s is the stimulus input. H[r]726

is the response entropy and H[r|s] is the conditional entropy of the727

response given a stimulus, s.728

In our study, there is a deterministic relationship between the729

response and the stimulus due to the lack of noise. The second730

term of the MI goes to zero and one is left with the entropy of 731

the response. We were careful to avoid any effects that could 732

distort the interpretation of the entropy. The ReLU was ideal here 733

because it compresses the input signal without necessarily scaling 734

it. In our model, the compression was entirely derived from the 735

non-invertibility of the nonlinearity rather than a linear gain factor. 736

The convergent structure of the retina reduces the dimension 737

of the high-resolution visual input it receives, placing an upper 738

bound on the amount of information that can possibly be trans- 739

mitted through the optic nerve. In general, the data compression 740

implemented by the circuit architecture may perform lossless or 741

lossy compression or some combination, depending on the statistics 742

of the inputs. In this study, we focus on lossy compression. By 743

using sample "images" of uncorrelated gaussian random inputs (i.e. 744

no redundant structure), we place the inputs into a regime where 745

lossless compression is impossible or assumed to have already taken 746

place. Therefore, the circuit configuration that experiences less 747

information loss has a higher entropy than that which experiences 748

more information loss relative to the information contained in the 749

stimulus. We thus consider higher entropy to be an indication of 750

better performance. 751

Model simulations and visualizations. All simulations, visualizations, 752

and entropy computations were done in Matlab. The dimension of 753

the stimulus always matches the dimension of the subunits within a 754

pathway, and a stimulus consists of N stimulus inputs. For example, 755

if there are 5 subunits in each of the ON and OFF pathways, then 756

the stimulus has 5 stimulus inputs (sometimes referred to as pixels). 757

Each stimulus input was independently drawn from a gaussian 758

distribution with arbitrary units (µ = 0, σ = 10). Each subunit 759

receives input from one stimulus input. For all figures in this paper, 760

linear subunits did not transform stimulus inputs and therefore the 761

ON linear subunit response was equivalent to the stimulus input and 762

the OFF linear subunit response was the negative of the stimulus 763

input. 764

All weights were uniform with unit weights from stimulus inputs 765

to subunits and normalized weights from subunits to outputs. The 766

subunits were normalized so that the variance of the linear sum 767

of subunits is maintained. With N subunits, each subunit weight 768

is 1/
√
N . This normalization facilitated a comparison between 769

circuit configurations with linear and nonlinear subunits and varying 770

numbers of convergent subunits. All circuit configurations are 771

subject to the same uniform weighting and subunit normalization 772

throughout the paper except where noted in the Supplemental 773

Information. 774

Each rectified nonlinear unit has unit slope (slope = ±1) and 775

applies a threshold to the stimulus input - effectively a positive-pass 776

filter for ON subunits and a negative-pass filter for OFF subunits. 777

The output neuron linearly sums the subunit responses in its 778

pathway and then applies the output nonlinearity. The output 779

response to a given stimulus is a single value that represents a steady 780

state response, as our model does not have temporal dynamics. 781

RON nonlinear subunit(s) =
{
s, if s > 0
0, otherwise [2]

ROF F nonlinear subunit(s) =
{
−s, if s < 0
0, otherwise [3]

For the summed subunit response before or without an output 782

nonlinearity in a single pathway, 783

Rsummed =
N∑
i

1
√
N
Rsubunit i [4]

And with an output nonlinearity, the single pathway output 784

response is 785

Routput =
{
Rsummed, if Rsummed > 0
0, othewise [5]

The optimal sigmoidal output nonlinearity was computed as the 786

cumulative gaussian of the summed subunit distribution, bounded 787

by the maximum and minimum summed subunit values: 788
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RCG output(x) = (max(x)−min(x))CDF (x) +min(x) [6]

CDF (x) =
1
2

[1 + erf(
x− µ
σ
√

2
)] [7]

