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Abstract 

The traditional brain mapping approach has greatly advanced our understanding of the 
localized effect of the brain on behavior. However, the statistically significant brain regions 
identified by the standard mass univariate models only explain minimal variance in behavior 
despite increased sample sizes and statistical power, highlighting the nonsparseness of the 
explanatory signal in the brain. We introduced the Bayesian polyvertex score (PVS-B), a whole-
brain prediction framework that aggregates the effect sizes across all vertices to predict 
individual variability in behavior. The PVS-B estimates the posterior mean effect size at each 
vertex with the summary statistics from the brain mapping approach and the correlation structure 
of the imaging phenotype. Empirical data showed that the PVS-B was able to double the 
variance explained of the total composite cognition score by an nBack fMRI contrast when 
compared to prediction models based on the mass univariate parameter estimates as well as 
models based on p-value thresholds. A fivefold improvement in variance explained by the PVS-
B was observed using the stop signal fMRI contrast to predict individual variability in the stop 
signal reaction time. We believe that the PVS-B can shed light on the multivariate investigation 
of brain-behavioral associations and will empower small scale neuroimaging studies with more 
reliable and accurate effect size estimates. 
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Introduction 

In traditional neuroimaging analyses, a brain-behavior association is assessed with a brain 
mapping approach where the associative effect on behavior is estimated independently at each 
measured unit on brain region, e.g. vertex or voxel. These mass univariate effects are 
subsequently summarized as a parametric map where statistical correction methods are applied to 
map out a set of brain regions with significant behavioral associations. Given the limited 
statistical power (Cremers, Wager & Yarkoni, 2017) and signal-to-noise ratio (SNR; Gonzalez-
Castillo et al., 2012) for neuroimaging studies, a brain-behavior relationship is usually localized 
to a few clusters of brain regions with the most significant p-values. With growing numbers of 
imaging consortia and increased collaborative effort for data sharing, the sample size of 
neuroimaging studies is large enough to detect small brain-behavior relationships spanning a 
larger number of vertices or voxels; however, these mass univariate effects individually explain a 
very small percentage of between subject variability in behavior (Poldrack et al., 2017). Large 
effect sizes are rarely observed at the brain region or vertex level (Stanfield et al., 2008). With a 
sample size of more than 14,000 participants, Smith and Nichols (2017) demonstrated that a 
statistically significant imaging composite measure explained less than 1% of the variance in 
behavior even after Bonferroni correction of 14 million tests. This questions whether those small 
effect sizes detected by large scale imaging studies are really meaningful or generalizable. 
Indeed, neural signatures distributed across the cortex, spanning multiple sub-networks, have 
been shown to perform better than specific, predefined brain regions or networks at classifying 
clinical disorders (Bruin, Denys, & Wingen, 2019; Reddan, Lindquist, & Wager, 2017) and 
predicting individual differences in cognitive processes (Chang et al., 2015). The predictive 
power of a given brain phenotype is not localized but appears to be widespread across the cortex. 

Similar observations were made in the field of genetics. Genome-wide association studies 
(GWAS) use mass univariate regressions across the genome to localize genetic loci associated 
with behavior in thousands of participants. However, the detected genetic loci that survive 
Bonferroni correction often only account for a fraction of the variance in complex human 
phenotypes. As a test to investigate the magnitude of generalizable signals among those non-
significant small effect genetic variants, polygenic risk scores (PRS) were developed as an 
aggregated sum over all of the effect sizes from GWAS (Davies et al., 2011; Le Hellard & Steen, 
2014; Torkamani et al., 2018; Yang et al., 2010). By pulling together the effects of many 
informative but not necessarily statistically significant SNP loci, the PRS explained a much 
higher proportion of behavioral variation than only the significant SNPs. When the true effects 
are less sparse, that the effects are small and ubiquitous across the genome, the PRS out-
performs prediction models with variant sets selected based on statistical significance 
(Dudbridge et al., 2013). In particular, the invention of the PRS has enabled researchers of 
smaller scale studies to make powerful inference using the effect size estimates from large-scale 
GWAS studies (Torkamani et al., 2018). 
 Given the observed similarity across fields, we explored that whether we can adapt the 
traditional brain mapping approach to a framework for prediction using whole-brain phenotypes. 
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We developed a novel imaging analysis framework: the polyvertex score (PVS). The PVS 
harnesses the explanatory power of an imaging phenotype by incorporating information across 
all voxels or vertices that are readily available from the brain mapping analysis. It aggregates the 
effect sizes across all vertices of the cortical surface for behavioral prediction, mirroring the 
function of PRS. Two versions of the PVS were developed. The mass univariate PVS (PVS-U) is 
a summary measure of all the univariate linear associations across the cortex. The Bayesian PVS 
(PVS-B), on the other hand, uses a Bayesian parameter estimation process that incorporates the 
correlation structure, estimated SNR, sample size, and number of vertices of the brain phenotype. 
This accounts for the non-independence between vertices in the brain, which is a limitation of the 
mass univariate approach.  

