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Abstract 

The projection targets of a neuronal population are a key feature of its anatomical 

characterization. Historically, tissue sectioning, confocal microscopy, and manual 

scoring of specific regions of interest have been used to generate coarse summaries of 

mesoscale projectomes. We present here TrailMap, a 3D convolutional network for 

extracting axonal projections from intact cleared mouse brains imaged by light-sheet 

microscopy. TrailMap allows region-based quantification of total axon content in large 

and complex 3D structures after registration to a standard reference atlas. The 

identification of axonal structures as thin as one voxel benefits from data augmentation 

but also requires a loss function that tolerates errors in annotation. A network trained 

with volumes of serotonergic axons in all major brain regions can be generalized to map 

and quantify axons from thalamocortical, deep cerebellar, and cortical projection 

neurons, validating transfer learning as a tool to adapt the model to novel categories of 

axonal morphology. Speed of training, ease of use, and accuracy improve over existing 

tools without a need for specialized computing hardware. Given the recent emphasis on 

genetically and functionally defining cell types in neural circuit analysis, TrailMap will 

facilitate automated extraction and quantification of axons from these specific cell types 

at the scale of the entire mouse brain, an essential component of deciphering their 

connectivity. 

 

Introduction 
Volumetric imaging to visualize neurons in intact mouse brain tissue has become a 

widespread technique. Light-sheet microscopy has improved both the spatial and 

temporal resolution for live samples (Bouchard et al., 2015; Liu et al., 2018) while 

advances in tissue clearing have lowered the barrier to imaging intact organs and entire 

organisms at cellular resolution (Ariel, 2017; Pan et al., 2016). Correspondingly, there is 

a growing need for computational tools to analyze the resultant large datasets in three 

dimensions. Tissue clearing methods such as CLARITY and iDISCO have been 

successfully applied to the study of neuronal populations in the mouse brain and 

automated image analysis techniques have been developed for these volumetric 

datasets to localize and count simple objects, such as cell bodies of a given cell type or 
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nuclei of recently active neurons (Chung et al., 2013; Menegas et al., 2015; Renier et 

al., 2016; Richardson and Lichtman, 2015). However, there has been less progress in 

software designed to segment and quantify axonal projections at the scale of the whole 

brains. 

 As single-cell sequencing techniques continue to dissect heterogeneity in 

neuronal populations (eg. Tasic et al., 2018; Zeisel et al., 2018) and as more genetic 

tools are generated to access these molecularly or functionally defined subpopulations, 

anatomical and circuit connectivity characterization is crucial to inform functional 

experiments (Luo et al., 2018; Sun et al., 2019). Traditionally and with some exceptions 

(eg. Oh et al., 2014; Zingg et al., 2014), ‘projectome’ analysis entails qualitatively 

scoring the density of axonal fibers in manually defined subregions selected from 

representative tissue sections and imaged by confocal microscopy. This introduces 

biases from the experimenter, including which thin tissue section best represents a 

large and complicated 3D brain region, how to bin axonal densities into high, medium, 

and low groups, whether to consider thin and thick axons equally, and whether to 

average or ignore density variation within a target region. Additionally, it can be difficult 

to precisely align these images to a reference atlas (Fürth et al., 2017). Volumetric 

imaging of stiff cleared samples and 3D registration to the Allen Brain Institute’s 

Common Coordinate Framework (CCF) has eliminated the need to select individual 

tissue sections (Allen Institute for Brain Science, 2017). However, without a 

computational method for quantifying axon content, researchers must still select and 

score representative optical sections (Schneeberger et al., 2019). 

