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ABSTRACT 

Deep learning applied to MRI for Alzheimer’s classification is hypothesized to improve if 

the deep learning model implicates disease’s pathophysiology. The challenge in testing 

this hypothesis is that large-scale data are required to train this type of model. Here, we 

overcome this challenge by using a novel data augmentation strategy and show that our 

MRI-based deep learning model classifies Alzheimer’s dementia with high accuracy. 

Moreover, a class activation map was found dominated by signal from the hippocampal 

formation, a site where Alzheimer’s pathophysiology begins. Next, we tested the 

model’s performance in prodromal Alzheimer’s when patients present with mild 

cognitive impairment (MCI). We retroactively dichotomized a large cohort of MCI 

patients who were followed for up to 10 years into those with and without prodromal 

Alzheimer’s at baseline and used the dementia-derived model to generate individual 

‘deep learning MRI’ scores. We compared the two groups on these scores, and on other 

biomarkers of amyloid pathology, tau pathology, and neurodegeneration. The deep 

learning MRI scores outperformed nearly all other biomarkers, including—

unexpectedly—biomarkers of amyloid or tau pathology, in classifying prodromal disease 

and in predicting clinical progression. Providing a mechanistic explanation, the deep 

learning MRI scores were found to be linked to regional tau pathology, through 

investigations using cross-sectional, longitudinal, premortem and postmortem data. Our 

findings validate that a disease’s known pathophysiology can improve the design and 

performance of deep learning models. Moreover, by showing that deep learning can 

extract useful biomarker information from conventional MRIs, the advantages of this 

model extend practically, potentially reducing patient burden, risk, and cost.  
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INTRODUCTION 

Biomarkers can aid in the clinical evaluation of Alzheimer’s disease (AD), and 

biomarkers currently exist for AD’s three core neuropathologies—amyloid pathology, tau 

pathology, and neurodegeneration1,2. The first two can be estimated from CSF levels of 

Aβ and tau, or by direct visualization using PET-sensitive radioligands. 

Neurodegeneration, a term currently used to encompass neuronal or synaptic loss3, can 

be estimated from PET-based measures of parietal cortex metabolism, or MRI-based 

measurements that reflect the structural integrity of the hippocampal formation.  

Deep learning is a subset of machine learning that, in principle, holds promise for 

MRI-based classification of neurogenerative diseases, including AD4,5. Furthermore, 

while some studies have examined classifying MCI conversion using machine learning 

frameworks, they have done so using other architectures like SVM6, examining only up 

to 36 months6-8, using clinical information in the model7-9, and few have examined 

performance independently against existing biomarkers. We hypothesized that 

designing a deep learning model that considers AD’s known pathophysiology and 

anatomy would improve the model’s classification ability. Because ‘cell sickness’ occurs 

first and foremost in the pathophysiology of AD3,10,11, before dramatic neuronal loss, a 

classifier is predicted to be improved if it is based on alterations in voxel signal intensity 

rather than on volume shrinkage. Additionally, informed by the brain’s anatomical 

complexity, particularly the areas whose AD’s pathophysiology targets, a classifier is 

expected to improve if it is based on 3D than on 2D MRI information. 

The challenge with a 3D classifier that depends on voxel signal intensity is that 

its training is estimated to require an unusually large number of scans from cases and 
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controls, more than is typically available for AD. Having access to large-scale datasets 

is a common challenge for deep learning in all fields, and strategies have been 

developed for data augmentation12. We deploy a novel data augmentation strategy that 

is particularly well suited for MRI-only datasets, by including scans acquired from the 

same patient across multiple visits. By training, validating, and testing the classifier at 

the level of individual subjects, instead of individual scans, we minimize the potential 

limitations of this approach, namely data leakage.  

We elected not to augment data by traditional methods of image perturbation, 

like rotating or applying transformations, since structural MRI data have well known 

preprocessing pipelines to spatially align images. We did not include available clinical 

information, as studies have done prior7, to avoid a model dependent on information 

that might be sparse or unavailable, as might be the case of clinical evaluation outside 

of a carefully controlled and harmonized setting, like ADNI.  