Using simulations and functional neuroimaging data from the Adolescent Brain 
Cognitive Development (ABCD) study, we tested two main hypotheses. Firstly, we hypothesized 
that using all estimated effects from the brain mapping framework regardless of statistical 
significance would better predict individual variability in behavior compared to predictions 
based on a subset of the most significant vertices. This would support the observation that the 
explanatory effect of cognitive behaviors is widespread across the cortex and that vertices below 
the significance threshold are informative for brain-behavior relationships. Secondly, we 
hypothesized that incorporating the estimated SNR of the imaging phenotype and the correlation 
structure across vertices would improve our predictive power; thus, prediction models based on 
the Bayesian parameter estimates of brain-behavior associations (PVS-B) would explain more 
individual variability compared to PVS-U.   

 
Method 
A background based on the brain mapping approach 

Traditionally, the association between an imaging phenotype and a behavior is tested 
with univariate regression models at each vertex. The effect size of a brain phenotype on 
behavior, based on the brain mapping approach, estimates a linear, additive relationship between 
the imaging measurement, �, at each vertex, and the phenotypic outcome, � , as: 

 � �  �� � ε 
 

for � denotes a standardized � by 	matrix of a given imaging phenotype 
where � and 	 denotes the number of subjects and vertices respectively. � represents an � by 1 
vector of a behavioral phenotype, and � is the 	 by 1 vector of parameters of interest. With the 
goal of localizing the effect rather than estimating the total explanatory signal, the brain mapping 
approach omits the correlation information among vertices to reduce the computational demand. 

Recent debates on the reproducibility and the small effect sizes of neuroimaging research 
are based on such mass univariate estimates from the brain mapping framework (Poldrack et al., 
2017; Smith and Nichols, 2017). We argue that inferring the magnitude of a brain-behavior 
association based on these mass univariate estimates requires further consideration. Generalizing 
based on the effect sizes estimates of the most significant vertices/ROIs of the mass univariate 
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model commits the assumption that the underlying true signal is sparse and localized, and 
clusters of vertices/ROIs with minimum P values (Min-p) contain the main source of 
generalizable signals. However, as previously mentioned, the explanatory power of the brain on 
behavior appears to be nonsparse, and thus can’t be captured by the most significant 
vertices/ROIs. In order to generalize the effect sizes of the whole brain phenotype, we need a 
prediction framework that accounts for the nonsparseness of the brain signal on behavior.  

Rooted in this brain mapping approach, we proposed the PVS estimation and prediction 
framework. Importantly, we designed the parameter estimation process to enable smaller scale 
imaging studies to make inferences based on the effect size estimates from large scale imaging 
consortiums, mirroring the contribution of the PRS to genetics research. Therefore, all estimation 
processes only require summary statistics, i.e. the effect size estimates of the mass univariate 
regression models of the brain mapping framework. There is no need for original individual level 
data if the summary statistics have been shared by the research community, such as the design of 
ENIGMA project (Stein et al., 2012). 

Mass univariate parameter estimation 

In the brain mapping context, the relationship between all vertices of the brain and the 
behavior is estimated independently at each vertex with a univariate model. The effect of each 
column of the brain matrix, �, is estimated independently and the correlation matrix of the brain 
phenotype, �
�, is set to �, the identity matrix. The parameter estimates based on a mass 
univariate model is thus reduced to the form: 

��� = ��
�  
Independent estimation of the parameter estimate at each vertex effectively reduces the 

computational demand of the mass univariate model. However, ignoring the correlation structure 
among vertices could result in the biased estimation of the multivariate beta parameters, 
hampering the ability of mass univariate models to make accurate inferences and predictions. A 
parameter estimation approach that accounts for the correlation structure of the brain phenotype 
is thus called for. 