 The automated identification and segmentation of axons from 3D images should 

circumvent these limitations. Recent application of deep convolutional neural networks 

(DCNNs) and Markov random fields to biomedical imaging have made excellent 

progress at segmenting grayscale CT and MRI volumes for medical applications (Alegro 

et al., 2017; Dong et al., 2018; Frasconi et al., 2014; Mathew et al., 2015; Thierbach et 

al., 2018). Other fluorescent imaging strategies including light-sheet, fMOST, and serial 

two-photon tomography have been combined with software like TeraVR, Vaa3D, Ilastik, 

and NeuroGPS-Tree to trace or otherwise reconstruct individual neurons (Peng et al., 

2010; Quan et al., 2016; Wang et al., 2019; Winnubst et al., 2019; Zhou et al., 2018). 
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However, accurate reconstruction often requires sparse labeling, but datasets with low 

cell numbers do not capture rare collateralization patterns.  

 As one of the most successful current DCNNs, the U-Net architecture has been 

used for local tracing of neurites in small volumes and for whole-brain reconstruction of 

brightly labeled vasculature (Çiçek et al., 2016; Falk et al., 2019; Di Giovanna et al., 

2018; Gornet et al., 2019; Ronneberger et al., 2015). We posited that a 3D U-Net would 

be well suited for identifying axons, a similarly regular structural element albeit with a 

much lower signal-to-noise ratio, dramatic class imbalance, uneven background in 

different brain regions, and difficult annotation strategy. In addition to these challenges, 

whole-brain imaging of axons necessitates the inclusion of artifacts that contaminate the 

sample. The paired clearing and analysis pipeline we present here mitigates the impact 

of autofluorescent myelin and non-specific antibody labeling that interfere with the 

detection of thin axons. Our network, TrailMap (Tissue Registration and Automated 

Identification of Light-sheet Microscope Acquired Projectomes), provides a solution to 

all of these challenges. We demonstrate its generalization to multiple labeling 

strategies, cell types, and target brain regions. Alignment to the Allen Institute reference 

atlas allows for visualization and quantification of individual brain regions.  We have also 

made available our best trained model such that any researcher with mesoscale 

projections in cleared brains can use TrailMap to process their image volumes or, with 

some additional training and transfer learning, adapt the model to their data. 

Results 

TrailMap procedures. To generate training data, we imaged 18 separate intact brains 

containing fluorescently labeled serotonergic axons (Fig. S1A). From these brains we 

cropped 36 substacks with linear dimensions of 100–300 voxels (Fig. 1A). Substacks 

were manually selected to represent the diversity of possible brain regions, background 

levels, and axon morphology. As with all neural networks, quality training data is crucial. 

Manual annotation of complete axonal structures in three dimensions is difficult, 

imprecise, and laborious for each volume to be annotated. One benefit of convolutional 

neural networks is the ability to input sparsely labeled 3D training data. We annotated 

3–10 individual XY planes within each substack, at a spacing of 80–180 µm between 
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labeled slices (Fig. 1A).  Drawings of axons included single voxels representing the 

cross section of a thin axon passing through the labeled slice. In the same XY slice, a 

second label surrounding the axon annotation (“edges”) was automatically generated 

and the remaining unlabeled voxels in the slice were given a label for “background.” 

Unannotated slices remained without a label as previously indicated. 

 

Fig. 1. Overview of the TrailMap workflow to extract axonal projections from volumetric data. (A) 
Annotation strategy for a single subvolume (120x120x101 voxels). Three planes are labeled with 
separate hand-drawn annotations for background, artifacts, and axons. The 1-pixel width ‘edges’ 
label is automatically generated. (B) Basic architecture of the encoding and synthesis pathways 
of the 3D convolutional U-Net. Feature maps are shown in gray with the concatenated features in 
white. (C) A network output thinning strategy produces skeletons faithful to the raw data but with 
grayscale intensity reflecting probability rather than signal intensity or axon thickness. XY and XZ 
projections of one subvolume are shown (122x609x122 µm). (D) A 2 mm-thick volumetric coronal 
slab, before and after the TRAILMAP procedure, which includes axon extraction, skeletonization, 
and alignment to the Allen Brain Atlas Common Coordinate Framework. 

