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Key points 
● Pan-cancer computational histopathology analysis with deep learning extracts        

histopathological patterns and accurately discriminates 28 cancer and 14 normal tissue types 
● Computational histopathology predicts whole genome duplications, focal amplifications and         

deletions, as well as driver gene mutations  
● Wide-spread correlations with gene expression indicative of immune infiltration and          

proliferation  
● Prognostic information augments conventional grading and histopathology subtyping in the          

majority of cancers 
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Abstract 
Here we use deep transfer learning to quantify histopathological patterns across 17,396 H&E             
stained histopathology image slides from 28 cancer types and correlate these with underlying             
genomic and transcriptomic data. Pan-cancer computational histopathology (PC-CHiP) classifies         
the tissue origin across organ sites and provides highly accurate, spatially resolved tumor and              
normal distinction within a given slide. The learned computational histopathological features           
correlate with a large range of recurrent genetic aberrations, including whole genome duplications             
(WGDs), arm-level copy number gains and losses, focal amplifications and deletions as well as              
driver gene mutations within a range of cancer types. WGDs can be predicted in 25/27 cancer types                 
(mean AUC=0.79) including those that were not part of model training. Similarly, we observe              
associations with 25% of mRNA transcript levels, which enables to learn and localise             
histopathological patterns of molecularly defined cell types on each slide. Lastly, we find that              
computational histopathology provides prognostic information augmenting histopathological       
subtyping and grading in the majority of cancers assessed, which pinpoints prognostically relevant             
areas such as necrosis or infiltrating lymphocytes on each tumour section. Taken together, these              
findings highlight the large potential of PC-CHiP to discover new molecular and prognostic             
associations, which can augment diagnostic workflows and lay out a rationale for integrating             
molecular and histopathological data. 
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Introduction 
 

The diagnosis of cancer is typically established by histopathological assessment of specimens, in             
particular through microscopic examination of haematoxylin and eosin stained (H&E) sections.           
Over the last decades, diagnostics have been supplemented by genetic, epigenetic, transcriptomic            
and proteomic tests, which have helped to further refine grading and prognosis of cancer patients ​1–6​.               
While such molecular tests are now reaching maturity in terms of automation, accuracy and              
reproducibility, morphological tissue assessment remains a laborious task carried out by trained            
histopathologists​7,8​. Computer vision and, in particular, deep convolutional neural networks (CNNs)           
have been shown to closely match the diagnostic accuracy of specialists and thus hold great promise                
to augment histopathology workflows ​9–11​. Computational histopathology algorithms can process and          
cross-reference very large volumes of data, which may help pathologists to navigate and assess              
slides more quickly and help quantify aberrant cells and tissues.  
 
At their core, deep learning algorithms build an implicit quantification of histopathological image             
features, which represent the patterns of the image as seen by the computer. These computational               
histopathological features are automatically learned for the original task of classifying the entire             
and/or subregions of images into cancer or non-cancerous tissues. However, once learned, the             
feature representation may also be used to find similar images​12 and quantify associations with traits               
beyond tissue types​13​. This approach, known as transfer or weakly supervised learning, has been              
used, for example, to establish associations with genetic variants, transcriptomic alterations and also             
survival​14,15​. 
 
Previous studies analysing H&E stained histopathological images have been primarily conducted in            
single cancer types making it difficult to compare the utility of computer vision across cancer types.                
We therefore performed a pan-cancer computational histopathology (PC-CHiP) analysis to study           
associations between computational histopathological features and genomic driver alterations,         
whole transcriptomes and survival. To this end, we applied quantitative imaging and transfer             
learning to a collection of 17,396 H&E stained fresh-frozen tissue image slides from The Cancer               
Genome Atlas (TCGA), containing specimens from 28 tumor types and 14 normal tissues with              
matched genomic, transcriptomic and outcome data. At its core, PC-CHiP is based on             
Inception-V4​16​, an established CNN, which was fine-tuned to classify approximately 14 million            
small image sections and used the trained algorithm to convert each tile into a set of 1,536 image                  
features. This quantitative histopathology representation accurately discriminated different tissues,         
displayed pervasive associations with underlying genomic alterations, wide-spread correlations with          
transcriptomic signatures and prognostic information across most cancer types. PC-CHiP highlights           
recurring histopathological patterns associated with genomic alterations, such as enlarged nuclei in            
samples with whole genome duplications. Further, the algorithm dissects transcriptomic signatures           
from a given sample and attributes the components, such as stromal tissues and lymphocytic              
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infiltrates to different areas on each slide by matching morphological patterns in a fully automated               
way. Similarly, PC-CHiP pinpoints prognostically relevant patterns such as necrosis on each slide. 
Together, these analyses highlight the powerful capabilities of computational histopathology to           
discover novel molecular and prognostic associations, which can augment diagnostic workflows           
and lay out a path to integrating histopathological and molecular data. The computational             
histopathology algorithm and analysis code are available at        
https://github.com/gerstung-lab/PC-CHiP​. 

Results 

Accurate pan-cancer tissue classification 

The data set comprised of 17,396 H&E stained tissue slides from 10,452 individuals and 28 cancer                
types including 14 with matched normal samples and 14 without (42 tissue types in total). 9,754                
slides with tumor purity greater than 85% were split into 80% training and 20% validation data.                
Slides were tiled into more than 14 million 256µm x 256µm-sized tiles with a digital resolution of                 
512 by 512 pixels ( ​Figure 1a ​). For 14 cancers with normal and tumor images, the average                
tumor/normal tissue classification AUC was 0.99 (all values given for the held-back validation set),              
ranging from 0.96 for normal head and neck to 0.99 for normal esophagus ( ​Figure 1b ​). The average                 
pan-tissue AUC of discriminating all 42 different tissues was 0.98 (range 0.91 to 0.99), including               
the 14 cancer types without matched normal samples ( ​Supplementary Table 1 ​; see discussion at              
the end of the manuscript for potential limitations). A similarly relevant task is the distinction of                
different histological subtypes for cancers of the same organ site. For example, we obtained high               
accuracy of differentiation between normal lung, squamous cell carcinoma and adenocarcinoma           
(AUC = 0.98, 0.90 and 0.91 respectively), comparable to previous estimates ​10​. Similar results were              
obtained for kidney cancers, where we were able to accurately distinguish between clear cell,              
chromophobe and papillary renal cell carcinomas and normal kidney tissue (average AUC of 0.99              
for all 3 subtypes and normal tissue, ​Supplementary Table 1 ​). 
 
To achieve this classification, PC-CHiP builds an image representation of each tile consisting of the               
output of the last 1,536 neurons of the network ( ​Figure 1a ​). Hereafter we will refer to this output as                   
computational histopathological features and demonstrate that this representation enables us to           
derive quantitative associations with a range of molecular traits. As the network was trained to               
discriminate different tissues, a two-dimensional UMAP representation ( ​see Methods ​) of the           
computational histopathological features shows clusters corresponding to each tissue class ( ​Figure           
1c, Supplementary Figure 1a ​). There are nevertheless resemblances of related tissues, which            
cannot be solely attributed to the algorithm being trained to derive tissue-specific histopathological             
features alone ( ​Supplementary Figure 1b ​). For example, we note a general tendency of tumors to               
cluster together, indicating a convergent histological phenotype, usually characterised by a high cell             
density and loss of tissue architecture – opposed to normal tissues, which tend to spread over the                 
periphery in the feature space ( ​Figure 1c ​). This tendency is also quantitatively reflected by a greater                
pairwise Euclidean distance between tumor and normal samples in the original feature space (mean              
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distance=18.2, range [13.5, 24.4]) compared to the distance between different tumors (mean            
distance=23.7, range [16.9, 28], ​p​-value=10​–12​, ​Figure 1d​).  
 