In the first series of studies, we used this data augmentation strategy to 

accumulate a large-scale dataset of MRI scans generated from patients with AD 

dementia and controls, and from which we could test our hypothesis about a deep 

learning model that uses an intensity-dependent 3D classifier. Confirming our 

hypothesis, the model, which generates individual ‘deep learning MRI’ scores reflecting 

AD probability, was found to classify AD dementia with very high accuracy. Moreover, 

although voxels from the whole brain were included in the model, the most predictive 

areas turned out to encompass the hippocampal formation. This anatomical profile 

supports the biological premise of our classification, potentially placing our deep 

learning MRI scores within the ‘neurodegeneration’ biomarker category. 
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While these results were encouraging, AD progresses through a prodromal stage 

before causing dementia, presenting clinically as mild cognitive impairment (MCI)13. 

Only a subset of patients with MCI has prodromal AD, and in contrast to AD dementia, 

where a clinical evaluation is often sufficient to diagnose the disease, our ability to 

diagnose prodromal AD when presented with an MCI patient is currently inadequate. 

With increased awareness and concern over AD, a growing number of MCI patients are 

presenting to clinicians wanting to know whether they have prodromal AD, and, if so, 

how quickly they will progress to dementia. Showing that the deep learning algorithm 

can address the clinical questions that relate to prodromal AD would not only better 

validate its classification capabilities, but since derived from conventionally-acquired 

MRI scans, would potentially expand its clinical utility.  

Accordingly, in the second series of studies we set out to test how well the deep 

learning MRI scores, derived from the deep learning model trained on AD dementia, 

performs in detecting prodromal AD and in predicting time to dementia progression. 

Additionally, we compared its performance to other biomarkers of amyloid pathology, 

tau pathology, and neurodegeneration. Based on the premise of deep learning’s 

classification abilities, we hypothesized that deep learning MRI scores would outperform 

other MRI-based biomarkers of neurodegeneration. At the same time, given the 

proposed temporal profile of AD’s neuropathology14, we hypothesized that amyloid or 

tau biomarkers would outperform the deep learning MRI score in classifying prodromal 

AD. Additionally, we investigated the link of deep learning MRI scores to amyloid and 

tau pathology, using cross-sectional, longitudinal, premortem and postmortem data, 

providing mechanistic explanation for the deep learning MRI score. 
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The diagnostic cutoffs for all AD biomarkers are traditionally derived from 

patients in the dementia stage, and biomarkers shift over the disease’s progressive 

course, particularly dynamic during its early stages. Since cutoffs for prodromal AD 

have not yet been established for any of the biomarkers, the best experimental design 

with which to test these hypotheses is to clinically follow a large group of MCI patients 

as they progress to dementia, so that the patients can be retroactively dichotomized into 

those with and without prodromal AD at baseline. Biomarkers can then be tested to 

determine which best classifies prodromal AD and which best predicts progression. The 

challenge with this design is that, based on current estimates, approximately 5 years of 

clinical follow-up is needed in order to allot sufficient time for the majority of prodromal 

AD patients to clinically manifest as dementia15,16. Here, we were able to implement this 

experimental design thanks to the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 

which has been acquiring biomarker data in a large population of MCI patients since 

2005 and to test the two hypotheses about which biomarker best classifies prodromal 

AD, and which predicts progression to dementia.  
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RESULTS 

Classifying the dementia stage of Alzheimer’s disease 

The deep learning model was trained, validated, and tested on 975 MRI scans 

repeatedly acquired in patients in the dementia stage of AD, versus 1943 MRI scans 

repeatedly acquired from healthy controls. In the test set, a ‘deep learning MRI’ score 

was derived for each scan from the model, with the score reflecting the probability of 

each scan having AD. A receiver operating characteristic (ROC) analysis revealed that 

the deep learning MRI scores accurately classified AD dementia vs. healthy controls 

with an AUROC (area under the receiver operating characteristics curve) of 0.973 (Fig. 

1a).  

Next, we generated an AD ‘class activation map’ to determine whether the deep 

learning MRI scores derived from the model were regionally dominated. We find that the 

deep learning MRI scores are dominated by alterations in voxel signal intensity that 

localized to anterior medial temporal lobe, in the vicinity of the anterior entorhinal cortex 

and hippocampus (Fig. 1b). We note that while the class activation map localized to the 

left more than the right anterior medial temporal lobe, in agreement with previous 

findings17-19, contralateral areas emerged with lowered thresholding.  

