
A new method for rapid genome classification,
clustering, visualization, and novel taxa
discovery from metagenome
Zhong Wang1,2,3,*, Harrison Ho3, Rob Egan1, Shijie Yao1, Dongwan Kang1, Jeff
Froula1, Volkan Sevim1, Frederik Schulz1, Jackie E. Shay3, Derek Macklin4, Kayla
McCue5, Rachel Orsini6, Daniel J. Barich7, Christopher J. Sedlacek8, Wei Li9,
Rachael M. Morgan-Kiss10, Tanja Woyke1,2,3, and Joan L. Slonczewski7

1Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
2Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
3School of Natural Sciences, University of California at Merced, Merced, CA, 95343, USA
4Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
5Program in Computational and Systems Biology, Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA
6Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305 US
7Department of Biology, Kenyon College, Gambier Ohio 43022, USA
8Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology,
University of Vienna, Vienna, 1090, Austria.
9Department of Land Resources and Environmental Sciences, Montana State University, Bozeman,
MT, 59717, USA
10Department of Microbiology, Miami University, Oxford, OH, 45056, USA
*Correspondence sent to: zhongwang@lbl.gov

ABSTRACT

Classifying taxa, including those that have not previously been identified, is a key task in characterizing the microbial
communities of under-described habitats, including permanently ice-covered lakes in the dry valleys of the Antarctic.
Current supervised phylogeny-based methods fall short on recognizing species assembled from metagenomic datasets
from such habitats, as they are often incomplete or lack closely known relatives. Here, we report an efficient software
suite, “Genome Constellation”, that is capable of rapidly characterizing a large number of metagenome-assembled
genomes. Genome Constellation estimates similarities between genomes based on their k-mer matches, and
subsequently uses these similarities for classification, clustering, and visualization. The clusters of reference genomes
formed by Genome Constellation closely resemble known phylogenetic relationships while simultaneously revealing
unexpected connections. In a dataset containing 1,693 draft genomes assembled from the Antarctic lake communities
where only 40% could be placed in a phylogenetic tree, Genome Constellation improves taxa assignment to 61%.
The clustering-based analysis revealed several novel taxa groups, including six clusters that may represent new
bacterial phyla. Remarkably, we discovered 63 new giant viruses, 3 of which could not be found by using the traditional
marker-based approach. In summary, we demonstrate that Genome Constellation provides an unbiased option to
rapidly analyze a large number of microbial genomes and visually explore their relatedness. The software is available
under BSD license at: https://bitbucket.org/berkeleylab/jgi-genomeconstellation/.

Keywords: Taxonomy classification, metagenome assembled genomes, metagenome visualization, Genome Con-
stellation
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INTRODUCTION
The McMurdo Dry Valleys, Antarctica, is one of Earth’s coldest dry deserts. Despite these year-round harsh condi-
tions, this unique landscape harbors numerous perennially ice-covered, permanently meromictic lakes with unique
geochemistry and microbial communities dominated by the microbial loop (Spigel and Priscu, 1998; Priscu et al., 1999;
Green and Lyons, 2009). Several of the lakes have been intensively studied for more than 3 decades as part of the
McMurdo Long Term Ecological Research Program (mcmlter.org). Along the valley, 80 km across the Ross Sea
from McMurdo Station, Lake Fryxell is located at the lower end of Taylor Valley, and situated between two glaciers,
the Canada and the Commonwealth. Lake Fryxell is relatively shallow (20 m) and fed by 13 ephemeral streams for
4-12 weeks during the summer months. Another lake in the Taylor Valley is Lake Bonney. Lake Bonnney is located at
the western end of Taylor Valley, and divided into two lobes (west and east) separated by a narrow sill which allows
mixing between the lobes for a few weeks during the austral summer. The west lobe of Lake Bonney is connected
to Taylor Glacier which harbors a unique geochemical feature, Blood Falls (Mikucki et al., 2009). Lake Bonney is
connected to significantly fewer streams and is signficantly deeper (40 m) than Lake Fryxell. The water columns are
dominated by the microbial loop, with few to no metazoans (Priscu et al., 1999) . The water columns of these lakes
exhibit permanent chemical and physical stratification, harboring unique bacterial and eukaryal communities adapted to
extreme environmental conditions including oligotrophy, low temperature, and hypersalinity (Roberts et al., 2004a; Li
et al., 2016b; Kwon et al., 2017). In addition, thick benthic cyanobacterial mats carpet the lake floors to the base of
the photic zone, often forming complex pinnacle-shaped structures reaching several centimeters tall (Jungblut et al.,
2016; Hawes et al., 2013). As the lakes and their ecosystems have been isolated for hundreds of years, they provide an
excellent opportunity to study the phylogenetic diversity change of the microbial species in response to climate change
(Hall et al., 2017).