Bayesian parameter estimation 

To tackle the correlated signal of the imaging phenotype at each vertex, we developed a 
Bayesian parameter estimation approach where the correlation information across vertices is 
incorporated into the parameter estimation process. Similar framework has been proposed in the 
field of genetics (Vilhjálmsson et al., 2015). The intuition behind the formulation of the PVS-B 
is to approximate the multivariate linear regression coefficients given the massive univariate beta 
estimates while providing analytically derived empirical priors to ensure the information matrix 
is positive definite. 

The Bayesian parameter estimation procedure calculates the posterior mean effect sizes 
of the brain phenotype by weighting the mass univariate beta estimates with a factor that 
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accounts for the observed correlation structure of the cortex and the experimental condition of 
the imaging data:  

���������� | ���, ��  � �  	
��  �  ��	
��� 

Here, the posterior mean effect sizes ���������� | ���, ��, are approximated by the mass 

univariate beta estimates ��� multiplied by the inverse of the correlation structure of the brain, 
�, and a shrinkage factor that accounts for the number of vertices, 	, the number of participants, 
�, and the SNR of the brain-behavior association, �. 

The SNR of the brain phenotype, �, is estimated using the moment estimator on the mean 
effects (Schwartzman et al., 2017), which characterizes the amount of signal given the observed 
associations. Using the mass univariate beta estimates, � can be estimated by: 

�� = 
�����

�
����� � 1� 

where ���� is the mean of the squared z-statistics of the mass univariate regressions across 
vertices, and the �����  is the estimated effective number of vertices. �����  is calculated by the 

number of vertices, 	, divided by the second spectral moment of the correlation matrix, �, a 
factor that captures the effect of the correlation structure of the brain. 

The benefits of implementing this Bayesian parameter estimation are 2 folds: 1) the 
Bayesian parameter estimation procedure takes into account the correlation structure of the brain 
phenotype, circumventing the independence assumption of the mass univariate approach; and 2) 
the SNR of the brain phenotype is being incorporated. Given that imaging data usually have low 
SNR, accounting for the SNR in the parameter estimation process can reduce the variance in 
prediction error that leads to better predictive performance. We note that the PVS-B 
implemented in this study explicitly assumes a prior that all vertices have true associations on 
behavior.   

Behavioral prediction  

Polyvertex scores 
Motivated by the PRS analysis for GWAS, a polyvertex score (PVS) can be calculated 

from neuroimaging data by aggregating the explanatory power of all vertices on behavior. The 
PVS represents the predicted behavioral phenotype based on the cortex-wide associations 
between the imaging phenotype and the observed behavior. We implemented two types of PVS 
that utilize the mass univariate and Bayesian parameter estimates respectively. A mass univariate 
PVS (PVS-U), based on the mass univariate parameter estimates, was computed as the brain 
phenotype at each vertex for an individual multiplied by the mass univariate parameter estimates 
acquired from an independent sample:  

 

�� ���	� �  � ��

�

�

���,� 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 23, 2019. ; https://doi.org/10.1101/813915doi: bioRxiv preprint 

https://doi.org/10.1101/813915


 

The PVS-U summarizes the effect size at all vertices on individual variability in 
behavior, with the assumption of independence at each vertex. 

Similarly, a Bayesian PVS (PVS-B) was calculated using the Bayesian parameter 
estimates:  

 

�����	� �  � ��

�

�

����������,�  

The PVS-B is hypothesized to harness the multivariate effect of an imaging phenotype on 
behavior by accounting for the correlation structure and the SNR of the brain phenotype, and 
should yield superior predictive performance over the PVS-U. 
 
Thresholding 

Modeling a brain-behavior relationship with a whole-brain phenotype yields significant 
gain in prediction accuracy when the underlying true association between the brain and behavior 
is widespread across the cortex. However, when the true signal is sparse, a whole-brain 
phenotype risks inferior prediction performance compared to methods that include only the most 
significant vertices for prediction. In the current study, we did not know the sparsity of the true 
brain-behavior associations, therefore we implemented 3 levels of thresholding for the PVS-U 
and PVS-B. Specifically, we tested whether thresholding the number of vertices included in the 
PVS-U and the PVS-B improved prediction performance when the signal sparsity was high. The 
thresholding procedure was performed as follows: we ranked the absolute effect sizes for all 
vertices and removed those ranked lower than a threshold proportion. Three levels of 
thresholding were implemented such that the top 50%, 10% and 1% of vertices were retained for 
the PVS-U or PVS-B.  