Visualizations in stimulus, subunit, and response spaces. Each789

quadrant was color-coded such that: s1 > 0, s2 > 0: blue; s1 <790

0, s2 > 0: orange; s1 < 0, s2 < 0: yellow; s1 > 0, s2 < 0: purple.791

Output response histograms in Figure 3 are also color-coded in792

this way to show which response bins represent which stimuli. For793

mean luminance and contrast visualization, spaces were color-coded794

to indicate bands of mean stimulus luminances, M , and stimulus795

contrasts, Λ. Each stimulus image, Υ, consists of N stimulus inputs,796

Υ = [s1, s2, ..., sN ]. In Figures 3A-E and 4, N = 2.797

M(Υ) =
s1 + s2 + ...+ sN

N
[8]

Λ(Υ) =

∣∣∣∣∣∣
√

1
2

∑
i

(si − 〈s〉)2

∣∣∣∣∣∣ [9]

Entropy calculations. Entropy computations were done by simulat-798

ing the circuit responses to batches of stimulus samples. Discrete799

entropy was used to quantify continuous stimulus and response dis-800

tributions. Distributions of stimuli and responses were binned and801

probabilities were computed from the binned distributions. These802

binned probability distributions were used to calculate the entropy803

of the responses. Information entropy is defined as804

H = −
∑

P [r]log2P [r] [10]

where P[r] is a discrete probability distribution.805

The entropy quantities presented are the average over 10 batches
of samples. The normalized entropy was computed by dividing the
entropy of the circuit by the entropy of the sum of linear subunits.
Thus,

Hnormalized = Houtput/Hsummed linear subunits [11]

The entropy of the summed linear subunits was the same806

for the single pathway as it was for the divergent pathways807

(Hsummed linear subunits = 7.37 bits) since the OFF linear sub-808

units are perfectly anti-correlated with the ON linear subunits and809

do not provide additional information. The subunit normalization810

facilitated a comparison between the entropies of the circuit con-811

figurations in Figures 2 and 3 and across different quantities of812

converging inputs.813

A Freedman-Diaconis histogram bin approximation was used to814

determine an appropriate bin width for the stimulus and response815

distributions (57). A consistent bin width of 0.25 was used for all816

entropy calculations to facilitate comparison. This bin width was817

used for all dimensions. For example, in a 2-dimensional response818

space, bins would be boxes that are 0.25 x 0.25. These discretization819

parameters were chosen carefully to ensure that the bins were820

sufficiently small to capture the shape of the distributions, but821

not so small that the log(N) bound was reached. The Freedman-822

Diaconis estimation returns a bin width that minimizes the difference823

between the areas under the curves of the discrete and continuous824

distributions.825

To ensure confidence in the entropy calculation, the sample826

batch size was computed as follows. First, binned entropies were827

computed for gaussian distributions with a range of variances and828

a range of batch sizes. Then, the entropy error was computed as829

the absolute difference between these numerical binned entropies830

and their corresponding analytic binned entropies (eqn. 12). Linear831

fits of the entropy error as a function of batch size were computed832

for each value of distribution variance individually. Then another833

linear fit was performed for those first fit parameters as a function of834

distribution variance. This procedure produced a general expression835

for the entropy error given distribution variance and batch size.836

We chose an entropy error tolerance of 0.005 which we used to837

determine an appropriate batch size. The minimum batch size for838

entropy computations in the main text was 106 samples. Smaller 839

batch sizes were permitted for noise entropy computations in the 840

Supplemental Appendix. 841

The 36-dimensional input space used in Figure 1E,F was too 842

large for a numerical computation of the entropy. Its discrete 843

entropy was estimated analytically from its continuous entropy with 844

a bin-correction term as in equation 12 where m = 36, bin width b 845

= 0.25, and K is the covariance matrix of the stimuli. 846

H(s) = h(s)−mlog2(b) =
1
2
log2[(2πe)m|K|]−mlog2(b) [12]