Deconvolution of soft labels provides spatial resolution 

PC-CHiP was trained on soft labels assigned at the level of whole slides, such as a pathologist                 
estimate of 75% tumor and 25% normal tissue. While this assigns the same training values for each                 
tile on a given slide, remarkably the network is capable of recognising which tiles on a given slide                  
correspond to cancer and normal regions ( ​Figure 1e ​). This reflects the fact that, based on the                
comparison of millions of tiles, the algorithm recognises that normal tiles from a tumor slide bear                
greater similarity with normal slides from the same organ site. Comparison of tiles with large tumor                
or normal probability with corresponding areas on the slide confirmed the predictions as judged by               
the local integrity of the tissue. Automatic deconvolution achieves a notable accuracy, with an              
average correlation between algorithm and pathologist-estimated tumor purity equals to 0.26 (range            
from 0.07 for cervical cancer to 0.6 for uveal melanoma; Supplementary Figure 2 ​). Hence, we               
conclude that the trained network learned an internal representation capable of generating spatially             
resolved maps classifying individual tiles with accurate normal/tumor predictions. This          
demonstrates the power of large scale data analysis to deconvolve bulk signals, which will become               
useful when associating histopathological patterns with molecular data from bulk samples. We will             
discuss this in detail in the following section.  
 

Genomic alterations are associated with histopathology patterns 
While the described above tissue classification accuracy and spatial decomposition are remarkable            
properties, these relations mostly reflect associations with known and predefined labels. A            
fundamental question is whether the underlying histopathology patterns, extracted by the CNN, are             
also predictive of genetics, transcriptomics and outcomes, as this enables us to explore novel              
genomic associations and define molecularly informed histological subtypes. PC-CHiP’s         
representation of each image tile as a 1,536-dimensional vector allows us to use high-dimensional              
regression methods to correlate histopathological features with a variety of molecular measures (see             
Methods ​). Since the set of computational histopathological features was trained to discriminate            
cancer types, any evaluation of molecular associations across tissues may merely reflect the             
histopathological differences between cancers, which the algorithm was already shown to           
distinguish. Instead, we calculate accuracies separately for each tissue, using a validation set of              
held-back slides (see ​Methods​) from different patients.  
 
Overall, we observed widespread associations with a range of genetic alterations across many             
cancer types ( ​Figure 2a ​). These range from large-scale genomic changes, including whole genome             
duplications, chromosomal aberrations, focal amplifications and deletions and point mutations in           
cancer driver genes. 
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Accurate predictions of whole genome duplications 
Whole genome duplications (WGD) occur in about 30% of solid tumors, leading to cells with a                
nearly tetraploid genome, likely as a result of a single failed mitosis, often preceded or succeeded                
by further chromosomal gains and losses ​11​. WGD status could be predicted for 25 out of 27 cancer                 
types with an average area under the receiver operating characteristic curve AUC of 0.79 (held back                
AUC > 0.5, false discovery rate FDR < 0.1, ​Figure 2a, Supplementary Table 2 ​). 12 cancer types                 
showed an AUC greater than 0.8. Remarkably, high AUC were also obtained for thyroid carcinoma               
in the validation set (AUC = 0.96) even though no WGD sample was included in the training                 
cohort, demonstrating that the histopathological features revealing WGD are independent of the            
specific tissue type.  
 
Interestingly, tiles with greater probability for WGD status showed an increased nuclear            
(haematoxylin) staining ( ​Figure 2b ​), which could be explained by the increased amount of DNA.              
We therefore explicitly quantified the average cell nucleus size and intensity per tile using Cell               
profiler​12​. Indeed, the cell nucleus size and intensity were highly correlated with the WGD              
probability predicted by histopathological features, but gave a lower predictive accuracy (average            
AUC of 0.71, range [0.56,1], ​Figure 2c, Supplementary Figure 3 ​). Also, conventional tumour             
subtypes and grade provided a much lower predictive accuracy (average AUC=0.59 for both). It              
thus appears that deep learning recognises a range of morphological patterns beyond nuclear size              
and grade alone and combines these into its predictions in a fully automated way.  
 

Copy number variants 

Chromosome arm-level gains and losses 
Another recurrent class of alterations are arm-level copy number alterations. We performed            
regularised multinomial regression on the copy number status of 17 whole chromosome and 39              
arm-level gains and losses ​17​. In total, 105 out of 410 gain:cancer pairs and 167 out of 570                 
loss:cancer pairs (with at least 10 altered samples) showed a measurable association with image              
features (AUC > 0.5 with 95% CI, ​Figure 2a, Supplementary Table 2 ​). Breast invasive              
carcinoma showed the largest number of associations (17 gains and 27 losses), followed by              
melanoma (10 gains and 22 losses) and kidney clear cell carcinoma (13 gains and 14 losses,                
Supplementary Figure 4 ​).  
 
Of note, gain of chromosome 8q was identified in 9 different cancer types, including esophageal               
carcinoma (AUC=0.82, 95% CI=[0.63, 1]), uveal melanoma (AUC=0.79, CI=[0.58, 1]) and kidney            
clear cell carcinomas (AUC=0.78, CI=[0.69, 0.88]). Tiles indicative of 8q gains displayed nuclei             
enlargement, high cellular density and low stromal content ( ​Supplementary Figure 5a ​). Other            
notable gains with associations across multiple cancers included +20q in 8 cancers and +7q in 7                
cancers ( ​Supplementary Table 2 ​). Conversely, loss of chromosome arm 17p, which harbours the             
TP53 tumor suppressor gene, was identified in 8 cancer types such as colorectal adenocarcinoma              
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(AUC=0.78, CI=[0.67, 0.89]), lung adenocarcinoma (AUC=0.74 , CI=[0.64, 0.84]), indicating that           
–17p leads to measurable differences in tumor morphology, often characterised by a higher grade              
and loss of tissue structure ( ​Supplementary Figure 5b ​). Of note, the distinction of –17p mutated               
and wild type endometrial carcinomas (AUC=0.74, CI=[0.60, 0.87]) largely coincides with the            
histopathological distinction of endometrioid, serous and mixed carcinomas (AUC=0.78, CI=[0.67,          
0.89]). Other recurrent losses associated with histopathology were –11p in 8 cancers and –9q in 7                
cancers (​Supplementary Table 2 ​).  
 
Focal amplifications and deletions 
Focal copy number alterations occur on the scale of several megabases and are thought to               
specifically lead to oncogene amplification and tumor suppressor gene deletions. We therefore            
investigated 140 focal copy number variants (70 amplifications and deletions each)​18​. Among 481             
alteration:cancer pairs tested with more than 10 recurrences, 34 tests showed a significant             
association, including 4 amplifications and 30 deletions (FDR < 0.1, AUC > 0.5; ​Figure 2a,               
Supplementary Table 2, Supplementary Figure 4​).  
 
The cancer type with the largest number of significant focal copy number alterations was breast               
invasive carcinoma (2 amplifications and 9 deletions). Among these, we found the amplification of              
ERBB2/HER2 (17q12, AUC=0.7, CI=[0.56–0.83], predictions based on histopathological subtypes         
yield an AUC=0.59, CI=[0.49, 0.68], ​Figure 2d ​), similar to previous reports​19​, and deletion of a               
segment containing ​PTEN (10q23.31, AUC=0.69 CI=[0.56–0.81], predictions based on         
histopathological subtypes yield an AUC=0.56, CI=[0.46, 0.66]). Importantly, both alterations are           
prognostically and therapeutically relevant for treatment with targeted therapies such as           
Herceptin​20,21​.  
 