Training data were derived from serotonin axons labeled by multiple strategies to 

better generalize the network (Fig. S1A). As serotonin neurons innervate nearly all 

forebrain structures, they provide excellent coverage for examples of axons in regions 

with variable cytoarchitecture and therefore, variable background texture and 

brightness. Our focus on imaging intact brains required the inclusion of contaminating 
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artifacts from the staining and imaging protocol since these non-specific and bright 

artifacts are common in cleared brains and interfere with methods for axon 

identification. We addressed this in two ways, first by implementing a modified version 

of the AdipoClear tissue clearing protocol (Branch et al., 2019; Chi et al., 2018) that 

reduces the autofluorescence of myelin. As fiber tracts composed of unlabeled axons 

share characteristics with the labeled axons we aim to extract, this reduces the rate of 

false positives in structures such as the striatum (Fig. S1B). Second, we included 40 

substacks containing representative examples of imaging artifacts and non-specific 

background and generated a fourth annotation label, “artifacts,” for these structures. 

From this set of 76 substacks, we cropped and augmented 10,000 separate 

cubes of 64x64x64 voxels to use as the training set. Our validation set comprised 1,700 

cubes extracted from 17 separate substacks, each cropped from one of nine brains not 

used to generate training data. The U-Net architecture included two 3D convolutions 

with batch normalization at each layer, 2x2x2 max pooling between layers on the 

encoder path, and 2x2x2 upconvolution between layers on the decoder path (Fig. 1B). 

Skip connections provide information necessary for recovering a high-resolution 

segmentation from the final 1x1x1 convolution. The final network was trained for 188 

epochs over 20 hours, but typically reached a minimum in the validation loss 

approximately a third of the way into training. Subsequent divergence in the training and 

validation F1 scores (see Materials and Methods) indicated overfitting and as such, the 

final model weights were taken from the validation loss minimum (Fig. S1C–E). 

 For a given input cube, the network outputted a 36x36x36 volume containing 

voxel-wise axon predictions (0 < p < 1). Large volumes, including intact brains, were 

processed with a sliding window strategy. From this output, a thinning strategy was 

implemented to generate a skeletonized armature of the extracted axons (Fig. 1C). 

Grayscale values of the armature were the weighted sum of 3D skeletons generated 

from binarization of network outputs. For visualizations, this strategy maintained axon 

continuity across low probability stretches that would otherwise have been broken by a 

thresholding segmentation strategy. A separate benefit of this skeletonization strategy is 

that it treats all axons, thin and thick or dim and bright, equally for both visualization and 

quantification. A second imaging channel was used to collect autofluorescence, which in 
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turn was aligned to the Allen Brain Atlas Common Coordinate Framework (CCF) via 

sequential linear and nonlinear transformation (http://elastix.isi.uu.nl/). These 

transformation vectors were then used to warp the axon armature into a standard 

reference space (Fig. 1D). 

Comparisons with random forest classifier. One of the most widely used tools for 

pixelwise classification and image segmentation is the random-forest-based software 

Ilastik (http://www.ilastik.org). We compared axon identification by TrailMap with 

multiple Ilastik classifiers and found TrailMap to be superior (best TrailMap model: 

recall: 0.752, precision: 0.377, 1-voxel exclusion zone precision: 0.790; best Ilastik 

classifier: recall: 0.208, precision: 0.661, 1-voxel exclusion zone precision: 0.867), but 

most notably in the clarity of the XZ projection (Fig. 2A–C). The increase in TrailMap’s 

precision when excluding ‘edge’ voxels suggested that many false positives are within 

one voxel of annotated axons. Ilastik examples used for comparison include classifiers 

trained in 3D with sparse annotations that include or exclude edge information as 

described for TrailMap, an example trained with images generated by iDISCO+, and a 

classifier trained in 2D using the exact set of labeled slices used to train TrailMap (Fig. 

