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Abstract 

Voltage-sensitive dye imaging (VSDI) is a powerful technique for interrogating membrane potential 

dynamics in assemblies of cortical neurons, but with effective resolution limits that confound 

interpretation.  In particular, it is unclear how VSDI signals relate to population firing rates.  To address 

this limitation, we developed an in silico model of VSDI in a biologically faithful digital reconstruction of 

rodent neocortical microcircuitry.  Using this model, we extend previous experimental observations 

regarding the cellular origins of VSDI, finding that the signal is driven primarily by neurons in layers 2/3 

and 5.  We proceed by exploring experimentally inaccessible circuit properties to show that during 

periods of spontaneous activity, membrane potential fluctuations are anticorrelated with population 

firing rates.  Furthermore, we manipulate network connections to show that this effect depends on 

recurrent connectivity and is modulated by external input.  We conclude that VSDI primarily reflects 

inhibitory responses to ongoing excitatory dynamics. 

Keywords: in silico modeling, voltage-sensitive dyes, mesoscale imaging, spatiotemporal dynamics, 

feedback inhibition  

Main 

Electrical signaling in cortex is thought to be divided into “inputs” in the form of subthreshold synaptic 

potentials, and “outputs” in the form of action potentials (APs) or spikes (Grinvald and Hildesheim, 

2004).  Therefore, a complete understanding of cortical function requires not only a means of recording 

spikes in neural ensembles, but also a technique for resolving subthreshold membrane potentials (𝑉") 

in these populations.  Voltage-sensitive dye imaging (VSDI) is a mesoscale imaging technique capable 
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of capturing subthreshold activity across the entire rodent neocortical surface (on the order of several 

cm2) with good spatiotemporal resolution (on the order of milliseconds in time, and < 50 μm in space) 

(Chemla and Chavane, 2010; Ferezou et al., 2009; Grinvald and Hildesheim, 2004; Shoham et al., 

1999). 

 

In previous decades, significant progress was made in mapping the functional architecture of the brain 

using intrinsic optical imaging, a modality based on activity-dependent changes in the intrinsic 

absorptive and fluorescent properties of brain tissue.  Studies combining intrinsic optical imaging with 

cytochrome oxidase staining revealed the interdependent organization of ocular dominance columns, 

cytochrome oxidase blobs (color preference), and orientation selective “pinwheel” structures in the 

visual system (Bartfeld and Grinvald, 1992; Blasdel, 1992a, 1992b; Frostig et al., 1990; Ts’o et al., 

1990).  However, intrinsic optical imaging is limited by a slow time constant (on the order of seconds 

(Grinvald et al., 1986, 2016)), rendering it ill-suited for capturing temporal changes in ongoing activity.  

To this end, VSDI has added a dynamic component to the understanding of neural assemblies.  For 

example, VSDI-based studies have clarified the role of feedforward thalamic inputs versus intracortical 

recurrent activity in shaping orientation selectivity (Sharon and Grinvald, 2002), and shown how 

orientation-selective responses spread over the cortex as a function of stimulus shape and size 

(Chavane et al., 2011).  VSDI has also been widely applied to the study of somatosensory 

computations in barrel cortex, where the somatotopic organization and spatiotemporal scale of activity 

is well suited to the technique.  Such studies have produced important findings regarding the regulation 

of response dynamics by ongoing spontaneous activity (Petersen et al., 2003a), cortical state (Civillico 

and Contreras, 2012), behavior (Ferezou et al., 2006, 2007; Kyriakatos et al., 2017), and stimulus 

strength (Petersen et al., 2003b).  Broadly put, VSDI has enabled the field to move beyond the static 

picture provided by staining and intrinsic optical imaging, adding a dynamic dimension to the 

understanding of mesoscale cortical organization.   

 

However, VSDI suffers from the limitation that the superposed activity of neurites belonging to many 

cells is reflected in each image pixel.  Uneven dye penetration, and blurring due to absorption and 

scattering of photons in tissue further complicate the interpretation of VSDI signals (Chemla and 

Chavane, 2010; Grinvald and Hildesheim, 2004; Grinvald et al., 2015).  Indeed, a historical concern has 

been identifying which attributes of neural anatomy and physiology (e.g. layer, cell type, dendrites vs. 

axons, pre- vs. postsynaptic activity) are the primary drivers of VSDI measurements (Civillico and 

Contreras, 2006; Ferezou et al., 2006; Lippert et al., 2007; Petersen et al., 2003b).  A model of VSDI 
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that considers both the biological organization of the neuronal tissue and the physics of signal 

acquisition could answer these questions.  However, the true power of such a model would lie not 

merely in inferring the relative importance of different aspects of neural activity, but also in bridging 

spatiotemporal scales to generate new insights into the emergent dynamics of cortical populations. 

 

Here, we present the results of a detailed computational model of VSDI, implemented in a digital 

reconstruction of rodent neocortical microcircuitry (NMC), specifically, the hindlimb somatosensory 

cortex of a juvenile rat (Markram et al., 2015).  The NMC comprises a network of ~31,000 neurons with 

detailed cellular anatomy and physiology and data-driven synaptic physiology, arranged with 

algorithmically constrained connectivity in a 0.29 ± 0.01 mm3 column of tissue (Fig. 1a,b).  To simulate 

VSDI signals, we performed simulations of the NMC to obtain 𝑉" recordings of neural compartments 

under various experimental conditions (Fig. 1c) (see also Supplementary Fig. 2 for an evaluation of 

evoked VSDI in individual statistical instantiations of the NMC).  Next, we corrected the compartment 

voltages to account for the effects of dye penetration and light transport in tissue (Fig. 1d), and 

collected this data into voxels (Fig. 1d,e).  Using offline Monte Carlo simulations of photon-tissue 

interactions and a ray transfer model of microscope optics, we calculated a depth-dependent point 

spread function (PSF), with which we convolved horizontal slices of voxelized data (Fig. 1e,f) (see also 

Methods).  This procedure generated a time-ordered collection of VSD images (Fig. 1g), which we 

repeated for various permutations of microcircuit geometry (Fig. 1h) to probe population dynamics in 

the NMC model.    

      

Results 

Evoked VSDI response dynamics 

Propagating waves of activity support the representation and integration of information in cortex 

(Borgdorff et al., 2007; Contreras and Llinás, 2001; Ferezou et al., 2006, 2007; Lustig et al., 2013; 

Petersen and Sakmann, 2001; Petersen et al., 2003b), and can be observed with VSDI.  Activity spread 

dynamics are commonly characterized by measuring the phase velocity and aspect ratio of the 

propagating wavefront, the spatial extent and time-course of cortical activation, and the dependence of 

these quantities on stimulus strength (cf. Fehérvári et al., 2015).  To quantify the similarity between the 

evoked response dynamics of our model and those reported in literature, we conducted a series of 

whisker flick-like trials and examined the spread of activity.  Our stimulation protocol consisted of a 

single pulse of activity in 60 contiguous thalamocortical fibers emanating from a virtual ventral  
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Fig. 1: Cortical microcircuit overview and in silico VSDI workflow  

 
a, Digital microcircuit comprising 31,346 morphologically detailed neurons connected in a columnar unit. Inset: expanded view of a L5 PC, with 

synapses highlighted in red. b, Exemplar excitatory (top) and inhibitory (bottom) cell types. Blue: axons. Red: dendrites. c-f, Schematic 

illustrating the in silico VSDI workflow. c, Neuron surface areas are scaled by prefactors accounting for dye diffusion and light transport in 

cortical tissue. d, Microcircuit volume is divided into voxels to facilitate calculations. e, Photons emitted from each voxel are scattered and 

absorbed throughout the tissue volume via Monte Carlo simulations. Photons reaching the cortical surface are propagated through a tandem-

lens optical setup using ray transfer matrix analysis. Steps e and f are performed once for a given circuit and optical setup to determine a 

depth-dependent point-spread function (point-spread from 1 to 2 in panel, i.e. from voxel to camera). f, Raw signals at each depth are 

convolved with their respective point-spread function, and accumulated in a pixel array at the surface. g, Example VSDI image stack for 