The deletion of a segment on cytoband 8p23.2 containing ​CSMD1​, which has been previously              
reported as a candidate tumor suppressor gene that is frequently lost in many carcinomas ​22​, was               
identified in 6 cancer types such as ovarian serous carcinoma (AUC=0.62, CI=[0.53–0.71]),            
esophageal carcinoma (AUC=0.79, CI=[0.65–0.93]) and liver hepatocellular carcinoma        
(AUC=0.70, CI=[0.60–0.81]). A proximal deletion of ​PPP2R2A​, located on 8p21.2, which was            
commonly deleted in cancers and was shown to be associated with a worse prognosis ​23,24​, was               
identified in 5 cancers including esophageal carcinoma (AUC=0.8, [0.65–0.94]), hepatocellular          
carcinoma (AUC=0.67, CI=[0.57–0.78]) and breast invasive carcinoma (AUC=0.67,        
CI=[0.59–0.75]). As these 2 deletions frequently co-occur (Cohen’s κ=0.88), it is possible that these              
histological associations reflect the same underlying alteration.  
 
We also found a strong association of focal amplification of the segment harboring ​EGFR (located               
at 7p11.2) in glioblastoma (AUC=0.78, CI=[0.7, 0.87]), characterised by a distinct small cell             
morphology of ​EGFR- ​amplified cancer cells ( ​Figure 2e ​). This histopathological association has           
been noted previously​25​, although ​EGFR amplifications do not exclusively define a molecular            
glioblastoma subtype ​26​. 
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Driver gene mutations 
Many cancer-causing mutations are point mutations in cancer driver genes. We annotated            
cancer-causing driver mutations in a catalogue of 104 recurrent cancer genes based on the              
non-silent to silent point mutation ratio of each gene and site-specific recurrence (see ​Methods​).              
Histopathological associations were then tested using regularised logistic regression.  
 
Among all driver genes tested, 14 (13%) genes had significant histopathology associations in at              
least one cancer type (AUC above 0.5, FDR<0.1, 19 out of 199 gene:cancer pairs, ​Figure 2a,                
Supplementary Table 2, Supplementary Figure 4 ​). Interestingly, driver mutations in ​TP53​, the            
most frequently mutated gene in cancers, could be predicted in 6 out of 27 (22%) cancer types,                 
including breast invasive carcinoma (AUC=0.87, CI=[0.79, 0.95]), mesothelioma (AUC=0.87,         
CI=[0.67, 1]) and hepatocellular carcinoma (AUC=0.8, CI=[0.68, 0.92]). Samples with ​TP53           
mutation generally displayed a lower extent of differentiation, equivalent to a higher tumor grade              
( ​Figure 2f ​).  
 
Another accurately predicted cancer driver gene was ​BRAF in thyroid tumors with an AUC as high                
as 0.9 (CI=[0.8, 1]), seemingly associated with a papillary morphology ( ​Figure 2g ​). While it is               
known that the prevalence of ​BRAF mutations is only about 25% in follicular thyroid carcinomas               
as opposed to 75% recurrence in classical papillary and tall cell subtypes​27​, these data indicate that                
the canonical histopathological classification may not fully account for the underlying genetics            
(AUC=0.81, CI=[0.69, 0.93]). A similar association was observed for ​PTEN in uterine cancers with              
an AUC of 0.8, CI=[0.73, 0.99] ( ​Figure 2h ​), in part due to the enrichment of ​PTEN mutations in                  
endometrial cancer ​28​. When combined with histopathology subtypes the AUC for ​PTEN mutations            
in uterine cancer increases to 0.92 (CI=[0.85-1]). These findings demonstrate how genomically            
informed computational histopathology can augment and refine conventional histopathological         
subtypes, noting that many of the driver gene mutations have been previously reported to be               
associated with prognosis in cancer ​27,29–31​.  

Mutational Signatures 
We also tested the associations with a set of 11 mutational signatures, reflecting different              
endogenous and exogenous genotoxic processes and also DNA repair deficiencies. Overall, there            
was only a relatively low extent of correlations, with the noteworthy exception of mismatch repair               
deficiency in colorectal cancer ( ​R​2​=0.19) as reported recently (​Supplementary Figure 6​) ​32,33​. 

Transcriptomic associations reveal immune infiltration and stromal cell types 

Another molecular layer influencing cancer histology is the transcriptome. Gene expression changes            
may reflect not only distinct tumor cell types with different morphological properties – as in the                
previous example of ​EGFR ​-amplified glioblastoma – but also stromal and infiltrating immune cells,             
which will also have distinct histological appearance. We thus tested for transcriptome-wide            
associations of the set of 1,536 computational histopathological features using regularised           
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regression of each image tile on the logarithmic upper quartile normalised expression of each gene               
(log FPKM, see ​Methods​) separately in each cancer type. 
 
Overall, we found that 25% of all the gene:cancer pairs tested showed an association between bulk                
transcriptome and histology pattern (held back validation ​R​2​>0, FDR<0.1, ​Figure 3a,           
Supplementary Table 2 ​). For 2% of gene:cancer pairs an ​R​2​>0.1 was found, and 0.56% displayed               
R ​2​>0.2. The cancer types with the largest number of associated genes are thymoma ( ​n ​=8,377),              
sarcomas ( ​n ​=8,359) and cutaneous melanoma ( ​n ​=7,124). This reflects the notion that the histology             
generally reflects tumor composition and cell types, and that this relation can be quantified using               
computer vision and transcriptomics. 
 
No obvious mechanistic insights were provided by the highest scoring gene expression associations,             
which include ​NRF1 in thymoma ( ​R ​2​=0.57, FDR<10 ​–16​), ​AOC3 in sarcoma ( ​R ​2​=0.55, FDR<10 ​–16​)            
and ​PLAC9 in testicular germ cell tumors ( ​R ​2​=0.45, FDR<10 ​–16​) ( ​Supplementary Figure 4 ​).            
Several T-cell associated genes such as ​LCK ​, ​CD8A​, ​CD247 and ​CD4 showed strong association              
with histopathology in thymomas, which is a T-cell rich cancer as the thymus is the organ where                 
T-cells mature. Similarly, neurotransmitter genes that are mostly expressed in neurons such as             
SLC6A12 ​, ​SLC1A2 and ​EPB41L1 showed strong association in low grade glioma, indicating that             
neuronal cell types (which are distinct from the glial cells that give rise to gliomas) contribute to                 
both bulk transcriptome and histology.  
 
More obvious trends emerge at the levels of gene sets, summarising gene expression states and               
molecular pathways. Gene set enrichment analysis showed that the genes that are associated with              
histopathological features are enriched (FDR<0.1) in 193 pathways ( ​Figure 3b, Supplementary           
Table 2 ​) in at least one cancer type. Immune system related pathways are found in 17 cancer types                  
( ​n​=81 pathways), followed by pathways involved in cell cycle and metabolism (46 and 20 pathways               
respectively).  
 