S2A).  
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Fig. 2. Comparison of TRAILMAP to a random forest classifier. (A) From left to right: 60 µm Z-
projection of the probability map output of an Ilastik classifier trained on the same 2D slices as 
the TrailMap network; Typical segmentation strategy, at a p > 0.5 cutoff; Raw data for 
comparison; Skeletonized axonal armature extracted by TrailMap; Probability map output of the 
TrailMap network. To better indicate where p > 0.5, colormaps for images are grayscale below 
this threshold and colorized above it. Scale bar, 100 µm. Second row shows the same region as 
above, rotated to a X-projection. (B) Sparse axon identification by TrailMap and Ilastik, images 
show 300 µm of Z- or X-projection. Scale bar, 100 µm. (C) 3D maximum intensity projection of a 
raw volume of axons, the resultant Ilastik probabilities, and TrailMap skeletonization. Scale bar 
40 µm. (D) Network output from examples of contaminating artifacts from non-specific antibody 
labeling, similar to those included in the training set. Raw data, Ilastik segmentation and 
TrailMap skeletonization are shown. Scale bar 200 µm. 
 

To better understand which aspects of the TrailMap network contribute to its 

function, we trained multiple models without key components for comparison. As with all 

neural networks, we identified a number of hyperparameters that affected the quality of 

the network output. The most important was the inclusion of a weighted loss function to 

allow for imperfect annotations of thin structures. The cross-entropy calculation for 

voxels defined as “edges” were valued 30x less in calculating loss than the voxels 

annotated as axons. Manually labeling structures with a width of a single pixel 

introduced a large amount of human variability (Fig. S2B) and de-emphasizing the 

boundaries of these annotations allowed the network’s axon prediction to ‘jitter’ without 

producing unnaturally thick predictions (Fig. S2C). Relatedly, the total loss equation 

devalued background (7.5x) and artifact examples (1.875x) with respect to axon 

annotations—a set of weights that balances false positives and negatives and 

compensates for class imbalances in the training data (Fig. 2D, Fig. S2C, Table S1). 

Details of axonal projections. To determine TrailMap’s ability to identify axons from 

intact cleared samples, we tested a whole brain containing axon collaterals of serotonin 

neurons projecting to the regions of bed nucleus of stria terminalis. With the extracted 

axonal projectome transformed into the Allen Institute reference space, the axon 

armature could be overlaid on a template to better highlight their presence, absence, 

and structure in local subregions (Fig. 3A, Fig. S3). However, it was difficult to resolve 

steep changes in density or local hotspots of innervation without selectively viewing very 

thin sections. By averaging axons with a rolling sphere filter, a small hyper-dense zone 

is revealed in amygdala that would have been missed in region-based quantifications 
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(Fig. 3B, arrow). Total axon content in large complicated brain regions could be 

quantified (Ren et al., 2019) or otherwise projected and visualized to retain local density 

information in three dimensions (Fig. 3C and D).  

 

Fig. 3. Volumetric visualizations highlight patterns of axonal innervation. (A) Coronal Z-
projection of extracted serotonergic axons, color coded by depth (0–500 µm) and overlaid on 
the CCF-aligned serial two-photon reference atlas. See Fig. S1 for viral-transgenic labeling 
strategy. (B) The same volumetric slab as in A presented as a density heatmap calculated by 
averaging a rolling sphere (radius = 225 µm). Green arrow highlights a density hotspot in the 
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amygdala. (C) TrailMap-extracted serotonergic axons innervating forebrain are subdivided and 
color coded based on their presence in ABA-defined target regions. (D) Same brain as in C as 
seen from a dorsal viewpoint, with major subdivisions spatially separated. Midline represented 
by a dashed white line. Inset highlights the region indicated by the dashed box in A, Z-projection 
500 µm, scale bar 200 µm. (E) Left, mesh shell armature of the combined structures of the 
lateral (LA), basolateral (BLA), and basomedial (BMA) amygdala in coronal and sagittal views. 
Right, density heatmap and extracted axons of the amygdala for the same views. LA, BLA, and 
BMA are color coded in shades of green/blue by structure and axonal entry/exit points to the 
amygdala are colored in red. White arrows highlight the same density hotspot indicated in B. 
 