Data Availability. All simulations and analyses were done in Matlab 847

using custom-written scripts. These can be found on the correspond- 848

ing author’s Github page: https://github.com/gabrielle9/nonlinear- 849

convergence-info-entropy-retention. 850

ACKNOWLEDGMENTS. We thank Joel Zylberberg, Stephen 851

Baccus, Max Turner, Adree Songco-Aguas, Iris Jianghong Shi, and 852

Matthew Farrell for their helpful feedback and comments on the 853

manuscript and Leenoy Meshulam for their helpful discussions. 854

Funding sources: GJG is supported by NIH NINDS K22 855

1K22NS104187-01A1 and WRF UWIN postdoc fellowship, ETSB 856

was supported by the Boeing professorship in Applied Mathematics 857

at UW and the UW Center for Sensorimotor Neural Engineering. 858

FR is supported by EY028111. 859

1. JM Jeanne, RI Wilson, Convergence, Divergence, and Reconvergence in a Feedforward 860

Network Improves Neural Speed and Accuracy. Neuron 88, 1014–1026 (2015). 861

2. L Zhaoping, Theoretical understanding of the early visual processes by data compression 862

and data selection. Network: Comput. Neural Syst. 17, 301–334 (2006). 863

3. S Nirenberg, SM Carcieri, AL Jacobs, PE Latham, Retinal ganglion cells act largely as inde- 864

pendent encoders. Nature 411, 698–701 (2001). 865

4. K Koch, et al., How much the eye tells the brain. Curr. Biol. 16, 1428–1434 (2006). 866

5. K Koch, et al., Efficiency of information transmission by retinal ganglion cells. Curr. Biol. 14, 867

1523–1530 (2004). 868

6. JB Demb, JH Singer, Functional Circuitry of the Retina. Annu. review vision science 1, 263– 869

289 (2015). 870

7. C Enroth-Cugell, JG Robson, The contrast sensitivity of retinal ganglion cells of the cat. The 871

J. physiology 187, 517–552 (1966). 872

8. C Enroth-Cugell, AW Freeman, The receptive-field spatial structure of cat retinal Y cells. The 873

J. Physiol. 384, 49–79 (1987). 874

9. S Hochstein, RM Shapley, Linear and Nonlinear Spatial Subunits in Y Cat Retinal Ganglion- 875

Cells. The J. physiology 262, 265–284 (1976). 876

10. HB Barlow, Summation and inhibition in the frog’s retina. The J. Physiol. 119, 69–88 (1953). 877

11. MH Turner, GW Schwartz, F Rieke, Receptive field center-surround interactions mediate 878

context-dependent spatial contrast encoding in the retina. eLife 7, e38841 (2018). 879