 

Classifying the prodromal stage of Alzheimer’s disease 

From ADNI, we identified a cohort of participants who were diagnosed with MCI at 

baseline and who had a complete set of CSF amyloid and tau biomarkers and structural 

MRI (N = 582; the inclusionary and exclusionary algorithm is illustrated in Fig. S1). 
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Among these, 205 participants progressed to AD dementia at follow up (‘MCI 

progression’ group), and thus had prodromal AD at baseline, while 179 participants 

remained MCI stable for at least 4 years (‘MCI stable’ group) (Fig. 2). The dementia-

derived deep learning classifier was used to generate deep learning MRI scores on 

each individual case.  

ROC analyses revealed that the deep learning MRI score outperformed all other 

biomarkers in classifying the MCI-stable from the MCI-progression group (Fig. 3). The 

AUROC of deep learning MRI score was 0.788 (Accuracy at Youden (ACC)=75%), 

superior to CSF Aβ (AUROC=0.702 ACC=66.7%, significantly lower than the deep 

learning MRI score, p=0.0141), CSF tau (AUROC=0.682, ACC=66.4%, p=0.0161), CSF 

tau/Aβ (AUROC=0.703, ACC=68.5%, p=0.0161); superior to MRI-based measures of 

hippocampal volume (AUROC=0.733, ACC=67.7%, p=0.0484), entorhinal cortex 

volume (AUROC=0.64, ACC=62.5%, p=2.01E-6), and entorhinal cortex thickness 

(AUROC=0.685, ACC=64.1%, p=1.71E-4); and, finally, superior to Mini-Mental State 

Exam (AUROC=0.648, ACC=63.3%, p=6.70E-5), and to neuropsychological measure 

most sensitive to the early stages of AD, the RAVLT retention score20 (AUROC=0.686, 

ACC=67.7%, p=2.28E-3).  

Additionally, the deep learning MRI score was found to outperform or perform as 

well when tested in a subset of participants in whom additional PET-based biomarkers 

were available -- FDG-PET that by measuring parietal cortex metabolism is considered 

a biomarker of neurodegeneration21, and AV45-PET, which by using an amyloid 

radioligand is a biomarker of amyloid pathology22. In this subset, the deep learning MRI 

score classified prodromal AD with an AUROC=0.815 (ACC=78.6%), compared to the 
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AUROC of 0.782 (for PDG-PET (ACC=75.4%) and 0.751 (ACC=71.4%) for amyloid-

PET, although the differences were not statistically significant (Fig. 3, bottom panel). 

 

Predicting progression to Alzheimer’s disease dementia 

Survival analyses were performed to determine which biomarker best predicted 

progression to AD dementia among the MCI groups. Results revealed that compared to 

other biomarkers, the deep learning MRI score best predicted time to conversion to AD 

dementia, as illustrated by the survival curves of high and low deep learning MRI scores 

and tau/Aβ ratios (Fig. 4). The deep learning MRI scores showed better prediction 

capability (|z|=11.0, p=4.35E-28) than CSF biomarkers of amyloid and tau pathology 

(Aβ |z|=6.37, p=1.87E-10, tau |z|=5.70, p=1.18E-08, tau/Aβ |z|=5.41, p=6.29E-08); than 

MRI-based biomarkers of neurodegeneration (hippocampal volume |z|=8.80, p=1.35E-

18, entorhinal volume |z|=6.02, p=1.75E-09, entorhinal thickness |z|=7.42, p=1.21E-13); 

and, than behavioral measures (MMSE |z|=5.72, p=1.07E-08, RAVLT retention |z|=6.88, 

p=6.12E-12). Similarly, in the subset in whom the additional PET biomarkers were 

available the deep learning MRI score (|z|=9.04, p=1.40E-19) outperformed or 

performed as well as FDG-PET (|z|=9.11, p=8.14E-20) and AV45-PET |z|=7.12, 

p=1.04E-12).  

 

Correlations with amyloid pathology and tau pathology 

Correlational analyses were performed to determine whether the deep learning MRI 

score was correlated more with amyloid pathology or tau pathology. Cross-sectionally, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813899doi: bioRxiv preprint 

https://doi.org/10.1101/813899
http://creativecommons.org/licenses/by-nc-nd/4.0/


we found that while the deep learning MRI score showed a stronger correlation with 

CSF tau (r=0.225, p=9.00E-6), it also correlated with CSF Aβ (r=-0.190, p=1.86E-4). 