We also investigated the association of histopathological features with expression based           
proliferation and tumor infiltrating lymphocytes (TILs) scores ​34​. 14 cancer types showed a            
detectable association for proliferation score ( ​R ​2​>0, FDR<0.1, ​Supplementary Table2​), including          
thymoma ( ​R ​2​=0.39), prostate adenocarcinoma ( ​R ​2​=0.24) and hepatocellular carcinoma ( ​R ​2​=0.21).         
Tissues predicted as high proliferation usually had a low stromal content and were high grade               
( ​Supplementary ​Figure 7a ​). Often the classification of low proliferation overlaps with predicted            
normal tiles across the whole tissue slide. This indicates that a high stromal and normal content                
often coincides with low transcriptomic proliferation scores and highlights the algorithm’s ability to             
attribute this association to the presence of histologically normal tissue areas in the tumour section               
( ​Supplementary​ ​Figure 7b​).  
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Automated spatial localisation of immune cells 

As discussed above, deep learning of histological patterns across slides provides spatial resolution             
of known tissue types. This property also extends to molecular associations, exemplified by the              
association with inflammatory cell infiltrates, which appeared to be an overarching feature across             
cancer types. These phenomena can be illustrated using a transcriptomic signature of TILs. The              
score of TILs showed a significant ​R​2 with histology for 13 cancer types ( ​R ​2​>0, FDR<0.1), ranging                
from ​R ​2​=0.008 for uterine cancer to ​R​2​=0.2 for thymoma ( ​Supplementary Table2 ​). Tiles predictive             
of TILs indeed contain lymphocytes that are typically relatively small cells with dark nuclei and               
scant cytoplasm, often occurring at high densities ( ​Figure 3c ​). Considering that the algorithm was              
never provided with defined image sections representing TIL-rich areas, it is a remarkable property              
that these emerge as the common denominator of tiles from slides with a high molecular signal of                 
TILs.  
 
Two interesting observations were made in the analysis of spatial distribution of these lymphocyte              
signals. While the prediction of the pattern of lymphocytic infiltration was in some cases relatively               
uniform, with a dispersed distribution of TILs ( ​Figure 3d, top and middle panels), in other cases,                
the signals frequently localised to confined regions containing lymphocytic aggregates ( ​Figure 3d,            
bottom panel). While the latter is another striking example of the ability of computer vision to                
identify and localise patterns based on sufficiently high levels of recurrence across the training              
image, the former presents an equally hard task, as dispersed lymphocytes appears far less obvious               
and might be easily missed upon visual histological assessment. 
 
An interesting example that demonstrates the benefit of spatial prediction of TILs over bulk              
molecular measurements is shown in the bottom row of ​Figure 3d (sample from breast invasive               
carcinoma). The transcriptomic signal indicated a high level of TILs for this sample (in the top 10%                 
of all patients) while the histopathological features predicted heterogeneous TILs scores across the             
tumor slide identifying regions with high and low TIL densities. Taken together, an integrated              
analysis of transcriptomics and computational histopathology has the potential to precisely define            
and quantify patterns of TILs, which may also explain differential response to treatments​35​.  

Prognostic effects across cancer types 

Finally, we built predictive models for patients’ overall survival (OS) ​22 using computational            
histopathological features in 18 different cancers with available outcome data. We calculated the             
prognostic signal provided by PC-CHiP using regularised Cox proportional hazards models and            
evaluated its predictive accuracy in isolation as well as in relation to conventional histopathology              
(grade and subtypes), further clinical data (age, gender and cancer stage), and also transcriptomic              
data​36​. An overview of sample size, number of events and the number of selected parameters can be                 
seen in ​Supplementary Table 3 ​.  
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Overall, we observed a significant association of computational histopathological features with OS            
in 15 out of 18 cancer types (FWER<0.05, mean concordance ​C​=0.6) with a concordance ranging               
from ​C ​=0.53 for glioblastoma multiforme to ​C​=0.67 for uterine endometrial carcinoma ( ​Figure 4a,             
Supplementary Table 3 ​). More importantly, compared to canonical histological subtypes and           
grades, which are routinely used to assess prognosis, the histopathological features showed a             
significant improvement in 10/16 cancer types. This prognostic signal remained measurable in the             
majority of these cancer types, even when further including age, gender and tumour stage ( ​Figure               
4b, Supplementary Figure 8, Supplementary Table 3 ​). As illustrated by the survival curves,             
PC-CHiP may be used to refine existing stage-based prognosis in breast, head and neck, and               
stomach cancer and, to a lesser extent, clear cell renal cell carcinoma, identifying individuals with               
approximately two-fold better or worse prognosis than the average in these groups.  
 
Reassuringly, many of the prognostic histopathological patterns automatically learned by computer           
vision reflect some well-recognised associations. For example, necrosis​37 and high grade are            
associated with poor prognosis across tumor types, while higher degree of differentiation ​38​, as well              
as the presence of TILs are usually associated with a favourable risk​39 ( ​Figure 4c ​). In some cases,                 
risk predictions reflect different histological subtypes, in addition to the above patterns. For             
instance, among gliomas low grade oligodendrogliomas generally have better prognosis than           
astrocytomas​40​ ( ​Figure 4c ​).  
 
Often favourable and unfavourable patterns can be identified on the same slide, highlighting the              
ability of computer vision to deconvolve the content of large tissue sections into molecularly and               
prognostically distinct areas ( ​Figure 4d ​) with necrosis and lymphocytic aggregates detected on the             
same specimen. Similarly, areas of low and high grade tumour differentiation identified on the same               
slide produced favourable and unfavourable risk predictions. Currently, it is unclear how such             
conflicting information is best combined into a single prediction. However, the ability to detect              
these patterns – and the capability to learn a prognostic stratification that matches conventional              
staging and grading in a fully automated way – are important first steps towards developing novel                
and refined patient-specific risk models. 

 
Generalisation requires tailored architectures and data augmentation 

As outlined above, deep learning algorithms are capable of extracting a rich feature representation              
of images, which is of great value beyond the primary learning task of tissue classification.               
However, doing so with millions of parameters may also come at the price of overfitting to the                 
training data​11,41​. In this context, overfitting may unearth undesirable features introduced by            
specimen acquisition, sample preparation, sectioning and staining, but also microscope settings as            
well as digital differences resulting from lossy file formats and compression parameters, the entirety              
of which can be hard to control for. As an example, we observed a strong influence of the jpeg                   
image quality settings on the computational histopathological features. The jpeg quality was highly             
unbalanced between the 42 tissue labels used for the training of the CNN – and these differences                 
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were inadvertently learned by the algorithm despite default data augmentation ( ​Supplementary           
Figure 9a​). 
 
Without further amendments the trained algorithm therefore generalised poorly on 471 breast            
cancer H&E stained slides from the METABRIC consortium​42 (scanned on an earlier version of the               
Aperio platform and saved into a jpeg2000 file stream; ​Supplementary Figure 9b ​). Inspection of              
the feature set revealed that the implicit feature representation of the new images was measurably               
offset ( ​d ​=18.7, comparable to the average distance of different tumors and the distance between              
normal and tumor breast). 
 
To overcome the effect of jpeg format confounding, we modified the Inception-V4 architecture by              
injecting the image format directly into the final classification layer such that the network does not                
learn patterns associated with the file format and compression from the image as these are explicitly                
available as auxiliary variables. This modification, together with additional data augmentation to            
supersede any pre-existing jpeg patterns and heavy color augmentation to overcome systematic            
differences in H&E staining (random hue rotations by –90 to 90 degrees),​43 led to a decoupling of                 
file format and tissue labels ( ​Supplementary Figure 9c-d ​). This was accompanied by a slight drop               
in the tissue classification accuracy (average AUC=0.95), indicating that technical artefacts           
contributed in part to the initial tissue classification accuracy. Reassuringly, however, the            
modifications to the network and training procedure did not affect the strength of molecular              
associations, indicating that the strategy to evaluate performance only ​within samples of the same              
training labels helped to avoid confounding influences learned as part of the initial training step               
( ​Supplementary Figure 10​). 
 
