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Abstract24

Modern biological experiments are becoming increasingly complex, and designing these experi-25

ments to yield the greatest possible quantitative insight is an open challenge. Increasingly, compu-26

tational models of complex stochastic biological systems are being used to understand and predict27

biological behaviors or to infer biological parameters. Such quantitative analyses can also help28

to improve experiment designs for particular goals, such as to learn more about specific model29

mechanisms or to reduce prediction errors in certain situations. A classic approach to experiment30

design is to use the Fisher information matrix (FIM), which quantifies the expected information a31

particular experiment will reveal about model parameters. The Finite State Projection based FIM32

(FSP-FIM) was recently developed to compute the FIM for discrete stochastic gene regulatory33

systems, whose complex response distributions do not satisfy standard assumptions of Gaussian34

variations. In this work, we develop the FSP-FIM analysis for a stochastic model of stress response35

genes in S. cerevisae under time-varying MAPK induction. We verify this FSP-FIM analysis and36

use it to optimize the number of cells that should be quantified at particular times to learn as37

much as possible about the model parameters. We then extend the FSP-FIM approach to explore38

how different measurement times or genetic modifications help to minimize uncertainty in the sens-39

ing of extracellular environments, and we experimentally validate the FSP-FIM to rank single-cell40

experiments for their abilities to minimize estimation uncertainty of NaCl concentrations during41

yeast osmotic shock. This work demonstrates the potential of quantitative models to not only42

make sense of modern biological data sets, but to close the loop between quantitative modeling43

and experimental data collection.44
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INTRODUCTION45

The standard approach to design experiments has been to rely entirely on expert knowl-46

edge and intuition. However, as experimental investigations become more complex and seek47

to examine systems with more subtle non-linear interactions, it becomes much harder to im-48

prove experimental designs using intuition alone. This issue has become especially relevant49

in modern single-cell-single-molecule investigations of gene regulatory processes. Perform-50

ing such powerful, yet complicated experiments involves the selection from among a large51

number of possible experimental designs, and it is often not clear which designs will provide52

the most relevant information. A systematic approach to solve this problem is model-driven53

experiment design, in which one combines existing knowledge or experience to form an as-54

sumed (and partially incorrect) mathematical model of the system to estimate and optimize55

the value of potential experimental settings. In practice, such preliminary models would56

be defined by existing data taken in simpler or more general settings such as inexpensive57

bulk experiments, or would be estimated from literature values conducted on similar genes,58

pathways or organisms. When parameter or model structures are uncertain these could59

be described according to a prior distribution, and experiments would need to be selected60

according to which performs best on average across the many possible model/parameter61

combinations.62

In recent years, model-driven experiment design has gained traction for biological mod-63

els of gene expression, whether in the Bayesian setting [1] or using Fisher information for64

deterministic models [2], and even in the stochastic, single-cell setting [3–7]. Despite the65

promise and active development of model-driven experiment design from the theoretical66

perspective, more general, yet biologically-inspired approaches are needed to make these67

methods suitable for the experimental community at large. In this work, we apply model-68

driven experiment design to an experimentally validated model of stochastic, time-varying69

High Osmolarity Glycerol (HOG) Mitogen Activated Protein Kinase (MAPK) induction of70

transcription during osmotic stress response in yeast [8–10]. To demonstrate a concrete71

and practical application of model-driven experiment design, we find the optimal measure-72

ment schedule (i.e., when measurements ought to be taken) and the appropriate number of73

individual cells to be measured at each time point.74

In our computational analyses, we consider the experimental technique of single-mRNA75
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Fluorescence in situ Hybridization (smFISH), where specific fluorescent oligonucleotide76

probes are hybridized to mRNA of interest in fixed cells [11, 12]. Cells are then imaged, and77

the mRNA abundance in each cell are counted, either by hand or using automated software78

such as [13]. Such counting can be a cumbersome process, but little thought has been given79

typically to how many cells should be measured and analyzed at each time. Furthermore,80

when a dynamic response is under investigation, the specific times at which measurements81

should be taken (i.e., the times after induction at which cells should be fixed and analyzed)82

is also unclear. In this work, we use the newly developed finite state projection based Fisher83

information matrix (FSP-FIM, [6]) to optimize these experimental quantities for osmotic84

stress response genes in yeast.85

The first part of our current study introduces a discrete stochastic model to analyze86

time-varying MAPK-induced gene expression response in yeast and then demonstrates the87

use of FSP based Fisher information to optimize experiments to minimize the uncertainty88

in model parameters. In the second part of this study, we expand upon this result to89

find and experimentally verify the optimal smFISH measurement times and cell numbers90

to minimize uncertainty about unknown environmental inputs (e.g., salt concentrations)91

to which the cells are subjected. In this way, we are presenting a new methodology by92

which one can optimally examine behaviors of natural cells to obtain accurate estimations93

of environmental changes.94

BACKGROUND95

Gene regulation is the process by which small molecules, chromatin regulators, and gen-96

eral and gene-specific transcription factors interact to regulate the transcription of DNA97

into RNA and the translation of mRNA into proteins. Even within populations of geneti-98

cally identical cells, these single-molecule processes are stochastic and give rise to cell-to-cell99

variability in gene expression levels. Adequate description of such variable responses can100

only be achieved through the use of stochastic computational models [14–17]. In the fol-101

lowing subsections, we first introduce a non-equilibrium discrete stochastic model of HOG1-102