11 ms of spontaneous activity. Images were thresholded at 10% of peak response. h, Microcircuits were aggregated into a larger volume 

made of a central microcircuit column surrounding by six additional columns contacting each of the central column’s hexagonal sides (the 

“mosaic”). This arrangement mitigates boundary effects within the central column and facilitates the analysis of signal spread dynamics. 
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posteromedial nucleus (VPM) projecting to the geometric center of a concentric arrangement of 7 

NMCs (the "mosaic", Fig. 1h).  We observed a radially expanding pattern of activation centered around 

the location of stimulus delivery, which expanded to fill the entire NMC surface over the course of 

several tens of milliseconds, reaching peak fluorescence at ~57 ms poststimulus (Fig. 2a,b).  The peak 

was immediately followed by a period of declining activity characterized by increasing 

hyperpolarization, which undershot baseline fluorescence, reaching a minimum at 170 ms and 

gradually recovering to within 10% of baseline after ~510 ms.  To quantify the temporal persistence of 

the signal, we calculated the half width duration (decay time to 50% of signal peak from baseline, 88 

ms).  The time to peak and half width duration compared favorably to the findings of Ferezou et al., 

2006, who report values of ∼45 ms, and 86 ± 69 ms, respectively (Fig. 2b).  We also considered the 

relationship between the instantaneous firing rate (3 ms bins) and the VSDI signal in a 100 ms 

poststimulus window (Fig. 2c,d).  Our simulations indicate that peak AP firing occurred ~7 ms prior to 

peak VSD fluorescence, contrary to the intuition that increased mean 𝑉" precipitates population spiking.  

 

Notably, a differing VSD activity time-course was observed at the stimulus delivery location relative to 

the NMC periphery (Fig. 2g).  At peripheral points along the x- and z-axes (+540 μm and +460 μm, 

respectively), the rising and falling phases of the fluorescence response were almost identical to the 

spatial mean.  In contrast, signal recorded at the stimulus location exhibited an initial transient within 

the first 12 ms of stimulus onset, and then gradually rose to peak fluorescence.  This response pattern 

(initially confined, expanding thereafter) was also visible in the spatial profile of activation over time as 

an initially sharp peak, which gradually rose and then flattened into a plateau (Fig. 2f).   

 

In order to characterize the propagation velocity of the evoked activity wavefront, we fit each image 

frame to a two-dimensional Gaussian surface and measured the change in the full width at half 

maximum (FWHM) over time (Fig. 2e) (see Supplementary Algorithm 1 for details).  We found that 

activity wavefronts underwent two sequential bursts of expansion prior to peak VSD fluorescence, 

reaching a peak velocity of ~20 μm/ms.  Subsequently, the wavefront entered a period of contraction (-

10 μm/ms) near the fluorescence peak, before gradually returning to baseline (fluctuations near zero).  

In vivo VSDI experiments have documented wavefront propagation speeds within an order of 

magnitude of those reported above.  For example, Petersen et al., 2003a use a Gaussian fit of the 

cross-sectional profile of VSD images to estimate that whisker deflection-evoked waves in urethane or 

halothane anesthetized rodent barrel cortex propagate along barrel rows at a speed of ~60 μm/ms, and 

barrel arcs at ~33 μm/ms.  See Supplementary Table 1 for a summary of cortical wavefront propagation  
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Fig. 2: Propagation of stimulus-evoked cortical activity   

 
a, 650 milliseconds of simulated stimulus-evoked VSD signals in the mosaic. The stimulus consists of a single, coincident pulse of activity in 

60 contiguous thalamic projection fibers innervating the center of the interior microcircuit (delivered at t=0 ms). b, Time course of spatially-

averaged VSD signal in a. Upper arrows (black) indicate points of interest along the curve. From left to right: peak latency, half-maximum 

duration (time to decay to 50% of signal peak), time of signal minimum, recovery time (earliest time after minimum for amplitude to stably 

decay to within 10% of baseline). Bottom arrows (blue) indicate in vivo values for peak latency and half-maximum duration reported in 

literature. c, Top: PSTH of spiking activity for time window (dashed box) indicated in b (3 ms bins). Bottom: pixel-wise PSTH (mean firing rate 

of all cells under each pixel) over same time window (8 ms bins). d,Top: expanded view of time window (dashed box) indicated in b, detailing 

ascending and descending phases of stimulus-evoked spatially-averaged VSD signal. Bottom: same as above, but for spatially extended VSD 

signal, where each frame was computed by averaging activity in 8 ms intervals. e, Activity wavefront propagation velocity (solid line, left axis), 

and wavefront size (full-width at half maximum, dashed line, right axis). Blue horizontal line and shaded region show in vivo measurements of 

stimulus-evoked wavefront propagation velocity reported in literature. Solid blue line: mean value, shaded blue region: measurement range. f, 
Spatiotemporal evolution of VSD signal along the x-axis (z=0, i.e. a horizontal line across the surface of the mosaic). Lightening hue 

represents passage of time. g, Time course of VSD activation at specific locations on the cortical surface. Blue star: circuit periphery along the 

y-axis. Red star: circuit periphery along the x-axis. Black star: circuit center.  

    

velocities reported in literature.  Also, see Supplementary Fig. 3 for an analysis of laminar VSDI activity 

spread in a sagittal slice (x-y plane) of the NMC.      
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Excitatory neurons in layers 2/3 and 5 dominate VSDI measurements   

VSDI signals are linearly proportional to the product of local 𝑉" and membrane surface area (Grinvald 

and Hildesheim, 2004).  Moreover, signals originating in neurites located in deeper layers are 

significantly more attenuated than those emanating from superficial layers due to uneven dye 

penetration and light-tissue interactions (Fig. 3b). It follows that the morphology, location, and 

orientation of a given cell affect the magnitude of its contribution to the optical response.  To better 

understand these influences, we analyzed the fractional contributions of cortical layers and cell types to 

the overall VSDI signal.  In agreement with previously reported results (Ferezou et al., 2007; Gollnick et 

al., 2016; Lippert et al., 2007; Petersen et al., 2003a), we found that > 90% of the raw fluorescence 

originated within 500 μm of the pial surface (Fig. 3b).  Furthermore, we saw that neurites belonging to 

L2/3 and L5 neurons monopolized the “effective surface area”, which we define as the quantity that 

results from multiplying the original surface area of each neurite by a depth-dependent scale factor 

accounting for dye penetration and light transport; L2/3 and L5 contributed 44.9% and 43.7% of the 

total, respectively.  As predicted by the distribution of effective surface area, L2/3 and L5 were the 

primary drivers of the VSDI signal (47.8% and 37.6%, respectively, n = 10 trials) during spontaneous 

activity (Fig. 3c,d).  Cross-correlation revealed mutual positive correlations between the contributions of 

each layer and the VSDI total (Fig. 3e).  However, during evoked activity, L5 contributed upwards of 

67% of the signal whereas L2/3 neurites constituted 19% (Fig. 3f,g).  Importantly, L5 underwent strong 

depolarization in the poststimulus window while L2/3 tended to hyperpolarize, indicating differential, 

layer-specific roles during stimulus response.  Analysis of correlation supports this conclusion, showing 

anticorrelated activity between superficial and deep layers (Fig. 3h).         