12. JB Demb, L Haarsma, MA Freed, P Sterling, Functional circuitry of the retinal ganglion cell’s 880

nonlinear receptive field. J Neurosci 19, 9756–9767 (1999). 881

13. MH Turner, F Rieke, Synaptic Rectification Controls Nonlinear Spatial Integration of Natural 882

Visual Inputs. Neuron 90, 1257–1271 (2016). 883

14. HK Hartline, The effects of spatial summation in the retina on the excitation of the fibers of 884

the optic nerve. Am. J. Physiol. Content 130, 700–711 (1940). 885

15. MA Freed, P Sterling, The ON-alpha ganglion cell of the cat retina and its presynaptic cell 886

types. J. Neurosci. 8, 2303–2320 (1988). 887

16. CE Shannon, W Weaver, The mathematical theory of communication. (Univ. of Illinois Press, 888

Urbana), (1949) OCLC: 246600266. 889

17. TM Cover, JA Thomas, Elements of information theory. (Wiley-Interscience, Hoboken, N.J), 890

2nd ed edition, (2006) OCLC: ocm59879802. 891

18. P Reinagel, Information theory in the brain. Curr. Biol. 10, R542–R544 (2000). 892

19. AJ Bell, TJ Sejnowski, An Information Maximization Approach to Blind Separation and Blind 893

Deconvolution. Neural computation 7, 1129–1159 (1995). 894

20. JJ Atick, Could information theory provide an ecological theory of sensory processing? Net- 895

work: Comput. Neural Syst. 3, 213–251 (1992). 896

21. F Attneave, Some informational aspects of visual perception. Psychol. Rev. 61, 183–193 897

(1954). 898

22. HB Barlow, Possible principles underlying the transformation of sensory messages in Sen- 899

sory communication, ed. WA Rosenblith. (MIT Press), pp. 217–234 (1961). 900

23. S Laughlin, A Simple Coding Procedure Enhances a Neurons Information Capacity. 901

Zeitschrift Fur Naturforschung C-a J. Biosci. 36, 910–912 (1981). 902

24. SE Palmer, O Marre, MJ Berry, W Bialek, Predictive information in a sensory population. Proc. 903

Natl. Acad. Sci. United States Am. 112, 6908–6913 (2015). 904

25. F Rieke, DK Warland, RR de Ruyter van Steveninck, W Bialek, Spikes: exploring the neural 905

code, Computational neuroscience. (MIT Press, Cambridge, Mass), (1997). 906

26. P Sterling, S Laughlin, Principles of neural design. (2015). 907

27. V Balasubramanian, P Sterling, Receptive fields and functional architecture in the retina. The 908

J. Physiol. 587, 2753–2767 (2009). 909

28. JJ Atick, AN Redlich, Towards a Theory of Early Visual Processing. Neural Comput. 2, 308– 910

320 (1990). 911

10 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gutierrez et al.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2020. ; https://doi.org/10.1101/811539doi: bioRxiv preprint 

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/811539
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

29. N Brenner, W Bialek, RD van Steveninck, Adaptive rescaling maximizes information transmis-912

sion. Neuron 26, 695–702 (2000).913

30. AL Fairhall, GD Lewen, W Bialek, R van Steveninck, Efficiency and ambiguity in an adaptive914

neural code. Nature 412, 787–792 (2001).915

31. B Wark, BN Lundstrom, A Fairhall, Sensory adaptation. Curr. Opin. Neurobiol. 17, 423–429916

(2007).917

32. J Gjorgjieva, H Sompolinsky, M Meister, Benefits of pathway splitting in sensory coding. J918

Neurosci 34, 12127–12144 (2014).919

33. TO Sharpee, JA Berkowitz, Linking neural responses to behavior with information-preserving920

population vectors. Curr. Opin. Behav. Sci. 29, 37–44 (2019).921

34. A Fairhall, E Shea-Brown, A Barreiro, Information theoretic approaches to understanding922

circuit function. Curr. Opin. Neurobiol. 22, 653–659 (2012).923

35. E Schneidman, W Bialek, MJ Berry, Synergy, Redundancy, and Independence in Population924

Codes. J. Neurosci. 23, 11539–11553 (2003).925

36. N Brenner, SP Strong, R Koberle, W Bialek, RR de Ruyter van Steveninck, Synergy in a926

Neural Code. Neural Comput. 12, 1531–1552 (2000).927

37. BAW Brinkman, AI Weber, F Rieke, E Shea-Brown, How Do Efficient Coding Strategies De-928

pend on Origins of Noise in Neural Circuits? PLoS comp bio 12, e1005150 (2016).929

38. DB Kastner, SA Baccus, TO Sharpee, Critical and maximally informative encoding between930

neural populations in the retina. Proc. Natl. Acad. Sci. United States Am. 112, 2533–2538931

(2015).932

39. X Pitkow, M Meister, Decorrelation and efficient coding by retinal ganglion cells. Nat. Neurosci.933

15, 628–635 (2012).934

40. JL Puchalla, E Schneidman, RA Harris, MJ Berry, Redundancy in the Population Code of the935

Retina. Neuron 46, 493–504 (2005).936

41. H Barlow, Redundancy reduction revisited. Network: Comput. Neural Syst. 12, 241–253937

(2001).938

42. CF Stevens, What the fly’s nose tells the fly’s brain. PNAS 112, 9460–9465 (2015).939

43. Y Zhang, TO Sharpee, A Robust Feedforward Model of the Olfactory System. PLoS Comput.940

Biol 12, e1004850 (2016).941

44. S Qin, Q Li, C Tang, Y Tu, Optimal compressed sensing strategies for an array of nonlinear942

olfactory receptor neurons with and without spontaneous activity. Proc Natl Acad Sci USA943

116, 20286–20295 (2019).944

45. D Zwicker, A Murugan, MP Brenner, Receptor arrays optimized for natural odor statistics.945

Proc Natl Acad Sci USA 113, 5570–5575 (2016).946

46. O Schwartz, EP Simoncelli, Natural signal statistics and sensory gain control. Nat Neurosci947

4, 819–825 (2001).948

47. T Gollisch, Features and functions of nonlinear spatial integration by retinal ganglion cells. J.949

physiology, Paris 107, 338–348 (2013).950

48. T Gollisch, M Meister, Eye Smarter than Scientists Believed: Neural Computations in Circuits951

of the Retina. Neuron 65, 150–164 (2010).952

49. MJ Ison, et al., Selectivity of pyramidal cells and interneurons in the human medial temporal953

lobe. J Neurophys 106, 1713–1721 (2011).954

50. S Eifuku, WC De Souza, R Tamura, H Nishijo, T Ono, Neuronal Correlates of Face Identifica-955

tion in the Monkey Anterior Temporal Cortical Areas. J. Neurophysiol. 91, 358–371 (2004).956