MAPK-induced gene expression, and we then discuss how this model can be analyzed and103

compared to data using finite state project analyses. All analysis codes are available at104

https://github.com/MunskyGroup/Fox_Complexity_2020.105
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Discrete stochastic model of HOG1-MAPK-induced gene expression.106

To motivate and demonstrate our new approach, we focus our examination on the dy-107

namics of the HOG1-MAPK pathway in yeast, which is a model system to study osmotic108

stress driven dynamics of signal transduction and gene regulation in single cells [18–23]. Dis-109

crete stochastic models of HOG1-MAPK activated transcription have been used successfully110

to predict the variability in adaptive transcription responses across yeast cell populations111

[9, 10, 24]. In particular, the authors in [9] used smFISH data to fit and cross-validate a112

number of different potential models with different numbers of gene states and time varying113

parameters. They found that dynamics of two stress response genes, STL1 and CTT1, could114

each be described accurately by the model depicted in Fig. 1a.115

In brief, the model [9] consists of transitions between four different gene states (S1, S2, S3,116

and S4). The probability of a transition from the ith to the jth gene state in the infinitesimal117

time dt is given by the propensity function, kijdt. Most of the rates {kij} are constant in118

time, except for the transition from S2 to S1, which is controlled by the time-varying level of119

the HOG1-MAPK signal in the nucleus, f(t). The resulting time-varying rate k21 is defined120

using a linear threshold function,121

k21(t) = max[0, α− βf(t)], (1)

where α and β set the threshold for k21(t) activation/deactivation. The function f(t) was122

calibrated at several NaCl concentrations by fitting the HOG1-MAPK nuclear localization123

signals as measured using a yellow fluorescence protein reporter [10]. Figure 1b (left) shows124

f(t) for osmotic stress responses to 0.2M and 0.4M NaCl, and Fig. 1b (right) shows the125

corresponding values of k21(t). In addition to the state transition rates, each ith state also126

has a corresponding mRNA transcription rate, kri. All mRNA molecules degrade with rate127

γ, independent of gene state. Further descriptions and validations of this model are given in128

Supplementary Note 1 and in [9, 10, 24]. All experimentally determined parameters for the129

STL1 and CTT1 transcription regulation models are provided in Supplemental Table S1,130

and experimentally determined parameters for the HOG1-MAPK Signal Model are listed in131

Supplemental Table S2 [10].132
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FIG. 1. Stochastic modeling of osmotic stress response genes in yeast. (a) Four-state model of gene

expression, where each state transcribes mRNA at a different transcription rate, but each mRNA

degrades at a single rate γ. (b) The effect of measured MAPK nuclear localization (depicted as

red dots in the cell) (left) on the the rate of switching from gene activation state S2 to S1 (right)

under 0.2M or 0.4M NaCl osmotic stress. The time at which k21 turns off is denoted with τ1 and

is independent of the NaCl level. The time at which k23 turns back on is given by τNaCl
2 depending

on the level of NaCl. (c) Time evolution of the STL1 mRNA in response to the 0.2M and 0.4M

NaCl stress. Model and parameters from [10] and summarized in Supplementary Notes I and II

and Supplementary Tables I and II.

The Finite State Projection analysis of stochastic gene expression133

To analyze the model described above, we apply the chemical master equation (CME)134

framework of stochastic chemical kinetics [25]. Combining the time-varying and constant135

state transition rates {kij}, transcription rates {kri}, and degradation rate γ from above, the136

CME can be written in matrix form as a linear ordinary differential equation, dp
dt

= A(t)p,137
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where the time-varying matrix A(t) is known as the infinitesimal generator (See Supplemen-138

tary Note 1). The CME has been the workhorse of stochastic modeling of gene expression,139

and it is usually analyzed using simulated sample paths of its solution via the stochastic140

simulation algorithm [26] or with moment approximations [8, 27]. Alternatively, the CME141

can also be solved with guaranteed errors using the FSP approach [28, 29], which reduces142

the full CME only to describe the flow of probability among the most likely observable states143

of the system. Details of the FSP approach to solving chemical kinetic systems are provided144

in Supplementary Note 1. Application of the FSP analysis to the model in Fig. 1a with time145

varying rates k21 from Fig. 1b predicts time-evolving probability distributions as shown in146

Fig. 1c [10].147

Likelihood of smFISH data for FSP models148

Recently, it has come to light that for some systems, it is critical to consider the full149

distribution of biomolecules across cellular populations when fitting CME models [6, 10]. To150

match CME model solutions to single-cell smFISH data, one needs to compute and maximize151

the likelihood of the data given the CME model [9, 10, 24, 30]. Fortunately, the FSP152

approach allows for computation of the likelihood with guaranteed accuracy bounds [28]. We153

assume that measurements at each time point t ≡ [t1, t2, . . . , tNt ] are independent, as justified154

by the fact that fixation of cells for measurement precludes temporal cell-to-cell correlations.155

Measurements of Nc cells can be concatenated into a matrix Dt ≡ [d1,d2, . . . ,dNc ]t of the156

observable mRNA species at each measurement time t.157

The likelihood of making the independent observations for all Nc measured cells is the158

product of the probabilities of observing each cell’s measured state. For most gene expression159

models, however, states are only partially observable, and we define the observed state xLi160

as the marginalization (or lumping) over all full states {xj}i that are indistinguishable from161

xi based on the observation. For example, the model of STL1 transcription consists of four162

gene states (S1-S4, shown in Fig. 1a), which are unobserved, and the measured number of163

mRNA, which is observed. If we let index i denote the number of mRNA, then the observed164

state xLi would lump together the full states (S1,i), (S2,i), (S3,i), and (S4,i). We next define165

yi as the number of experimental cells that match xLi at time t. Under these definitions, the166

likelihood of the observed data (and its logarithm) given the model can be written:167