 

We also decomposed VSD fluorescence into excitatory and inhibitory components.  For evoked trials, 

the excitatory component of the signal (> 90%) underwent large deflections in the poststimulus window, 

far outweighing inhibitory contributions (< 10%) (Fig. 3i).  Indeed, the inhibitory fraction remained small 

throughout both pre- and poststimulus periods.  One might expect the inhibitory VSDI fraction to 

increase in proportion to the excitatory fraction, as it is known that excitatory activity in healthy 

neocortex quickly recruits a mitigating inhibitory response, preventing runaway excitation (Fino and 

Yuste, 2011; Isaacson and Scanziani, 2011; Kapfer et al., 2007; Silberberg and Markram, 2007).  We 

therefore analyzed the timecourse of mean membrane potential changes in the inhibitory populations of 

each layer, revealing that those in superficial layers were significantly hyperpolarized following 

stimulation, while those in deep layers were significantly depolarized (Fig. 3j,k).  Since the dendrites of 

inhibitory cells tend to be spatially confined (Fig. 1b), those located in deeper layers are unlikely to  
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Fig. 3: Fractional contributions to VSDI measurements by layer and cell-type 

 
a-b, Surface area contributions for each layer by depth. a, Microcircuit, for reference respecting relative layer positions and axis orientation. b, 

(Left) Raw (unscaled) neurite surface area profiles by depth for each layer (20 µm bins). (Middle) Depth-dependent scaling prefactors 

accounting for dye diffusion (solid black line) and light penetration (solid blue line). Solid blue line indicates product. (Right) Effective surface 

area profiles by depth for each layer (raw surface area b scaled by product of light attenuation and dye diffusion prefactors (dashed line, 

middle panel), 20 µm bins). c, Spatially-averaged VSD signal (black) with fractional contribution of each layer (colored) for 1.5 seconds of 

spontaneous activity. d, Boxplot of fractional layer-wise contribution data in c, illustrating overall spread and polarity of each layer’s 

contributions. e, Correlation matrix for all traces in d. f, Spatially-averaged VSD signal (black) with fractional contribution of each layer 

(colored) for 500 ms of evoked activity. Plot begins at -50 ms, stimulus delivered at 0 ms (dashed line). g, Same as in c, but for evoked 

activity. h, Same as in d, but for evoked activity. i, Fractional contributions of excitatory and inhibitory populations to overall VSD signal, shown 

over a 50 ms second window spanning 25 ms pre- and 25 ms poststimulus. j, Mean membrane potentials computed for inhibitory cell 

populations in each layer, plotted over the same time window as in i. k, Boxplots depicting the difference between pre- and poststimulus 

membrane potentials for inhibitory cell populations in each layer. Boxplots in each panel were calculated using the 25 ms pre- and 

poststimulus periods referred to in i and j. 
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contribute appreciably to the VSDI signal as their morphologies do not extend to a height reachable by 

dye and light.  Therefore, the VSDI signal only “sees” the contributions of hyperpolarized superficial 

inhibitory neurons.      

 

Disentangling the impacts of sub- and suprathreshold neural activity on VSDI  

It is thought that APs are too brief and too asynchronous to contribute substantially to the VSDI signal, 

despite causing large fluctuations in 𝑉" (Berger et al., 2007; Civillico and Contreras, 2012; Ferezou et 

al., 2006; Grinvald and Hildesheim, 2004; Petersen et al., 2003a, 2003b).  This conclusion is based on 

simultaneous VSDI and single cell patch-clamp recordings, of which spike-triggered averaging exposes 

the absence of individual AP waveforms from the VSDI signal (Ferezou et al., 2006).  However, such 

experiments leave open the possibility that large volleys of spikes occurring within a narrow time 

window could still contribute to the signal.  To isolate the effects of spikes on the optical response, we 

ran our VSDI pipeline on spike-filtered neurite compartment voltage data and compared with unfiltered 

data (Fig. 4a).  Assuming the null hypothesis that VSDI primarily reflects subthreshold activity, we 

considered any difference between the raw and spike-filtered signals as “noise” due to spikes.  This 

allowed us to calculate a signal-to-spike ratio (SSR), defined in analogy to the signal-to-noise ratio, as 

the squared quotient of the root mean square (RMS) amplitudes of the unfiltered signal and spiking 

component.  That is, 

𝐴 = &
1
∆𝑡
* +VSD(𝑡)1

2𝑑𝑡
45

46
(1.1) 

SSR ≜ : ;<=>
;<=>?@ABC

D
2

(1.2)

which we represented as a continuous variable by binning into 40 ms intervals with overlapping 

windows.  Conservatively, we estimate that typical VSDI experiments have an SNR of ~10 (Civillico and 

Contreras, 2005; Grinvald et al., 1999; Jin et al., 2002; Lippert et al., 2007; Tsau et al., 1996; Zhou et 

al., 2007).  Therefore, when SSR is less than 10 (i.e., less than the empirical SNR of typical 

experiments), the component of the VSDI signal due to spikes is larger than contamination due to other 

noise sources, and in principle could be detected.  Although SSR did dip slightly below our estimated 

detectability threshold during the poststimulus window, this is unlikely to be meaningful in most 

laboratory settings.  However, in cases where exceptionally high SNR is achieved, information 

regarding the spiking component of the VSDI signal may become relevant.  Therefore, we sought to 

understand how the frequency content of spike noise is affected by stimulation (Fig. 4b).  A power 

spectral density analysis of spike noise immediately pre- and poststimulus showed that the frequency 
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content differs significantly only below ~100 Hz, with lower frequencies exhibiting greater divergence.  

Measurements sensitive enough to detect a spiking contribution to the VSDI signal, therefore, would 

only contain spike-related information below this frequency cutoff and would be dominated by low 

frequency components.  It is important to acknowledge that (as reported previously) contributions of 

individual spikes are not detectable in mesoscale recordings; rather, it is the aggregate influence of 

population spiking that adds a small DC offset (and low frequency oscillations) to the VSDI signal, as 

described above.  Assuming a high SNR scenario, we also undertook an analysis of the relative 

contributions of forward- and backward-propagating APs to the spike-related VSDI signal component 

(Supplementary Fig. 3).  We found that nearly all of the spike-related VSDI signal is due to backward-

propagating APs in dendritic arbors. 

 

Fig. 4: Detectability of spiking activity in the VSDI signal 

 

a, Top: signal-to-noise ratio. Noise here refers to “spike noise”, or contamination of putative subthreshold measurements by APs. Dashed 

black line: signal-to-noise ratio = 10. Bottom: Firing rate (red), VSD (black), and VSD computed excluding spikes (membrane potentials 

thresholded at -55 mV, blue) for 200 ms of spontaneous activity followed by 600 ms of evoked activity. b, Power spectral density of spike 

noise computed for 100 ms prestimulus window (black), and 100 ms poststimulus window (magenta).  Blue shaded box indicates frequencies 

for which pre- and poststimulus noise are significantly different.  Dashed black line indicates frequency at which prestimulus noise and 

poststimulus noise are no longer meaningfully different (paired t-test, significance threshold = 0.01, adjusted to 2.6e-4 for multiple 

comparisons using Holm-Bonferroni correction).  

 

VSDI signals anticorrelate with population firing rates 

In light of the unanticipated observation that spiking activity precedes VSD deflections during evoked 

activity (Fig. 2c,d), and the interpretation of VSDI as a measure of subthreshold 𝑉", we were motivated 

to inspect the relationship between population firing rates and mean 𝑉" in simulations of spontaneous 

activity.  Surprisingly, this revealed a strong inverse association (Pearson correlation coefficient of -
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0.86, R2 value of -0.83) between the two at a temporal lag of ~23 ms, with spikes preceding 𝑉" (Fig. 

5a,b).  The relationship between the VSDI signal and spiking exhibited a similar, albeit weaker trend, as 

expected in view of the correspondence between mean 𝑉" and VSD fluorescence (Fig. 5c).  Thus, we 

sought an interpretable explanation for this phenomenon in terms of population dynamics.  To this end, 

mean-field theory was a natural choice as it provides an analytical framework for understanding the 

dynamics of neural populations, where each population is represented in aggregate as a single unit 

(Muller et al., 2007; Rudolph et al., 2004; Zerlaut et al., 2018).  Since VSDI reports a summary of 𝑉" 

across many neurons, we began by considering the relationship between mean 𝑉" and conductance.  

Mean-field calculations for a conductance-based leaky integrate-and-fire neuron yield an “effective” 

membrane potential (𝑉FGG), which approximates the population mean as a function of synaptic 

bombardment (Rudolph et al., 2004, 2005; Zerlaut et al., 2018) (see Methods).  Intuitively, 𝑉FGG may be 

thought of as a noisy short-term prediction of 𝑉".  In a hypothetical a scenario where conductances are 

static, 𝑉FGG is the value 𝑉" converges to by exponential relaxation dynamics.  

