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Abstract 8 

Neurons and synapses in the cerebral cortex behave stochastically. The advantages of 9 

such stochastic properties have been proposed in several works, but the relationship and 10 

synergy between the stochasticities of neurons and synapses remain largely unexplored. 11 

Here, we show that these stochastic features can be inseparably integrated into a simple 12 

framework that provides a practical and biologically plausible learning algorithm that 13 

consistently accounts for various experimental results, including the most efficient 14 

power-law coding of the cortex. The derived algorithm overcomes many of the 15 

limitations of conventional learning algorithms of neural networks. As an experimentally 16 

testable prediction, we derived the slow retrograde modulation of the excitability of 17 

neurons from this algorithm. Because of the simplicity and flexibility of this algorithm, 18 

we anticipate that it will be useful in the development of neuromorphic devices and 19 

scalable AI chips, and that it will help bridge the gap between neuroscience and machine 20 

learning. 21 

 22 

Introduction 23 

Neurons in the cortex continuously generate irregular spike trains with fluctuating 24 

membrane potentials and greatly varying firing rates, even across trials in which an 25 

animal exhibits appropriate responses and learning in a precisely repeatable manner [1-7]. 26 

It has also been found that synapses in the cerebral cortex behave stochastically [8]. The 27 

formation, elimination and volume change of dendritic spines exhibit random 28 

fluctuations [9-15]. The release of neurotransmitter from synapses is also an inherently 29 

stochastic process [16-18].  30 

 31 

Theoretically, it has been pointed out that algorithms incorporating these stochastic 32 

features can carry out nearly optimal computation in a noisy environment through 33 
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Bayesian inference [19-28]. To this time, however, the stochastic behaviors of neurons 34 

and synapses have been studied separately. It remains unclear if the apparent advantage 35 

gained from stochasticity depends on both neurons and synapses behaving stochastically, 36 

and if so, whether there is a synergetic interaction between these two types of stochastic 37 

behavior. It is also uncertain how learning generated by stochastically functioning 38 

neurons and synapses can yield appropriate and precisely repeatable behavioral 39 

responses. 40 

 41 

In this paper, we show that the stochastic behaviors of neurons and synapses can be 42 

inseparably integrated into a simple framework of a sampling-based Bayesian inference 43 

model, in which their synergy provides an effective and flexible learning algorithm that is 44 

consistent with various experimental findings of the cortex. The derived algorithm 45 

accurately describes the plasticity of cortical synapses [29, 30], while it faithfully 46 

generates the extremely different timescales of neural and synaptic dynamics, the 47 

higher-order statistics of the topology of local cortical circuits [31], and the response 48 

properties of cortical neurons, including Gabor-filter-like receptive fields [32, 33], a 49 

positive relationship between the receptive field correlation and average connection 50 

weight between neurons [34], and the nearly optimal power-law scaling of population 51 

activity of neuron [7]. These results strongly suggest that the stochastic behaviors of 52 

neurons and synapses are both essential attributes of neural computation and learning. As 53 

an experimentally testable prediction of the proposed model, we derive the slow 54 

retrograde modulation of the excitability of neurons by postsynaptic neurons. As far as 55 

the author is aware, this is the first prediction of its kind and experiments to verify the 56 

existence of such slow retrograde modulation have not yet been attempted. 57 

 58 

The proposed algorithm can be regarded as a natural integration of the conventional 59 

learning theories, error backpropagation learning [35, 36], Bayesian inference [21], 60 

Boltzmann machine learning [37], and reinforcement learning [38]. This algorithm can 61 

be regarded as an extension of a Boltzmann machine, and it acts as a stochastic variant of 62 

error backpropagation. However, the proposed algorithm overcomes most of the 63 

limitations that caused backpropagation not to be regarded as the learning principle of the 64 

brain. Unlike backpropagation learning, the proposed algorithm does not require neither 65 

objective functions, the fine-tuning of parameters, coordinated or synchronous updates of 66 
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variables, a feed-forward network structure, or the alternating execution of forward and 67 

backward computations [35]. Instead, learning is realized through repetition of local and 68 

asynchronous stochastic updates of states of neurons and synapses in a network. Because 69 

the algorithm is not derived as an optimization of objective functions, it rarely exhibits 70 

serious overfitting. We also discuss the close relationship between our algorithm and the 71 

temporal difference (TD) learning [38] of reinforcement learning. 72 

 73 

Results 74 

Neural networks 75 

Most connections between cortical neurons are redundantly realized by multiple synapses 76 

[27, 39]. Introducing this redundancy and stochasticity of the neurons and synapses, we 77 

model a neural network whose connections are all realized by multiple synapses. Within 78 

this model, each neuron and synapse is represented by a binary stochastic variable (Fig. 79 

1a, Methods). The value of a neural variable determines whether that neuron generates a 80 

spike, whereas the value of a synaptic variable determines whether that synapse contacts 81 

a dendrite of the postsynaptic neuron. A neuron in the network receives inputs from 82 

presynaptic neurons and generates a spike with a probability that is a function of the sum 83 

of these inputs (see Methods). External inputs, including the target outputs of supervised 84 

learning, are presented to the network as variables for some neurons, namely visible 85 

neurons, are fixed to values of these input variables. These input data, thus, should be 86 

represented by binary vectors. Other neurons in the network, which do not receive 87 

external data directly, are referred to as “hidden neurons”. 88 

 89 

Biologically plausible learning 90 

With the fundamentals of the network as described above, we formulate learning in the 91 

network as a continuing sampling of all the free variables, which include variables 92 

representing all synapses and hidden neurons, in the network from a posterior distribution 93 

conditioned on the external environment or a given dataset (see Methods). In other words, 94 

we hypothesize that the stochastic dynamics of the neurons and synapses in the cortex 95 

constitute a continuing random process that aimed at generating a network that suitably 96 

interprets the external world. 97 

 98 

A sampling from the posterior distribution is computationally and biologically intractable 99 
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in general, due to the high dimensionality of the system and the complex dependencies 100 

among its variables. To solve this problem, we hypothesize that the sampling in the cortex 101 

is a Gibbs sampling [40]. The Gibbs sampling ensures that we can replace a sampling 102 

from the high dimensional posterior distribution with iterative samplings of each variable 103 

from a posterior distribution of that variable conditioned on all other variables. 104 