51. ME Hasselmo, ET Rolls, GC Baylis, The role of expression and identity in the face-selective957

responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32,958

203–218 (1989).959

52. JR Sanes, RH Masland, The types of retinal ganglion cells: current status and implications960

for neuronal classification. Annu. review neuroscience 38, 221–246 (2015).961

53. J DiCarlo, D Zoccolan, N Rust, How Does the Brain Solve Visual Object Recognition? Neuron962

73, 415–434 (2012).963

54. X Glorot, A Bordes, Y Bengio, Deep sparse rectifier neural networks in Journal of Machine964

Learning Research. (Universite de Technologie de Compiègne, Compiegne, France), pp.965

315–323 (2011).966

55. Y LeCun, Y Bengio, G Hinton, Deep learning. Nature 521, 436–444 (2015).967

56. V Nair, GE Hinton, Rectified linear units improve Restricted Boltzmann machines in ICML968

2010 - Proceedings, 27th International Conference on Machine Learning. (University of969

Toronto, Toronto, Canada), pp. 807–814 (2010).970

57. D Freedman, P Diaconis, On the histogram as a density estimator:L 2 theory. Z. Wahrschein-971

lichkeitstheorie verw Gebiete 57, 453–476 (1981).972

Gutierrez et al. PNAS | October 14, 2020 | vol. XXX | no. XX | 11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2020. ; https://doi.org/10.1101/811539doi: bioRxiv preprint 

https://doi.org/10.1101/811539
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

Supplementary Information for2

Nonlinear convergence boosts information coding in circuits with parallel outputs3

Gabrielle J. Gutierrez, Fred Rieke and Eric T. Shea-Brown4

Gabrielle J. Gutierrez.5

E-mail: ellag9@uw.edu6

This PDF file includes:7

Supplementary text8

Figs. S1 to S109

SI References10

Gabrielle J. Gutierrez, Fred Rieke and Eric T. Shea-Brown 1 of 15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2020. ; https://doi.org/10.1101/811539doi: bioRxiv preprint 

https://doi.org/10.1101/811539
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supporting Information Text11

Appendix I: Analytic derivation of variance of summed nonlinear subunits distribution12

The nonlinear subunit responses are described by a rectified gaussian distribution which has variance, σ2
R.13

σ2
R = σ2

t σ
2 where [1]14

σ2
t = µ2

t + 1
2 [erf( d√

2
)− erf( c√

2
)]− 1√

2π
[(d− 2µt)e−

d2
2 − (c− 2µt)e−

c2
2 ] + (c− µt)2

2 [1− erf( c√
2

)] + (d− µt)2

2 [1− erf( d√
2

)][2]15

µt = 1√
2π

[e−
c2
2 − e−

d2
2 ] + c

2 [1− erf( c√
2

)] + d

2 [1− erf( d√
2

)] [3]16

c = a− µ
σ

[4]17

d = b− µ
σ

[5]18

where σ2 and µ are the variance and mean, respectively, of the unrectified distribution which would be the same as the19

variance and mean of the summed linear subunits distribution. The lower and upper bounds of the rectified gaussian distribution20

are given by a and b, respectively, however, in our case the upper bound is infinite.21

With µ = 0, σ = 10, a = 0, b =∞, we obtain, c = 0, d =∞, µt = 1√
2π , σ

2
t = [ 1

2 −
1

2π ] = 0.3408. Thus, σ2
R = 0.3408σ2 = 34.08.22

Appendix II: Analytic arguments for higher entropy in nonlinear subunits circuit23