Longitudinally, however, changes in the deep learning MRI scores over time were 

significantly associated with changes in CSF tau (r=-0.205, p=1.50E-3), but not with 

changes in CSF Aβ (r=-8.18E-3, p=0.900).  

 Next, in a subsample with available postmortem data, we correlated the deep 

learning MRI score with neuropathological evidence of amyloid pathology, as indicated 

by the Thal staging23, or tau pathology indicated by Braak staging24. The deep learning 

MRI scores were found to associate more with tau pathology (with an MRI-autopsy 

interval below 2 years, Braak staging: r=0.397, p=7.70e-3; Thal staging: r=0.196, 

p=0.203) (Fig. 5 bottom panel). To further explore the regionality of this relationship, we 

found that the deep learning MRI score correlated with tau levels mapped by tau-PET, 

with strong correlations observed with tau pathology in the entorhinal cortex (r=0.449, 

p=1.66E-15). 
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DISCUSSION 

The level of performance achieved by our deep learning model in classifying AD 

dementia supports our hypothesis that a disease’s pathophysiology should be 

considered when evaluating performance as well as justifying the data augmentation 

strategy used. Further validating the assumptions, design, and implementation of our 

model is the fact that, despite incorporating information from the whole brain, the class 

activation map was dominated by signal in the anterior entorhinal cortex and 

hippocampus, precisely where AD pathophysiology begins3,17-19,24.  

Stronger validation of the deep learning model was provided by the second 

series of studies when the dementia-derived classifier was applied to the prodromal 

stages of AD. Supporting the first hypothesis of this study, we found that our deep 

learning MRI scores outperformed other MRI-based measures of neurodegeneration in 

both classifying prodromal AD and in predicting progression to dementia. Refuting the 

second hypothesis, we found that the deep learning MRI scores performed at least as 

well and typically outperformed biomarkers of amyloid and tau pathology.  

We do not consider this unexpected finding a challenge to the primacy of amyloid 

and tau pathology in the neuropathological progression of AD25. The deep learning MRI 

scores were found strongly linked to tau pathology in the entorhinal cortex, a region 

where AD pathology begins24, and its superior performance likely reflects this sensitivity. 

It is possible, therefore, that tau-PET would outperform the deep learning MRI score 

and other biomarkers. ADNI, however, has only begun acquiring tau-PET in 2015, and 

there is currently insufficient data to test this prediction in our experimental design. 
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Future analyses from ADNI and other long-term PET studies will be able to test this 

prediction. 

The observation that the deep learning MRI scores outperformed biomarkers of 

amyloid and tau pathology in predicting time to dementia is less surprising. As a 

biomarker of neurodegeneration, this finding agrees with prior studies26 and with the 

current model for the temporal sequence of AD’s neuropathology25. Since in this 

scheme neurodegeneration occurs last, accurate biomarkers of it are more proximal to 

the development of dementia.  

The strength of our prodromal AD study is that by relying on progression to AD 

dementia as a way to retroactively identify patients with prodromal AD, we overcame 

the limitation that precise biomarker cutoffs for prodromal AD have not yet been 

established. We designed the analysis based on prior studies that suggest that the 

majority of MCI patients with prodromal AD will progress to dementia within 4-5 years15, 

an assumption confirmed in our study. Furthermore, approximately half of the MCI 

cohort ended up having prodromal AD, which agrees with previous approximations27. 

Still, a potential weakness of our study is the possibility that a minority of patients in the 

stable MCI category are harboring prodromal AD at baseline. The number of 

misclassified patients is likely to be low27, and so this potential imprecision would not be 

expected to significantly alter our results. Tracking stable MCI patients for longer 

periods might address this concern, but would in fact raise a new one: when tracking 

patients for a decade or more, particularly given the high incidence of AD in older 

populations, some are expected to develop AD de novo after the baseline evaluation. 

We can conclude that our findings and their conclusions are beyond reproach for a 5-
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year time window after initial evaluation, a clinically meaningful epoch for both patients 

and clinicians.  