Furthermore, due to the flexibility of the Gibbs sampling, each sampling can be 105 

performed in any order and with any frequency. This implies that each neuron and 106 

synapse can asynchronously and irregularly update their variables with their own 107 

individually determined timings without any global schedule or coordination among 108 

them. 109 

 110 

Applying Bayes’ theorem to the posterior distributions, we obtain stochastic dynamics, 111 

i.e. stochastic update rules, for the neurons and the synapses (see Methods) as 112 

����� � 1|�� � 	�
�� � ���� �1� 
���  �1� ������ � ������ ���� � 	�
����

�

�2� 
for a neuron and 113 

������ � 1��� � 	��������� �3� 
���  �1 � ������ � ������ ���� � 	�
����

�

�4� 
for a synapse, where the dots represent all variables other than the target variable, ��� is 114 

the state of the �th neuron when the �th datum is given to the network, 
�� � ∑ ������  is 115 

the membrane potential of the neuron, ����  is the state of the  th synapse of the 116 

connection form �th neuron to the !th neuron, �� and �� are constants which 117 

characterize timescales of evolution of ���  and ��� , respectively. 	��� is the sigmoidal 118 

function. Following these equations, the state of each neuron and each synapse is 119 

repeatedly updated. This simple repetition of irregular and asynchronous stochastic 120 

updates is the learning algorithm of the neural network. 121 

 122 

Unlike backpropagation learning, in which the alternating execution of forward and 123 

backward computations is required, our algorithm realizes learning through the simple 124 

iteration of a single computation for each variable. Furthermore, the equations are local in 125 

the sense that they depend only on neurons and synapses directly connected to the 126 
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updated variable, i.e. the Markov blanket of the variable. In addition, the variables do not 127 

require any global signals, such as the error of the current output of the network. This 128 

asynchronicity and local nature of the dynamics of the learning must be particularly 129 

suited to biological implementation of the algorithm. 130 

 131 

Note the difference between the summation indices in Eqs. (2) and (4). Synaptic update 132 

requires summation over the all data of a given dataset, while neural update does not. This 133 

difference is a result of the difference between the data dependencies of the variables 134 

(Figure 1b and 1c, see Methods for full details). Because of this difference, synapses need 135 

to accumulate the neural activities for many, ideally all, data in the dataset before update 136 

their states, while neurons reset their states independently in a manner that depends on 137 

each datum individually. This implies that if data are provided sequentially to the network, 138 

as in the brain, synapses must evolve much more slowly than neurons (Figure 1d). This 139 

explains greatly different timescales of neurons and synapses in the brain. In the 140 

following numerical simulations, however, we perform neural updates for all data of the 141 

dataset in parallel to accelerates the computational speed. 142 

 143 

Synaptic plasticity 144 

The derived update rule for synapses given in Eqs. (3) and (4) yields plasticity similar to 145 

that exhibited by cortical synapses [29]. Each term in the summation in Eq. (3) vanishes 146 

unless the presynaptic neuron ��� fires, and if the neuron does fire, whether it will be 147 

positive (LTP) or negative (LTD) depends on whether or not the postsynaptic neuron ��� 148 

fires simultaneously. For this reason, each synaptic weight increases if the network 149 

receives many data in which the pre-synaptic and post-synaptic neurons of the connection 150 

fire synchronously, while it decreases if the pre-synaptic and post-synaptic neurons fire 151 

asynchronously (Fig. 1e). 152 

 153 

Interestingly, the update rule depends on membrane potential, 
�� , in addition to the 154 

spikes, ��� , of the postsynaptic neuron. This is consistent with a recently proposed model 155 

of STDP that accounts for various properties of synaptic plasticity by introducing the 156 

average membrane potential of postsynaptic neurons into the model [30]. It is also 157 

noteworthy that, unlike most existing models of synaptic plasticity, the plasticity derived 158 

here does not require any artificial bound on synaptic weights. The incremental variation 159 
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of each synaptic weight automatically decays to zero when the magnitude of the weight 160 

becomes very large (Fig. 1e), because ��� � 	�
��� decays to zero in such cases. 161 

 162 

Retrograde modulation of excitability 163 

The term, ��� , of the neural dynamics given in Eq. (2) represents the retrograde 164 

modulation of the firing probability of a neuron by its postsynaptic neurons. This term 165 

provides a stochastic variant of the error propagation in backpropagation learning. Recall 166 

that a target output is given to the network by fixing the states of the corresponding visible 167 

neurons to the desired output. Assume that the !th neuron is one of these neurons. Then 168 

��� gives the desired value, and the term ��� � 	�
��� in the bias ���  of the �th neuron 169 

gives the difference between the desired value and the expected value of ��� when the 170 

!th neuron is not fixed, which is identical to the error in backpropagation learning when 171 

the squared error is used as the loss function. Owing to the retrograde modulation, 172 

information regarding the desired output provided only to output neurons can spread, i.e. 173 

diffuse, over the entire network, even though the variables of the neurons are updated 174 

independently, without coordinated scheduling of error backpropagation. 175 

 176 

As we will show later, unlike backpropagation learning, the retrograde modulation need 177 

not be immediately affected by spikes of the postsynaptic neurons but, rather, can slowly 178 

integrate the effects of the spikes. This means that the retrograde bias is determined by the 179 

average spike history of the postsynaptic neurons over a finite, presumably quite long, 180 

duration. Such slow modulation of the excitability of the neurons could be due to slow 181 

changes in the axon initial segment or a long-term modulation of the spike threshold. This 182 

seems biologically plausible, as it can be implemented in real cortical circuits. To our 183 

knowledge, experiments to verify the existence of such slow retrograde modulation of the 184 