Microbial species classification has evolved from phenotypic description to genetic characterization, from pairwise
genomic DNA–DNA hybridization to 16S ribosomal RNA (rRNA) homology (for a comprehensive review please see
(Achtman and Wagner, 2008)). With the advent of next generation sequencing and its application to metagenomics, we
now have an efficient toolset to rapidly identify hundreds of thousands of microbial species from a single sample, many
of which were previously unreported (Pasolli et al., 2019). More robust classification methods have been developed to
consider multiple phylogenetic markers (Wu and Eisen, 2008) (Waterhouse et al., 2012), or even the entire genome
(Rannala and Yang, 2008). Compared to other alternatives, whole genome-based classification methods carry the least
biases, and has the potential to discover novel species that share little homology to existing ones in current databases,
such as in the case of giant viruses (La Scola et al., 2003).

Traditional whole genome based phylogenetic methods rely on sequence alignments. They first identify homologous
regions between two genomes, at either the DNA or protein level, and then use these alignments to build phylogenetic
trees to infer relationships (Konstantinidis and Tiedje, 2005)(Parks et al., 2018). This approach has several limita-
tions, including low sensitivity to detect remotely related species, slow computing, and low scalability (reviewed in
(Zielezinski et al., 2017)). To overcome these limitations, several alignment-free methods were developed that are both
computationally efficient and resistant to noise (Zielezinski et al., 2017; Ren et al., 2018; Jain et al., 2018). Based on
their methodologies, there are three main categories of alignment-free genome similarity comparisons (reviewed in
(Zielezinski et al., 2017)). Briefly, k-mer/word-frequency-based methods first compute a vector of frequencies for all
or a subset of short k-mers (words) for each genome, and similarity is calculated using specific similarity functions.
Substring-based methods estimate genome similarity using shared substrings, while information theory-based methods
use sequence complexity or entropy to estimate their similarities. Recently, machine-learning based methods have also
been developed that either use species-specific k-mers (such as Kraken (Wood and Salzberg, 2014) and Taxonomer
(Flygare et al., 2016)) or secondary features derived from primary sequences (Li et al., 2017) for species classification.

As the computing requirement for pairwise genome comparisons has grown quadratically with the increasing
number of genomes, alignment-free methods that rely on a full set of k-mers become time- and cost- prohibitive with
hundreds of thousands of genomes. One strategy to overcome this limitation is to use a small set of k-mers. For example,
Mash only uses a small set of random k-mers (with smallest hash values, or MinHash) to approximate the similarity
between sequences with only minor accuracy loss (Ondov et al., 2016). Minimizers, on the other hand, chooses the
smallest k-mers in alphabetical order within a window (Roberts et al., 2004b). Most recently, advanced indexing
methods that enable ultra-fast searches at the read level have also been developed (Bradley et al., 2019). These heuristic
algorithms have demonstrated dramatic speed and space advantages; however, their accuracy suffers when dealing with
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poor genome assemblies from metagenomes (Olm et al., 2017). In addition, none of the current solutions have a built-in
function to visualize the relationships between genomes, which could be very useful for detecting unusual patterns.
Visualization of genome similarities so far is largely restricted to tree-based methods, and these methods are not suitable
for large numbers of genomes, nor do they offer interactive exploration capabilities.

In this study we developed Genome Constellation, a set of tools for the analysis of draft genomes assembled
from metagenomes with the following functionalities: 1) A Bit vector implementation for fast genome similarity
comparison; 2) genome similarity based clustering; 3) k-nearest-neighbor, or KNN-based taxonomy classification;
and 4) A web-based interactive visualization tool. We demonstrate these functionalities using two reference genome
datasets and a set of metagenome assembled genomes (MAGs) from the Antarctic lake communities.

METHODS AND MATERIALS
Using bit vectors as genome fingerprints, or Spectrum
To transform a genome sequence into a bit vector, we hash the k-mers of a genome into a vector of fixed length n (the
spectrum vector) as the following. First, each of the k-mers was hashed to a 128-bit k-mer vector using MurmurHash
3. We choose a fixed length k=23 as a trade-off between the ability to differentiate strains of the same species and
sufficient sensitivity to detect genus level similarity. A bit mask can be used to select a deterministic subset of k-mers,
each masked bit cutting the fraction of selected k-mers in half. Second, the p-th bit of the n-bit spectrum vector was set
to ”on,” where p is the integer represented by the second half (64 bits) of the k-mer vector modulo n. The saturation of
the bits set ”on” in the spectrum can be controlled by varying the length of the spectrum and the size of bit mask. The
larger the length of the spectrum, the more bits are masked, the lower saturation rate a spectrum has and vice versa.
For example, a 10Mb genome has 10 million k-mers, if we sample 1 out of every 1000 k-mers (at most 10,000 unique
k-mers) and the spectrum vector is 1 million in length, the resulting spectrum vector will have less than 1% bits are on,
or saturation. It is crucial to keep saturation rate low to avoid hash collisions, i.e., different k-mers map to the same bit
on the spectrum vector. These steps are illustrated in Figure 1A.