The circuit with divergent pathways and nonlinear subunits was shown to have greater entropy than the circuit with linear24

subunits in the numerical computations in the main paper. We provide supporting analytic arguments here, in the approximation25

that one takes the limit of a large (infinite) number of normalized subunits. By the central limit theorem, the summed output26

of the nonlinear subunits then approaches a gaussian distribution. The general continuous entropy expression for a gaussian27

distribution is:28

h = 1
2 log2[(2πe)m|K|] [6]

where m is the dimension of the gaussian distribution. With ON and OFF outputs, m = 2. K is the determinant of the29

covariance matrix of the output distribution, with variance σ2 and correlation coefficient ρ between the ON and OFF outputs30

(0 ≤ ρ2 ≤ 1):31

|K| = (σ2)2(1− ρ2) [7]

For the sum of linear subunits, ρlin = −1, and σ2 = 100. For the sum of nonlinear subunits, we denote σ2
nl = σ2

t σ
2 (see32

Appendix I for analytical derivation of the factor σ2
t ). These values hold for all subunit dimensions because the subunits are33

normalized.34

The entropy equation can be expanded to:35

h = log2(2πe) + log2(σ2
√

1− ρ2) [8]

The condition that the entropy of the nonlinear subunits circuit is higher than that of the linear subunits circuit is equivalent36

to this inequality:37

σ2
nl

√
1− ρ2

nl > σ2
√

1− ρ2
lin [9]

Which can be rearranged:38

σ2
t σ

2
√

1− ρ2
nl > σ2

√
1− ρ2

lin [10]
ρ2
nl < 1− (1− ρ2

lin)/σ4
t [11]

This condition is immediately satisfied since ρ2
lin = 1. The final step would be to apply the output nonlinearities, however,39

this would not alter the sum of nonlinear subunits and would only serve to reduce the entropy of the sum of linear subunits.40

Therefore the sum of nonlinear subunits will always have a higher entropy than the sum of linear subunits (for the particular41

circuit configurations and noiseless conditions studied here).42
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To extend this analysis, we determine how much decorrelation of the ON and OFF linear pathways is tolerated before the43

entropy of the summed linear subunits overcomes the entropy of the summed nonlinear subunits. By rearranging equation 1144

and substituting in the values of σ2
t (from Appendix I) and the numerically computed value of ρnl (0.4670, see Results in main45

text), we arrive at the following condition:46

ρ2
lin > 1− σ4

t + σ4
t ρ

2
nl = 0.90 [12]

Therefore, the linear pathways can tolerate about 10% decorrelation before overtaking the entropy of the nonlinear subunits47

circuit. We remind the reader that this is the case when there are no output nonlinearities. As soon as the output nonlinearities48

are taken into account, the linear subunits circuit remains lower than that of the nonlinear subunits circuit regardless of the49