excitability of neurons have not yet been attempted. 185 

 186 

Feedforward networks 187 

To understand how the algorithm works, we study its application to a simple problem of 188 

supervised learning for a three-layered network (see Methods for full details). Figure 2a 189 

displays the evolution of the training and test accuracies as functions of the number of the 190 

sampling iteration. It is seen that these accuracies nearly coincide, and they quickly 191 

increase to values close to unity and remain there. Significantly, even while these 192 
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accuracies remain nearly constant, the synaptic weights of the network continue to 193 

fluctuate greatly (Fig. 2b), and the firing patterns of the hidden neurons also continue to 194 

change, even when the same datum is given to the network, without converging to a fixed 195 

pattern (Fig. 2c). These results are consistent with experimental observations of 196 

continuing fluctuations of synapses and the trial-to-trial variability of cortical neural 197 

activity. 198 

 199 

In order to study the robustness of the algorithm with respect to constants of the algorithm, 200 

we calculated the realized test accuracies of the network after learning for various 201 

combinations of values of the number of synapses per connection, ", and the maximum 202 

amplitude of synapses, ��, (Fig. 2d, see Methos). Except in a narrow range in which one 203 

of these constants is so small that the possible maximum weight given by ��" is small, 204 

the network almost perfectly learns to perform the task. 205 

 206 

Next, we consider the influence of the parameters �� and �� (Figure 2e, 2f). Unless �� is 207 

extremely small, and hence � evolves extremely slowly, the training and test accuracies 208 

will increase and reach values near unity, while their convergence speed decreases as �� 209 

or ��  decreases. (Note that the synaptic evolution is slower than the neuronal evolution 210 

even when �� � 1, as discussed above. Therefore, a small value of ��  may result in 211 

unrealistically slow synaptic dynamics.) We can thus conclude that the learning is not 212 

practically hindered by the use of slow timescales of �. 213 

 214 

We next study the application of the algorithm to training multilayered feedforward 215 

networks using the MNIST dataset to demonstrate the applicability of the method to 216 

practical problems (Fig. 3). We found that the accuracies quickly increase to values near 217 

95%, while the number of required iterations and the asymptotically realized accuracies 218 

decrease slightly as we increase the number of layers in the network (Fig. 3a-c). Figure 3d 219 

displays examples of numerals that the network fails to recognize. These are quite 220 

ambiguous and difficult even for a human to identify with confidence. 221 

 222 

Figure 3e illustrates examples of connection weights from the input to the hidden neurons 223 

in a three-layered network after training. These correspond to the receptive fields of the 224 

hidden neurons. We can see that Gabor-filter-like localized structures that resemble 225 
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receptive fields of neurons in the primary visual cortex [32] are often organized through 226 

the learning. The introduction of a sparse constraint on neural activity into the loss 227 

function of learning is known to provide Gabor-filter like receptive fields for an artificial 228 

neural network [33]. It is interesting that the network can acquire similar localized 229 

structures of receptive fields even without any explicit additional constraint on the 230 

learning algorithm. 231 

 232 

The learning algorithm can avoid serious overfitting to the training data because it is not 233 

derived as a direct optimization of any objective functions. To see this point, we trained a 234 

three-layered feedforward network using small numbers of samples of the MNIST dataset, 235 

and compared the resulting training and test accuracies with those obtained from 236 

backpropagation learning using the stochastic gradient descent (SGD) and ADAM 237 

algorithms [41] (Fig. 3f). We found that for both the SGD and ADAM algorithms, as the 238 

size of the training dataset is increased, the training accuracy decreases (in the SGD case) 239 

or remain nearly constant (in the ADAM case), while the test accuracy increases 240 

monotonically, which implies overfitting to the training dataset. Contrastingly, with the 241 

proposed algorithm, as the size of the training dataset is increased, both the training 242 

accuracy and the test accuracy increase, maintaining a slight difference between them. 243 

This implies that the serious overfitting does not occur in the proposed learning 244 

algorithm. 245 

 246 

Most efficient power-law coding 247 

A recent experiment carried out by simultaneously recording the activity of a very large 248 

number of neurons revealed that the variance spectrum of the principal component of 249 

neural activities obeys a power law with an exponent -1.04 that is slightly less than -1 [7]. 250 

The authors of the paper [7] proved that if the exponent is greater than -1, the population 251 

code by the neurons could not be smooth, while if the exponent is less than -1, high 252 

dimensionality of the population code is not fully realized. Thus, the experimentally 253 

observed power-law coding with an exponent slightly less than -1 is the most efficient in 254 

the sense that in this case, the population response of the neurons lies on a manifold of the 255 

highest possible dimension while maintaining high generalizability. 256 

 257 

To test whether a network trained by the proposed algorithm realizes the most efficient 258 
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coding, we numerically calculated the variance spectrum of the principle components of 259 

the mean activity of the neurons in the hidden layer of a network trained with the MNIST 260 

dataset. As shown in Fig. 4a, the variance spectrum exhibits clear power-law decay with 261 

an exponent of -1.06. This is very close to the experimental result, and is indeed slightly 262 

less than -1. We conclude that the learning algorithm leads the network to the most 263 

efficient coding. 264 

 265 

We next study how the exponent of the power law develops during learning. Figure 4b 266 

shows that the exponent approaches a value close to -1 from below as the learning 267 

proceeds. This result implies that the network first learns a coarse representation of the 268 

dataset and then gradually acquires finer structures while maintaining generalizability of 269 

the representation of the data in coding space. This leads us to conclude that the 270 

robustness or generalizability of the population coding takes priority over the precision of 271 

the data representation in the learning. This priority must particularly be beneficial for 272 

animals that must survive in a ceaselessly changing environment. 273 

 274 

Recurrent networks 275 

We next applied the algorithm to train a network with recurrent connections (Fig. 5a) 276 

using the MNIST dataset. Figure 5b displays the evolution of the training and test 277 

accuracies as functions of the number of sampling iterations. The accuracies were 278 

obtained from the states of the output neurons of the network measured after recursive 279 

evolutions of the states of the hidden neurons. We see that, as in the case of the results for 280 

the feedforward networks, the accuracies nearly coincide and rapidly increase. This 281 

implies that the algorithm is even able to train a recurrent network and rarely overfits. 282 