More importantly, the network trained in this way also showed better generalisation to data from an                
entirely new cohort. On the METABRIC cohort, genomic alterations including ​TP53 ​mutation and             
WGD as well as OS which were found to be associated with computational histopathological              
features in TCGA breast cancer samples, could be predicted with only a moderate drop in accuracy                
( ​Figure 5a ​). Similarly, the new histopathological features were able to predict the tumor infiltrating              
lymphocytes. In a set of 36 slides, for which independent pathologist evaluated TIL scores were               
available, the average predicted TILs for samples with no lymphocytes were smaller than those with               
mild or severe level of lymphocytes ( ​p ​-value = 0.001 and 0.095 respectively, ​Figure 5b ​).              
Reassuringly, the algorithm’s ability to localise TILs on a given slide was preserved ( ​Figure 5c ​).               
Lastly, the prognostic associations could also be validated and stratify patients’ OS across tumor              
stage as expected ( ​Figure 5d ​). As in the TCGA training data, the algorithm identified necrotic areas                
as well as TILs on a given slide as unfavourable and favourable prognostic markers (​Figure 5e​). 
 
These observations indicate that care must be taken when using CNNs in biomedical applications ​11​.              
In addition to using a wide range of data sources, appropriate training procedures and architectures               
and substantial data augmentation techniques to avoid overfitting, one has to carefully assess             
whether there are any confounding factors influencing training labels and tailor the algorithm and              
training procedures such that these are isolated from the images. As a quality control step, it may                 
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help to investigate whether the feature representation of novel images lies within the expected range               
of comparable images of the same tissue. 

Discussion 
Here we presented PC-CHiP, a pan-cancer transfer learning approach to extract computational            
histopathological features across 42 cancer and normal tissue types and their genomic, molecular             
and prognostic associations. Histopathological features, originally derived to classify different          
tissues, contained rich histologic and morphological signals predictive of a range of genomic and              
transcriptomic changes as well as survival. This shows that computer vision not only has the               
capacity to highly accurately reproduce predefined tissue labels, but also that this quantifies diverse              
histological patterns, which are predictive of a broad range of genomic and molecular traits, which               
were not part of the original training task. As the predictions are exclusively based on standard                
H&E-stained tissue sections, our analysis highlights the high potential of computational           
histopathology to digitally augment existing histopathological workflows. 
 
The strongest genomic associations were found for whole genome duplications, which can in part              
be explained by nuclear enlargement and increased nuclear intensities, but seemingly also stems             
from tumour grade and other histomorphological patterns contained in the high-dimensional           
computational histopathological features. Further, we observed associations with a range of           
chromosomal gains and losses, focal deletions and amplifications as well as driver gene mutations              
across a number of cancer types. These data demonstrate that genomic alterations change the              
morphology of cancer cells, as in the case of WGD, but possibly also that certain aberrations                
preferentially occur in distinct cell types, reflected by the tumor histology. Whatever is the cause or                
consequence in this equation, these associations lay out a route towards genomically defined             
histopathology subtypes, which will enhance and refine conventional assessment. 
 
Further, a broad range of transcriptomic correlations was observed reflecting both immune cell             
infiltration and cell proliferation that leads to higher tumor densities. These examples illustrated the              
remarkable property that machine learning does not only establish novel molecular associations            
from pre-computed histopathological feature sets but also allows the localisation of these traits             
within a larger image. While this exemplifies the power of a large scale data analysis to detect and                  
localise recurrent patterns, it is probably not superior to spatially annotated training data. Yet such               
data can, by definition, only be generated for associations which are known beforehand. This              
appears straightforward, albeit laborious, for existing histopathology classifications, but more          
challenging for molecular readouts. Yet novel spatial transcriptomic ​44,45 and sequencing          
technologies​46 bring within reach spatially matched molecular and histopathological data, which           
would serve as a gold standard in combining imaging and molecular patterns.  
 
Across cancer types, computational histopathological features showed a good level of prognostic            
relevance, substantially improving prognostic accuracy over conventional grading and         
histopathological subtyping in the majority of cancers. It is this very remarkable that such predictive               
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signals can be learned in a fully automated fashion. Still, at least at the current resolution, the                 
improvement over a full molecular and clinical workup was relatively small. This might be a               
consequence of the far-ranging relations between histopathology and molecular phenotypes          
described here, implying that histopathology is a reflection of the underlying molecular alterations             
rather than an independent trait. Yet it probably also highlights the challenges of unambiguously              
quantifying histopathological signals in – and combining signals from – individual areas, which             
requires very large training datasets for each tumour entity. 
 
From a methodological point of view, the prediction of molecular traits can clearly be improved. In                
this analysis, we adopted – for the reason of simplicity and to avoid overfitting – a transfer learning                  
approach in which an existing deep convolutional neural network, developed for classification of             
everyday objects, was fine tuned to predict cancer and normal tissue types. The implicit imaging               
feature representation was then used to predict molecular traits and outcomes. Instead of employing              
this two-step procedure, which risks missing patterns irrelevant for the initial classification task, one              
might directly employ either training on the molecular trait of interest, or ideally multi-objective              
learning. Further improvement may also be related to the choice of the CNN architecture. Everyday               
images have no defined scale due to a variable ​z​-dimension; therefore, the algorithms need to be                
able to detect the same object at different sizes. This clearly is not the case for histopathology                 
slides, in which one pixel corresponds to a defined physical size at a given magnification.               
Therefore, possibly less complex CNN architectures may be sufficient for quantitative           
histopathology analyses, and also show better generalisation.  
 
Here, in our proof-of-concept analysis, we observed a considerable dependence of the feature             
representation on known and possibly unknown properties of our training data, including the image              
compression algorithm and its parameters. Some of these issues could be overcome by amending              
and retraining the network to isolate the effect of confounding factors and additional data              
augmentation. Still, given the flexibility of deep learning algorithms and the associated risk of              
overfitting, one should generally be cautious about the generalisation properties and critically assess             
whether a new image is appropriately represented. 
 
Looking forward, our analyses revealed the enormous potential of using computer vision alongside             
molecular profiling. While the eye of a trained human may still constitute the gold standard for                
recognising clinically relevant histopathological patterns, computers have the capacity to augment           
this process by sifting through millions of images to retrieve similar patterns and establish              
associations with known and novel traits. As our analysis showed this helps to detect histopathology               
patterns associated with a range of genomic alterations, transcriptional signatures and prognosis –             
and highlight areas indicative of these traits on each given slide. It is therefore not too difficult to                  
foresee how this may be utilised in a computationally augmented histopathology workflow enabling             
more precise and faster diagnosis and prognosis. Further, the ability to quantify a rich set of                
histopathology patterns lays out a path to define integrated histopathology and molecular cancer             
subtypes, as recently demonstrated for colorectal cancers​47​. Lastly, our analyses provide           
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proof-of-concept for these principles and we expect them to be greatly refined in the future based on                 
larger training corpora and further algorithmic refinements. 
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Methods  

Images 

We collected 17,396 H&E stained histopathology slides of 10,452 patients of 28 cancer types from               
TCGA via the Genomic Data Commons Data Portal ( ​https://portal.gdc.cancer.gov/ ​), including          
normal, tumor and metastatic tissue types. Only tissue types with at least 50 images with a                
magnification greater than 20X are included. We first cropped the whole slides into 512 by 512                
pixels tiles with 50 pixels overlap at 20X magnification. We then removed blurred and              
non-informative tiles by filtering on the weighted gradient magnitude (using Sobel operator, tiles             
with weighted gradient magnitude smaller than 15 for more than half of the pixels were removed).                
Tiles from tumor samples with tumor purity greater or equals to 85% were used in               
training/validation to avoid miss labelled tiles in the training process. To avoid bias that are caused                
by image preparation in each laboratory, we randomly selected 80% images from each centre for               
training. In total, we had 6,564,045 tiles from 8,067 slides for training, 1,357,892 tiles from 1,687                
slides for validation and 6,641,462 tiles from 7,672 slides for testing. 