Genome Similarity Scores (GSS)
A comprehensive list of existing methods of comparing the similarity between two bit vectors can be found in (Choi
et al., 2010). Using the same notations, here a is the number of bits where the vectors are both 1s (or presence of the
same k-mers in both genomes), meaning ‘positive matches,’ b is the number of bits where only the second vector are 1s
(k-mers unique to genome 2), c is the number of bits where only the first vector are 1s (k-mers unique to genome 1),
and d is the number of bits where both vectors are 0s (or absence of these k-mers in both genomes), meaning ‘negative
matches.’ n is the sum of the four possibilities (n = a+b+ c+d). Here we adopted a modified version of Forbes-II
similarity, defined in Equation 1:

S =
a−np√
p(1− p)n

(1)

where p measures likelihood of k-mer matches between two unrelated sequences, and it is defined in Equation 2:

p =
(a+b)(a+ c)

n2 (2)

Datasets used in benchmarking GSS
NCBI 7k Reference genome dataset
NCBI Reference genomes were downloaded from the NCBI FTP archive (as of June, 2017). These include 29,195
Eukaryota, Bacteria, and Archaea genomes, 7,254 Virus and 84 Giant Virus genomes. For species with multiple strains,
only one representative was randomly chosen to reduce redundancy. Genomes with a size smaller than 200kb or bigger
than 200Mb were also excluded. A total of 7,261 genomes remained, including 222 viruses (presumably giant viruses),
631 Eukaryota, 6,100 Bacteria and 303 Archaea genomes. In addition, 4 synthetic genomes (3 JCVI Mycoplasma and 1
from Synthetic Yeast Genome Project). The complete list of this set can be found in Supplemental File 1. This dataset
is referred as ”NCBI 7k Reference” throughout the text.
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IMG100k genome dataset
A set of the sequenced microbial genomes were collected from the Intergrated Microbial Genomes and Microbiomes
(IMG/M) database (Chen et al., 2018) as of 09/19/2018. The same size filtering criteria was applied (between 200kb
and 200Mb) to obtain 98,048 genomes. After excluding 15,557 unclassified genomes, the remaining set includes
79,290 Bacteria, 2820 Archea, 143 Eukaryota, and 238 Viruses. A complete list of these genomes and their taxonomy
annotations is available in Supplemental File 2. This dataset is referred as ”IMG100k” throughout the text.

Antarctic genome dataset
Microbial communities were sampled from two meromictic lakes of the Taylor Valley, Victoria Land, Antarctica.
Water was sampled from the permanent chemoclines of Lake Fryxell (77.605◦S, 163.163◦E, 9 m depth) and Lake
Bonney, east lobe (77.719◦S, 162.283◦E, 15 m depth). Water samples were concentrated by filtration through 0.45 µm
filter. DNA was extracted from the filters using a MP FastDNA SPIN DNA kit (MP Biomedicals, CA) following the
manufacturer’s instructions (Bielewicz et al., 2011). Microbial lift-off mat samples were obtained from the surface ice of
Lake Fryxell. Mat DNA was extracted by the PowerBiofilm kit (MO BIO). Shotgun metagenomic library construction
and sequencing were carried out at DOE Joint Genome Institute (JGI) using standard protocols on the Illumnia HiSeq
2500 platform. The raw reads were quality filtered using JGI standard protocols and 1.2Tb total sequences were
obtained. The sequences and other related information are avialable at JGI GOLD databse with the accession no
Gs0118069 (https://gold.jgi.doe.gov/study?id=Gs0118069).

The reads were assembled using Hipmer (Georganas et al., 2015) with default parameters except that the minimum
contig size was set to 2.5kb. Unassembled reads were assembled using RAY assembler (Boisvert et al., 2010) with
k-mer=53, and assembly of any yet remaining unassembled reads using Megahit (Li et al., 2016a) for a final assembly
with the following parameters: k-list=33,43,63,83,103 min-contig-len=500bp. Genome bins were formed by MetaBAT2
(Kang et al., 2019) on contigs larger than 2.5kb (MetaBAT’s default) from the final assembly experiment. These bins or
metagenome assembled genomes (MAGs) are referred as ”Antartic MAGs” throughout the text.

A WebApp for microbial genome visualization
We developed a Web App for searching similar genomes using Python/Flask and hosted on Amazon Web Service (AWS),
Elastic Container Service (ECS). The URL of this app is http://constellation-classifier.jgi-ga.
org. With this app, a user may upload one or more genomes and search for similar genomes in the NCBI 7k or
IMG100k reference sets. Most searches only take a few seconds. The results from the NCBI 7k Reference can be
directly sent to visualization (below).