An added benefit of the transformation into a reference coordinate system is that 

brain regions as defined by the Allen Institute could be used as masks for highlighting 

axons in individual regions of interest. As an example, the aforementioned density 

observed in amygdala is revealed to be contributed by two nearby dense zones in the 

basomedial and basolateral amygdala, respectively (Fig. 3E). 

Generalization to other types of neurons and brain regions. Given that TrailMap 

was trained exclusively on serotonergic neurons, it may not generalize to other cell 

types if their axons are of different sizes, tortuosity, or bouton density. The network may 

also fail if they are labeled with a different genetic strategy or imaged at different 

magnification. However, our data augmentation provided enough variation in training 

data to produce excellent results in extracting axons from multiple additional cell types, 

fluorophores, viruses, and imaging setups. TrailMap successfully extracted brain-wide 

axons from pons-projecting deep cerebellar nuclei neurons retrogradely infected with 

AAVretro-Cre and locally injected in each DCN with AAV-DIO-tdTomato (Fig. 4A). 

Visualizing the whole brain (Fig. 4A) or the thalamus (Fig. 4B) in 3D reveals the 

contours of the contralateral projections of these neurons without obscuring information 

at the injection site or ipsilateral targets.  
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Fig. 4. Generalization to other cell types with and without transfer learning. (A) Dorsal view of 
posterior brain with extracted axon collaterals from pons-projecting deep cerebellar nuclei 
neurons color coded by their presence in major subregions. Injection sites in the right 
hemisphere lateral, interposed, and medial DCN from the same brain are indicated. (B) Coronal 
(top) and sagittal (bottom) views of the extracted axons (orange) within the structure of thalamus 
(cyan) from the brain in A. Scale bar 500 µm. Zoomed images (right) of midline thalamus show 
exclusion of axons from specific subregions. VPPC: ventral posterior nucleus, parvicellular part; 
VPM:ventral posteriomedial nucleus; and Po: posterior thalamic nuclear group. Midline shown 
as dashed vertical line; scale bar, 200 µm. (C) Extracted thalamocortical axons in barrel cortex. 
XZ-projection of a 3D volume extracted from a flatmount imaged cortex, rotated and aligned to 
barrel rows. Dashed lines indicate upper and lower bounds of cortex. Z projection 60 µm; scale 
bar, 100 µm. (D) Left, raw image of axons of prefrontal cortex neurons in posterior cortex. VIS, 
visual cortex; ECT, ectorhinal; ENTl, lateral entorhinal. Right, axons extracted by TrailMap 
model before (green) and after (red) transfer learning. Z-projection 80 µm; scale bar, 100 µm. 
Labeling procedure, virus, and transgenic mouse for all panels are described in Fig. S1 and 
Methods.  
 

We also tested TrailMap on functionally identified thalamocortical axons in barrel 

cortex labeled by conditional AAV-DIO-CHR2-mCherry and TRAP2 activity-dependent 

expression of Cre recombinase (DeNardo et al., 2019). The localized expression and 

higher density of these axons necessitates imaging at higher magnification, resulting in 

a change in axon appearance in the imaging volume. Buoyed by the spatial scaling 
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included in the data augmentation, TrailMap reliably revealed the dense thalamic 

innervation of somatosensory layer IV and weaker innervation of layer VI (Fig. 4C). 

Notably, though Ilastik performs moderately well on serotonergic axons, it fails to predict 

thalamocortical axons, perhaps owing to the change in scale of the imaging strategy 

(Fig. S4).  

Finally, TrailMap also extracted cortico-cortical projection axons from prefrontal 

cortex (PFC) labeled by retrograde CAV-Cre and AAV-DIO-mGFP-2A-synaptophysin-

mRuby.  Axons from PFC neurons imaged in posterior visual and entorhinal cortices 

were identified with the exception of the most superficial axons in layer I (Fig. 4D). The 

failure to identify layer I axons could be because the serotonergic training set did not 

include examples of superficial axons; as a result, the trained network used the 

presence of low intensity grayscale values outside the brain to influence the prediction 

for each test cube containing the edge of the sample. Using 17 new training substacks 

from brains with annotated superficial axons from PFC cortical projections and 5 new 

validation volumes, we performed transfer learning using our best model as the initial 

weights. After just five epochs, the model successfully identified these layer I axons 

(Fig. 4D). 