Our study provides the proof-of-principle that imaging-based deep learning 

models that are examined in concert with a disease’s pathophysiology will yield a highly 

accurate model and improve performance in prognosticating disease. Showing that 

deep learning can enhance the utility of MRI in prodromal AD is the more important 

clinical implication of this study. Ordering “neuroimaging studies”28 is the current 

standard of care when evaluating a patient with MCI suspected of having AD, most 

typically the conventional MRIs from which the deep learning MRI scores were derived. 

The rationale for this recommendation and its routine clinical implementation is not to 

‘rule in’ AD, but rather to exclude other non-neurodegenerative causes of dementia, 

such as strokes, bleeds, and tumors. Deep learning algorithms that can extract useful 

information for the purposes of prodromal AD detection, from conventional MRIs that 

have in any case been acquired, has the additional advantages of reducing patient 

burden and cost incurred by lumbar punctures, injection of radioactive ligands, or other 

additional testing.  
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METHODS 

Participants in the Alzheimer’s disease dementia study 

All data were obtained from ADNI, a multi-site observational study, which were acquired 

in accordance with each site’s respective Institutional Review Board, including obtaining 

written consent acquired from each participant. We included 2918 scans (Nhealthy control = 

1943, NAD = 975) from 626 subjects as training set, 382 scans (Nhealthy control = 251, NAD = 

131) from 80 subjects as validation set, and 325 scans (Nhealthy control = 229, NAD = 96) 

from 80 subjects as test set.  

Our data augmentation method of using scans from multiple visits of the same 

participant requires dealing with two problems: data leakage and disease progression. 

Data leakage is the problem of including different scans from the same participant in the 

training and test set, the trained model might make the prediction by matching the 

subject instead of extracting disease relevant patterns. In this study, the training, 

validation and test sets were partitioned at subject level to ensure non-overlapping 

subjects. Disease progression is the problem that the diagnosis status of subjects might 

change during follow-up visits, and the diagnosis at scan time might be different from 

the baseline label. In this study, we labeled all the scans with their cross-sectional 

diagnosis at scan time. 

 

Participants in the ‘Mild Cognitive Impairment’ study 

From ADNI we identified a cohort of participants who were diagnosed with MCI at 

baseline and who had a complete set of CSF amyloid and tau biomarkers and structural 
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MRI (N = 582; the inclusionary and exclusionary algorithm is illustrated in Fig. S1). 

Among these, 205 participants progressed to AD dementia at follow up (‘MCI 

progression’ group), and 179 participants remained MCI stable for at least 4 years (‘MCI 

stable’ group). The time distribution and demographics of these two groups are shown 

in Fig. 2.  

 

The deep learning MRI score 

The deep learning model used in this study is a three-dimensional convolutional neural 

network (3D CNN) model with five convolutional stages and one fully connected layer 

with sigmoid output5. Each convolutional stage consists of two convolutional layers with 

rectified linear unit (ReLU) activation function, a batch normalization operation and a 

max pooling layer. The model was optimized using ADAM method with cross-entropy 

loss, using a learning rate of 2e-5 determined through grid search. The model was 

trained on the brain-extracted T1-weighted structural MRI scans from the ADNI cohort 

to classify patients in the dementia stage of AD versus healthy control subjects. To 

evaluate the regional contribution to AD classification, we generated a 3D class 

activation map, which visualizes the predictive regions in deep learning classification 

models29,30.  

We applied the model trained to classify AD dementia versus healthy controls to 

the baseline scans of patients diagnosed with MCI. The continuous output from the 

model is reflective of the progressive structural patterns of AD pathology. We refer to it 

as a ‘deep learning MRI’ score. All analyses were performed using this score. 
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Amyloid and Tau Biomarkers  

CSF biomarkers: CSF tau levels, reflective of neurofibrillary tangle, and CSF Aβ levels, 

reflective of amyloid pathology, were included in the analysis31. Additionally, the tau/Aβ 

ratio, which has been shown to best capture AD32, was also included33. CSF was 

acquired at individual ADNI sites in accordance to the ADNI acquisition protocols and 

analyzed as previously described33. The median values provided by ADNI were used. 

PET measures: In a subset of participants (NMCI-progression = 94, NMCI-stable = 154), 

amyloid pathology was also estimated with PET, mapping amyloid burden with the 

amyloid-binding radioligand AV45. The composite AV45-PET score provided by ADNI34 

was used in the analyses, which is based on the average AV45 SUVR (standard uptake 

value ratio) of the frontal, anterior cingulate, precuneus, and parietal cortex relative to 

the cerebellum35. 