Pan-Cancer Computational Histopathology PC-CHiP 

A pretrained Inception-V4​16​, a deep convolutional neural network, was used to classify tiles into 42               
classes and to extract histopathological features from each tile. We applied sample specific label              
smoothing, an adapted version of the label smoothing method first introduced in Inception-V3​48 for              
model regularization, to avoid overfitting. In short, for a sample of tissue ​i​, we set ground-truth                
distribution ​q ​( ​k​) ​to ​q​( ​k​) = p ​T for ​k=i and ​q​( ​k​) = ​( ​1 – p​T​) / ​( ​N – 1​) ​for all ​k ≠ i ​, where ​N=​42 is the                           
total number of classes and ​p ​T is the tumor purity of the sample. The model was trained in                  
Tensorflow using Slim​49 with the default hyperparameters for 100K steps (~1 epoch). The scripts              
used for training and the retrained model checkpoint can be found on our Github repository.  
We retrieved the predictive probability for all 42 classes for each tile and the associated 1,536                
histopathological features from the last hidden layer of the trained Inception-V4. As in practice the               
cancer origin is usually known, we also computed tumor/normal classification within cancer types             
for each tile by comparing only the probability of being normal or tumor of that cancer type. 
To visualise the tiles represented by the 1,536 histopathological features, we applied Uniform             
Manifold Approximation and Projection for Dimension Reduction (UMAP ​50​) for dimension          
reduction for a subset of tiles (50 tiles were randomly selected from high tumor purity images). As                 
the distances between data points in the original dimension are not preserved in the low dimension                
generated by UMAP, we also calculated the mean pairwise Euclidean distance between tissue types              
in their original dimension. 
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Molecular associations 

In this section, we performed statistical models to predict genomic alterations for each image tile               
using 1,536 histopathological features and the tissue type. Per slide prediction was then calculated              
by averaging the prediction of all tiles within that slide. All models were performed in R using the                  
“glmnet” package ​51​. To avoid normal contamination, only samples with tumor purity greater than or              
equal to 85% are included. We randomly select 100 tiles from images of 70% of the patients for                  
training and 30% of the patients for independent validation. 5-fold cross-validation was used to              
select the best model. To avoid reporting the different prevalence of molecular traits between cancer               
types, predictive accuracy was calculated within each cancer type. All accuracy values reported in              
the manuscript are based on samples from a held back subset of patients.  
 

Genomic alterations 
Point mutations (single nucleotide variants and short deletions and insertions) were called using             
CaVEMan and pindel algorithms plus a set of dedicated post-processing filters as described             
previously​52 for 8,769 TCGA patients. Absolute copy number was called using the ASCAT             
algorithm​53​. Whole genome doubling (WGD) status were called using the criteria described            
previously​54 . Chromosome and chromosome arm level gains and losses were retrieved from​17​.             
Focal amplifications and deletions were defined for regions retrieved from​18​. For each of the              
amplified regions, samples with an absolute copy number of at least 10 were called amplified; for                
each of the deleted regions, only samples with ≤ 1 copy in the absence of WGD and samples with ≤                    
2 copies in the presence of WGD were called deleted. We performed multinomial logistic              
regression models to classify gain, non-altered and loss of 56 chromosome or chromosome arm. We               
applied generalised logistic regression with LASSO penalization for each genomic alteration. Per            
alteration AUC was then calculated in a one vs the rest fashion (ex. gain vs. not altered and loss) for                    
each cancer type. Confidence interval at 95% and associated ​p​-value was obtained for each AUC               
using a Wilcoxon tests. 

Gene expression 
Log transformed upper quantile normalized gene expression from RNA sequencing data was used.             
We performed generalised linear regressions with LASSO penalization on 14,214 genes that are             
expressed in at least 60% of the samples. Variance explained ( ​R ​2​) was calculated for each               
gene-cancer pair to evaluate the model performance. A confidence interval at 95% and associated              
p ​-value were estimated by a ​F​-test. The ​p​-values were then corrected controlling the FDR. As               
shown previously in this paper, the histopathology features are highly capable of distinguishing             
normal and tumor tissues, therefore an estimation of gene expression level could be inferred from               
the tumor percentage of images from cancer types with differential expression between tumor and              
normal samples. To make sure that the prediction is relevant to the gene expression level rather than                 
the tumor/normal content, we calculated the expected expression based on tumor purity ​p​T and              
average gene expression in tumour and normal samples alone, ​X​0,cancertype = ( ​p ​T × mean(​X ​tumor,cancertype​)              

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2019. ; https://doi.org/10.1101/813543doi: bioRxiv preprint 

https://paperpile.com/c/vvzZ7d/YPTm
https://paperpile.com/c/vvzZ7d/2i1a
https://paperpile.com/c/vvzZ7d/lyaO
https://paperpile.com/c/vvzZ7d/ozUp
https://paperpile.com/c/vvzZ7d/D55l
https://paperpile.com/c/vvzZ7d/oUMe
https://doi.org/10.1101/813543
http://creativecommons.org/licenses/by-nc/4.0/


 

+ (1 – ​p​T​) × mean(​X ​normal,cancertype​)), where ​X​tumor,cancertype ​denotes the average expression of a given               
transcript in all tumor samples and ​X​normal,cancertype ​denotes the average expression of all normal              
samples for the corresponding cancer type. We then filtered the tests where histopathology features              
were less informative than ​X ​0,cancertype​. In order to identify functional classes of genes that can be                
predicted by histopathology features, we then performed gene set enrichment analysis (GSEA) ​55 for             
a collection of REACTOME pathways​56​. A normalised enrichment score and ​p​-value were            
calculated for each pathway in each cancer type. The ​p ​-values were corrected to control the FDR.                
At last, we performed regression on gene expression based proliferation score and tumor infiltrating              
lymphocytes signature​34​ using the same method used for single gene expression. 

Prognostic associations  

Survival analysis was performed using penalized Cox’s proportional hazard regression​57          
using a mixture of ​L ​1 and ​L​2 regularization, often referred to as Cox elastic net​58​. To evaluate                 
discriminative performance we used Harrell’s ​C​-index as a measure of the concordance between             
predicted and actual risk ​59​.  
In order to obtain a scalable and sparse solution, we deployed proximal gradient descent for our                
parameter updates​60​. Due to the large-scale nature of the problem, an exhaustive hyperparameter             
search was infeasible. Therefore, hyperparameters, particular ​L​1​/​L ​2 penalization strength, have been           
automatically determined using Bayesian optimization ​61​. Twenty repetitions of 5-fold         
cross-validation were used to evaluate model performance. Each fold was further split into a              
training set (85%) and a validation set (15%).  
A total of 6 models, combining different combinations of variables each, were evaluated for each               
relevant cancer from TCGA. A cancer was included in the analysis if the sample size was at                 
least 160 individuals and censorship was less than 90%. The first model (“histology”) contains              
the histological subtype and the corresponding grading information. Routine clinical information on            
the individual like age at cancer diagnosis, gender, cancer staging and the histopathology features              
form the second model (“clinical”). The third model (“clinical + expression”) is a combination of               
clinical and gene expression data. Model four (“PC-CHiP”) uses the extracted histopathology            
features from the CNN. Model five (“clinical + PC-CHiP”) contains the histopathology features             
and the clinical data. Lastly, Model six (“all”) is a set of all covariates. If observations have been                  
missing, particularly for the gene expression data, mean imputation has been applied. The gene              
expression data comprises the first 30 components of a principal component analysis (PCA). For the               
survival analysis with the histopathology features, each extracted tile has been used as an individual               
observation.  A global risk estimate is obtained using the average risk across the tiles from a patient.  
Three different strategies were employed to assess the value of adding PC-CHiP to models based on                
conventional variables. First, it was tested whether the cross-validated linear predictor obtained            
using PC-CHiP alone added significant signal in a multivariate model. Second, it was assessed              
whether the pretrained predictor based on PC-CHiP improved the concordance ​C in a             
cross-validation setting. Third, a likelihood boosting approach was used for training Cox models             
from scratch combining clinical/gene expression data with the histopathology features.  
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To compare predictive performance across models we examined the distribution of concordance            
indices across folds as well as the mean difference concordance within folds. Furthermore we used               
a paired-Wilcoxon sign rank test to compare ​C​ estimates across models.  
To account for multiple comparisons we used the Bonferroni correction as FWER procedure.             
Survival curves have been estimated using the Kaplan-Meier estimator.  