 

Discussion 

Here we present an adaptation of a 3D U-Net tuned for identifying axonal structures 

within noisy whole-brain volumetric data. Our trained network, TrailMap, is specifically 

designed to extract mesoscale projectomes rather than reconstructions of individual 

neurons. For intact brains with hundreds of labeled neurons or zones of high-density 

axon terminals, we are not aware of a computational alternative that can reliably identify 

these axons. Our clearing and image processing pipeline address a number of 

challenges that have prevented these mesoscale analyses up till now. First, all clearing 

techniques have at least some issues with background or non-specific labeling that can 

interfere with automated image analysis. Removing myelinated fiber tracts with a 

modified AdipoClear protocol greatly improved TrailMap’s precision in structures such 

as the striatum. Second, our weighted loss function considers manually annotated, non-
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specific, bright signals separately from other background areas—an essential step in 

reducing false positives. Relatedly, by devaluing the loss calculated for voxels adjacent 

to axon annotations, we reduced the rate of false negatives by allowing the network to 

err by deviations of a single voxel. Third, we present a strategy for thinning TrailMap’s 

output to construct an armature of predicted axons. This armature improves 

visualizations and reduces biases in analysis and quantification by giving each axon 

equal thickness independent of staining intensity or imaging parameters. 

Aligning armatures and density maps to the Allen Institute’s reference brain 

highlights which brain regions are preferentially innervated or avoided by a specific 

projection (Ren et al., 2019). Given that some brain regions are defined with less 

certainty, it will be possible to use the axon targeting of specific cell types to refine 

regional boundaries. As TrailMap can separate thalamocortical projections to individual 

whisker barrels (Fig. 4C), it will be interesting to locate other areas with sharp axon 

density gradients that demarcate substructures within larger brain regions. These 

collateralization maps will also assist neuroanatomists investigating the efferent 

projection patterns of defined cell populations. TrailMap has the added benefit of 3D, 

intact structures as the basis for quantification, but also the ability to process samples 

and images in parallel, reducing the active labor required to generate a complete 

dataset that spans the entire brain. 

TrailMap code is publicly available, along with the weights for our best model and 

example data. A consumer-grade GPU is sufficient for both processing samples and for 

performing transfer learning, while training a new model from scratch benefits from the 

speed and memory availability from cloud computing services. We hope that TrailMap’s 

ease of use will lead to its implementation by users as they test brain clearing as a tool 

to visualize their neurons of interest.  We expect that as neuronal cell types are 

becoming increasingly defined by molecular markers (Jorgenson et al., 2015), TrailMap 

can be used to map and quantify whole-brain projections of these neuronal types using 

viral-genetic and intersectional genetic strategies (eg. Ren et al., 2019).  
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Materials and Methods 

Animals. All animal procedures followed animal care guidelines approved by Stanford 

University's Administrative Panel on Laboratory Animal Care (APLAC). Individual 

genetic lines include wildtype mice of the C57BL/6J and CD1 strains, TRAP2 (Fos-

iCreERT2) available from Jackson, Stock # 030323), Ai65 (Jackson, Stock # 021875), 

and Sert-Cre (MMRRC, Stock #017260-UCD). Mice were group-housed in plastic cages 

with disposable bedding on a 12 hours light/dark cycle with food and water available ad 

libitum. 

Viruses. Combinations of transgenic animals and viral constructs are outlined in Fig. 

S1. Viruses used to label serotonergic axons include: AAV-DJ-hSyn-DIO-HM3D(Gq)-

mCherry (Stanford vector core), AAV8-ef1a-DIOFRT-loxp-STOP-loxp-mGFP (Stanford 

vector core; Ren et al. Cell 2018), AAV-retro-CAG-DIO-Flp (Salk Institute GT3 core; 

Ren et al. Cell 2018), AAV8-CAG-DIO-tdTomato (UNC vector core, Boyden group), 

AAVretro-ef1a-Cre (Salk Institute GT3 core), AAV8-ef1a-DIO-CHR2-mCherry (Stanford 

vector core), AAV8-hSyn-DIO-mGFP-2A-synaptophysin-mRuby (Stanford vector core, 

Addgene #71760), and Cav-Cre (Eric Kremer; (Schwarz et al., 2015)). 