extent of decorrelation induced by the orthogonalization of the weights (see Supplemental Fig. 5 and 6).50
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Fig. S1. Mutual Information for different circuit configurations with noisy outputs. Left: single pathway circuit; Right: ON and OFF pathway circuit. Black: rectifying nonlinear
subunits and rectifying nonlinear output; Grey: linear subunits and rectifying nonlinear output; Dark magenta: rectifying nonlinear subunits and cumulative gaussian output
nonlinearity; Pink: linear subunits and cumulative gaussian output nonlinearity. Stimulus distribution has σs = 10, noise distribution has σm = 1. Noise arrives after the
subunit summation but before the output nonlinearity. The cumulative gaussian output nonlinearities are the same as in Figures 2 and 3 in the main text and were optimized for
the output response distribution alone. As a result, the cumulative gaussian nonlinearity is not optimal for the response distributions that also contain noise.
As with the normalized entropies for the different circuit configurations in Figures 2 and 3 in the main text, the NSC encodes more information as the number of convergent
subunits increases and it encodes more information than the LSC. There is an exception when there is only a single subunit due to the placement of the noise after the subunit
response but before the output nonlinearity is applied.
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Fig. S2. Implementation of sliding subunit thresholds in reference to Figures S2, S3, and S4. Left, threshold implementation for subunits showing how low subunit thresholds
resemble a linear response function whereas high subunit thresholds rectify much of the subunit input range. Right, mean output response of ON output neuron as a function of
subunit threshold (negative thresholds indicate subunits are more linear). There are 2 ON subunits converging to a single output neuron with a rectifying nonlinearity. The
output nonlinearity threshold is fixed at zero. Output response is in arbitrary rate units. As the subunit threshold increases from linear to highly rectifying, the output neuron
activity increases nonlinearly.
Simulations for each subunit threshold value were run using a 2D gaussian distribution of stimuli as the stimulus inputs. The mean output response for the ON output neuron
was computed by taking the mean of the ON output response distribution.
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Fig. S3. Entropy of circuit response for different nonlinear subunit thresholds ranging from -30 to 30 (arbitrary response units). Circuit has 2 inputs, an ON and an OFF pathway,
and fixed output nonlinearities thresholded at zero for each pathway. Negative thresholds approach linear subunits while positive thresholds are extremely rectified. All subunits
within the same pathway have the same threshold but ON subunit thresholds can vary independently from OFF subunit thresholds in these sweeps. The highest circuit response
entropy is produced when ON and OFF nonlinear subunit thresholds are at zero, which is the mean of the input distribution.
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Fig. S4. Mean circuit output response as a function of ON and OFF subunit thresholds. Circuit has 2 inputs, an ON and an OFF pathway, and fixed output nonlinearities
thresholded at zero for each pathway. Mean output response is displayed in arbitrary response units on the colorbar. Mean output response is computed as mean[ON output,
OFF output]. Simulations for each combination of subunit thresholds were run using a 2D gaussian distribution of stimuli as the stimulus inputs. The mean of the ON output
response distribution and the OFF output response distribution was computed before taking the mean among the ON and OFF outputs. Negative thresholds indicate more linear
subunits while positive thresholds indicate more extreme subunit rectification. The extremely rectified subunits produce higher mean output responses; whereas moderately
rectified or fully linear subunits produce relatively low mean output responses.
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Fig. S5. Entropy as a function of subunit thresholds for ON and OFF pathways in a circuit with 2 inputs, an ON and an OFF pathway, and fixed output nonlinearities thresholded
at zero for each pathway. Left, stimuli are highly correlated (cc = 0.995). Right, stimuli are highly anti-correlated (cc = -0.995). Colorbars show discrete entropy values in bits.
For correlated stimuli, the entropy of the circuit is not very sensitive to the linearity of the subunits except when subunits are extremely rectifying. This reinforces the observation
that nonlinear subunits thresholded at zero and linear subunits encode correlated stimuli similarly (see Fig. 3 in main text). In contrast, the circuit entropy is sensitive to
anti-correlated stimuli and the entropy is highest when the ON and OFF subunit thresholds cross at zero.
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Fig. S6. The linear subunits can be reweighted to form an output distribution that resembles that for the NSC. Top left, stimulus space with color-coded quadrants; top right,
output response space for NSC with 2 input dimensions and uniform subunit weights (as shown in schematic; also see Fig. 3E in main text). Bottom, output response space for
LSC with 2 input dimensions and (left) uniform subunit weights, (2nd and 3rd from left) subunit weights rotating away from uniform, (right) orthogonal subunit weights (see Fig.
S7 for depiction of weights rotation). Despite the resemblance between the response spaces in the top right and bottom right, orthogonalizing the linear subunit weights still
produces lower entropy than the NSC with uniform weights. The color coding reveals that for the LSC, as the orange points are liberated from the axes, the purple points are
compressed to the origin, in contrast to the case for the NSC where both the orange and purple points are pushed away from the axes. As schematized, all circuits have 2
inputs, an ON and an OFF pathway, and fixed output nonlinearities thresholded at zero.
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Fig. S7. Entropy for 3 circuit configurations as subunit weights are rotated from uniform to orthogonal. All circuit configurations have 2 inputs, and an ON and an OFF pathway.
Left, since subunits are normalized by 1/

√
2 they are bounded by the unit circle. The uniform subunit weights are at 45 degrees whereas the orthogonal subunit weights are at