 283 

Statistics of network motifs 284 

It has been reported that local cortical circuits are highly nonrandom, and that 285 

connectivity patterns consisting of multiple neurons, known as network motifs, exhibit a 286 

characteristic distribution in which highly clustered patterns are overrepresented [31]. To 287 

study whether a recurrent network trained by the proposed algorithm acquires a similar 288 

distribution of connectivity patterns, we determined connectivity of triplets of neurons in 289 

a trained recurrent network. The statistics for the ratio of the actual counts of triplet 290 

patterns to the chance level are plotted in Figure 5c. The same ratios for the experimental 291 
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results are also overlaid in the figure. While there are some exceptional cases in which the 292 

ratios obtained here are somewhat larger than those obtained experimentally, the two 293 

distributions of triplet patterns are surprisingly similar. As observed experimentally, 294 

highly-connected motifs, i.e., those numbered 10 through 16 in Fig. 5c, are 295 

overrepresented by a factor several times greater than chance level. These results support 296 

the validity of the derived algorithm as a model describing the formation of local cortical 297 

circuits. 298 

 299 

Connection weights and receptive field correlation 300 

A recent experiment of the primary visual cortex revealed that the connection weights 301 

between pairs of pyramidal neurons become stronger as the receptive fields become more 302 

similar [34]. To test whether the trained recurrent network accounts for this relationship, 303 

we measured the connection weights between pairs of neurons and the receptive field 304 

correlations between these neurons (fig. 6a). We found that the average connection 305 

weight between neurons is positively correlated with the correlation between the 306 

receptive fields of these neurons (Fig. 6b). Particularly, by restricting our analysis to only 307 

connection weights with positive values (i.e., ��� # 0), we were able to reproduce a 308 

nonlinear relationship between the average connection weight and the receptive field 309 

correlation (Fig. 6c), which was similar with the experimental result [34]. 310 

 311 

Temporal sequence learning 312 

We next consider the application of the algorithm to train recurrent networks with 313 

temporal sequences (Fig. 7). We prepared periodic temporal sequences in which the same 314 

temporal inputs may appear multiple times at different times, and trained networks to 315 

predict the next input of the current sequence. In this case, networks need to learn to store 316 

the history of inputs over some interval to generate the desired output. The training 317 

procedure was the same as that used in the case considered in Figs. 2-5, except that we 318 

identified the iteration of the updates of the variables of the network as the time 319 

development. In contrast to the algorithm known as “backpropagation through time”, this 320 

procedure does not require virtually unfolding the recurrent connections of the network 321 

along the time axis. 322 

 323 

We prepared two sequences that require one-step and two-step memories, respectively. 324 
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For both tasks, the networks were successfully trained to output the desired sequences by 325 

the learning algorithm. We find that after learning, the output produced by the network in 326 

any given case depends not only on the current input but also on past inputs. This 327 

indicates that, through the learning, the algorithm causes the network to store input 328 

histories into the activity of the hidden neurons. 329 

 330 

Discussion 331 

In this study, we showed that Gibbs sampling from a joint posterior distribution of 332 

neurons and synapses in a network conditioned on an external environment or given 333 

dataset explains the stochastic natures of synaptic development and neural activities of 334 

cortical circuits. This provides a practical and biologically plausible learning algorithm 335 

that yields results consistent with various experimental findings for cortical circuits. The 336 

derived stochastic dynamics of synapses are consistent with the plasticity of cortical 337 

synapses, and those of neurons naturally describe highly irregular features and the 338 

trial-to-trial variability of spike trains of cortical neurons. 339 

 340 

The evolution equation for neurons has a term that results in the retrograde modulation of 341 

the excitability of a neuron by its postsynaptic neurons. Due to this term, the algorithm 342 

acts as a stochastic variant of algorithms with error backpropagation through which target 343 

outputs provided to a part of network can spread over the entire network. However, in 344 

contrast to the case of backpropagation learning, the retrograde modulation seen in our 345 

model requires neither synchronous nor precisely coordinated operations, which are 346 

major reason that backpropagation has not been regarded as the learning principle of the 347 

brain. Retrograde modulation need not be immediately affected by postsynaptic action 348 

potentials but, rather, can slowly integrate postsynaptic spikes. The mechanisms regarded 349 

as likely to be responsible for this behavior include the combination of action potential 350 

backpropagation from soma to dendritic spines [42] and retrograde transsynaptic 351 

transport of certain chemicals [43], glia-mediated modulation [44], and disynaptic 352 

connections from postsynaptic to presynaptic neurons. Experimental confirmation of this 353 

modulation would be convincing evidence to support the validity of the proposed 354 

framework as a learning and computational principle of the brain. 355 

 356 

The reason why both neurons and synapses must be stochastic in the cortex can be 357 
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understood as follows. Suppose that the primary purpose of the cortex is to generate 358 

synaptic weights that are consistent with the external environment. Mathematically, this 359 

can be formulated by generating samples of synaptic weights from a Bayesian posterior 360 

distribution conditioned on the external environment, which is derived from the 361 

likelihood function of the synaptic states determined by the dataset. However, when the 362 

network has hidden neurons, the likelihood is given by a marginal distribution of the joint 363 

conditional distribution of hidden neurons and synapses in which neural and synaptic 364 

variables are strongly coupled. Thus, sampling of synaptic states inevitably also requires 365 

sampling of neural states. In this way, the stochastic behaviors of neurons and synapses 366 

are integrated in the cortical dynamics. 367 

 368 

It has been pointed out that the temporal difference (TD) method of reinforcement 369 

learning provides a model of spike-timing-dependent Hebbian plasticity [38]. In TD 370 

learning, the value function of the current state is updated after the delivery of a reward 371 

such that the value function includes the TD error defined as the difference between the 372 

value of the delivered reward and its predicted value. Interestingly, each term in the 373 

evolution equations of the latent variables of the synapses and neurons, i.e. ���  and ���, 374 

can be regarded as a representation of the TD error of the delivered spikes instead of the 375 

rewards. Indeed, each term in Equations (2) and (4) takes the form of a scaled difference 376 

between the measured spike of a postsynaptic neuron, ��� , and its expected value, 377 