External validation using the METABRIC dataset 

H&E stained slides were retrieved from the European Genome-Phenome archive          
( ​https://ega-archive.org/dacs/EGAC00001000484​). Whole slides were tiled into 512 by 512 pixel          
tiles in the same fashion as in TCGA. Genomic data including mutations and copy number               
variations as well as clinical data were downloaded from​42​. WGD status was calculated using the               
methods described previously​62​. The amended Inception-V4 architecture, preprocessing scripts and          
the retrained model checkpoint can be found on our Github repository. As the tumor purity of the                 
METABRIC samples vary (cellularity range from low (<40%), moderate (40%-70%) to high            
(>70%)) and can be lower than those of TCGA samples, the per image prediction for genomic                
alterations and TILs score was calculated by averaging over tiles that were correctly predicted as               
breast tumor in order to avoid normal contamination.  
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Figures 
 

 
 
Figure 1. Pan-cancer computational histopathology (PC-CHiP) quantifies tissue-specific        
morphology. a. The image analysis workflow. b. High overall classification accuracy of 42             
normal/tumor tissue types. The upper panel shows the classification accuracy for each tissue type in               
the validation set (overall classification accuracy for 42 tissues in blue and cancer specific              
tumor/normal classification accuracy in red). The 95% confidence interval of the AUC was             
computed using bootstrap. The labels in the middle correspond to tumor (_t) or matching normal               
(_n) tissues across cancer types. The lower panel shows the number of tiles in the training dataset                 
for each tissue type. ​c. ​UMAP dimensionality reduction representation of the 1,536            
histopathological features of 42 tissue types. Tumors are shown on the left and normal tissues on                
the right. Each dot corresponds to a randomly selected tile colored by its tissue type. ​d. Pairwise                 
Euclidean distance in the 1,536-feature space are shown for normal tissues (left) and tumor tissues               
(right). ​e. Example images with accurate spatial prediction of tumor/normal tissue. For each row,              
the original haematoxylin and eosin (H&E) stained slide is shown on the right side, predicted tumor                
probability of each tile for the whole slide is shown in the middle figure, zoom-in images of 4 sub                   
regions indicated in the middle figure are shown on the right side. See Supplementary Table 2 for                 
cancer type abbreviations. 
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Figure 2. Wide-spread associations between PC-CHiP and genomic alterations. a. ​Overall           
performance for molecular associations with histopathological features. In the upper panel, each pie             
chart corresponds to one alteration type. In the lower panel, each box corresponds to the distribution                
of significant associations (FDR<0.1) for each alteration type that is indicated in the upper panel. ​b.                
Example tiles with and without whole genome duplication (WGD). From top to bottom, each row               
corresponds to one cancer type indicated on the left side. For each row, haematoxylin and eosin                
(H&E) stained slide and its cell nucleus mark-up are shown for a WGD sample (left side) and a near                   
diploid sample (right side). ​c. ​Comparison of traditional hard-coded morphological features and            
histopathological features between WGD sample and near diploid samples. Boxplots show the cell             
nucleus intensity (upper panel), cell nucleus size (middle panel) and a linear combination of              
histopathological features (lower panel) between a set of randomly selected tiles with and without              
WGD. ​d. Example tiles of breast invasive carcinoma with ​HER2​-amplified (4 tiles on the left side)                
and ​HER2- ​wild type (4 tiles on the left side). ​e. ​Example tiles of glioblastoma with ​EGFR                
amplification (4 tiles on the left side) and ​EGFR wild type (4 tiles on the left side). ​f. ​Example tiles                    
of breast invasive carcinoma (top panel) and hepatocellular carcinoma (bottom panel) with ​TP53             
mutation (4 tiles on the left side) and ​TP53 wild type (4 tiles on the left side). ​g. ​Example tiles of                     
thyroid carcinoma with ​BRAF ​mutation (4 tiles on the left side) and ​BRAF wild type (4 tiles on the                   
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left side). ​h. Example tiles of uterine cancers with ​PTEN mutation (4 tiles on the left side) and                  
PTEN​ wild type (4 tiles on the left side). See Supplementary Table 2 for cancer type abbreviations. 
 
 
 

 
 
Figure 3. Transcriptomic associations reveal immune infiltration and stromal cell types. a.            
Overall performance for transcriptomic associations with histopathological features. ​b. Gene          
ontology analysis for significant genes. ​c. ​Example tiles of high (first row) and low (second) TILs                
from hepatocellular carcinoma (left panel), breast invasive carcinoma (middle panel) and thymoma            
(right panel). Two randomly selected tiles are shown for each condition. ​d. ​Examples slides with               
high (top row), low (middle row) and localised (bottom row) tumor infiltrating lymphocytes. From              
left to right are the original haematoxylin and eosin (H&E) stained slides, predicted spatial TILs               
score and example tiles with high and low TILs. See Supplementary Table 2 for cancer type                
abbreviations. 
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Figure 4. PC-CHiP provides complementary prognostic information. a. Predictive accuracy of            
overall survival using histopathological grade and subtypes (light gray) compared to PC-CHiP (dark             
gray) in 18 cancers. Each bar corresponds to the mean concordance (with its 95% confidence               
interval) in 5-fold cross-validation for the dataset and the corresponding cancer type (indicated at              
the bottom). ​b. ​Kaplan-Meier plots with high (above median) and low (below median) PC-CHiP              
risk shown for cancer stage I-III in four different cancer types. ​c. ​Example tiles with high and low                  
estimated risk based on the histopathological features. Each row corresponds to a cancer type. The               
first three columns are tiles with low risk and the last three are tiles with high risk. ​d. ​Spatial risk                    
predictions across tissue slide for breast invasive carcinoma and uterine endometrial carcinoma.            
From left to right are the H&E stained slides, the corresponding risk prediction and a selection of                 
enlarged tiles with high/low predicted risk. See ​Supplementary Table 2 for cancer type             
abbreviations.  
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2019. ; https://doi.org/10.1101/813543doi: bioRxiv preprint 

https://doi.org/10.1101/813543
http://creativecommons.org/licenses/by-nc/4.0/


 

 
 
 
 
 
 

 
 
Figure 5. External validation on the METABRIC breast cancer cohort. a. ​The predictive             
accuracy of WGD, ​TP53 mutation and patients’ overall survival yield comparable results in the              
METABRIC dataset (dark blue) compared to TCGA validation (dark red) after retraining of the              
CNN. ​b. ​The mean predicted TILs using histopathological features are significantly higher for             
samples evaluated as with mild and severe of lymphocytes than those with no lymphocytes. c.               
Example slides with spatial prediction of TILs. From left to right are original H&E stained slide,                
spatial prediction of TILs based on histopathological features, tile predicted as high infiltration and              
low infiltration. ​d. Kaplan Meier plots of a better patient stratification using histopathological             
features for different stages in METABRIC. ​e. Example slides with spatial risk prediction. From left               
to right are the H&E stained slide, the corresponding spatial risk prediction and a selection of                
enlarged tiles with estimated high or low risk. See Supplementary Table 2 for cancer type               
abbreviations. 
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Supplementary Figures 

 
 

 
 
Supplementary Figure 1. Computational histopathological features discriminate between        
different tissue types. a. ​UMAP dimensionality reduction representation of the 1,536           
histopathological features of randomly selected tiles colored by groups of cancer types. ​b. ​Example              
tiles of normal and tumor tissue from different cancer types (arranged by row).  
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Supplementary Figure 2. The distribution of predicted tumor purity by histopathological           
features for samples with different histopathologist evaluated tumor purity. ​Each boxplot           
corresponds to one cancer type, each box corresponds to the predicted tumor purity from              
histopathological features for samples with the histopathologist evaluated tumor purity indicated on            
x-axis. 
 