We implemented a force-directed graph visualization (Frick et al., 1994) for Genome Constellation using a publicly
available JavaScript library called vivagraph https://github.com/anvaka/VivaGraphJS. The web GUI
uses vivagraph’s WebGL rendering and an initial antigravity force constant of -1.2. Tools to adjust the distance scaling
factor and the antigravity force constant are provided to interactively optimize data distribution. An adjustable oval
boundary is applied to prevent singletons from moving out of range. To improve performance, the genome data are
divided into separate data files for node and link definitions, and the large link file can be further divided into smaller
files. The data files are loaded concurrently using web workers to improve the loading time. Genome nodes are added
to the graph first and simulation starts right after the nodes are all in the graph. Links are added in chunks while the
simulation is running to achieve a pleasant visual effect.

Classification based on GSS
IMG100k reference genome set was used to evaluate classification performance as it is a comprehensive dataset. We
selected 60,327 genomes that have known annotation at all ranks (superkindom, phylum, class, order, family, genus and
species, hence complete) for classification evaluation.

Classification was carried out using the k-nearest-neighbors (knn) algorithm, classification accuracy was calculated
based on leave-one-out cross validation. Briefly, in each iteration, the annotation of one of the genome in the dataset
was predicted based on the majority of its closest, or smallest GSS, k neighbors at each rank, and the prediction was
compared to its true annotation. The percentage of correct predictions at each rank was computed after all the genomes
had gone through one iteration.
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Co-clustering Antarctic genome bins with known reference
The GSS scores of the Antarctic genome bins and the NCBI 7k reference genomes were normalized and then converted
to a sparse distance matrix. de novo clustering was performed using the DBSCAN function from scikit-learn v0.20.1.
The sparse distance matrix was used as precomputed matrix for clustering, with eps=60.0 and min samples=2.

Clustering performance was evaluated based on reference genomes. For each of the cluster, the mean score of all
the pairs of genomes (1 for the pair comes from the same group at a particular rank, -1 otherwise) was computed, while
the mean of the scores from all clusters was used as overall clustering accuracy for each rank (superkingdom, phylum,
class, order, family and genus). For very large clusters, a random set of 100 genomes was chosen to estimate the mean
cluster score (9,900 pairs).

Antartic MAG annotation
We used two different methods to quickly filter out known species. The first method is CheckM (Parks et al., 2015).
Among the seven ranks (superkingdom, phylum, class, order, family, geneus, species) we only retained the highest
taxonomy rank CheckM was able to assign a genome bin to. For those MAGs that CheckM was not able to assign any
rank, we labeled them as ”na”.

We also developed a new method called LastTaxa for taxonomy classification of the Antarctic MAGs. For each MAG,
we first predicted protein-coding genes using prodigal (http://prodigal.ornl.gov/) and then carried out
homology search against NCBI’s non-redundant database (NR) database using LAST (http://last.cbrc.jp/).
Each of the protein gives a predicted taxonomy result based on its best hit (i.e. casts a vote), and the taxonomy predicted
by the majority of the proteins (i.e. taxonomy receives the most votes) is then assigned to the genome bin. More details
about LastTaxa are available at https://gitlab.com/jfroula/lasttaxa.

Phylogenomics analysis
To place the Antarctic MAGs into an existing taxonomic framework of Bacteria and Archaea, MAGs were added to a
representative set of microbial genomes available in IMG/M and the Genome Taxonomy Database (Parks et al., 2018).
A set of 56 universal single copy marker proteins was used as phylogenetic markers (Rinke et al., 2013). MAGs with,
MAGs were excluded from further analyses if they meet one of the following three conditions: 1) having less than
15 of the 56 unique markersl 2) having more than 5 different single copy markers that have multiple copies, or 3)
having one or more single copy markers that have 5 or more copies. For every marker protein of remaining genomes,
alignments were built with MAFFT (v7.294b) (Katoh and Standley, 2013) and subsequently trimmed with BMGE
using BLOSUM30 (Criscuolo and Gribaldo, 2010). Single protein alignments were then concatenated and phylogenetic
trees inferred with FastTree2 using the options: -spr 4 -mlacc 2 -slownni -lg (Price et al., 2010).

To infer the phylogenetic position of novel giant viruses, five core nucleocytoplamsic large DNA virus (NCLDV)
proteins (Yutin et al., 2009) were selected: DNA polymerase elongation subunit family B (NCVOG0038), D5-like
helicase-primase (NCVOG0023), packaging ATPase (NCVOG0249) and DNA or RNA helicases of superfamily II
(NCVOG0076) and Poxvirus Late Transcription Factor VLTF3-like (NCVOG0262), and identified with hmmsearch
(version 3.1b2 , hmmer.org). Protein sequences were aligned using MAFFT (v7.294b)(Katoh and Standley, 2013).
Highly gapped columns (less than 10% sequence information) were removed from the the alignments with trimal v1.4
(Capella-Gutiérrez et al., 2009). Phylogenetic trees for each protein and for a concatenated alignment of all five proteins
were constructed using IQ-tree (v1.6.10) with LG+F+R6 as suggested by model test as best-fit substitution model
(Nguyen et al., 2015).