To link our predictive methods with the canonical statistical inference approach where a 
brain and behavior relationship is established when any single vertex shows a significant 
association with the behavior, we compared our methods with the predictive performance of the 
vertex with the most significant mass univariate z-score which we have referred to as the Min-p 
model.  

We used simulations and empirically collected functional MRI data to examine 
prediction accuracy of the above mentioned 9 methods: the PVS-U, PVS-U 50% (PVS-U with 
50% most significant vertices), PVS-U 10%, PVS-U 1%, the PVS-B, PVS-B 50%, PVS-B 10%, 
PVS-B 1%, and Min-p. 
 
Evaluating the performance of PVS 

We used 10-fold cross validation to evaluate the generalization performance of PVS. The 
same training-testing schema was applied to each fold to ensure the independency between 
estimation and prediction. At each fold, mass univariate beta estimates obtained from the training 
set, containing 90% of the full sample, were multiplied by the imaging phenotype of each test set 
participant to obtain a PVS-U score (the predicted behavioral phenotype) for each participant in 
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the test set. This procedure was repeated 10 times yielding a predicted behavioral score for each 
participant in the full sample. For the PVS-B, the posterior effect sizes were calculated with the 
estimated SNR, the correlation structure, and the mass univariate beta estimates from the training 
data, and multiplied by the imaging phenotype of each test set participant. Variance explained, 
�, the squared correlation between the observed and predicted behavior phenotypes, was used 
as a metric for prediction accuracy. 

Simulations 

First, we used simulations to assess this novel method and determine whether the 
different types of PVSs perform as expected in certain contexts. In particular, we assessed how 
signal sparsity, the SNR of the brain phenotype and sample size influenced the predictive 
accuracy of the above mentioned PVS methods. The proportion of the true signal, i.e. the signal 
sparsity level, was simulated at the levels of 100%, 50%, 10%, 1%, and 0.1% true signal. The 
0.1% true signal level corresponds to the Min-p assumption where the significant effect lies in a 
single vertex. The SNR of the brain phenotype was simulated at the levels of 0.01, 0.05, 0.1, and 
0.2. Each combination of signal and SNR was simulated independently 100 times, giving 2000 
iterations in total.  

For each iteration of the simulations, the predictive effect of the brain on behavior at each 
vertex, the true beta coefficient, was simulated as:  

�~  ��0, "/	� $%& '&%()(*+*,� -
0 $%& '&%()(*+*,� 1 �  - . 

The beta coefficients were simulated by sampling independently from a standard normal 
distribution. A subset of these true beta coefficients was then set to zero as determined by 1 
minus the proportion of true signal, -. For example, for an instantiation of 10% true signal 
scenario, 10% of the vertices were randomly assigned to have non-null effects which can account 
for " of outcome variations in total, whereas the beta coefficients of the other 90% were set to 
zero.  

Then, the simulated behavioral phenotype was calculated as a combination of the effect 
of an empirically collected brain phenotype, �, and independent noise weighted by the square 
root of the SNR of that iteration. The independent noise was sampled at the participant level from 
a standard normal distribution. To make the simulation more realistic, we used the empirical 
brain phenotype data as the independent variables, � , which was a 6103 by 1284 brain matrix 
of the 2back - 0back contrast of the nBack fMRI task of the baseline data of ABCD (ABCD Data 
Release 2.0; NDAR DOI:10.15154/1503209). � was smoothed at around FWHM 5mm, pre-
residualized by age and categorical variables including sex, parent marital status, highest level of 
parental education, household income, self-reported race and ethnicity, and MRI scanner ID.  
 Within each iteration, two independent samples were randomly drawn at the sample size 
of 100, 500, 1000, 3000, 5000, and at the full sample size, 6103, to estimate the sample size 
dependency of prediction accuracy. Predicted behavioral phenotypes based on the PVS-U, the 
PVS-B, and their thresholded variants were calculated with 10-fold CV. Variance explained, �, 
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the squared Pearson correlation between predicted and simulated behaviors, served as a metric 
for predictive performance. 
 