7

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2020. ; https://doi.org/10.1101/812479doi: bioRxiv preprint 

https://doi.org/10.1101/812479
http://creativecommons.org/licenses/by-nd/4.0/


`(D;θ) = M

tNt∏
t=t1

∏
i∈JD

p(xLi ; t,θ)yi

log `(D;θ) =

tNt∑
t=t1

∑
i∈JD

yi log(p(xLi ; t,θ)) + logM, (2)

where JD is the set of states observed in the data, M is a combinatorial prefactor (i.e., from168

a multinomial distribution) that comes from the arbitrary reordering of measured data, and169

p(xLi ; t,θ) is the marginalized probability mass of the observable species,170

p(xLi ; t,θ) =
∑

xj∈xL
i

p(xj; t,θ).

The vector of model parameters is denoted by θ = [θ1, θ2, ...]. Neglecting the term logM ,171

which is independent of the model, the summation in Eq. 2 can be rewritten as a product172

y logpL, where y ≡ [y0, y1, . . .] is the vector of the binned data, and pL = [p(xL0 ), p(xL1 ), . . .]T173

is the corresponding marginalized probability mass vector. One may then maximize Eq. 2174

with respect to θ to find the maximum likelihood estimate (MLE) of the parameters, θ̂,175

which will vary depending on each new set of experimental data. We next demonstrate how176

this likelihood function and the FSP model of the HOG1-MAPK induced gene expression177

system can be used to design optimal smFISH experiments using the FSP-based Fisher178

information matrix [6].179

RESULTS180

The Finite State Projection based Fisher information for models of signal-activated181

stochastic gene expression.182

The Fisher information matrix (FIM), is a common tool in engineering and statistics183

to estimate parameter uncertainties prior to collecting data, and which allows one to find184

experimental settings that can make these uncertainties as small as possible [3, 4, 31–34].185

Recently, it has been applied to biological systems to estimate kinetic rate parameters in186

stochastic gene expression systems [3–6, 35]. In general, the FIM for a single measurement187

is defined:188
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I(θ) = E
{

(∇θ logp(θ))T (∇θ logp(θ))
}
, (3)

where the vector logp(θ) contains the log-probabilities of each potential observation, and the189

expectation is taken over the probability distribution of states p(θ) assuming the specific190

parameter set θ. As the number of measurements, Nc, is increased such that maximum191

likelihood estimates (MLE) of parameters are unbiased, the distribution of MLE estimates192

is known to approach a multivariate Gaussian distribution with a covariance given by the193

inverse of the FIM, i.e.,194

√
Nc(θ̂ − θ∗)

dist−−→ N (0, I(θ∗)−1). (4)

In [6], we developed the FSP-based Fisher information matrix (FSP-FIM), which allows one195

to use the FSP solution p(t), and its sensitivity sθj ≡
dp
dθj

, to find the FIM for stochastic196

gene expression systems. For a general FSP model, the dynamics of the sensitivity to each197

jth kinetic parameter dp
dθj

can be calculated according to:198

d

dt

 p

sθj

 =

 A(t) 0

Aθj(t) A(t)

 p

sθj

 , (5)

where Aθj = ∂A
∂θj

. Solving Eq. 5 requires integrating a coupled set of ODEs that is twice as199

large as the original FSP system. The FSP-FIM at a single time t is then given by:200

F(θ, t)j,k =
∑
i

1

p(xi; t,θ)
siθj(t)s

i
θk

(t), (6)

where the summation is taken over all states {xi} included in the FSP analysis (or over all201

observed states {xLi } in the case of lumped observations). We note that the FSP computation202

of the FIM should be computationally tractable for problems for which the FSP solution itself203

is tractable. However, since the size of the FSP sensitivity matrix (Eq. 5) scales exponentially204

with the number of species, practical applications of the presented formulation of the FSP-205

FIM are currently restricted to models that have, or can be reduced to have, three or fewer206

distinct chemical species.207
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The FIM for a sequence of measurements taken independently (e.g., for smFISH data)208

at times t = [t1, t2, . . . , tNt ] can be calculated as the sum across the measurement times:209

I(θ, t, c) =
Nt∑
l=1

clF(θ, t = tl), (7)

where c = [c1, c2, . . . , cNt ] is the number of cells measured at each lth measurement time.210

For smFISH experiments, the vector c plays an important role in the design of the study.211

By optimizing over all vectors c that sum to Ntotal, one can find how many cells should be212

measured at each time point and which time points should be skipped entirely, (i.e., cl = 0).213

In the next subsection, we verify the FSP-FIM for this stochastic model with a time-214

varying parameter, and later find the optimal c for STL1 mRNA in yeast cells.215

The FSP-FIM can quantify experimental information for stochastic gene expression216

under time-varying inputs217

Our work in [6] was limited to models of stochastic gene expression that had piecewise218

constant reaction rates. Here, we extend this to time-varying reaction rates that affect219

the promoter switching in the system and which lead to time-varying A(t) in Eq. 5. For220

example, in the model depicted in Fig. 1a, the temporal addition of osmotic shock causes221

nuclear translocation of HOG1-MAPK, according to the time-varying function in Eq. 1.222