	�
���, before observation of the spike. In this analogy, therefore, each spike plays the 378 

role of a reward for the presynaptic neurons and synapses from these neurons. At the 379 

same time, each spike is also transmitted to postsynaptic neurons, thereby changing their 380 

firing probabilities in a manner that depends on the corresponding synaptic weights. Thus, 381 

each spike in the cortex plays two roles, rewarding backward units and selecting next 382 

states by triggering the next spikes. It will be a fascinating topic of future research to 383 

theoretically elucidate the relationship between our algorithm and TD learning. 384 

 385 

The algorithm developed here is closely related to the Boltzmann machine [37], which is 386 

a stochastic recurrent neural network in which neurons are represented by stochastic 387 

binary variables and iteratively updated to realize a thermal equilibrium state of a 388 

globally defined energy function specified by a given temperature. In that algorithm, 389 

symmetric connection weights between neurons are trained with a gradient descent 390 
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method to make the equilibrium state approximate a target distribution in which the 391 

neural states of given a dataset have high probability. The algorithm developed in the 392 

work can be regarded as an extension of the Boltzmann machine in which the Bayesian 393 

posterior distribution is directly considered, instead of a thermal equilibrium of an energy 394 

function, and in which synapses in addition to neurons are modeled as stochastic 395 

variables to be sampled. This extension results in biologically realistic update rules of 396 

variables that are implemented concurrently for neurons and synapses with no need for 397 

explicit switching of different computations or fine scheduling of parameters, such as 398 

simulated annealing. 399 

 400 

In the limit of a large number of training data, the posterior distribution of Bayesian 401 

inference converges to a delta function whose peak position coincides with the result of 402 

the maximum likelihood estimation (see Methods). Therefore, if a sufficiently large 403 

amount of external data is provided to the network, our learning algorithm almost surely 404 

generates synaptic and neural variables that most suitably reflect the external data. This 405 

situation contrasts with that for backpropagation learning, in which convergence to an 406 

optimal solution is not always guaranteed, even when a large amount of data is used. 407 

 408 

Because it seems to operate in accordance with a basic principle of neural computation 409 

and learning, we believe that our model provides a theoretical foundation for various 410 

experimental findings regarding cortical dynamics and various methods of machine 411 

learning. Most of the recent experimental findings regarding neuroscience have not yet 412 

been fully utilized in the development of machine learning. This may be because 413 

backpropagation learning is not consistent with the functioning of the brain. These 414 

experimental results include results regarding short-term plasticity of synapses [45], 415 

Dale’s principle, the long-tail distribution of synaptic weights [31], columnar structure, 416 

laminar organization, canonical circuits [46, 47], and innate structure formed through 417 

developmental stages [48]. Incorporating these features into our model with the goal of 418 

clarifying their functional roles is an important future project. Introducing precise 419 

continuous dynamics of membrane potentials and spike generation mechanisms into the 420 

model are also important topic to be investigated. 421 

 422 
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 544 

Figure captions 545 

Figure 1 546 

Learning as a Gibbs sampling of synapses and neurons. (a) A neural network is modeled 547 

as a population of neurons connected to each other via multiple synapses. (b) A simple 548 

neural network consists of three neurons and four synapses per connection. The input, 549 

hidden, and output neurons are denoted by ��, �� and �	, respectively. (c) A graphical 550 

model representation of the network shown in (b) in the case that a dataset consisting of D 551 

data is presented to the network. Note that the synaptic variables are shared by all data in 552 

the dataset while neural variables are not. The white and gray circles represent free and 553 

fixed variables, respectively. (d) Schematic of stochastic evolution of neural and synaptic 554 

variables. Synapses must evolve much more slowly than neurons to allow the network to 555 
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incorporate many, ideally all, data in the dataset. Note that values of the visible neurons, 556 

��, ��, and �
 in the figure, are fixed to each datum in the given dataset. (e) Evolution of 557 

a synaptic weight (right panel) when presynaptic and postsynaptic neurons fire (left 558 

panel) synchronously (cyan) and asynchronously (magenta). 559 

 560 

Figure 2 561 

Supervised learning of feed-forward networks using a simple artificial dataset. (a) 562 

Training (cyan) and test (magenta) accuracies of a three-layered network as functions of 563 

the number of sampling iterations (details given in Methods). (b) Evolution of randomly 564 

chosen synaptic weights of the network. Different colors are used for different 565 

presynaptic neurons. (c) Evolution of the states of randomly chosen hidden neurons when 566 

the same datum in the dataset is presented to the network. (d) Test accuracies realized by 567 

the learning algorithm with various values of the number of synapses per connection, ", 568 

and maximum amplitude of a synapse, �� . (e) Evolution of accuracies for �� �569 

1.0, 0.1, 0.01, 0.001 , from top to bottom. (f) The same as (i) but for 570 

�� � 1.0, 0.1, 0.01, 0.001, from top to bottom. 571 

 572 

Figure 3 573 

Supervised learning of feed-forward networks using the MNIST dataset. (a-c) Training 574 

accuracies (cyan) and test accuracies (magenta) as functions of the number of sampling 575 

iterations for (a) three-, (b) four-, and (c) five-layered networks. Each number in a circle 576 

indicates the number of neurons in the corresponding layer. (d) Examples of training 577 

images (upper row) and test images (lower low) that the three-layered network fails to 578 

recognize. (e) Examples of receptive fields of hidden neurons in the three-layered 579 

network. (f) Realized accuracies of the three-layered network as functions of the size of 580 

the training dataset. The network was trained by the proposed algorithm (left panel), a 581 

backpropagation learning algorithm with a naïve stochastic gradient descendent (middle 582 