Phylogenetic trees of novel bacteria and virus clusters were generated using the Antarctic genome bins and reference
genomes. This data was visualized using the Interactive Tree of Life (Letunic and Bork, 2019). Following the creation
of these trees, Genome Constellation results from the Antarctic dataset was compared to the trees. This comparison
assessed whether there were novel genomes found by Genome Constellation that were missed by the phylogenetic trees.

RESULTS
A genome spectrum for fast similarity estimation.
To enable rapid estimation of pairwise similarity between thousands of genomes, we developed a new genome fingerprint,
called spectrum, in the format of bit-vectors because bitwise computation is much more efficient (Figure 1A and
Methods). To increase sensitivity, we used all k-mers of a genome as its spectrum (full spectrum) to calculate the
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genome similarity scores (GSS) between genomes, and test how well they could be used to approximate evolutionary
relationships between genomes.

Among existing methods to measure genome relatedness, Average Nucleotide Identity (ANI) has been used as
a golden standard for closely related prokaryotic species (Konstantinidis and Tiedje, 2005; Varghese et al., 2015)
. To explore the the relationship between ANI and GSS, we calculated both for a set of 7̃,000 genomes including
prokaryotes, large viruses (>=200kb) and small eukaryotes from the NCBI RefSeq database (Methods). As shown in
Figure 1B, Log-transformed GSS is closely correlated with ANI. In particular, the greater the ANI is, the stronger linear
relationship there is between them. These results suggest GSS accurately approximates ANI for measuring genome
similarities.

Bitvector-based GSS calculation is very efficient. Comparing 100 genomes only takes one minute with 16-threads,
roughly twice the speed of Mash (Ondov et al., 2016), 14x of fastANI (Jain et al., 2018), and 66x of alignment based
(MUMmer) method under similar settings (Supplemental Script 1). One also has the option to use a random subset of
the k-mers combined with smaller spectrum size for GSS calculation (partial spectrum), which reduces sensitivity but
gains much greater computional performance. With this option one can scale up to hundreds of thousands of genomes
to rapidly detect highly similar genomes (e.g., ANI 85%, Supplemental Script 1). As expected, GSS does not change
when it is applied to incomplete genomes, and only lateral transferred segments larger than 10kb can raise estimated
ANI values consistently above 70% (Supplemental Script 1).

Genome Similarity Scores can be used to rapidly cluster and classify species from different do-
mains.
The Genome Similarity Score (GSS), for the first time, puts all genomes into the same metric space, as it does not
depend on any phylogenetic markers such as 16/18S ribosomal RNA genes or single-copy conserved genes. As such, it
is conceivable that GSS can be used to effectively cluster and classify species from different domains.

GSS enables unsupervised clustering of genomes into closely related groups. We first tested whether they can be
used to cluster known genomes by running DBSCAN clustering algorithm on the set of 7k reference genomes. For
each of the clusters formed, we designated each pair that belongs to the same taxonomy group at a given level as 1,
and -1 otherwise. An average score between -1 and 1 was computed for each cluster to reflect the clustering accuracy,
and then averaged to represent the overall clustering accuracy. The distribution of clustering accuracy for each cluster
at each taxonomy level is show in Figure 1C. At stringent cutoffs where higher GSSs are used, fewer genomes are
clustered and the cluster accuracy is almost perfect at all taxonomy levels. Conversely, cutoffs at lower GSSs result in
more genomes being clustered but the clustering accuracy decreases, especially at Order, Family and Genus levels.

As more and more genomes are sequenced and assigned taxonomy, it is possible that a non-parametric classifier,
such as k-nearest-neighbor (KNN), could accurately predict the taxonomy of a unknown genome based on its similarity
to known ones. We tested the above hypothesis on the IMG100K dataset (Methods). In each prediction, a genome’s
taxonomy is assigned using the majority of its nearest neighbors (1, 3, 5, 7, 9). Stringency is controlled by a GSS cut-off
parameter, which selects the similarity needed for a relationship to be considered. Additionally, GSSs are weighted
using Shepard’s method (Shepard, 1968). The results are shown in Figure 1D.