Model parameters simultaneously fit to experimentally measured 0.2M and 0.4M STL1223

mRNA were adopted from [10] and used as a reference set of parameters (yellow dots in224

Fig. 2a and S1), which we define as θ∗. These reference parameters were used to generate225

50 unique and independent simulated data sets, and each nth simulated data set was fit to226

find the parameter set, θ̂n, that maximizes the likelihood for that simulated data set. This227

process was repeated for two different experiment designs, including the original intuitive228

design from [10] (results shown in Fig. 2) and an optimized design discussed below (results229

shown in Fig. S1). To ease the computational burden of this fitting, the four parameters230

with the smallest sensitivities and largest uncertainties (i.e., those parameters that had the231

least effect on the model predictions and which were most difficult to identify) were fixed232

at their baseline values. The resulting MLE estimates for the remaining five parameters233

were collected into a set of {θ̂n} and are shown as yellow dots in Figs. 2 and S1. Using the234
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FIG. 2. Verification of the FSP-FIM for the time-varying HOG1-MAPK model.(a) Marginal param-

eter histograms (top panels) and joint scatter plots (gray dots) for the MLE parameter estimates

from 50 simulated data sets and for a subset of model parameters. All parameters are shown in

logarithmic scale. The ellipses show the 95% CI for the inverse of the FIM (purple) and gaus-

sian approximation of MLE scatter plot (orange). The yellow dots indicate the “true” parameters

at which the FIM and simulated data sets were generated. (b) Rank-paired eigenvalues (vi) for

the covariance of MLE estimates (orange) and inverse of the FIM (blue). The angles between

corresponding rank-paired eigenvectors (φi) are shown in degrees.

asymptotic normality of the maximum likelihood estimator and its relationship to the FIM235

(Eq. 4), we then compared the 95% confidence intervals (CIs) of the inverse of the Fisher236

information (i.e., the Cramér Rao bound) to those of the MLE estimates (compare the purple237

and orange ellipses in Figs. 2a and S1a). We also compared the eigenvalues of the inverse238

of the Fisher information, {vi}, to the correspondingly ranked eigenvalues of the covariance239

matrix of MLE estimates, ΣMLE, in Figs. 2b and S1b. For further validation, we noted that240

the principle directions of the ellipses in Figs. 2a and S1a also match for the FIM and MLE241

analyses, as quantified by the angle between the paired FIM and ΣMLE eigenvectors (Figs.242
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2b and S1b). For comparison, the angles between rank-matched eigenvectors of the FIM and243

ΣMLE were all less than 12◦, whereas non rank-matched eigenvectors were all greater than244

79.9◦. With the FSP-FIM verified for the HOG1-MAPK induced gene expression model,245

we next explore how the FSP-FIM can be used to optimally allocate the number of cells to246

measure at each time after osmotic shock.247

Designing optimal measurements for the HOG1-MAPK pathway in S. cerevisae248

To explore the use of the FSP-FIM for experiment design in a realistic context of MAPK-249

activated gene expression, we again utilize simulated time-course smFISH data for the os-250

motic stress response in yeast.251

We start with a known set of underlying model parameters that were taken from simulta-252

neous fits to 0.2M and 0.4M data in [10] (non-spatial model) to establish a baseline parameter253

set that is experimentally realistic. These parameters are then used to optimize the allocation254

of measurements at different time points t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]255

minutes after NaCl induction. Specifically, we ask what fraction of the total number of cells256

should be measured at each time to maximize the information about a specific subset of257

important model parameters. We use a specific experiment design objective criteria referred258

to as Ds-optimality, which corresponds to minimizing the expected volume of the param-259

eter space uncertainty for the specific parameters of interest [35], and which is found by260

maximizing the product of the eigenvalues of the FIM for those same parameters.261

Mathematically, our goal is to find the optimal cell measurement allocation,262

copt = arg max
c
|I(c;θ)|Ds such that

Nt∑
l=1

cl = 1, (8)

where cl is the fraction of total measurements to be allocated at t = tl, and the metric263

|I(c;θ)|Ds refers to the product of the eigenvalues for the total FIM (Eq. 7). The fraction264

of cells to be measured at each time point, c, was optimized using a greedy search, in which265

single-cell measurements were chosen one at a time according to which time point predicted266

the greatest improvement in the optimization criteria (see Supplementary Note 3 for more267

information).268
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To illustrate our approach, we first allocated cell measurements according to Ds-269

optimality as found through this greedy search. Figure 3 shows the optimal fraction of270

cells to be measured at each time following a 0.2M NaCl input and compares these fractions271

to the experimentally measured number of cells from [10]. While each available time point272

was allocated a non-zero fraction of measurements, three time points at t = [10, 15, 30]273

minutes were vastly more informative than the other potential time points. To verify this274

result, we simulated 50 data sets of 1,000 cells each and found the MLE estimates for each275

sub-sampled data set. We compared the spread of these MLE estimates to the inverse of276

the optimized FIM, shown in Fig. S1.277

Comparing Figs. S1 with Fig. 2 illustrates the increase in information of the optimal278