panel), and with the ADAM algorithm (right panel). 583 

 584 

Figure 4 585 

Nearly optimal power-law decay of the variance spectrum for the principal component of 586 

the neural activity. (a) Variance spectrum of the principle components of the mean 587 

activity of the hidden neurons of the three-layered network after training (cyan). The 588 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2020. ; https://doi.org/10.1101/811646doi: bioRxiv preprint 

https://doi.org/10.1101/811646
http://creativecommons.org/licenses/by-nc-nd/4.0/


variances are arranged in descending order. The line (magenta) indicates the critical slope 589 

corresponding to an exponent of -1. (b) Evolution of the power-law exponent of the 590 

variance spectrum as a function of the number of sampling iterations. 591 

 592 

Figure 5 593 

Supervised learning of a recurrent network using the MNIST dataset. (a) A recurrent 594 

neural network. Each number in a circle indicates the number of neurons in the 595 

corresponding layer. (b) Evolution of the training accuracies (cyan) and test accuracies 596 

(magenta) of the recurrent network. (c) Average ratios of the actual numbers of 597 

three-neuron patterns in the trained recurrent network to those predicted by the null 598 

hypothesis (gray bars), (details given in Methods). The error bars indicate the range of 599 

'2	. The green circles are experimental results for real cortical circuit [31]. 600 

 601 

Figure 6 602 

Correlation between connection weights between pairs of neurons and the similarity of 603 

the receptive fields of these neurons. (a) Correlation coefficients, (�� ,of the receptive 604 

fields between pairs of neurons and connection weights, ���, between these neurons are 605 

measured for the recurrent network after training. (b) The connection weights between 606 

pairs of neurons positively correlates with the receptive field correlations between these 607 

neurons. (c) The average weight of these connections with positive weights, ��� # 0, as 608 

a function of the receptive field correlation. Underlying histogram shows the distribution 609 

of the receptive field correlations for the pairs of neurons. These results correspond to 610 

Figure 2g and 2i of [34]. 611 

 612 

Figure 7 613 

Supervised learning of recurrent networks using temporal sequences. (a) Network 614 

structure. (b) Input sequences (upper panels) and target output sequences (lower panels) 615 

of the first dataset. The asterisks indicate examples of times at which the network must 616 

output different patterns while the current input to the network is the same. (c) Activities 617 

of hidden neurons (upper panels) and output neurons (lower panels) after 0, 80, and 400 618 

sampling iterations. (d) Input sequences (upper panels) and target output sequences 619 

(lower panels) of the second dataset. (e) The same as (c), but for the second dataset. 620 

 621 
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Methods 622 

Neural networks 623 

Introducing the redundancy and stochasticity of the neurons and synapses, we model a 624 

neural network that consists of N neurons connected via K synapses per connection. The 625 

connection weight from the �th to the !th neuron is given as a weighted sum of the 626 

synaptic states as ��� � ∑ ���������
��� , where ���� ) *0,1+ is a binary random variable 627 

describing the state of the  th synapse of the connection from the �th to the !th neuron. 628 

The weights are generally asymmetric, and we set ��� � 0 to avoid self-connections. 629 

The strength, or amplitude, of a synapse, denoted by ���� , is a constant that represents the 630 

contribution of the synapse to the weight, which can be interpreted as corresponding to 631 

the amplitude of the miniature postsynaptic potential (PSP) of the synaptic contact. Note 632 

that ���� is a constant, and it is fixed during learning. For simplicity, we used an evenly 633 

spaced sequence from ��� to �� for the values of the amplitude throughout the work: 634 

���� � �� � �2� � 1� "⁄ � 1��� � � 1,2,� ,"�. 635 

 636 

The �th neuron receives inputs from its presynaptic neurons and randomly generates a 637 

spike with the probability ���� � 1� � 	�
�� � 	�∑ ������ �, where the state of the 638 

neuron, �� ) *0,1+, is a random binary variable representing the spike firing of the 639 

neuron, and 	��� is the activation function of a neuron, for which we use the sigmoidal 640 

function 	��� � �1 � -��� throughout the paper. The weighted sum of inputs to the 641 

neuron 
�  corresponds to the membrane potential of the neuron. 642 

 643 

Neurons in the network are classified into three groups, input, output, and hidden. Input 644 

and output neurons together are referred to as visible neurons. External data, including 645 

the target outputs of supervised learning, are input into the network by fixing the states of 646 

visible neurons to the values of the data. Each datum, therefore, must be a binary vector. 647 

When we obtain the output of the network after and during learning, we fix only input 648 

neurons, keeping output and hidden neurons free. 649 

 650 

The states of the neurons, including the hidden and visible neurons, are updated in 651 

response to each datum in the dataset as it is input, while the state of a synapse depends on 652 

the dataset as a whole, because the aim of the learning is generally to obtain networks, i.e., 653 

sets of synaptic states, that consistently reflect all of the data in the dataset (Figure 1c). 654 
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For this reason, we write the state of the �th neuron at the time that the network is 655 

receiving the �th datum of the dataset as ��� , using the data index, while the state of the 656 

synapse, ���� ,  does not have a data index. Figure 1c presents a graphical model 657 

representation of the data dependency of the variables for the simplest case of a 658 

three-layered neural network. 659 

 660 

Learning algorithm 661 

The learning of the network is modeled as a Gibbs sampling of all free variables from 662 

their posterior joint distribution conditioned on the fixed variables, 663 

� �*���+���,��� , .����/�,���,���0 *���+����. Here, � is the data index of the given dataset, 664 