 

Neurodegeneration Biomarkers 

MRI morphometry: FreeSurfer 6.036,37 was used to segment the structural MRI scans 

and derive regional morphometric measures. Hippocampal (HC) volume, entorhinal 

cortex (EC) volume, and entorhinal cortex thickness were used as structural integrity 

measures of the hippocampal formation. Hippocampal and entorhinal cortex volume 

were normalized by the intra-cranial volume (ICV). 

PET measures: In a subset of participants (NMCI-progression = 94, NMCI-stable = 154), 

neurodegeneration was also estimated with PET using fluorodeoxyglucose (FDG). The 
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composite FDG score provided by ADNI34 was used in the analyses, which is based on 

the average FDG uptake of angular, temporal, and posterior cingulate21.  

 

Additional Measures 

Behavioral and neuropsychological measures: The MMSE (Mini-Mental State 

Examination) score and RAVLT (Rey Auditory Verbal Learning Test) retention scores 

were used in the analysis. The RAVLT retention score measures the number of delayed 

recalled words divided by the number of words learned in the last learning trial (trial 5) 

and has been found to be one of the most sensitive to AD20. 

Neuropathology: Among subjects with postmortem neuropathology data, 44 cases 

were identified who had an MRI within two years prior to death, and 29 cases were 

identified who had MRI within one year prior to death. DLMRI scores were derived from 

the last antemortem MRI scans in this cohort. An association was investigated between 

DLMRI score and the neuropathologically-derived Braak stage, which reflects 

neurofibrillary tangles24, and the Thal phase, which reflects amyloid plaques23. 

Tau-PET: ADNI began acquiring PET scan using the AV1451 radioligand, which binds 

neurofibrillary tangles38, in the late phase of ADNI2 and resumed in ADNI3. Due to the 

smaller number of subjects with available longitudinal tau-PET data or follow-up visits, 

cross-sectional analyses on these subjects (N = 296) using the regional AV1451 

retention levels provided by ADNI34 were performed.  

 

Statistical analysis 
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ROC analysis: A receiver operating characteristic (ROC) analysis was used to 

determine the accuracy of the deep learning MRI score in prodromal AD classification, 

i.e. MCI-stable and MCI-progression classification, using standardized residuals 

controlling for age, sex, and APOE ε4 frequency with linear regression. The DeLong 

test39 was used to test for the significance of the differences in the AUROCs (area under 

the ROC curve) between DLMRI score and other measures using the pROC R 

package40. 

Survival analysis: Cox proportional hazards regression models were fit to examine the 

association between each baseline measure and time to conversion to AD dementia 

from MCI, controlling for age, sex, and APOE ε4 frequency, using the survival R 

package41. MCI-stable participants are included in the models as censored data with the 

last visit as the censored point. The high-risk and low-risk survival curves were 

generated with the 75% percentile and 25% percentile of the observed measures, 

respectively. 

Longitudinal analysis: The longitudinal association between DLMRI score and CSF 

biomarkers was studied by examining the deviation from baseline measurements for 

each participant over time. From the ‘MCI-progression’ and ‘MCI-stable’ group, we 

further identified participants that had at least one follow-up of both MRI and CSF, and 

collapsed them into a group for longitudinal analysis (n=238). The changes in either 

CSF biomarker or DLMRI score of all follow-up visits from baseline were used to 

estimate the slope β of the change in tau (Δtau), Aβ (ΔAβ), and tau/Aβ ratio (Δtau/Aβ) 

versus the change in DLMRI score (ΔDLMRI) for each participant using linear 

regression through the origin. Each participant was represented by the point based on 
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the last follow-up visit’s ΔDLMRIlast (x-coordinate) and the fitted change βΔDLMRIlast (y-

coordinate) of the respective measure. The last follow-up visit was used to anchor the 

representation of the participant in order to reflect the full follow-up. A correlation 

analysis was performed across participants. A linear regression model was fit across 

participants and illustrated. 