0.2M experiment compared to the intuitively designed experiment from [10]. In addition to279

providing much higher Fisher information, the optimal experiment requires measurement of280

only three time points compared to the 16 time points that were measured in the original281

experiment. Furthermore, we note that the FIM prediction of the MLE uncertainty is more282

accurate for the simpler optimal design, which is likely related to our observation that MLE283

estimates converge more easily for the optimized experiment design than they do for the284

original intuitive design.285

Figure 4 next compares the Ds-optimality criteria for the optimal (solid horizontal lines)286

and intuitive ([10], dashed horizontal lines) experiment designs to 1,000 randomly designed287

experiments for the 0.2M (black) and 0.4M (gray) conditions. To generate these random288

experiment designs, we selected a random subset of the measurement times, and allocated289

the total 1,000 cells among chosen time points using a multinomial distribution with equal290

probability for each time point. Figure 4a shows that the intuitive experiment is more291

informative than most random experiments, but is still substantially less informative than292

the optimal experiment.293

In many practical applications, a scientist would be unlikely to have precise a priori294

knowledge of model parameters prior to conducting experiments. Rather, they would have295

some estimate of these parameters, such as rough knowledge of appropriate time scales or296

existing data from another type of experiment. Such estimates could come from previ-297

ous analyses of the system response to simpler experimental conditions, for measurements298

taken on slightly different cell lines or organisms, or considering results from different genes299

in related regulatory pathways. To explore the importance of knowing the exact process300
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FIG. 3. Optimizing the allocation of cell measurements at different time points. (a) Diagonal en-

tries of the Fisher information at different measurement times. The optimal measurement times

t = [10, 15, 30] minutes are highlighted in orange. (b) Comparison of optimal fractions of cells to

measure (blue) at different time points determined by the FSP-FIM compared to experimentally

measured numbers of cells at 0.2M NaCl (purple) from our work in [10]. (c) Probability distribu-

tions of STL1 mRNA at several of measurement times. The blue boxes denote the time points of

optimal measurements.

parameters or input dynamics prior to designing the experiment, we asked how well an ex-301

periment design optimized using parameters from one gene at a given level osmotic shock302

(e.g., STL1 at 0.2M NaCl) would do to estimate parameters for another gene in a different303

osmotic shock condition (e.g., CTT1 at 0.4M NaCl). Figure 4b demonstrates the impact304

of such mismatched experiment designs, where each row corresponds to a different intuitive305
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FIG. 4. Information gained by performing optimal experiments compared to actual experiments

(a) Ds-optimality for optimal design using three time points compared to the intuitive experiment

designs made using 16 time points are shown with horizontal lines (purple, 0.2M and blue, 0.4M).

Solid horizontal lines denote the optimal designs and dashed lines represent intuitive experiment

designs. Randomly designed experiments with 0.2M and 0.4M NaCl are shown in black and

orange. For the random experiments, the time points were selected by sampling them from the

experimental measurement times, and then a random number of measurements were assigned

to each selected time point. The inset shows the first 50 randomly designed experiments. (b)

The Ds-metric for different experiment designs (different rows) when applied to different genes

or different experimental levels of osmotic shock (different columns). Lighter shades (higher Ds-

metrics) indicate experimental designs that are more suitable to identify parameters.

or optimized experiment design (i.e., a specific allocation of cells to be measured at each306

time), and each column corresponds to a specific gene and specific osmotic shock condition307

to which that design could be applied. In all cases, the much simpler FIM-based optimal308

experiment designs perform as well or better than the more difficult intuitive designs, even309

when these FIM designs were computed assuming different environmental conditions and310

assuming genes whose parameters differ considerably from one another (see Supplemental311

Tables I and II for parameter sets). In other words, these results suggest that if one can312

compute a simple yet optimal experiment design based on one well-analyzed gene in a pre-313

viously studied environmental condition, then that design may be equally valuable when314

applied to student a new, but related gene in a similar, yet slightly different context.315
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FIG. 5. Overview of optimal design for biosensing experiments for the osmotic stress response

in yeast. (a) Unknown salt concentrations (purple dots) in the environment give rise to different

reactivation times, τ2, which affect the gene expression in the model through the rate k21. These

different reactivation times cause downstream STL1 expression dynamics to behave differently as

shown in panel (b). (c) Different responses can be used to resolve experiments that reduce the

uncertainty in τ2.

Using the FSP-FIM to design optimal biosensor measurements316

Thus far, and throughout our previous work in [6], we have sought to find the optimal317

set of experiments to reduce uncertainty in the estimates of model parameters. In this318

section, we discuss how the FSP-FIM allows for the optimization of experiment designs to319

address a more general problem of inferring environmental variables from cellular responses.320

Toward this end, we assume a known and parametrized model (i.e., the model defined above,321

which was identified previously in [10]), but which is now subject to unknown environmental322

influences. We explore what would be the optimal experimental measurements to take to323

characterize these influences. Specifically, we ask how many cells should be measured using324

smFISH, and at what times, to determine the specific concentration of NaCl to which the325

cells have been subjected – or, equivalently, we ask what experiments would be best suited326

to measure the effective stress induction level caused by addition of an unknown solution to327

the cells.328

Recall from above that in the HOG1-MAPK transcription model, extracellular osmo-329

larity ultimately affects stress response gene transcription levels through the time-varying330

parameter k21(t) (Eq. 1) as illustrated in Fig. 1b for 0.2M and 0.4M salt concentrations.331
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Higher salt concentrations delay the time at which k21(t) returns to its nonzero value. The332

function in Eq. 1 can be coarsely approximated by the sum of three Heaviside step functions,333

u(t− τi) as:334

k21(t) = k021 (u(t)− u(t− τ1) + u(t− τ2)) , (9)

where τ1 is the fixed delay of the time it takes for nuclear kinase levels to reach the k21335

deactivation threshold (about 1 minute or less, [9, 10]), and τ2 is the variable time it takes336

for the nuclear kinase to drop back below that threshold. In practice, the threshold-crossing337

time, τ2, should be directly related to the salt concentration experienced by the cell under338

reasonable salinity levels. This relationship is shown in Fig. 1b and 5b, where a 0.2M NaCl339

input exhibits a shorter τ2 than does a 0.4M input. For our analyses, we assume a prior340

uncertainty such that time τ2 can be any value uniformly distributed between τmin
2 = 6 and341