 

 
Supplementary Figure 3. The distribution of cell nucleus size and intensity of samples with              
and without WGD. ​Each dot in the scatter plot corresponds to one of 12,000 tiles that were                 
randomly selected. The cell nucleus size and intensity were calculated using Cell Profiler with a               
pipeline provided by the software provider.  
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Supplementary Figure 4. Overview of the genetic and transcriptomic associations with           
histopathological features. a. ​The distribution of numbers of significant (FDR<0.1) association           
identified for different alteration type (per column) for each cancer type (per row). b. The ​R​2                
distribution of genes that were significantly (FDR < 0.1) associated with histopathological features             
for each cancer type (per box). Example genes that are related to immune response are highlighted                
for thymoma and example genes that are related to neurotransmission are highlighted in low grade               
glioma.  
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Supplementary Figure 5. Examples tiles for associations between computational         
histopathological and genomic alterations. a. ​Example tiles for chromosome 8q gain (left            
column) and wild type (right column) for breast invasive carcinoma (top row) and esophageal              
carcinoma (bottom row). Four randomly selected tiles are shown for each condition. ​b. ​Example              
tiles for chromosome 17p loss (left column) and wild type (right column) for colon adenocarcinoma               
(top row) and lung squamous cell carcinoma (bottom row). Four randomly selected tiles are shown               
for each condition. 
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Supplementary Figure 6. Overview of mutational signature associations with         
histopathological features. ​This heatmap shows the ​R​2 of predicted mutational signature exposures            
and true exposures. Each row corresponds to one mutational signature and each column corresponds              
to one cancer type.  
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Supplementary Figure 7. Examples of associations with transcriptomic cell proliferation          
scores. a. Example tiles for high (left column) and low proliferation (right column) for breast               
invasive carcinoma (top row) and hepatocellular carcinoma (bottom row). Four randomly selected            
tiles are shown for each condition. ​b. ​Special prediction proliferation are shown in comparison with               
tumor/normal tissue prediction for one slide from uterine cancer (first row) and one from sarcoma               
(second row). From left to right are H&E stained tissue slide, spatial tumor/normal tissue prediction               
and spatial proliferation score prediction. 
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Supplementary Figure 8. Kaplan-Meier (KM) plots of a better patient stratification using            
histopathological features in different tumor stages. a. ​breast invasive carcinoma. ​b. stomach            
adenocarcinoma. ​c. ​Head and Neck squamous cell carcinoma. Only tumor grades with at least 20               
patients are shown. Hazard ratios and the corresponding 95% confidence interval were computed             
using a Cox model.  
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Supplementary Figure 9. Comparison of the impact of jpeg quality on histopathological            
feature representations before and after retraining of Inception-V4. a. ​UMAP representation of            
lung adenocarcinoma, squamous cell carcinoma and normal lung tissue before retraining of            
Inception-V4. ​b. UMAP representation of breast tumor and normal from TCGA and breast tumor              
from METABRIC before retraining of Inception-V4. ​c. UMAP representation of lung           
adenocarcinoma, squamous cell carcinoma and normal lung tissue after retraining of Inception-V4.            
d. ​UMAP representation of breast tumor and normal from TCGA and breast tumor from              
METABRIC after retraining of Inception-V4. In each figure, the plot on the right side is colored by                 
tissue type and the plot on the left side is colored by jpeg quality. 
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Supplementary Figure 10. Comparison of genomic associations before and after CNN           
modifications and retraining. ​The predictive accuracy (AUC, 95% confidence interval was           
computed by bootstrap) of WGD, ​TP53 mutation, ​HER2 amplification, ​PPP2R2A focal deletion            
and ​PTEN focal deletion and overall survival (mean predicted concordance and confidence interval             
computed by 5-fold cross-validation) in the held-back validation dataset for each cancer type before              
and after retraining Inception-V4. 
 
 

Supplementary Tables 
 
Supplementary Table 1. Tissue classification performance.  
This table contains 3 sheets. CancerTypeAbbreviation: ​The abbreviation of the TCGA studies in             
this paper. ​TissueClassification: The tissue classification accuracy in the held-back validation set            
for each cancer type (by row). First 3 columns correspond to the tissue classification accuracy while                
considering all 42 tissue types. Last 3 columns correspond to tissue classification accuracy while              
considering only the normal and tumor tissue of that cancer type. ​HistoSubtypeClassification: The             
histological subtype classification accuracy for lung and kidney cancers. Accuracy are reported in             
AUC, the 95% confidence interval was computed using bootstrap. 

Supplementary Table 2. Genetic and transcriptomic associations performance. 

This table contains 7 sheets. In ​WholeGenomeDuplication, PointDriverMutation, FocalAmp,         
FocalDel and ChromArmGainLoss, ​the predictive accuracy (AUC) is reported for each cancer            
type (by row) of the genetic alterations that correspond to the sheet name. For left to right, first 6                   
columns correspond to the AUC, confidence interval, associated ​p​-value, the number of altered             
samples and the total number of samples in the training dataset. Followed by the same for the                 
held-back validation set and the adjusted ​p-​value in the theld-back validation set. ​Transcription:             
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The list of significant transcription/cancer associations ( ​R ​2>0​, FDR<0.1). From left to right columns             
are: cancer type, gene name, ​R​2 in the held-back validation, associated ​p​-value and the adjusted               
p ​-value (FDR). The ​p​-value was computed using ​F​-test. ​EnrichedPathway: ​the list of significantly             
enriched (FDR<0.1) pathways among the significantly associated transcripts. From left to right            
columns are: cancer type, pathway name, pathway function, enriched score, normalised enriched            
score, associated ​p ​-value, odds ratio and the adjusted ​p​-value using FDR (all statistics computed              
using GSEA R package). ​Proliferation score and TILs score, ​the ​R​2 of the predicted score in the                 
held-back validation for each cancer type. From left to right are cancer type, ​R​2​, associated ​p​-value                
and adjusted ​p- ​value (FDR). The ​p ​-value was computed using ​F​-test. 

Supplementary Table 3. Survival analysis performance. 

Concordance CV: ​The average predicted concordance of overall survival over 5-fold           
cross-validation in the held-back validation dataset for models using different covariates (each            
column). From left to right columns are for models using: histopathology (subtypes and grade),              
PC-CHiP, clinical data (histopathology, stage, gender, age), clinical data and PC-CHiP (retrained            
with boosting), clinical data and PC-CHiP (pretrained linear predictor), all (clinical + gene             
expression), all + PC-CHiP (retrained with boosting), all + PC-CHiP (pretrained linear predictor).             
Wald Test / Likelihood ratio Test PC-CHiP: ​Concordance for models using clinical data (not              
cross-validated), Wald’s ​p​-values for including a pretrained cross-validated linear predictor of           
PC-CHiP, log-likelihood for the models and likelihood ratio test p-values. ​Metrics Survival            
Models: ​The number of covariates available (by column) for each cancer type (by row) 
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