Empirical Data 

We examined the empirical utility of the PVSs by predicting individual variability of 2 
different cognitive tasks with 2 fMRI contrasts using the baseline data of ABCD. ABCD is a 
longitudinal imaging and genetics study on adolescent brain and cognitive development. 
Extensive cognitive and neuroimaging assessments were collected for over 11000 children age 9 
and 10 years old across 21 sites around the U.S. Detailed study designs and recruitment 
procedures, imaging acquisitions, and preprocessing pipelines are described in Garavan et al., 
(2018), B.J. Casey et al., (2018) and Hagler et al., (2018) respectively. 

With the complete data of the ABCD study, we estimated the predictive performance of 
the vertex-wise 2 back - 0 back contrast from the nBack fMRI task (Cohen et al., 2016) and the 
correct stop vs. correct go contrast from the Stop Signal Task (SST; Logan, 1994) on the total 
composite score of cognition from the NIH Toolbox (NIH-TB; Gershon et al., 2013) and the stop 
signal reaction time (SSRT) from the SST task respectively. Four brain-behavior associations of 
interest were examined: nBack predicting TC, nBack predicting SSRT, SST predicting TC, and 
SST predicting SSRT. All imaging and behavioral phenotypes were pre-residualized by age and 
categorical demographic variables including sex, parent marital status, highest level of parental 
education, household income, self-reported race and ethnicity, and MRI scanner ID. The final 
sample included 6103 participants for the nBack associations and 6472 participants for the SST 
associations. 

Variance explained, �, was calculated for each of the 9 prediction models for each 
association. To quantify the difference in predictive accuracy among methods, we calculated the 
bootstrap confidence interval (CI) for the variance explained with 1000 bootstrapped samples. 
These samples were generated by resampling with replacement the observed and predicted 
behavioral phenotypes based on the family structure of the complete sample of the nBack and 
SST fMRI tasks.  

Lastly, to understand the effect of sample size on predictive performance, we calculated 
the out of sample variance explained � for each method at sample sizes of 100, 500, 1000, 
2000, and 3000. The full sample was divided into 10 hold out samples based on family structures 
such that each holdout sample contained equal proportion of families and singletons. For each 
holdout sample, a thousand independent samples for each of the above-mentioned sample sizes 
were randomly selected from the remaining data. Methods were subsequently trained on these 
independent samples and generalized to the corresponding holdout set, yielding 10000 
independent � at each sample size for each method. Such � examined the true out of sample 
generalization performance for each method. The mean and 95% confidence intervals of the 
variance explained based on these 1000 samples is shown. 
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Results 

Simulation results 

 

 
Figure 1. Predictive performance, measured by variance explained R2, with 95% CI, for the PVS-U, PVS-B, and 
Min-p at varying simulated levels of proportion of true signal, SNR, and sample size. The PVS-B showed 
significantly greater variance explained than the PVS-U and Min-p except when the true signal was extremely 
sparse. 
 

Figure 1 showed the predictive performance of the PVS-B, PVS-U, and Min-p on 2000 
simulations of brain-behavior association. The PVS-B consistently outperformed the PVS-U and 
the Min-p approach, and the differences were most evident at large sample sizes. The level of 
sparsity didn’t have an impact on PVS-B’s predictive performance except for the most extreme 
conditions, i.e. only 1% of the vertices contained true signal. At the sample size of the baseline 
ABCD data (N = 6103), the PVS-B explained, across all simulated conditions, twice the variance 
explained in behavior than the classical Min-p approach (mean R2 for the PVS-B: 4.2% vs. mean 
R2 for the Min-p: 1.8%).  
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Figure 2. Predictive performance, measured by variance explained R2, with 95% CI, for the PVS-B and its 
thresholded variants at varying simulated levels of proportion of true signal, SNR, and sample size. The PVS-B 
showed comparable to superior predictive performance compared to the thresholded PVS-Bs when the SNR was low
and when the signal sparsity was low to moderate, but not when the signal was extremely sparse.  