τmax
2 = 31 minutes, and our goal is to find the experiment that best reduces the posterior342

uncertainty in τ2 (and therefore could provide an estimate for the concentration of NaCl).343

To reformulate the FSP-FIM to estimate uncertainty in τ2 given our model, the first344

step is to compute the sensitivity of the distribution of mRNA abundance to changes in the345

variable τ2 using Eq. 5, in which Aθj(t) is replaced with Aτ2(t) = ∂A
∂τ2

as follows:346

d

dt

 p

sτ2

 =

 A(t) 0

Aτ2(t) A(t)

 p

sτ2

 . (10)

As k21(t) is the only parameter in A that depends explicitly on τ2, all entries of ∂A
∂τ2

are zero347

except for those which depend on k21(t), and348

Aτ2(t) =
∂A

∂k21

∂k21
∂τ2

= Ak21k
0
21δ(τ2), (11)

and therefore Aτ2 = ∂A
∂τ2

is non-zero only at t = τ2. Using this fact, the equation for the349

sensitivity dynamics is uncoupled from the FSP dynamics for t 6= τ2, and can be written350

simply as:351

d

dt
sτ2 =

 0 for t < τ2 with s(0) = 0

A(t)sτ2 for t > τ2 with sτ2(τ2) = k021Ak21p(τ2)
. (12)

17

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2020. ; https://doi.org/10.1101/812479doi: bioRxiv preprint 

https://doi.org/10.1101/812479
http://creativecommons.org/licenses/by-nd/4.0/


If the Fisher information at each measurement time is written into a vector f =352

[f1, f2, . . . , fNt ] (noting that the Fisher information at any time tl is the scalar quantity,353

fl), and the number of measurements per time point is the vector, c = [c1, c2, . . . , cNt ], then354

the total information for a given value of τ2 can be computed as the dot product of these355

two vectors,356

I(τ2) =
Nt∑
l=1

clfl = cT f . (13)

Our goal is to find an experiment that is optimal to determine the value of τ2, given an357

assumed prior that τ2 is sampled from a uniform distribution between τmin
2 and τmax

2 . To358

find the experiment copt that will reduce our posterior uncertainty in τ2, we integrate the359

inverse of the FIM in Eq. 13 over the prior uncertainty in τ2,360

copt = arg min
c,
∑
cl=1

∫ τmax
2

τmin
2

1

τmax
2 − τmin

2

I−1(c; τ2 = τ,θ)dτ (14)

= arg min
c,
∑
cl=1

∫ τmax
2

τmin
2

I−1(c; τ2 = τ,θ)dτ. (15)

For later convenience, we define the integral in Eq. 14 (i.e., the objective function of the361

minimization) by the symbol J , which corresponds to the expected uncertainty about the362

value of τ2 for a given c.363

Next, we apply the greedy search from above to solve the minimization problem in Eq. 15364

to find the experiment design copt that minimizes the estimation error of τ2. Figure 6 shows365

examples of seven different experiments to accomplish this task, ranked according to the366

FSP-FIM value J from most informative (top left) to least informative (bottom left), but367

all using the same number of measured cells. For each experiment, the FSP-FIM was used368

to estimate the posterior uncertainty (i.e., expected standard deviation) in the estimation369

of τ2, which is shown by the orange bars in Fig. 6. To verify these estimates, we then370

chose 64 uniformly spaced values of τ2, which we denote as the set {τ true2 }, and for each371

τ true2 , we simulated 50 random data sets of 1,000 cells distributed according to the specified372

experiment designs. For each of the 64×50 simulated data sets, we then determined the value373

τMLE
2 between τmin

2 and τmax
2 that maximized the likelihood of the simulated data according374

to Eq. 2. The root mean squared estimate (RMSE) error over all random values of τ true2 and375
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is 1,000. Gray bars represent the measurements of CTT1 and black bars STL1. The right panel

shows the value of the objective function in Eq. 14 for each experiment design in orange, and the

RMSE values for verification are shown in purple.

estimates,
√
〈(τMLE

2 − τ true2 )2〉, was then computed for each of the six different experiment376

designs. Figure 6 shows that the FIM-based estimation of uncertainty and the actual MLE-377
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based uncertainty are in excellent agreement for all experiments (compare purple and orange378

bars). Moreover, it is clear that the optimal design selected by the FIM-analysis performed379

much better to estimate τ2 than did the uniform or random experimental designs. A slightly380

simplified design, which uses the same time points as the optimal, but with equal numbers381

of measurements at each time, performed nearly as well as the optimal design.382

The set of experiment designs shown in Fig. 6 includes the best design that only uses383