 

We proceeded in the calculation of 𝑉FGG by isolating firing rates in excitatory and inhibitory 

subpopulations.  Experimental evidence supports the notion that excitatory and inhibitory synaptic 

currents are tightly balanced in healthy cortical tissue both in the resting state and during sensory 

processing (Denève and Machens, 2016; Sengupta et al., 2013; Zhou and Yu, 2018).  Tight balance of 

synaptic currents implies that: 1) excitatory and inhibitory firing rates fluctuate synchronously, and 2) 

inhibitory conductances are greater than excitatory (Sengupta et al., 2013).  Consistent with this view, 

we observed that excitatory and inhibitory firing rates (and thus also excitatory and inhibitory 

conductances) were highly correlated (Fig. 5d).  Additionally, inhibitory conductances were larger than 

excitatory both in terms of mean and variance, with a 〈𝑔J〉 〈𝑔L〉⁄  ratio of ~9.  Despite the preponderance 

of inhibitory conductance, we determined that 𝑉FGG was affected roughly in equal proportion per unit 

change in either conductance type (Fig. 5e).  Therefore, given its much higher variance, change in 

inhibitory conductance was the primary driver of 𝑉"  fluctuations.  Finally, since network balance 

requires high correlation between 〈𝑔L〉 and 〈𝑔J〉, it follows that mean 𝑉", and by extension the VSDI 

signal, anticorrelate with total firing rate.  Next, to confirm our supposition that network balance is a 

requirement for the aforementioned effect, we performed a series of simulations of spontaneous activity 

in which network connections (and thus recurrent connectivity) were disabled.  Instead, each neuron 

was fed excitatory and inhibitory input spike trains recorded from previous simulations of the same 

microcircuit.  Importantly, the excitatory and inhibitory inputs were derived from simulations with 

different random seeds, abolishing the coupling between excitation and inhibition (Fig. 5g), but  
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Fig. 5: Population firing rate anticorrelates with VSDI fluctuations 

 

a, Population firing rate (top, dark gray) and mean membrane potential (bottom, light gray); normalized units.  Time-shifted by 22.7 ms to align 

signals at peak anticorrelation. b Cross-correlogram of population firing rate and mean membrane potential. c, Lower triangular scatter plot 

matrix depicting correlations between firing rate, VSD, and membrane potential.  Starred values indicate R-squared values for linear fit.  

Diagonal shows autocorrelation. d, Scatter plot of inhibitory and excitatory conductances and firing rates (light blue, pink, blue, red, 

respectively) against population firing rate; normalized units. e, Scatter plot of excitatory vs. inhibitory conductances.  Color reflects 

corresponding mean field-predicted membrane potential at each point in plot.  Black arrow indicates directional gradient (increasing membrane 

potential). f, Bar plot of mean excitatory and inhibitory conductance values, with individual data points overlaid in black. g, Same as in d, but 

for decoupled network (i.e., each cell receives only pre-recorded synaptic inputs, and does not influence the network with its output). h, Same 

as in e, but for decoupled network. i, Cross-correlogram of population firing rate and mean membrane potential for decoupled network. j, 
Histogram of conductance values in f.  Normalized so that AUC = 1 for both cell-type populations. 

 

preserving the distributions of 〈𝑔L〉 and 〈𝑔J〉, and therefore also their relationship to 𝑉" (Fig. 5h).  

However, the removal of recurrent network connections inverted the correlational and causal 

relationship between spiking output and 𝑉", as indicated by a flip in the sign of the peak correlation 

magnitude and its associated lag time, respectively (Fig. 5i).  In the absence of network recurrence, 

presynaptic inputs potentiate spike firing by pushing neurons closer to AP threshold, without 

subsequent feedback inhibition.  We conclude that VSDI primarily reflects subthreshold 𝑉" changes 

associated with inhibitory feedback during spontaneous activity in balanced, recurrently connected 

cortical networks.            
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Extrinsic synaptic inputs decrease the synaptic conductance ratio 

In biological cortex, cellular assemblies are subject to extensive innervation by intracortical and 

thalamocortical projections, and by long-range projections emanating from white matter tracts 

(DeFelipe et al., 2002; Gil et al., 1999; Kawaguchi, 2017; Tomioka et al., 2005).  Estimates of synapse 

counts in rat hindlimb somatosensory cortex have been reported as high as 18,000 per neuron 

(DeFelipe et al., 2002).  Because placement of synapses in our microcircuit is constrained by the 

anatomical apposition of dendrites and axons (Markram et al., 2015; Reimann et al., 2015), only the 

formation of local synapses (~1,145 synapses per neuron, on average) is possible, excluding significant 

innervation arriving from white matter.  Thus, each neuron in the NMC receives a tonic injection of 

depolarizing current (𝐼OPQRS) at its soma to compensate for missing excitatory inputs.  This current is the 

sum of a DC component, which we compute as a percentage of rheobase (the minimal step current 

required to depolarize the cell to AP threshold), and a Gaussian noise component of small amplitude 

(Markram et al., 2015).  Expressed as a percentage of rheobase, 𝐼OPQRS is held constant over the entire 

circuit, though absolute amplitudes vary for each neuron.  As a consequence, average conductance 

values are more than one order of magnitude smaller than those reported in vivo (𝑔J = 70.67 ± 45.23 

nS, 𝑔L= 22.02 ± 37.41 nS, 𝑔J 𝑔L⁄ = 14.05 ± 12.36 as measured in ketamine-xylazine anesthetized feline 

cortex during brainstem stimulation (Rudolph et al., 2005); cf. Fig. 5f), with concomitant reductions in 

variance.   

 

We were curious to understand how the injection of current could affect the results of the previous 

section, and network dynamics more broadly.  To this end, we attempted to replicate naturalistic 

conditions through the simulation of additional synaptic inputs.  Assuming that most inhibitory 

connections occur locally (< 500 µm) (Fino and Yuste, 2011; Karnani et al., 2014; McDonald and 

Burkhalter, 1993), we duplicated existing excitatory synapses (5x per synapse, Fig. 6a) on a small 

handful of L5 PCs (n=10), and set 𝐼OPQRS to zero.  Since it is known that neurons form multisynapse 

connections (Deuchars et al., 1994; Frick et al., 2008; Markram et al., 1997; Silberberg and Markram, 

2007; Silver et al., 2003; Wang et al., 2002), duplicated synapses for each neuron were randomly 

partitioned into functional groups that received identical input, representing a single connection.  Group 

size was drawn from the distribution of synapses per connection for that cell type.  Synaptic inputs 

consisted of spike trains generated by a homogeneous Poisson process with rate l, which we varied 

incrementally until the root-mean-square error between the number of spikes in a 4 second interval in 

the new (added synapses) and old (somatic depolarization) simulations was minimized (Fig. 6b,c).  We 

observed that for additional Poisson inputs at the optimal rate (0.45 Hz), mean excitatory conductance  
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Fig. 6: Effects of long-range excitatory synaptic inputs in the absence of somatic depolarization  

 

a, Schematic showing duplication of excitatory synapses.  Four identical, spatially co-located copies of each excitatory synapse were added to 

10 randomly selected L5 PCs in the microcircuit. b, Simulated Poisson inputs were generated at different Poisson rates to evoke postsynaptic 

spiking. Poisson rates of the added synapses were varied to minimize the RMSE in the difference between the spiking rate of the target 

postsynaptic cell with and without additional synapses (but with somatic depolarization). c, Expanded view of b, for input Poisson rates 

between 0.3 and 0.6 Hz. Minimal RMSE indicated in green (0.45 Hz). d, Mean excitatory and inhibitory synaptic conductances and 

conductance standard deviations for all 10 neurons (pooled) for 4 seconds of spontaneous activity. e, Voltage trace overlays for each of the 10 

neurons for 4 seconds of spontaneous activity. Green: added synapses (0.45 Hz), no somatic depolarization. Black: somatic depolarization, no 

additional synapses. f, Excitatory and inhibitory conductances (red and blue, respectively) for each of the 10 neurons for 4 seconds of 

spontaneous activity with added synapses at 0.45 Hz. g, Scatter plot of excitatory vs. inhibitory synaptic conductances. Color reflects 

corresponding mean field-predicted effective membrane potential at each point in plot. Black arrow indicates directional gradient (increasing 

membrane potential). 

 

increased by a factor of ~7, while inhibitory conductances remained largely unchanged (~5% increase).  