1, while 2 and 3 denote the sets of visible and hidden neurons, 4 represents the set of 665 

all neurons, and " denotes the set of synapses for each connection. (The number of 666 

variables of the network is thus 41 �5", where 5 is the number of connections in 667 

the network.) The Gibbs sampling allows us to replace sampling from a generally 668 

high-dimensional joint distribution with a repetition of samplings of each single variable 669 

from a posterior distribution conditioned on all other variables, 670 

� ����0.���/��� , .����/� 

and 671 

�������*���+, *����+��������, 
for a neuron and a synapse respectively. In the Gibbs sampling, the order of the samplings 672 

need not be fixed, but can be random. Also, the sampling frequencies of different 673 

variables can be different. Therefore, in general, the state of each neuron or synapse will 674 

change at times that are determined independently for each, depending only on the 675 

conditions experienced individually by that neuron or synapse. 676 

 677 

To derive an explicit description of the posterior distribution of a neuron, let us consider 678 

the log likelihood ratio for ��� . Using the Bayes rule, we obtain 679 

log ����� � 1|��1 � ����� � 1|�� � log ����� � 1|������� � 0|�� 
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, 
where the dots represent all variables other than ��� , i.e., .���/��� and .����/, and we 680 

have 
��,� � ∑ ��������� . To obtain the 5th line, we have assumed that 
��,� < ��� 681 

and linearized each term of the summation with respect to ��� . Solving the above 682 

equation for =���� � 1|��, we obtain Eq. (1) in the main text with 683 

��� ����� ���� � 	�
����
�

�5� 
as the posterior distribution (i.e. the stochastic update rule) of the neuron. 684 

 685 

Similarly, the log likelihood ratio for the synapse ����  is 686 

log ������ � 1���
1 � ������ � 1��� � log ������ � 1���

������ � 0��� 

� log������ � 1�
������ � 0�9

���������� � 0,��
���������� � 1,��

�

 

� ��,��� 

��: log 	�
��,�� � �������� � log	�
��,��� , ��� � 1
log �1 � 	�
��,�� � ��������� � log �1 � 	�
��,���� , ��� � 0;

�

 

� ��,��� ��:�1 � 	�
���� ������� , ��� � 1
�	�
���������� , ��� � 0;�
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� ��,��� � �������� ���� � 	�
����
�

, 
where the dots represent *���+ and *����+������� , and we have 
��,�� � ∑ ������ �687 

�����������. To obtain the 5th line, we have assumed 
��,�� < ���� , and approximated 688 

each term in the summation as a quantity linear in ���� . The constant ��,��� represents 689 

the log likelihood ratio of the prior distribution, �������, which simply vanishes unless 690 

the prior distribution is biased. We assumed ��,��� � 0 throughout the work. Solving the 691 

above equation for ������ � 1��� gives Eq. (3) in the main text and 692 

��� ����� ���� � 	�
����
�

, �6� 
which constitute the explicit description of the posterior distribution or the update rule of 693 

the synapse. 694 

 695 

Equations (5) implies that a spike of a neuron immediately changes ���  and excitability 696 

of presynaptic neurons. However, such immediate retrograde modulation has not been 697 

experimentally reported, and seems biologically implausible. Rather, it is biologically 698 

more natural that ���  evolves slowly while accumulating the effects of postsynaptic 699 

spikes as Eq. (3) in the main text, where �� characterizes the timescale of the evolution. 700 

(Here, ��  satisfies 0 @ �� A 1, while in the case �� � 1, Eq. (3) reproduces to Eq. (5).) 701 

Thus, ���  is determined by the average spike history of the postsynaptic neurons over a 702 

finite, presumably quite long, duration. Similarly, we can also generalize the evolution 703 

equation for ���  as Eq. (4) in the main text. As demonstrated in Figure 2e and 2f, these 704 

generalizations rarely decrease the learning accuracy of the algorithm. 705 

 706 

The following is a possible biological implementation of our algorithm. (i) Each neuron 707 

in the network continuously evaluates its membrane potential, 
 , and bias, � , and 708 

stochastically generates spikes with the probability given in Eq. (1). (ii) A generated spike 709 

is immediately integrated into the membrane potentials of its postsynaptic neurons, while 710 

it slowly modulates the excitability of its presynaptic neurons (Eq. (2)). (iii) The spike 711 

firing also modulates the latent synaptic variable, � (Eq. (4)). (iv) The state of each 712 

synapse is changed asynchronously and irregularly in accordance with Eq. (3) with a 713 

frequency that is sufficiently slow that sensory neurons receive a large variety of external 714 

inputs during the average interval of the updates. 715 
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 716 

Numerical simulations 717 

All numerical simulations are written in Python, with the open-source matrix library 718 

CuPy. In details of the procedures to train a feedforward network are as follows. (i) We 719 

first prepare 41 binary variables for the 4 neurons and 5" synapses where 1 is the 720 

number of data in the training dataset, 5 is the number of connections in the network, 721 

and " is the number of synapses per connection. (ii) Then we fix the variables of the 722 

visible neurons to the values of the data in the training dataset, and initialize the values of 723 

the hidden neurons and synapses randomly to 0 or 1 with probability 1/2. (iii) To avoid 724 

perfectly synchronized updates, we randomly choose the ratio �� for the hidden neurons 725 

and update their variables according to Eqs. (1) and (2). (iv) Similarly, we randomly 726 

choose the ratio �� for the 5" synapses to update in accordance with Eqs. (3) and (4). 727 

(iv) We repeat (iii) and (iv) as many times as desired. The procedure to obtain the 728 

prediction of the network is the same as that for the training procedure, except that we fix 729 

only the input neurons and update the hidden and output neurons in accordance with Eqs. 730 

(1) and (2), keeping the synaptic values fixed. In order to accelerate the computation, we 731 

can use the average activities of the neurons, 	�
���, instead of their binary variables, 732 

��� , and omit the biases, ��� , during the prediction procedure. The training and test 733 

accuracies are defined as the ratio of the number of inputs that enables the network to 734 

generate the correct outputs to the total numbers of inputs of the training and test datasets. 735 

 736 

Dataset 737 

Except in the cases described by Figs. 2 and 7, we used the MNIST dataset, which 738 

consists of a training dataset of 60,000 examples and a test dataset of 10,000 examples in 739 

which each image has 28 C 28 pixels. Because pixels in the MNIST data range from 0 to 740 

