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 2 

Abstract 19 

The Horned Lark (Eremophila alpestris) is a species of small songbird that exhibits 20 

remarkable geographic variation in appearance and habitat across an expansive 21 

distribution. While E. alpestris and related species have been the focus of many 22 

ecological and evolutionary studies, we still lack a highly contiguous genome assembly 23 

for horned larks and related taxa (Alaudidae). Here, we present CLO_EAlp_1.0, a highly 24 

contiguous assembly for horned larks generated from blood samples of a wild, male bird 25 

captured in the Altiplano Cundiboyacense of Colombia. By combining short-insert and 26 

mate-pair libraries with the ALLPATHS-LG genome assembly pipeline, we generated a 27 

1.04 Gb assembly comprised of 2708 contigs with an N50 of 10.58 Mb and a L50 of 29. 28 

After polishing the genome, we were able to identify 94.5% of single-copy gene 29 

orthologs from an Aves data set and 97.7% of single-copy gene orthologs from a 30 

vertebrata data set, indicating that our de novo assembly is near complete. We 31 

anticipate that this genomic resource will be useful to the broader ornithological 32 

community and those interested in studying the evolutionary history and ecological 33 

interactions of a widespread, yet understudied lineage of songbirds.  34 
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 3 

Introduction 35 

The Horned Lark (Eremophila alpestris) is a widespread species of songbird that 36 

occupies grasslands, tundras, deserts, and other sparsely vegetated habitats on five 37 

continents (Beason 1995). As is characteristic of most species in the family Alaudidae, 38 

E. alpestris is a terrestrial species that nests on the ground and relies on camouflage to 39 

avoid predation by avian predators (Donald et al. 2017). The Horned Lark has been 40 

studied extensively in terms of geographic variation and systematics (Behle 1942; 41 

Johnson 1972), population genetics (Drovetski et al. 2006, 2014; Mason et al. 2014; 42 

Ghorbani et al. 2019), physiological adaptations (Trost 1972), breeding biology (de 43 

Zwaan et al. 2019), and responses to human activity, such as agriculture (Mason and 44 

Unitt 2018) and wind energy (Erickson et al. 2014), among other focal areas. Despite 45 

extensive past and ongoing research involving E. alpestris and other alaudids, we lack a 46 

highly contiguous reference genome for the species and the family as a whole (but see 47 

(Dierickx et al. 2019)). Generating genomic resources for horned larks and related taxa 48 

will enable studies linking phenotypic and genetic variation (Kratochwil and Meyer 2015; 49 

Hoban et al. 2016), chromosomal rearrangements (Wellenreuther and Bernatchez 50 

2018), and many other avenues of future genomic research for non-model organisms 51 

(Ellegren 2014).  52 

Here, we describe CLO_EAlp_1.0, a new genomic assembly that we built with 53 

DNA extracted from a wild, male lark captured and from a demographically small and 54 

geographically isolated population near Toca, Boyacá, Colombia. We sampled this 55 

individual and population because it had high a priori likelihood of high homozygosity 56 

compared to larks elsewhere with much larger effective population sizes and variable 57 
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patterns of connectivity to adjacent populations. To generate this de novo assembly, we 58 

used the ALLPATHS-LG pipeline (Butler et al. 2008; Gnerre et al. 2011). Given the lack 59 

of genomic resources currently available for Alaudidae, we hope this de novo assembly 60 

will inspire and facilitate future studies on the genomic biology of larks—a widespread, 61 

diverse lineage of songbirds. 62 

 63 

Methods 64 

Sample collection, DNA extraction, and sequencing 65 

We captured a male E. alpestris (EALPPER07; NCBI BioSample 66 

SAMN12913182) approximately 170 km NE of Bogotá, Colombia near the town of Tocá 67 

on the shores of the Embalse de La Copa in the Altiplano Cundiboyacense of the 68 

Boyacá department (5.623299˚ N, 73.184156˚ W). This population is small and 69 

represents a subspecies (E. a. peregrina) that is geographically isolated from other 70 

populations of larks, the nearest population of which is in Oaxaca, Mexico. The 71 

Colombian subspecies of Horned Lark underwent a population bottleneck upon 72 

colonizing the high-elevation plateaus of the region and therefore has high 73 

homozygosity, which is preferable for de novo genome assembly. We collected blood 74 

from the brachial vein, from which we subsequently extracted genomic DNA with a 75 

Gentra Puregene Blood Kit (Qiagen, Hilden, Germany) following the manufacturer’s 76 

protocol. We confirmed the sex of the individual using PCR amplification (Chu et al. 77 