AdipoClear labeling and clearing pipeline. Mice were transcardially perfused with 20 

ml 1x PBS containing 10 µg/µl heparin followed by 20 ml ice cold 4% PFA and post 

fixed overnight at 4° C. All steps in the labeling and clearing protocol are on a rocker at 

room temperature for a 1-hour duration unless otherwise noted. Brains are washed 3x 

in 1x PBS and once in B1n before dehydrating stepwise into 100% methanol (20, 40, 

60, 80% steps). Two additional washes in 100% methanol remove all the water before 

an overnight incubation in 2:1 dichloromethane (DCM):methanol. The following day, 2 

washes in 100% DCM and 3 washes in methanol precede 4 hours in a 5:1 

methanol:30% hydrogen peroxide mixture. Stepwise brains are rehydrated into B1n (60, 

40, 20% methanol), washed once in B1n and then permeabilized 2x in PTxwH 

containing 0.3M glycine and 5% DMSO. Samples are washed 3x in PTxwH before 

adding primary antibody (chicken anti-GFP, 1:2000, Aves Labs; rabbit anti-RFP, 1:1000, 

Rockland Inc). Incubation is for 7-11 days rocking at 37° C, subsequent washes also at 

this temperature. Brains are washed 5x in PTxwH over 12 hours and then 1x each day 
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for 2 additional days. Secondary antibody (donkey anti-rabbit, 1:1000, Thermo; donkey 

anti-chicken, 1:2000, Jackson) is incubated rocking at 37° C for 5-9 days. Wash 5x in 

PTxwH over 12 hours and then 1x each day for 2 additional days. Samples are 

dehydrated stepwise into methanol, as before, but with water as the counterpart, then 

washed 3x in 100% methanol, overnight in 2:1 DCM:methanol, and 2x 100% DCM the 

next morning. Extend the second wash in DCM until the brain sinks. Transfer to 

dibenzyl ether (DBE) in a fresh tube and incubate rocking for 4 hours before storing in 

another fresh tube of DBE at room temperature. Solutions--B1n: 1:1,000 Triton X-100, 

2% w/v glycine, 1:10,000 NaOH 10N, 0.02% sodium azide. PTxWH: in 1x PBS, 1:1,000 

Triton X-100, 1:2,000 Tween-20, 2 µg/µl heparin, 0.02% sodium azide. 

Light-sheet imaging. Image stacks were acquired with the LaVision Ultramicroscope II 

light-sheet microscope using the 2x objective at 0.8x optical zoom (4.0625 µm/pixel, XY 

dimension). Thalamocortical axons imaged at 1.299 µm/voxel, XY dimension. Maximum 

sheet objective NA combined with 20 steps of horizontal translation of the light-sheet 

improves axial resolution. Z-step size 3 µm. Axon images were acquired with the 640 

nm laser and a partner volume of autofluorescence of equal dimensions was acquired 

with the 488 nm laser. No pre-processing steps were taken before entering the TrailMap 

pipeline. 

TrailMap annotation strategy. To create the training set for axons, we used sparse 

annotations to label volumes of approximately 100–300 voxels/side. These were 

cropped from 18 samples across experimental batches from each of the three 

serotonergic neuron labeling strategies outlined in Fig. S1. Two experts traced axons in 

these 36 different substacks by labeling single XY-planes from the stack every ~20–30 

slices. Additionally, 40 examples of bright artifacts were found from these volumes and 

labeled as artifacts through an intensity thresholding method. Some examples 

contained both manually annotated axons and thresholded labels for artifacts. From 

these labeled volumes, 10,000 training examples were generated by cropping cubes 

(linear dimensions, 64x64x64) from random locations within each labeled substack. We 