However, conductance standard deviation changed considerably for both excitatory and inhibitory 

channels, increasing by a factor of 14.3 and 5.8, respectively (Fig. 6d).  We also examined the relative 

influence of excitatory and inhibitory conductances in determining 𝑉" fluctuations and found that the 

increased variance in 𝑔L corresponded to relatively more influence than 𝑔J on the trajectory of 𝑉" (Fig. 

6g).  However, the addition of synapses did not alter the previous observation that a unit change in 
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either 𝑔L or 𝑔J affected 𝑉" equally.  In summary, a five-fold increase in excitatory synapses with 

Poisson inputs in the absence of somatic depolarization tended to increase the mean of 𝑔L and its 

influence on 𝑉", and dramatically increased the variance of both 𝑔L	and 𝑔J.                                  

 

Discussion 

We constructed a bottom-up, biophysically detailed model of VSDI in a digital reconstruction of rodent 

somatosensory cortex to relate cellular anatomy and physiology to mesoscale signals, and to seek 

novel insights regarding cortical dynamics.  As a first step, we considered VSDI measurements of 

evoked responses in our model and found that they were qualitatively and quantitatively similar to 

analogous experiments in vivo.  Next, we used our model to deconstruct the VSDI signal into layer and 

cell type contributions, revealing context-dependent, strongly differentiated roles for layers 2/3 and 5.  

We also examined the influence of spiking activity, and found that while individual spikes are not 

reflected in VSDI data, large volleys of semi-synchronous spikes could affect measurements.  

Furthermore, our model led us to the surprising observation that the VSDI signal anticorrelates with 

population firing rate with a peak at a lag of ~23 ms.  Using a mean-field approach, we discovered that 

this is due to a predominance of inhibitory conductances, which are coupled to population spiking via 

recurrent connections.  Finally, we considered the effects of including additional excitatory synapses to 

compensate for missing non-local inputs and found that a Poisson model of spiking inputs led to 

increased variance in values of conductance.  Several details pertaining to the above results merit 

further discussion.   

 

Lateral spread dynamics of VSDI signals 

As stated previously (see Results), the VSD fluorescence response to TC stimulation underwent non-

uniform lateral expansion, wherein the signal quickly saturated near the location of stimulus delivery 

before gradually extending across the entire microcircuit (Fig. 2f,g).  This observation is consistent with 

in vivo optical responses to evoked activity, in which VSDI signals saturate in a locally confined region 

near the stimulation site within the first 10-20 ms before expanding further (Civillico and Contreras, 

2006, 2012; Fehérvári et al., 2015; Petersen, 2007; Petersen et al., 2003b).  Fehérvári et al. (2015) 

report similar fluorescence dynamics in an in vivo VSDI study of mouse primary visual cortex (V1).  In 

particular, they find that in a localized region around the site of an applied 50 μA current impulse, 

fluorescence rapidly increases within ~10 ms, before saturating and then expanding laterally.  They 

propose that the initial peak primarily reflects monosynaptic excitatory postsynaptic potentials (EPSPs), 
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which are followed by the propagation of disynaptic activity at greater latencies.  This explanation is 

consistent with our finding that the first response occurs locally and quickly plateaus, since it is likely 

due to feedforward PSPs evoked by direct TC innervation at the center of the microcircuit.  Subsequent 

activity spread would occur only following a monosynaptic delay, as the targets of TC projections 

propagate the signal to their postsynaptic partners.  Also, we note that in comparison to average signal 

transmission speeds reported in literature (Table 1), the wavefront phase velocities calculated here are 

relatively low.  We speculate that this may be due to slicing of mid-range intracortical axons during the 

morphology reconstruction process.  It is well known that extended axonal arbors are at risk of slicing 

during histological processing, and efforts were made to repair severed arbors using statistical methods 

(Markram et al., 2015).  However, it is unlikely that such repairs would fully correct for slicing artifacts, 

leaving open the possibility that significant numbers of mid-range connections are missing.  If true, it 

would tend to decrease wavefront propagation speeds, as signal transmission would be forced to 

proceed strictly through short-range connections.          

 

Lack of correlated activity between VSDI signals and layer 2/3 PCs 

A point of disagreement between our results and those described in literature is the degree to which 

VSDI recordings are correlated with simultaneous whole-cell (WC) recordings in L2/3 (see 

Supplementary Fig. 1).  Several in vivo studies have reported a high correlation between VSD 

fluorescence and the 𝑉" of single neurons in L2/3 rodent barrel cortex (Berger et al., 2007; Ferezou et 

al., 2006; Petersen et al., 2003a, 2003b).  However, due to the technical challenges associated with 

simultaneously performing VSDI and WC recordings in live animals, these studies used anesthesia 

(Ferezou et al., 2006; Petersen et al., 2003a, 2003b) or in vitro slice preparations (Berger et al., 2007) 

to establish the correspondence between 𝑉" and VSDI traces.  It has been shown that anesthetic 

agents increase cortical synchrony and pairwise neural correlations (Antkowiak, 2002; Greenberg et al., 

2008; Kreuzer et al., 2010; Murphy et al., 2011).  Of particular relevance, Greenberg et al. (2008) found 

that correlated AP firing in pairs and populations of L2/3 neurons in rat visual cortex increased 

significantly during anesthesia as compared to the awake state.  Therefore, the disparity between the 

strength of VSDI-𝑉" correlations observed in vivo and those extracted from our simulations may be at 

least partly explained by differences in cortical state.  Since VSDI signals reflect an average over 𝑉" 

deflections in a large number of neuronal processes mostly situated in L2/3, anesthesia-induced 

synchrony among L2/3 neurons would tend to increase the correlation between any given L2/3 neuron 

and the population mean.  Our model does not consider the effects of anesthesia, nor do we observe 

the emergence of oscillatory cortical states.  Thus, both pairwise and population neural correlations 
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remain relatively weak during spontaneous activity, resulting in a lower correspondence between VSD 

fluorescence and individual 𝑉"   measurements.  

 

Changes in spiking activity precede deflections in mean membrane potential 

We showed that spikes precede 𝑉" fluctuations during both spontaneous and evoked activity (see Fig. 

2c,d; Fig. 4a; Fig. 5b), confirming several studies including one in rat barrel cortex (Petersen et al., 

2003b), and two others in ferret visual cortex (Eriksson et al., 2008; Roland et al., 2006).  A reasonable 

expectation may be that, on the contrary, increases in VSD fluorescence should precede increased 

spike firing, since membrane depolarization would tend to bring neurons closer to threshold making 

APs more likely.  However, as suggested by Eriksson et al. (2008), since each cell contacts many 

postsynaptic partners (452 ± 272 in our microcircuit), any given AP will elicit postsynaptic potentials 

(PSPs) in hundreds to thousands of other cells, meaning that a mere handful of spikes can significantly 

impact mean 𝑉" in a population.  Of course, spike initiation requires membrane depolarization, but only 

a fraction of the population is active at once (~26% at evoked response peak, and ~0.4% during 

baseline; 2 ms bins).  Therefore, 𝑉" changes associated with spike firing are outweighed by 

downstream PSPs, with a monosynaptic delay.  We found a 6.9 ms delay between peak spiking and 

subthreshold response to stimulation (Fig. 2c,d), and a 22.7 ms delay during spontaneous activity (Fig. 

5b).  Monosynaptic signal transmission reportedly requires between 6 and 14 ms in cortex (González-

Burgos et al., 2000), suggesting that deflections in mean 𝑉" primarily reflect monosynaptic activity in 

the first case (evoked), and disynaptic inhibition in the second (spontaneous).  Indeed, this conclusion 

is supported by the reversal of sign in the correlation between 𝑉" and firing rate in the putatively 

disynaptic, spontaneous case.  Furthermore, uncoupling the network, thereby disabling recurrent 

disynaptic connections, abolished the temporal lag and inverse relationship between spiking and mean 

𝑉"  (Fig. 5i), creating a situation in which increased membrane potential merely potentiates APs.  Thus, 

VSDI may report either monosynaptic excitation or disynaptic inhibition depending on the presence or 

absence of external inputs.  That this aspect of VSDI measurements could have been missed in 

previous research begs explanation.  First, simultaneously performing VSDI measurements and 

population spike recordings is a technical challenge, and has only been attempted in a handful of 

studies (e.g., (Eriksson et al., 2008; Roland et al., 2006)).  Moreover, the lag between VSDI signals and 

spike firing, in addition to any extracortical noise sources, would tend to obscure the immediate 

observation of a correlation.  Last, VSDI signals are imperfect proxies of mean 𝑉" since they are 

heavily biased towards contributions of neurites within L2/3 (Fig. 2b).    
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Influence of cortical state on network dynamics 

Regenerative activity in the microcircuit is sensitive to the concentration of extracellular calcium 

([Ca2+]0) and level of tonic depolarization.  As demonstrated by Markram et al. (2015), increasing tonic 

depolarization has the effect of pushing cells closer to AP threshold, while decreasing [Ca2+]0 (within the 

physiological range, 1-2 mM) tends to shift the excitatory-inhibitory balance in favor of inhibition.  