The accuracy is the highest at the most stringent level (GSS cut off=10) where 90.5% genomes have at least one
neighbor. Accuracy at each taxonomy rank is above 98%. Using more neighbors decreases classification accuracy, but
this can be corrected by using weighted GSSs to bias towards closer neighbors. Superkingdom-level classification
accuracy is the highest, at almost 100%, while accuracy slightly decreases as the rank becomes more specific. This
is likely be explained by the number of genomes with the same group as the genome tested becomes fewer as rank
increases. At a less stringent level, GSS cut off=5, where 94.0% genomes have at least one neighbor, a similar trend is
observed just with a slightly lower classification accuracy, mostly at or above 96%. These results suggest GSSs can be
used to accurately predict taxonomy information for genomes with many close known relatives.

It is worth noting that taxonomy classification based on GSSs is very fast, as 60,000 genomes can be predicted in
several minutes on a common workstation.

An interactive web tool designed to simultaneously visualize tens of thousands of genomes and
explore their relatedness.
Inspired by the force of gravity that positions the stars in the sky, we developed the Genome Constellation web portal,
where GSS is used as ”gravity” to lay out the genomes in a 2D space. Briefly, the layout is generated by a force-directed
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graph. In such a graph, genomes are nodes and edges are formed between genomes if their GSS exceeds a certain
threshold. The relative positions of the genomes on the layout are determined by two basics forces: a default repulsion
force (anti-gravity) and a gravity force proportional to the GSS. The balance between these two forces eventually forms
the final arrangement of all the genomes in the “universe” with related genomes clustered into “constellations.”

The Genome Constellation web portal has the following designed features. First, the layout is completely data-
driven, non-deterministic, i.e., different input data and different simulation experiments will give rise to different
results. When the input data is large, different simulations tend to give very similar layouts. Second, it provides several
parameters to produce user-defined optimal visualizations, including link weights, antigravity forces, minimum GSS
cutoffs (MSC). Third, it provides a lot of interactivity: different ranks of taxonomy can be colored differently or toggled
on/off, individual and multiple genome nodes can be searched, selected to exam their subnetworks. Finally, user data
can be loaded into the application session through the import tool and visualized on the fly.

The built-in reference genome data set contains the NCBI 7k set with about 1 million links. The web application
can handle up to 1 million genomes and 2 million links with reasonably smooth simulation and user interactivity on
a typical client machine (tested on a Windows laptop with Intel i5-2400 CPU and 8GB memory). A demo video of
Genome Constellation is available at http://bit.ly/JGIGenomeConstellation. Figure 2A provides two
views of this Genome Constellation map, at phylum and class rank, respectively. Despite the graph drawn without using
any known phylogenetic information, the genome constellation largely resembles known phylogenetic relationships
where related genomes are close to each other and form discrete groups.

Genome Constellation can also uncover taxonomical errors and reveal hidden relationships among known genomes.
It has been reported that current taxonomy assignment contains substantial amount of errors, either due to the
manual process or lack of robust classification methods (Parks et al., 2018). For example, an Archaeal genome
(GCA 000224475.1) annotated at the class level as a ”halophilic archaeon” clusters with reference genomes in the
species Natronococcus occultus, providing new and improved species identification for this genome.

Interestingly, a reference genome, GCA 001707455.1, annotated as one of the Firmicutes, is clustered closely with
Actinobacteria, with some links to both Firmucutes and Proteobacteria (Figure 2B). The NCBI genome record suggests
it is an unnamed species isolated from a population of Dehalobacter which are clearly distinct from the other species,
and was tentatively assigned as Dehalobacter (Tang et al., 2012; Deshpande et al., 2013). Moreover, protein family
composition from GCA 001707455.1 resembles both Actinobacteria and Dehalobacter (Figure 2C), supporting this
species represents a blend of a Firmicutes or an Actinobateria. Its unique evolutionary history and metabolic capabilities
would be very interesting to be further explored.

Interrogate the Antarctica lake microbial communities with Genome Constellation.
While the Taylor Valley lakes (Figure 3A) have been intensively studied for more than two decades as part of the
McMurdo Long Term Ecological Research program (mcmlter.org), molecular genetic data on Dry Valley microbes
remained limited until recently (Kwon et al., 2017; Taton et al., 2003; Vick-Majors et al., 2014; Li and Morgan-Kiss,
2019). In December, 2014, the austral summer, we collected water samples from the chemoclines of Fryxell and
Bonney (representing zones of high diversity and maximum productivity), and uplift mat samples emerging from the
ice cover of Fryxell (Figure 3B). We carried out deep metagenome sequencing and assembled the 1.2Tb sequence data
into 1,764 MAGs (483 and 1,281 from Bonney and Fryxell, respectively, see Methods). Among them, 71 MAGs were
subsequently excluded from further analyses due to suspected high contamination rates.