STL1 (second from top), the best design that uses only CTT1 (fourth from top), and the best384

designs that uses some cells with CTT1 and some with STL1 (top design). To find the best385

experiment design for measurement of two different genes, we assumed that at each time,386

either STL1 mRNA or CTT1 mRNA (but not both) could be measured, corresponding to387

using smFISH oligonucleotides for either STL1 or CTT1. To determine which gene should388

be measured at each time, we compute the Fisher information for CTT1 and STL1 for every389

measurement time and averaged this value over the range of τ2. For each measurement time390

tl, the gene is selected that has the higher average Fisher information for τ2. The number391

of cells per measurement time were then optimized as before, except the choice to measure392

CTT1 or STL1 was based on which mRNA had the larger Fisher information (Eq. 13) at that393

specific point in time. The best STL1-only experiment design was found to yield uncertainty394

of 10.5 seconds (standard deviation); the best CTT1-only experiment was found to yield an395

uncertainty of 15.2 seconds and the best mixed STL1/CTT1 experiment design was found396

to yield an uncertainty of 10.4 seconds. In other words, for this case the STL1 gene was397

found to be much more informative of the environmental condition than was CTT1, and the398

use of both STL1 and CTT1 provides only minimal improvement beyond the use of STL1399

alone. We note that although measurement times in the optimized experiment design were400

restricted to a resolution of five minutes or more, the value of τ2 could be estimated with401

an error of only 10 seconds, corresponding to a roughly 30-fold improvement of temporal402

resolution beyond the allowable sampling rate.403

Experimental validation for FSP-FIM based designs of biosensor measurements.404

To experimentally validate our FSP-FIM based approach to design optimal measurement405

times, we next examined experimental smFISH data taken for the STL1 and CTT1 genes406

at different times following yeast osmotic shock [10]. These data include a total of 535-407
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4808 cells measured at each of 16 time points following osmotic shocks of 0.2M or 0.4M408

NaCl. We asked how well could we identify the concentration of the osmotic shock from409

the experimental data using only 75 individual cells per experiment. We again proposed410

the six different potential experiments depicted in Fig. 6, including: the optimal STL1 and411

CTT1 design, the optimal STL1 design, the simplified STL1 design with 15 cells for each412

of the optimal five time points, the optimal CTT1 design, the uniform STL1 design, and413

the random STL1 design. For each design, we created 1,000 different experimental replica414

datasets, each consisting of 100 cells randomly chosen from the original data. For each415

replica data set, we then used the CME model (Supplementary Note 1) with a parametrized416

form of the HOG1-MAPK nuclear localization signal (Supplementary Note 2) to find the417

NaCl concentration that maximizes the likelihood of the data given the model.418

Figure 7 shows the resulting histograms for the estimated NaCl concentrations for each of419

the six experiment designs, when the cells were actually subjected to experimental osmotic420

shocks of 0.2M NaCl (Fig. 7a) or 0.4M NaCl (Fig. 7c). From Figures 7a,c, it is clear that421

the FSP analysis provides an accurate estimate for the level of the osmotic shock input422

using a relatively small number of cells, despite the fact that producing such estimates423

was not an intended use of the model in its original formulation or parameter inference [9,424

10]. Figures 7b,d show the uncertainty (standard deviation) in the experimental estimate425

of NaCl concentration (light bars), when cells are collected according to the six specific426

experiment designs, and compares these results to the FSP-FIM uncertainty estimates (dark427

bars) using the simplified step input function (Eq. 9). With the exception of the sub-428

optimal CTT1-only design, the close matches between the relative trends of the variance429

in experimental estimation of NaCl and the variance predicted by the FSP-FIM analysis430

with the approximated step-function input gives further experimental validation that the431

FSP-FIM approach can be used to choose more informative experiment designs, even in432

cases where the FSP analyses uses inexact assumptions for model kinetics. The single433

discrepancy in trends led us to more closely examine the model and experimental data434

for CTT1 expression at the 35 minute time point that dominates the CTT1-only design.435

By examining Supplemental Figure S7 from [10], we found that this specific combination436

of CTT1 at 35 minutes following 0.4M NaCl osmotic shock showed a greater discrepancy437

between model and data than any of the other 63 combinations of 16 times, two genes438

and two conditions, yet it is unclear if that difference was an artifact of the experiment or439
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FIG. 7. Experimental validation of FSP-FIM based design for optimal biosensor measurements.

(a) Distribution of FSP-based MLE estimates for NaCl concentration using the six experimental

designs from Fig 6. Each distribution comes from 1,000 replicas of 75 cells per replica spread out

over the possible 16 time points. Replica data were sampled randomly from published experimental

data [10] that contain two or three biological replicas and 535-4808 cells per time point. The true

experimentally applied level of osmotic shock was 0.2M NaCl. (b) The MLE estimation standard

deviation for each experiment design applied to a data set taken at 0.2M NaCl (blue). These

deviations are compared to FSP-FIM deviation predictions using a piecewise constant model for

HOG1 nuclear localization (purple). (c,d) Same as (a,b) but for a true NaCl concentration of 0.4M.

an actual transient effect that only affected that specific combination of gene, time, and440

environmental condition.441
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DISCUSSION442