Varying these two parameters, they observed the emergence of four distinct regimes in the behavior of 

the microcircuit, characterized by the presence or absence of regenerative activity for either 

spontaneous or evoked conditions.  Furthermore, within each regime, varying [Ca2+]0 moved the 

network along a spectrum between synchrony (high [Ca2+]0) and asynchrony (low [Ca2+]0).  It is well 

established that in vivo concentrations of extracellular ions are maintained within relatively narrow 

physiological ranges by tightly regulated homeostatic pathways, and that alterations in these 

concentrations affect network dynamics (Barreto and Cressman, 2011; Ding et al., 2016; Gleichmann 

and Mattson, 2010; Henn et al., 1972; Kraio and Nicholson, 1978; Rasmussen et al., 2017).  We 

theorize that a spectrum of network regimes similar to those observed in our network could also be 

present in biological cortex, and that under normal physiological conditions, the network sits at or near 

the transition point between regimes.  This could serve to maximize sensitivity subject to the constraint 

of avoiding runaway excitation, thereby optimizing the potential of cortical tissue to encode sensory 

stimuli.  Furthermore, it is known from in vivo recordings that cortical neurons in awake animals exhibit 

low input resistances, relatively depolarized membrane potentials (~-60 mV), and significant 𝑉" 

fluctuations (Destexhe, 2007, 2010; Destexhe et al., 2003).  Collectively, these properties are referred 

to as the “high-conductance state”, since they are a consequence of synaptic bombardment causing 

mean conductances to exceed resting conductance (Destexhe, 2007).  High-conductance states are 

thought to play an important role in determining neural response properties, with consequences for 

computation (Destexhe, 2007, 2010; Destexhe et al., 2003).  Independent and convergent lines of 

evidence suggest that the critical transition point in our model (somatic depolarization at ~100% and 

[Ca2+]0 = 1.25 mM) is most analogous to quiet wakefulness, with some high-conductance state 

properties. 

 

Comparing the time to peak and half width duration of our evoked VSD fluorescence response to those 

obtained in a similar study of mouse barrel cortex (Fig. 2b) reveals a strong correspondence in the 

temporal profile of cortical activation for awake animals (half-width: 86 ± 69 ms), but not anesthetized 

(37 ± 8 ms) (Ferezou et al., 2006).  Furthermore, the dominance of inhibitory conductances, relatively 

depolarized membrane potentials (~-60 mV), and significant 𝑉" fluctuations argue for a high-
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conductance-like state, which is associated with wakefulness (Destexhe, 2007, 2010; Destexhe et al., 

2003).  Finally, the slow-wave oscillations typically observed during sleep and anesthesia are not 

present in our model, though this could be a result of missing thalamocortical interactions or 

neuromodulation, rather than a local property of the tissue (Contreras and Steriade, 1996; Contreras et 

al., 1997; Mena-Segovia et al., 2008; Murphy et al., 2011; Steriade, 2000).  Thus, we propose that the 

results of our model are best interpreted as representing an awake, in vivo-like state.  We note at least 

one major caveat to the above interpretation, namely that values of synaptic conductances are 

significantly lower than those estimated from in vivo recordings in the awake state.  Since magnitude of 

conductance in dendritic arbors is known to affect the integrative properties of neurons (Destexhe, 

2007; Destexhe et al., 2003), this discrepancy is likely to affect network dynamics.  However, we leave 

a detailed analysis of the consequences for future research.  

 

VSDI-firing rate anticorrelation lag time: an index of locality? 

We have shown that during spontaneous activity, population firing rate anticorrelates with mean 𝑉" and 

spatially averaged VSDI data for recurrently connected balanced networks.  However, this observation 

was made in the context of an isolated local network, suggesting that a relaxation of these conditions 

could moderate the effect.  To this end, we attempted to replicate the effects of extrinsic (non-local) 

synaptic inputs and assessed changes in the mean, standard deviation, and ratio of 𝑔L and 𝑔J.  Due to 

resource constraints, we were restricted to NMC simulations with additional extrinsic inputs at a mere 

handful of synapses in the network, and were thus unable to evaluate alterations to the relationship 

between mean 𝑉" and mean firing rate as a function of long-range input statistics.  However, the 

preliminary results indicate a shift in the mean conductance ratio in individual neurons, suggesting that 

extrinsic inputs can influence local network properties.  Indeed, Roland (2017) suggests that network 

balance is a local property that is tightly maintained during spontaneous activity, but which may be 

temporarily disrupted by a quick succession of excitatory APs from non-local cortical regions.  For 

sufficiently powerful inputs, local inhibitory neurons cannot fully compensate for increased excitatory 

activity, and additional inhibitory cells must be recruited to prevent runaway excitation (Dehghani et al., 

2016; Huys et al., 2016; Roland, 2017).  The process of recruiting additional inhibition may introduce a 

delay between peaks in inhibitory and excitatory firing, relaxing the tight balance of activity in the 

network.  Thus, we propose that the inverse relationship between VSDI signals and mean firing rate 

revealed by our model could provide an “index of locality”, i.e. an increased delay in the peak 

anticorrelation between VSDI and population spiking represents a stronger perturbing extrinsic 

influence.  Mechanistically, the delay between changes in firing rate and VSDI fluctuations reflects the 
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time required after a spike is fired for recurrently connected inhibitory neurons to respond by 

hyperpolarizing the 𝑉" of the spiking cells.  We predict that stronger peripheral inputs or corticocortical 

interactions will result in greater lag times for peak anticorrelation between VSD fluorescence and 

population firing rates.  Indeed, a preliminary analysis of the evoked response to TC stimulation (see 

Supplementary Fig. 5) revealed a significant shift in the anticorrelation lag time as compared with 

spontaneous activity (23 ms vs. 130 ms), consistent with this prediction.  Currently, the bulk of evidence 

for network balance has been drawn from correlations in the membrane potentials of nearby cells with 

similar orientation tuning, and measurements of conductance ratios over time in individual cells 

(Denève and Machens, 2016).  Our proposal for the novel use of VSDI data to determine a locality 

index would add confirmatory evidence for the balance of inhibition and excitation at the network level, 

while simultaneously providing a metric for evaluating the degree of influence of non-local activity on 

local microcircuitry.  We leave a thorough exploration of this hypothesis and its implications for future 

studies. 

 

Limitations and outlook 

As regards the validity of the in silico model of VSDI presented here, we propose the consideration of 

three conceptually distinct layers: 1) whether the biophysical model of VSDI, i.e. the calculations linking 

cellular activity to measured fluorescence, reasonably approximate reality, 2) whether the composition 

and architecture of the tissue itself is biologically plausible, 3) whether the simulations are functionally 

representative of biological neocortex.   