2015). After running the sample on a 1% agarose gel to confirm the presence of high 78 

molecular weight DNA, we sent the extraction to the Cornell Weil Medical School, where 79 

they generated a 180 bp fragment library, a 3 kb mate-pair library and a 8 kb mate-pair 80 
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library. We sequenced the 180 bp library across two lanes and combined the 3 kb and 8 81 

kb mate-pair libraries on another lane of Illumina HiSeq 2500 to perform 100 bp paired-82 

end sequencing.  83 

 84 

Genome assembly, polishing, and assessment 85 

 We assembled the genome with ALLPATHS-LG v52415 (Butler et al. 2008; 86 

Gnerre et al. 2011). We did not perform additional adapter removal or quality filtering 87 

with the short-insert 180 bp libraries because ALLPATHS-LG has built-in steps that 88 

remove low quality and adapter-contaminated reads (Butler et al. 2008). Once the initial 89 

assembly had finished, we aligned the short-insert and mate-pair libraries back to the 90 

assembly genome using bwa 0.7.17-r1188 (Li and Durbin 2009) and samtools v1.9 (Li 91 

et al. 2009) and then performed three iterations of scaffold polishing using pilon v1.22 92 

(Walker et al. 2014) with default parameters. Once scaffold polishing had finished, we 93 

ordered and correspondingly renamed the scaffolds with respect to decreasing scaffold 94 

sizze using SeqKit v0.7.2 (Shen et al. 2016). We assessed the contiguity the de novo 95 

genome using QUAST v5.0.2 (Mikheenko et al. 2018) and estimated genome 96 

completeness with BUSCO v3 (Simão et al. 2015; Waterhouse et al. 2018) alongside 97 

HMMER v3.1b2 (Finn et al. 2011) and BLAST+ v2.7.1 (Camacho et al. 2009) to identify 98 

single-copy orthologous gene sets among birds and vertebrates. 99 

 100 

Mitochondrial Genome Assembly 101 

We also assembled the mitochondrial genome for the same individual (EALPPER07) 102 

with NOVOplasty v3.7 (Hahn et al. 2013) using a ND2 sequence (GenBank Accession 103 
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KF743558) from a previous study (Mason et al. 2014) as the initial seed to begin the 104 

assembly process.  105 

 106 

Data availability 107 

Raw output from sequencing runs and the final assembly, CLO_EAlp_1.0, are available 108 

from NCBI (BioProject PRJNA575884). Short-fragment and mate-pair libraries are also 109 

available from the NCBI SRA (SUB6392689). Outputs from BUSCO and QUAST 110 

analyses are available from FigShare 111 

(doi:10.6084/m9.figshare.9956063;doi:10.6084/m9.figshare.9956042).  112 

 113 

Results and Discussion 114 

Taken together, the three lanes of Illumina HiSeq 2500 sequencing generated 115 

1.59 x 109 total reads (~134x estimated coverage of a 1.2 Gb genome), including 5.45 x 116 

108  paired-end reads for the 180 bp short-insert libraries, 1.24 x 108 paired-end reads 117 

for the 3 kb mate-pair library, and 1.27 x 108 paired-end reads for the 8 kb mate-pair 118 

library. Following scaffold polishing, the finalized CLO_EAlp_1.0 assembly consisted of 119 

2708 contigs that totaled 1.04 Gb. The largest contig was 31.81 Mb while the N50 was 120 

10.58 Mb and L50 was 29 (Table 1). The average GC content was 42.23%, which is 121 

similar to other birds (Jarvis et al. 2014; Botero-Castro et al. 2017), while the de novo 122 

genome assembly included 94.5% of single-copy orthologs from the Aves data set and 123 

97.7% of the Vertebrata data set as identified by BUSCO (Table 2).  124 

We opted not to assemble pseudochromosomes by aligning our de novo genome 125 

to an existing chromosome-level genome assembly (e.g., Zebra Finch (Taeniopygia 126 
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guttata). While birds generally exhibit strong synteny (Derjusheva et al. 2004), avian sex 127 

chromosomes and microchromosomes are often comprised of extensive 128 

rearrangements (Volker et al. 2010). Thus, there is room to improve scaffolds generated 129 

in this assembly so that they match full chromosomes through strategies such as Hi-C 130 

(Burton et al. 2013) or ultra-long read sequencing technology (Ma et al. 2018). 131 

Functional annotation could also be improved by generating RNA-Seq and protein 132 

libraries for larks (Denoeud et al. 2008). Thus, while there is room to improve this 133 

current assembly, CLO_EAlp_1.0 represents a large step forward toward leveraging the 134 

natural history of larks and advanced sequencing technology to further understand 135 

avian biology. 136 
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Table 1: De novo genome assembly metrics estimated using QUAST. 258 

 259 

Assembly Statistic CLO_EAlp_1.0 

# contigs 2708 

Largest contig 31807647 

Total length 1041026391 

GC (%) 42.23 

N50 (bp) 10588015 

N75 (bp) 3940266 

L50 29 

L75 70 

# N's per 100 kbp 3472.39 

 260 

  261 
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Table 2: Output from BUSCO analyses to assess genome completeness by searching 262 

for single-copy orthologs from aves and vertebrata datasets.  263 

 264 

 
Aves Vertebrata 

Complete BUSCOs 4645 (94.5%) 2530 (97.7%) 

Complete and single-copy BUSCOs 4590 (93.4%) 2518 (97.4%) 

Complete and duplicated BUSCOs 55 (1.1%) 12 (0.5%) 

Fragmented BUSCOs 162 (3.3%) 36 (1.4%) 

Missing BUSCOs 108 (2.2%) 20 (0.7%) 

Total BUSCO groups searched 4915 2586 

   265 
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