0 and 90 degrees. More explicitly, the uniform weights have 1/
√

2 for all subunit weights while the orthogonal weights have [0,1] for the ON subunits and [1,0] for the OFF
subunits (see schematic in bottom right panel of Fig. S6 for a depiction of orthogonal weights in the circuit). Right, discrete entropy as a function of subunit weight orientation.
The weights rotation index begins at the uniform subunit weights and ends at the orthogonal subunit weights. The LSC (purple curve) maintains the lowest entropy among
the circuit configurations, consistent with Supplemental Figure S6. The entropy for the NSC (green curve) drops to meet the LSC when the subunit weights are completely
orthogonal. In reference to the derivation in Appendix II, the entropy of the fully linear circuit (linear subunits and linear output) is shown in blue. As the subunit weights are
rotated, the entropy quickly increases because there is no output nonlinearity to constraint the output space as the ON and OFF pathways become entirely independent.
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Fig. S8. Entropy for circuit configurations with linear and nonlinear subunits. These circuits have an ON and an OFF pathway and rectifying nonlinear outputs. The dashed
curves are the non-normalized versions of the black and grey curves from Figure 3F in the main text and they correspond to the top x-axis which indicates the number of
convergent subunits. These circuits have the same uniform weightings that were used throughout the main text of the paper. The solid curves represent a sparse weighting of
the subunits that decorrelates the ON and OFF pathways. There, the circuits have 15 subunits but the lower x-axis indicates the proportion of those 15 subunit weights that will
be non-zero. At P[non-zero w] = 1, the weights are fully dense (matching the cases with 15 subunits in the main paper and in the dashed curves), but for lower P[non-zero w]
the weights are sparser. The subunits with zero weights are randomly chosen and they are independent between the ON and OFF pathways. Each point is the average of 10
simulations. Error bars represent the standard deviation among the 10 simulations. Input signal has σs = 10, no circuit noise.
This figure compares the entropy of the divergent circuit when the ON and OFF pathways receive correlated inputs (dense weights) to the entropy when the ON and OFF
pathways receive decorrelated inputs (sparse weights). More specifically, it allows one to see how the convergence of some number of subunits is impacted by the correlations,
or lack thereof, between the ON and OFF subunits. Starting at the right side of the plot, as the number of subunits is decreased in the dense weight circuits, the entropy
decreases for the NSC (as it does in Fig. 3F in the main text). Meanwhile, as P[non-zero w] decreases and weights become sparser for the sparse circuits, there is an increase
in both the LSC and the NSC entropy relative to the entropy of the dense circuits. However, the sparse LSC entropy does not increase enough to meet that of the NSC until the
lowest P[non-zero w] is reached - which is where the two circuits are equivalent because the convergence step cannot differentiate them since there is only 1 non-zero subunit.
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Fig. S9. The synergy for 3 circuit configurations as a function of the number of convergent subunits. All circuits have 2 inputs, and diverging ON and OFF pathways.

Synergy(R1,R2) = I(S;R1,R2) - I(S;R1) - I(S;R2)

Where I stands for mutual information, R is the output response, and H is entropy. The output responses are deterministic and thus the synergy reduces to:

Synergy(R1,R2) = H(R1,R2) - H(R1) - H(R2)

Positive synergy values would indicate that there is more information in the ON and OFF outputs jointly than the sum of the information computed in the ON and OFF outputs
separately. Negative synergy values indicate redundancy among the ON and OFF outputs (1–4). The fully linear circuit (blue) has the most redundancy because the ON and
OFF outputs contain the same information and are simply anti-correlated. With linear subunits and a rectified output nonlinearity (orange), the redundancy is greatly reduced - it
would be zero if it were not for the overlap in outputs for the stimuli that sum to zero. The NSC (yellow) has increasing redundancy as the number of subunits increases. As
more responses are freed from the output response manifold, the independence between the ON and OFF outputs saturates.
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Fig. S10. Optimal threshold is more linear with higher noise. In a circuit with 2 nonlinear outputs and 2 subunit inputs each, the optimal subunit threshold depends on the
amount of noise after the subunit summation. As in SI Fig. S1, output noise is applied after the subunit summation but before the output nonlinearity is applied. With no noise,
the optimal subunit threshold is zero, as corroborated by SI Fig. S3. As noise is increased, the optimal subunit threshold shifts lower towards more linear subunits. A lower
subunit threshold allows the ON and OFF pathways to encode some overlapping information which may help the circuit to retain more information when noise has a corrupting
effect on the input signals by introducing redundancy.
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