 

On the first account, we assert that the excellent linearity and fast kinetics of VSDs (Lippert et al., 2007) 

greatly simplify their analytical relationship to 𝑉".  Regarding the second concern, a caveat is the 

absence of several important structural details from the version of the NMC used here, including glial 

cells, vasculature, and long-range intracortical axons (Markram et al., 2015).  However, in the case of 

glia, the slow timescale of response (3-4 ms (Schummers et al., 2008)) and small amplitude of 𝑉" 

deflections (1-7 mV (Kelly and Essen, 1974)) make it unlikely that they contribute meaningfully to VSDI 

signals.  As regards vasculature, since our in silico VSDI pipeline already accounts for the bulk optical 

properties of cortical tissue (see Methods), their effects have, in principle, been accounted for.  With 

respect to the third concern above, several details that are likely to influence network dynamics, 

including gap junctions, multivesicular release, neuromodulation, and synaptic plasticity, are not 

present in this version of the NMC.   
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In addition, we note several caveats concerning the comparison of our in silico stimulation protocol to 

whisker deflection experiments in rodents.  First, as a model of hindlimb somatosensory cortex, the 

NMC lacks the unique cytoarchitecture and anatomical organization that characterize barrel cortex 

(Schlaggar and O’Leary, 1994; Simons et al., 1984).  Furthermore, the NMC excludes the trigeminal 

and thalamic nuclei, and therefore does not exhibit sensory processing delays (and VSDI response 

latencies) or the modulation of cortical dynamics by TC feedback.  Previous experiments have shown 

that cortical activation patterns depend on stimulus strength, with a tendency for excitation evoked by 

weak stimuli to remain confined to a single barrel (Berger et al., 2007; Fehérvári et al., 2015; Gollnick et 

al., 2016; Petersen et al., 2003b).  In our model, TC projection fibers innervating the geometrical center 

of the microcircuit fire a simultaneous AP, a construction that does not capture the full complexity of 

afferent TC signaling nor permit modification of the stimulus strength in a biologically plausible way.  

Finally, experiments have implicated reciprocal TC pathways (Bazhenov et al., 2002; Hughes et al., 

2002; Steriade et al., 1993) and intracortical interactions (Timofeev et al., 2000) in the emergence of 

slow wave activity.  It is known that cortical oscillations interact with sensory responses to produce 

differentiated VSDI signals (Petersen et al., 2003a).  Thus, an in silico account of the effects of brain 

state on VSDI measurements awaits future iterations of the NMC that include TC feedback and 

corticocortical interactions. 

 

In view of these concerns, future versions of BBP brain models that extend well beyond the microcircuit 

scale are forthcoming.  An anatomically complete reconstruction of the somatosensory cortex (and 

ultimately the entire neocortex) featuring biologically appropriate macro- and micro-connectivity 

(Reimann et al., 2019) will help to resolve questions concerning the effects of missing long-range 

inputs.  Additionally, a model of neuromodulatory dynamics, the effects of which are known to be 

implicated in the transitions between, and maintenance of, cortical states (Colangelo et al., 2019), will 

support the investigation of state-dependent VSDI responses.  Finally, a detailed model of the neuro-

glia-vasculature ensemble will pave the way for future simulation-based studies of imaging techniques 

such as fMRI that rely on blood-oxygen-level-dependent (BOLD) signals. 

 

Concluding remarks 

This study demonstrates the utility of bottom-up biophysical modeling as a complement to experimental 

approaches for understanding the relationships between spatial and temporal scales of cortical 

signaling.  Using our model, we clarified which aspects of neural anatomy and physiology shape VSDI 

signals.  Additionally, we discovered that during ongoing spontaneous activity, VSDI primarily reflects 
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subthreshold activity associated with recurrent inhibitory connections.  These insights were gleaned 

from in silico data beyond the reach of current experimental techniques.        

 

Methods 

Microcircuit  

Our in silico VSDI model was implemented in a digital microcircuit consisting of a connected network of 

31,346 neurons, ~8 million connections, and ~37 million synapses.  The network was arranged in a 

columnar volume 462 x 400 µm wide, and 2082 µm deep.  A spatially extended version was 

constructed by interconnecting 7 such units in a hexagonal tiling (the “mosaic”).  In this configuration, 

depth axes were mutually parallel, and columnar surfaces were coplanar (Fig. 1h).  The cell 

morphologies populating the circuit were obtained from 3D reconstructions of biocytin-stained neurons 

from juvenile rat hindlimb somatosensory cortex, while the placement, connectivity, and 

electrophysiological properties of each cell was determined algorithmically and constrained by sparse 

data derived from experiments and literature (Markram et al., 2015).  TC innervation was reconstructed 

using VPM axon bouton density profiles in rat barrel cortex, and synapses were probabilistically 

assigned to incoming fibers using a Gaussian distribution centered around each fiber (Markram et al., 

2015).  See Markram et al. (2015) for additional details concerning microcircuit construction and 

composition.   

 

Supercomputing  

A 2-rack Intel supercomputer using dual socket, 2.3GHz, 18 core Xeon SkyLake 6140 CPUs, with a 

total of 120 nodes, 348 GB of memory, and 46 TB of DRAM was used to run the simulations and carry 

out analysis.   

 

Simulation  

Simulations were conducted using proprietary software based on the NEURON simulation environment 

(Hines and Carnevale, 1997).  Data were output in the form of binary files containing spike times and 

compartment 𝑉" sampled every 0.1 ms for each neuron in the network.  Extracellular calcium and 

potassium concentrations, as well as somatic depolarization are free parameters in the model, and 

were set to 1.25 mM, 5.0 mM, and ~100% threshold, respectively, to most closely mimic an in vivo-like 

network state (Markram et al., 2015). 
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Trials simulating evoked responses modeled TC stimulation with of a single pulse of activity in 60 

contiguous thalamic fibers projecting to the geometric center of the microcircuit.  For experiments 

requiring a larger cortical surface area, the same approach was applied to the spatially extended 

hexagonal microcircuit tiling (see Microcircuit above).  Activity was simulated over 10 trials (i.e. random 

seeds) for a duration of 5 seconds each, with the first 2 seconds of data in each trial discarded to avoid 

any boundary condition-dependent artefacts.  The stimulus was delivered at 2500 ms, meaning that 

each trial consisted of an initial period of 500 ms of spontaneous activity, followed by 2500 ms of 

poststimulus activity.   

 

Signal calculation  

We assumed that the VSDI signal emanating from a small patch of cellular membrane was linearly 

related to the product of the membrane surface area and 𝑉" (Berger et al., 2007; Ferezou et al., 2006, 

2009; Gollnick et al., 2016; Grinvald and Hildesheim, 2004; Lippert et al., 2007; Petersen et al., 2003a, 

2003b).  Our neuronal morphologies are composed of small segments (“compartments”) of 

equipotential cable whose surface area and transmembrane voltage were multiplied to obtain the raw 

VSDI signal.  This raw signal was scaled for each compartment as a function of depth to account for the 

physics of dye diffusion and the scattering and absorption of illumination light (Fig. 1d).  The degree of 

signal attenuation due to uneven staining through the cortical depth was interpolated from data 

measured in four mouse brains treated with RH1691 voltage-sensitive dye, flash-frozen and sliced into 

20 μm thick cryosections (Ferezou et al., 2006).  To reduce data storage requirements, we divided the 

microcircuit into voxels, within which an aggregate signal was computed by summing the contributions 

of all compartments in that voxel: 

𝑣JWX(t) = Z 𝛼\Γ(𝑦\)(Δ𝑉"\(𝑡) + 𝐺b)
\∈JWX

(2.1) 

where 𝑣JWX denotes the value in the ijkth voxel, 𝛼\ is the surface area of the rth  compartment, Γ(𝑦\) is an 

attenuation prefactor accounting for dye penetration and scattering/absorption of illumination light at 

depth y for compartment r, Δ𝑉"\ is the change in membrane potential for the rth compartment, and 𝐺b is 

a constant reflecting the combined reflecting the combined contributions of background noise and 

autofluorescence (assumed isotropic).  The value of 𝐺b was fixed by requiring that a 10 mV change in 

𝑉" correspond to a ∼0.5% change in fluorescence over baseline (∆F/F0), as reported by Ferezou et al. 