also introduced an additional independent label, referenced as “edges.” This label was 

programmatically added to surround the manually drawn “axon” label in the single-voxel 
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thick XY plane. This label was generated and subsequently given less weight in the loss 

function specifically to help the network converge by reducing the penalty for making 

off-by-one errors in voxels next to axons. Both edge and artifact labels are only used for 

weighting in the loss function, but are still counted as background. We created a 

validation set using the same methodology as the training set; however, to test for 

resilience against the potential impacts of staining, imaging, and other technical 

variation, the substacks used for the validation set were from different experimental 

batches than the training set.  

Data augmentation and network structure. Due to the simple cylindrical shape of an 

average axon segment, Z-score normalization was avoided as it removed the raw 

intensity information from the original image volume. Without this information, the 

network could not differentiate natural variability in the background from true axons. To 

provide robustness to signal intensity variation during training, chunks were augmented 

in real time through random scaling and summating random constants. We used a 3D-

U-Net architecture (Çiçek et al., 2016) with input size 643 and output of a 363 

segmentation. The output dimensions are smaller, accounting for the lack of adequate 

information at the perimeter of the input cube to make an accurate prediction. To 

segment large volumes of intact brains, the network was applied in a non-overlapping 

sliding window fashion. 

We used a binary cross entropy pixel-wise loss function, where axons, 

background, edges, and artifacts were given static weights to compensate for class 

imbalances and the structural nature of the axon. The binary loss function is calculated 

as (−(𝑦log(𝑝)+(1−𝑦)log(1−𝑝)))*w for every voxel with the predicted value (p), the true 

label (y), and a weight (w) determined from the true label’s associated weight. The 

network was trained on Amazon Web Services using p3.xlarge instances for 

approximately 16 hours. Training is approximately 2x slower, using 6 volumes/batch (as 

compared to 8 volumes/batch on AWS) with a NVIDIA GeForce 11GB 1080 Ti GPU. 

We trained many models with varying weights for the loss function and data scaling 

factor and picked the model that resulted in the lowest validation loss.  
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Model Evaluation. To evaluate the network, we compared the validation set output by 

the model to ground truth human annotations. Each pixel was classified to be TP (true 

positive), TN (true negative), FP (false positive), or FN (false negative). It is important to 

note that we did not include pixels which were labeled as edges because these were 

predetermined to be ambiguous cases and would not be an accurate representation of 

the network’s performance. Using these four classes, we used the following formulas for 

metrics; Precision = TP/(TP + FP); Recall = TP/(TP + FN); F1 Value = 2 * TP/(2*TP + 

FP + FN); Jaccard Index: TP / (FP + TP + FN). Human-human comparison was done by 

having two separate experts annotate the same 41 slices from each of 8 separate 

substacks before proceeding with the same set of evaluations. 

Skeletonization and 3D alignment to CCF. Probabilistic volumes from the output of 

TrailMap were binarized at eight separate thresholds, from 0.2 to 0.9. These binned 

logical volumes were skeletonized in three dimensions before being summed back 

together, weighted by their initial probability bin. The resulting armature thus retains 

information about TrailMap’s prediction confidence without breaking connected 

structures by threshold segmentation. Small, truncated, and disconnected objects were 

removed as previously described (Ren et al., 2018). We downsampled this armature 

from 4.0625 µm/pixel (XY) and 3 µm/pixel (Z) into a 5x5x5 µm space and also 

downsampled the autofluorescence image into a 25x25x25 µm space. The 

autofluorescence channel was aligned to the Allen Institute’s 25 µm reference brain 

acquired by serial two photon tomography. These affine and bspline transformation 

parameters were used to warp the axons into the CCF at 5 µm scaling. Once in the 

CCF, ABA region masks can be implemented for pseudocoloring, cropping, and 

quantifying axon content on a region-by-region basis. Rolling sphere voxelization with a 

radius of 45 voxels (225 µm) operates by summing total axon content after binarization. 
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