255, we replaced them with 0 or 1, depending on whether the value of the pixel is below 741 

or above 255/2. We thus obtain 784-dimmensional binary input vectors. 742 

 743 

In the situation considered in Fig. 2, we trained a three-layered network consisting of 40 744 

input, 40 hidden, and 2 output neurons to learn a simple task that is a noisy and 745 

high-dimensional variant of the XOR problem. The datasets were artificially generated as 746 

follows. We first prepared two-dimensional binary vectors �E��, E�	�, where � is the 747 

data index of the dataset. Then, to obtain 40-dimensional binary input vectors 748 
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�F�� , � , F���� , we set F�� � E��  for � � 1,� ,20  and F�� � E�	  for � � 21,� ,40 , 749 

and then flipped their values randomly with a probability of 0.1 to obtain randomized 750 

input dataset. The desired outputs of the two-dimensional vectors are given by G�� �751 

�0,1� if XOR�E��, E�	� � 0 and �0, 1� if XOR�E��, E�	� � 1. The training dataset and 752 

test dataset each contains of 400 examples. 753 

 754 

In the situation considered in Fig. 7, we used datasets consisting of temporal sequences to 755 

train recurrent networks. Let us write the input data and desired outputs at time t as 756 

E���K� and G���K�. These are fed into the network by fixing the neurons in the input layer 757 

as ��,���K� � E���K�, 0 @ � A 4�, and those in the output layer as �	,���K� � G���K�, 758 

0 @ � A 4	, where 4� and 4	 are numbers of neurons in the input and output layers, 759 

respectively. A dataset is prepared as follows. We first prepare an integer sequence ��K�, 760 

where 1 A ��K� A L and 1 A K A M. We then set E��K� � 1 if ���K� � 1�4� L⁄ @ � A761 

��K�4� L⁄  and E��K� � 0 otherwise. The target output is set as G���K� � E��K � 1� if 762 

1 A K @ M and G���M� � E��0� otherwise. To obtain randomized input vectors E���K�, 763 

we replicated E��K� and randomly flipped them as E���K� � E��K� with probability 0.9 764 

and E���K� � 1 � E��K�  with probability 0.05. The integer sequence ��K�  given by 765 

1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2 with 4� � 250, L � 5 and M � 16 was used as 766 

the first dataset and 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2  with 767 

4� � 150, L � 3 and M � 24 is used for the second dataset. 768 

 769 

Parameters 770 

We used �� � 1.0 , �� � 0.001 , " � 200 , �� � 0.1 , and 1 � 100  in the situation 771 

considered in Fig. 1e, and �� � �� � �� � 1.0, �� � 0.001, N� � N� � 10, " � 50, 772 

�� � 0.5, and 1 � 400 in the situation considered in Fig. 2. In the situation considered 773 

in the remaining figures, except Figs. 4, 5, 6 and 7, we used �� � 0.01, �� � 0.9, 774 

�� � 0.1, �� � 0.001, N� � N� � 20, " � 100, and �� � 0.1. In the case of Fig. 4, 775 

we use " � 200, and in the case of Figs. 5 and 6, we used �� � 0.5, and in the case of 776 

Fig. 7, we used �� � 0.1, �� � 1, �� � 0.01, �� � 0.01 and 1 � 4000. The numbers of 777 

hidden neurons in the three-layered network that are not specified in the figures are 1000 778 

for Figs. 3f and 4, 100 for Figs. 5 and 6, and 500 for Fig. 7. Connection probability was 779 

1.0 and 0.5 for feed forward connections and recurrent connections, respectively. 780 

 781 
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Data analysis 782 

Spectrum variance of principle components 783 

After we trained the three-layered neural network considered in Fig. 3a using the MNIST 784 

dataset, we fixed the synapses and obtained the average activities of the hidden neurons 785 

*	�
���+���. Note that the quantities 
��  for the hidden neurons were deterministic in 786 

this case because both the input neurons and the synaptic connections from them were 787 

fixed. The principle component analysis was applied to the average activities after they 788 

were standardized. Then we obtained the explained variance of each principle component, 789 

which is the eigenvalue of the covariance matrix of the standardized average activities, 790 

and ordered them in descending order. The exponent of the power law was estimated with 791 

a least-square linear fit of the variance spectrum in log-log space. 792 

 793 

Statistics of network motifs 794 

We trained a three-layered recurrent network with 100 hidden neurons. Then, we 795 

determined the number of connection patterns among the triplets of neurons over all 796 

possible combinations of 3 neurons chosen from 100, i.e. for 100 P 99 P 98 6⁄ �797 

161,700  triples. Here, we only counted connections whose synaptic weights were 798 

greater than or equal to 0.27, in order to exclude small and negative connections. Null 799 

hypothesis of the counts is defined as the same way that provided in the paper [31]. 800 

Namely, we determined the numbers of unidirectional and bidirectional connections in all 801 

pairs of neurons and calculated the predicted number of three-neuron patterns by 802 

assuming all constituent pairs of neurons in each triplet pattern are chosen independently, 803 

while maintaining the probabilities of the measured unidirectional and bidirectional 804 

connections. We performed 20 learning trials in order to obtain the mean and standard 805 

deviation, 	, of the ratio of the actual number of each triplet pattern to that obtained with 806 

the null hypothesis. 807 

 808 

Limit of large training data size 809 

Let us represent all free variables of a network consisting of neurons *���+ and synapses 810 

.����/ collectively by R. We can reasonably assume that the prior distribution ��R� is 811 

positive for all values of R and that each training datum is independently generated from 812 

a data distribution �����. Then, the posterior distribution satisfies 813 
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��R|*��+� S9����|R���R�
�

 

� expW�log ����|R�
�

� log ��R�X 

Y exp Z4�[log ���|R� ������� � log ��R�\, 
which generally converges to a delta function ]�R � R�� in the limit of a large number of 814 

training data, 4� ^ ∞, where R� � argmax� c log ���|R� �������. (If maximum is 815 

realized of multiple values of R simultaneously, the posterior distribution will converge 816 

to the sum of the corresponding delta functions.) 817 
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