(2006), assuming an average resting potential of -65 mV.   
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To model the effects of scattering and absorption in the tissue, we used a Monte Carlo simulation-

based approach (see Point Spread Function) to compute an effective point spread function (PSF) for 

increasing depths along an axis perpendicular to the cortical surface.  We used the PSF at each depth 

to determine the standard deviation of a Gaussian kernel, which we convolved with the horizontal data 

slice at that depth:	

𝐻W = e
𝑣bWb ⋯ 𝑣bWg
⋮ ⋱ ⋮

𝑣jWb ⋯ 𝑣jWg
k (2.2) 

𝐻lW(𝑡) = 𝐻W(𝑡) ∗ 𝑔+𝜎W1 (2.3) 

𝑉p =q𝐻lW
W

(2.4) 

𝐻W (Equation. (2.2)) is a horizontal data slice at depth j, where 𝑖 ∈ {0, … , 𝑛} and 𝑘 ∈ {0,… , 𝑙}.  In Equation 

(2.3), 𝐻lW is the filtered data slice at depth j, 𝐻W is the original data slice, and 𝑔 is a Gaussian kernel, with 

depth-dependent standard deviation 𝜎W.  The union of all filtered slices yields the filtered data volume 𝑉p   

(Equation (2.4)).  Post-convolution, each vertical (j-axis) column of voxels was accumulated into a 

single value, resulting in a two-dimensional matrix of pixels, which we stored as an image (Equation 

(2.5)).  VSDI signals were computed as a fractional change in fluorescence over resting intensity 

(Ferezou et al., 2007, 2009; Kleinfeld and Delaney, 1996; Orbach et al., 1985; Shoham et al., 1999).  

This gives raw and normalized signal intensities for each pixel in an image matrix: 

𝐹JX(𝑡) =Z𝑣}JWX(𝑡)
W

(2.5) 

𝑉𝑆𝐷JX(𝑡) =
∆𝐹JX(𝑡)
𝐹JXb

− 1 (2.6) 

 

where 𝐹JXb  is a baseline fluorescence image obtained by averaging the first 100 frames (50 ms of data 

sampled at 2000 Hz).  We used Equation (2.6) to calculate voltage-sensitive dye signals in this work. 

 

Point spread function   

We calculated an empirical, depth-dependent point spread function (PSF) to account for blurring in the 

final image due to both scattering of emitted fluorescence photons in cortical gray matter, and also 
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optical distortions caused by out-of-plane signal.  Our method for calculating the PSF consisted of two 

steps: first, we used a Monte Carlo (MC) simulation-based approach to model the scattering and 

absorption of photons emitted from a point source within the tissue volume, varying the depth of the 

source in 50 micron increments; second, we used ray transfer matrix analysis to trace the trajectories of 

these photons through a tandem-lens optical system onto a sensor at the image plane.   

 

MC simulations were carried out using a proprietary library built on an open-source framework for 

physical rendering using backward MC ray tracing, the Physically-based Rendering Toolkit (PBRT) 

(Pharr et al., 2016). We extended the PBRT framework to simulate photon interactions with highly 

turbid media using forward MC simulations based on an algorithm proposed by Abdellah et al. (2017).  

To determine the PSF, we moved an isotropically radiating point source of 108 photons throughout a 

semi-infinite (lateral extent) volume of tissue, beginning at the bottom of the microcircuit in increasing 

increments of 50 μm, allowing each photon to scatter until it was either absorbed, or exited the cortical 

surface.  Coefficients of reduced scattering and absorption at  ~665 nm were taken to be 4 mm-1 and 

0.4 mm-1, respectively, interpolated from optical measurements made in rat gray matter for wavelengths 

of light spanning 450 to 700 nm (Mesradi et al., 2013).  We chose the wavelength to correspond to 

peak emissions in the RH-1691/1692 family of blue voltage-sensitive dyes (Berger et al., 2007; Ferezou 

et al., 2006; Petersen et al., 2003a; Shoham et al., 1999).  Refraction at the tissue-air interface was 

calculated using the vector formulation of Snell’s law.  Using ray transfer matrix analysis, photons 

emanating from the tissue surface were propagated through an optical system modeled after a tandem-

lens epifluorescence macroscope setup first proposed by Ratzlaff and Grinvald (1991), and 

subsequently used in several VSDI studies (Ferezou et al., 2006; Petersen et al., 2003a, 2003b).  The 

system consists of two compound lenses (modeled using the thin lens approximation) set to infinite 

focus and placed face-to-face (Ratzlaff and Grinvald, 1991).  Optical parameters (focal length, f-number 

and working distance) were taken from Petersen et al. (2003b), resulting in a focal plane ~300 μm 

below the pia.  The point source produced a sunburst image pattern on the detector array for each 

depth, to which a two-dimensional Gaussian surface was fit using a non-linear optimizer (Python).  

From these surfaces, we extracted the average spatial standard deviation ,and fit the resulting array of 

values to a decaying exponential function to determine a depth-dependent PSF for the entire tissue-

lens system.  The standard deviations extracted from our PSF were used to calculate spatial kernel 

widths for convolution of the data with a Gaussian filter (see Equation (2.3)).       
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Mean-field equations 

Following the approach of Dorn and Ringach (2003), Kuhn et al. (2004), Muller et al. (2007), and 

Zerlaut et al. (2018), the membrane potential of a LIF neuron evolves according to: 

𝐶"
𝑑𝑉"
𝑑𝑡 = 𝑔L(𝐸L − 𝑉") + 𝑔J(𝐸J − 𝑉") + 𝑔g(𝐸g − 𝑉") − 𝐼OPQRS (3.1) 

𝑑𝑔L
𝑑𝑡

= −
1
𝜏L
𝑔L + 𝑞L𝑆L(𝑡) (3.2) 

𝑑𝑔J
𝑑𝑡

= −
1
𝜏J
𝑔J + 𝑞J𝑆J(𝑡) (3.3) 

where 𝐶" is membrane capacitance, 𝑔L, 𝑔J, and 𝑔g are excitatory (AMPA and NMDA), inhibitory 

(GABA) synaptic conductance, and leak conductance, respectively, 𝐸L, 𝐸J, and 𝐸g are the respective 

reversal potentials, 𝜏L and 𝜏J are the excitatory and inhibitory time constants, 𝑞L and 𝑞J are the quantal 

synaptic conductance increases, and 𝑆L and 𝑆J are presynaptic spike trains (Dorn and Ringach, 2003; 

Kuhn et al., 2004; Muller et al., 2007; Zerlaut et al., 2018).  The term 𝐼OPQRS represents a depolarizing 

current injected at the soma to compensate for missing external inputs to our microcircuit (see Results).  

Defining a new quantity, the “effective potential”, as: 

𝑉FGG =
𝑔L𝐸L + 𝑔J𝐸J + 𝑔g𝐸g − 𝐼OPQRS

∑ 𝑔XX
(3.4) 

allows us to rewrite Equation (3.1) in terms of the true and effective potentials, and rearrange to obtain: 

𝜏FGG
𝑑𝑉"
𝑑𝑡 = 𝑉FGG − 𝑉" (3.5) 

where  

𝜏FGG =
𝐶"
∑ 𝑔XX

(3.6) 

We note that Equation (3.5) has the form of an RC low-pass filter, with a cutoff frequency given by 

1 𝜏FGG⁄ ; therefore we expect 𝑉FGG to be a reasonable approximation of 𝑉", provided the frequency of 

characteristic fluctuations in 𝑉FGG don’t exceed 1 𝜏FGG⁄ .  The above equations hold true both for a single 

neuron, and in expectation across a population of neurons.  Furthermore, if 𝑆L and 𝑆J are 

inhomogeneous Poisson processes, then in expectation, the terms 𝑆L and 𝑆J in Equations (3.2) and 

(3.3) are replaced with time-varying mean firing rates (Muller et al., 2007).  Thus, in expectation, 

〈𝑉FGG〉 =
〈𝑔L〉𝐸L + 〈𝑔J〉𝐸J + 〈𝑔g〉𝐸g − 〈𝐼OPQRS〉

∑ 〈𝑔X〉X
(3.7) 
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𝑑〈𝑔L〉
𝑑𝑡

= −
1
𝜏L
〈𝑔L〉 + 𝑞L𝜈L (3.8) 

𝑑〈𝑔J〉
𝑑𝑡

= −
1
𝜏J
〈𝑔J〉 + 𝑞J𝜈J (3.9) 

 

Numerical integration of Equations (3.8) and (3.9) allowed us to analytically relate mean firing rates to 

𝑉".     

 

Post-processing and analysis  

All code for analysis was written in the Python programming language.    
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