We first carried out phylogenomics analysis on the 1,693 MAGs, and were only able to place 680 (40.2%) on a
Bacteria/Archaea or a Giant Virus phylogenetic tree (Methods, Figure 3C, and Supplemental Figure 1). This surprisingly
low rate suggests these MAGs are either incomplete, or derived from very novel taxa groups, or both. In addition, they
could be Eukaryotic genomes that were not included in the tree-based analyses. The ability of Genome Constellation in
clustering large numbers of genomes could be particularly useful for characterizing these MAGs in two ways: First,
incomplete MAGs from known taxa groups could be recognized by their association with more complete members of
the same cluster; Second, clustered MAGs from the same unknown taxa groups could increase the chance for detecting
their remote homologs.

Expecting many novel taxa at the class level or higher from these isolated communities, we set a loose distance
cutoff (eps=60.0 in DBSCAN) and clustered the Antarctic genome bins together with the 7k Reference genomes. At
this cutoff, 1,172 total clusters with more than two genomes or MAGs were formed. At the phylum level, the clustering
accuracy for reference genomes is 98.01+/-0.16%. 1,020 MAGs are clustered with or without known references.
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Table 1. Top clusters representing candidate new taxa groups.

cluster label rank taxa #MAGs Note

598 superkingdom Bacteria 4 35-40% proteins match Planctomycetes (phylum)
730 superkingdom Bacteria 6 12-20% proteins match Planctomycetes (phylum)
758 superkingdom Bacteria 4 36-93% proteins match Actinobacteria (phylum)

1052 superkingdom Bacteria 3 38-54% proteins match Actinobacteria (phylum)
1059 superkingdom Bacteria 3
1363 superkingdom Bacteria 4

7 phylum Bacteroidetes 3 ∼10% protein match Bacteroidetes bacterium (species)
458 phylum Bacteroidetes 3
816 phylum Chloroflexi 3 44-66% proteins match Chloroflexia (class)

1097 phylum Proteobacteria 3 one Actinobacteria
1716 class Opitutae 4

Among them, 235 MAGs (23.0%) are clustered with at least one known references, including 136 are missed by the
phylogenomics analysis. 785 MAGs (77.0%) are not clustered with any of the known reference genomes in the NCBI
7k set, including 118 in completely unknown clusters (three or more). Overall, while tree-based analyses only covered
40.2% of the MAGs, clustering either with an MAG in the trees or with a known reference expanded the coverage by
19.7% and 1.0%, respectively. Among the remaining MAGs not covered, 14.5% form clusters while 24.5% are not
covered by either the tree or the clustering experiments (Figure 3D). The expanded 20.7% taxonomy assignment of
the MAGs also increases the mapped short reads from 1.04 billion to 1.30 billion (by 25.29%), which should improve
downstream analyses based on species abundance.

We further characterized the 25 unknown clusters by first predicting encoded proteins of each MAG and then
deriving its highest taxonomy rank using an in-house developed method, LastTaxa (Methods). If the majority of the
MAGs in an unknown cluster is predicted to be the same taxa at a certain rank, then the cluster can be assigned to that
taxa. 9 of the 25 clusters are predicted to be Eukaryotes, and the remaining 16 clusters (56 MAGs) are all Bacteria.
Among these, 6 clusters were only classified at the superkingdom level, likely representing new phyla. 4 clusters were
only classified at the phylum level, representing potential new classes. These clusters are listed in Table 1). The other
clusters are relatively known, as they have close relatives in the reference database. They were missed because only
subsets of reference genomes were used in the phylogenomics and clustering analyses.

A complete list of the MAGs and their classification results can be found in Supplemental File 3. One striking
observation from the Antarctic microbial communities is the presence of many large viruses. As our MAGs are at
least 200kb, they are likely represent giant viruses. When we construct a phylogenetic tree with 60 MAGs (28 from
Bonney and 32 from Fryxell) with known giant virus references (Methods), they form several new branches, with 10
formed by 3 or more MAGs (Figure 3C). In addition, 6 MAGs co-cluster with these candidate giant viruses, raising
the possibility that they may also be giant viruses. LastTaxa results provided independent support for three of them,
one from Mimiviridae (BON.483) and two from Phycodnaviridae (FRY.48 and FRY.591), suggesting that Genome
Constellation can provide a complementary approach to increase the sensitivity of giant virus detection.

DISCUSSIONS
We presented a data-driven, genome-based framework to classify, cluster and visualize large numbers of microbial
genomes based on their k-mer spectrum similarities. When applied to metagenomics, Genome Constellation can rapidly
classify the taxa of medium-sized MAGs (200kb to 20Mb)if they have closely related references. de novo clustering the
MAGs expands the ability of existing methods for taxonomy classification, and facilities the identification of novel
groups.

Whole-genome based taxonomy classification of the metagenome assembled genomes (MAGs) is a computationally
intensive process as it often involves predicting all protein coding genes, identifying phylogenetic markers and analyzing
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phylogenetic trees. For example, LastTaxa requires to build databases with 500GB+ disk space, and it takes several
minutes to predict the taxonomy of a single MAG. Although Genome Constellation is limited to only classifying
genomes with closely related references, it can be used to quickly filter large number of MAGs, and only pass on those
without hits for further classification. This may dramatically reduce the computing time required for analyzing large
metagenome projects.