Correlational analysis: A partial correlation was performed between baseline DLMRI 

score and CSF biomarkers, regional tau-PET measures, controlling for age, sex, and 

APOE ε4 frequency. As the Braak stage of neurofibrillary tangles and the Thal phase of 

amyloid plagues are both rank ordinal measures, we correlated the DLMRI score with 

the neuropathological measures using Spearman correlation. 
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FIGURE LEGENDS 

Figure 1. Classifying Alzheimer’s disease in its dementia stage. 

The ‘receiver operating characteristic’ curve shows that the deep learning MRI score 

applied to the test set of Alzheimer’s disease (AD) dementia scans vs. healthy controls 

scans classified AD dementia with high accuracy (panel ‘a’). The class activation map, 

reflective of the regional contributions to the deep learning MRI scores, localized to the 

left anterior medial temporal lobe in the vicinity of the entorhinal cortex and 

hippocampus, where Alzheimer’s pathophysiology begins.  

 

Figure 2. Distribution and demographics of subjects in the ‘mild cognitive 

impairment’ study 

Distribution frequencies of the participants with amnestic mild cognitive impairment 

(MCI) at baseline, who either remained stable (MCI stable) or progressed to Alzheimer’s 

dementia (MCI progression), organized by latest follow-up years and conversion years. 

The dark blue bars indicate participants included in the study. Demographic and 
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baseline biomarker data are listed in the table for the MCI stable and MCI progression 

groups.  

 

Figure 3. Classifying Alzheimer’s disease in its prodromal stage 

By comparing the ‘MCI stable’ to the ‘MCI progression’ groups, ROC curves show that 

the deep learning MRI (DLMRI) scores were superior in classifying prodromal 

Alzheimer’s disease (indicated in red). The deep learning MRI scores outperformed (left 

panel) CSF measures of Aβ, tau, or tau/Aβ; MRI measures of hippocampal (HC) or 

entorhinal cortex (EC) volume or thickness; clinical measures using the modified mental 

status exam (MMSE) or the retention of the Rey Auditory Verbal Learning Task 

(RAVLT) (left panel). In a smaller subset, the deep learning MRI scores (right panel) 

outperformed PET measures of amyloid using the AV45 radioligand or metabolism 

using fluorodeoxyglucose (FDG). Specific area under the curve (AUROC) values for 

each measure, and statistical probability values for each comparison, are shown in the 

table.  

 

Figure 4. Predicting progression to Alzheimer’s Dementia 

Survival analyses were performed comparing the deep learning MRI scores to other 

measures, and example curves illustrate that the deep learning MRI score (left panel) 

outperforming the CSF measure of the tau/Aβ ratio (right panel). The high risk (indicated 

by red) and low risk (indicated by blue) curves were fitted from 75% and 25% percentile 

of the measures respectively. The shaded area indicates the 95% confidence interval. 
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The deep learning MRI scores outperformed CSF Aβ, tau, or tau/Aβ, MRI-derived 

measures of hippocampal volume, entorhinal cortex volume, and entorhinal thickness; 

behavioral measures, Mini-Mental State Exam (MMSE), and RAVLT retention; and, 

when available, PET measures of amyloid using the AV45 radioligand or metabolism 

using fluorodeoxyglucose (FDG).  

 

Figure 5. The deep learning MRI score correlates with tau pathology 

The scatter plots illustrate the relationship between changes over time in the deep 

learning MRI scores vs. changes in CSF Aβ (left panel), changes in CSF tau (middle 

panel) and changes in CSF tau/Aβ (right panel). Each data point indicates one 

participant’s change of last deep learning MRI score from baseline (ΔDLMRIlast), plotted 

against their fitted change in biomarker measures at ΔDLMRIlast with the slope 

estimated from all follow-up visits (see Methods). The black solid lines are the linear fits 

across participants, showing that changes in the deep learning MRI score is most 

strongly correlated with changes in tau over time. The table lists the correlations 

between antemortem deep learning MRI scores to postmortem-derived Braak stage of 

neurofibrillary tangles and the Thal phase of amyloid plaques, with an MRI-autopsy 

interval below either 1 year and 2 years, showing that the deep learning MRI scores are 

most strongly correlated with tau pathology.  

 

Figure S1. Participant selection flow-chart 
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FIGURES 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813899doi: bioRxiv preprint 

https://doi.org/10.1101/813899
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5 
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Figure S1 
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