The methods developed in this work present a principled, model-driven approach to443

allocate how many snapshot single-cell measurements should be taken at each time during444

analysis of a time-varying stochastic gene regulation system. We demonstrate and verify445

these theories on a well-established model of osmotic stress response in yeast cells, which is446

activated upon the nuclear localization of phosphorylated HOG1 [9, 10]. For this system,447

we showed how to optimally allocate the number of cells measured at each time so as to448

maximize the information about a subset of model parameters. We found that the optimal449

experiment design to estimate model parameters for the STL1 gene only required three450

time points. Moreover, these three time points (t = [10, 15, 30] minutes, highlighted by451

blue in Fig. 3b) are at biologically meaningful time points. At t = 10 and 15 minutes,452

the system is increasing to maximal expression, and the probability to measure a cell with453

elevated mRNA content is high, which helps reduce uncertainty about the parameters in the454

model that control maximal expression. Similarly, at the final experiment time of t = 30455

minutes, the system is starting to shut down gene expression, and therefore this time is456

valuable to learn about the time scale of deactivation in the system as well as the mRNA457

degradation rate. These effects are clearly illustrated in Fig. 3a, which shows that times458

t = 10 and t = 15 minutes provide the most information about parameters k12, k23 and k43,459

whereas measurements at t = 30 minutes provide the most information about γ. Because γ460

is the easiest parameter to estimate (e.g., its information is greater), not as many cells are461

needed at t = 30 minutes to constrain that parameter. Similarly, because kr2 is the most462

difficult parameter to estimate (e.g., it has the lowest information across all experiments),463

and because t = 10 minutes is one of the few time points to provide information about kr2,464

the optimal experimental design selects a large number of cells at the time t = 10 minutes.465

This analysis demonstrates that the optimal experiment design can change depending upon466

which parameters are most important to determine (e.g., γ or kr2 in this case), a fact that467

we expect will be important to consider in future experiment designs.468

Because we constrained all potential experiment designs to be within the subset of ex-469

periments performed in our previous work [10], we are able to compare the information470

of optimal experiment designs to intuitive designs that have actually been performed. We471

found that while the intuitive experiments were almost always better than could be expected472
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FIG. 8. Optimal mRNA degradation rates to reduce uncertainty about the extracellular environ-

ment. Uncertainty in the time at which the STL1 gene turns off, τ2, as a function of mRNA

degradation rate (purple). The black dot corresponds to the degradation rate that was quantified

from experimental data.

by random chance, they still provided several orders of magnitude lower Fisher information473

than would be possible with optimal experiments (Fig. 4a). Moreover, in our analyses,474

we found that optimal designs could require far fewer time points than those designed by475

intuition (e.g., only three time points were needed in Fig. 3), and therefore these designs476

can be much easier and less expensive to conduct. We also found that utility of optimal477

experiment designs could be relatively insensitive to variation in the experimental conditions478

or the specific model parameters used for the experiment design. For example, we found479

that experiments optimized for one gene at one level of osmotic shock were still at least as480

good–and in most cases better–than intuitive designs, even when conducted using different481

genes and at a different level of osmotic shock (Fig. 4b). In practice, this fact would allow482

for effective experiment designs despite inaccurate prior assumptions.483

In addition to suggesting optimal experiments to identify model parameters, we showed484

that the FSP approach could be used to infer parameters of fluctuating extracellular en-485

vironments from single-cell data and that the FSP-FIM combined with an existing model486

could be used to design optimal experiments to improve this inference (Figs. 5 and 6). We487

experimentally verified this potential by examining many small sets of single-cell smFISH488

measurements for different genes and different measurement times, and we showed that an489
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FSP-FIM analysis could correctly rank which experiment designs would give the best esti-490

mates of osmotic shock environmental conditions. Along a very similar line of reasoning,491

one can also adapt the FSP-FIM analysis to learn what biological design parameters would492

be optimal to reduce uncertainty in the estimate of important environmental variables. For493

example, Fig. 8 shows the expected uncertainty in τ2 as a function of the degradation rate of494

the STL1 gene assuming that 50 cells could be measured at each experimental measurement495

time t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] minutes using the smFISH approach.496

We found that the best choice for STL1 degradation rate to most accurately determine the497

extracellular fluctuations would be 2.4 × 10−3 mRNA/min, which is about half of the ex-498

perimentally determined value of 5.3× 10−3± 5.9× 10−5 from [10]. This result is consistent499

with our earlier finding that the faster degrading STL1 mRNA is a much better determinant500

of the HOG1 dynamics than is the slower-degrading CTT1 mRNA, and suggests that other501

less stable mRNA could be more effective still. We expect that similar, future applications502

of the FSP-based Fisher information will be valuable in other systems and synthetic biology503

contexts where scientists seek to explore how different cellular properties affect the trans-504

mission of information between cells or from cells to human observers. Indeed, similar ideas505

have been explored recently using classical information theory in [36–39], and recent work in506

[7, 40] has noted the close relationship between Fisher information and the channel capacity507

of biochemical signaling networks.508

We expect that computing optimal experiment designs for time-varying stochastic gene509

expression will create opportunities that could extend well beyond the examples presented510

in this work. Modern experimental systems are making it much easier for scientists and511

engineers to precisely perturb cellular environments using chemical induction [41–43] or512

optogenetic control [44–46]. Many such experiments involve stochastic bursting behaviors513

at the mRNA or protein level [8–10, 45], and precise optimal experiment design will be514

crucial to understand the properties of stochastic variations in such systems. A related field515

that is also likely to benefit from such approaches is biomolecular image processing and516

feedback control, for which one may need to decide in real time which measurements to517

make and in what conditions.518
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