One extremely useful feature of Genome Constellation is its ability to cluster genomes, including those that lack
known phylogenetic markers due to either phylogenetic divergence or assembly incompleteness. This was demonstrated
in analyzing MAGs predicted from the Antarctic metagenome dataset, as Genome Constellation identified several
clusters of genomes that appear to originate from novel bacteria phyla.

There are a few limitations of Genome Constellation. First, its scalability in visualization is limited to networks
with up to 100,000 nodes and 1 million edges. Scalable graph layout technologies such as Apache Spark-based Graph
mapping (Jonker et al., 2017) potentially could be used for larger datasets. Second, although clustering and classification
with pre-computed GSS is not limited by the size of the datasets, GSS computation with full spectra is still not very
space- and time-efficient. A single full spectrum with a billion bits takes 128MB disk space, making it difficult to store
the spectra of millions of genomes. This could be improved in the future by only storing a small set of representative
references with minimum redundancy. Third, as the accuracy of taxonomy classification is dependent on the distribution
of references in the GSS space, MAGs without any reference neighbour will not be classified. This problem will be
alleviated by the rapid expansion of known references.

Genome Constellation can be used as a generic framework to form and visualize similar networks, such as genetic
pathways, metabolites, etc. The framework only requires two prerequisites: a predefined scoring function or matrix so
that the edge weight can be computed, and hierarchical annotation information for the nodes.
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Figure 1. Using bit vectors to estimate sequence similarity. (A) We use three steps to compute the similarity between
any pairs of genomes. First, we hash a k-mer (default=23) to a 128-bit vector, and use the first half as a mask for
selecting a random set of k-mers (default=10 bits, or 1 in 1024), and the second half to determine the ”on” bits in the
genome spectrum vector in the second step. In the third step, the genome spectrums can be bitwise compared by the
shared ”on” bits, a very efficient ADD operation. See methods for details. (B) A scatter plot to compare the Average
Nucleotide Identity (ANI) and Genome Constellation (GC) Score between all pairs of the NCBI 7k reference genomes.
x-axis is GC score at log10 scale, and y-axis is ANI (%) , regression line is shown in red. C. Clustering NCBI 7k
reference genomes based on GSSs. (Left) At a stringent score cutoff (eps=20.0), 17.32% of the genomes were clustered.
The clustering accuracy distribution was shown as violin plots at Superkingdom, Phylum, Class, Order, Family and
Genus level, respectively. Except a few outliers, clustering accuracy is almost perfect at all levels. (Right). At a less
stringent score cutoff (eps=60.0), the clustering distribution was shown. At this cutoff, the majority of the genomes
(81.49% were clustered. Clustering accuracy is very good at Superkingdom, Phylum and Class levels. (D)
k-nearest-neighbor classification performance with Genome Similarity Score (GSS) on 60k IMG known genomes.
Leave-one-out classification experiments were carried out at different number of neighbors (k, x-axes), the accuracy is
shown on y-axes, at different GSS cutoffs (columns). Accuracy was measured at six different taxonomy ranks
(superkingdom, phylum, class, order, family and genus).
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Figure 2. Genome Constellation Web App. (A)Two snapshots of Genome Constellation Map of 7,261 reference
genomes from Antarctic mat and lake samples. Left, a view at the phylum level, each phylum is painted in a distinct
color. Right, a view at the class level for Proteobacteria phylum. Each class is painted in a distinct color. Legends are
shown on the left of each panel, only a subset of the labels are shown due to the size limits. For the full legends please
use the Web App. (B) Genome Constellation visualization reveals hidden relationships between known species. A
known species, Dehalobacter sp. TeCB1 (GCA 001707455.1) that belongs to the Firmicutes phylum, but is placed
within the Actinobacteria cluster. Its links to genomes from Actinobacteria (orange color), Firmicutes (green color) and
Protobacteria (blue color) are shown. (C) PFAM clustering analysis of Genome GCA 001707455.1 and its connected
neighbors.
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Figure 3. Clustering the Antarctic metagenome bins together with the 7k Ref genomes using GSS improves their
taxonomy classification. A. Lake Fryxell with permanent ice cover, weathered by wind-driven sediment deposition and
seasonal ablation of the ice cover; December 10, 2014. B. Uplift mat emerges from the ice; approximately 20 cm
across. C. A phylogenetics tree constructed from XXX giant virus known references with the 60 Antarctic MAGs
predicted by marker-based approach (red). D. Taxonomy classification coverage statistics for the phylogenetic
tree-based (Tree), Clustered with tree-based (Tree-associated), Clustered with NCBI ref7k only (Ref-associated),
Unknown clusters and Not clustered unknowns (Unknowns).
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