 
We also evaluated how thresholding influenced the predictive performance of the PVS-B 

at varying levels of simulated proportion of true signal in Figure 2. The PVS-B demonstrated 
comparable, if not superior, prediction performance to thresholded PVS-Bs when the effect size 
per vertex was lower (SNR of 0.05 and 0.1) and when the proportion of true signal was high 
(50% and 100%). The effect size per vertex was conceptualized as the SNR divided by the 
number of vertices with true signal. The unthresholded PVS-B was able to capture the predictive 
effect across the cortex when the true signal was global and performed equally well compared to 
the thresholded PVS-Bs when the effect size per vertex was lower and when the true signal was 
sparse.  
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Empirical data results 

 
Figure 3. Variance explained, with 95% bootstrap CI, for the four brain-behavior associations (nBack predicting 
SSRT, nBack predicting TC, SST predicting SSRT, and SST predicting TC) estimated using each PVS method. 
Significant associations were identified for the nBack-TC and SST-SSRT conditions. For these two significant 
associations, methods based on the Bayesian parameter estimates outperformed those based on the mass univariate 
parameter estimates. The PVS-B also showed comparable predictive performance to the thresholded PVS-Bs. 

 
We examined how well the PVS-U and PVS-B methods captured brain-behavior 

associations empirically by applying them to two fMRI task contrasts to predict individual 
differences in cognitive performance. To examine the sensitivity and specificity of the PVS 
predictive performance, four brain-behavior associations were investigated: nBack predicting 
TC, nBack predicting SSRT, SST predicting TC, and SST predicting SSRT. The prediction 
accuracy of each method for each brain-behavior association with 95% bootstrap CIs is reported 
in Figure 3. 

For the nBack predicting TC condition, the PVS-B demonstrated the most variance 
explained in behavior, explaining 11.3% of the individual variability in TC with the vertex-wise 
BOLD signal variation of the 2back-0back contrast of the nBack task. PVS-B 50% and PVS-B 
10% showed slightly reduced predictive performance (11.1% and 9.4%) compared to the PVS-B, 
but the difference was not statistically significant. For the SST-SSRT association, the PVS-B, 
PVS-B 50% and PVS-B 10% yielded similar predictive performance, explaining 6.9%, 6.9% and
5.6% of the variance in SSRT using the vertex-wise BOLD variation of the correct stop vs. 
correct go contrast from SST. The estimated SNR  based on the PVS-B, was 0.06 for the 
nBack-TC association and 0.04 for the SST-SSRT association, suggesting that the effect size per 
vertex was relatively low for these associations. For these two significant associations, all 
methods showed improvement in predictive performance with increased sample sizes 
(Supplementary Figure 2).  
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For the nBack predicting SSRT and the SST predicting TC conditions, all methods 
showed minimal variance explained and the CIs bounded or were close to 0. The vertexwise 
BOLD signal variations in nBack and SST were not informative in explaining individual 
differences in SST and TC respectively. The variance explained estimated by the PVS-B, the 
PVS-B and the Min-p for the four associations are shown in Table 1. 

 
 PVS-B PVS-U Min-P 

nBack-TC 11.3  
[9.8 - 12.9] 

7.5 
[5.7 – 8.9] 

3.8 
[2.7 – 4.8] 

nBack-SSRT 0.7  
[0.2 - 1.1] 

0.2 
[0 – 0.5] 

0.5 
[0.1 – 0.8] 

SST-SSRT 6.9  
[5.4 - 8.1] 

1.1 
[0.6 – 1.5] 

0.4 
[0.1 – 6.8] 

SST-TC 0.5  
[0.1 - 0.8] 

0.2 
[0 – 0.3] 

0.4 
[0 – 0.6] 

Table 1. Variance explained, with 95% bootstrap CI, for the four brain-behavior associations estimated for the PVS-
B, the PVS-U, and the Min-p. 

Discussion 

In this study, we have introduced the polyvertex score (PVS) framework. The PVS can be 
used to assess the magnitude of a brain-behavior association of interest by aggregating the 
explanatory power of neuroimaging data across the whole cortex to predict individual variability 
in behavior. Previous studies have shown that brain regions or vertices significantly contributing 
to behavioral variability each only account for a small proportion of the behavioral variation 
(Poldrack et al., 2017; Smith & Nichols, 2017). Here we have shown that a whole brain 
phenotype, captured by the PVS-B, explained more individual variation in behavior compared to 
a subset of most significant vertices. With simulations, we have demonstrated that the PVS-B 
was able to handle varying signal structures and yielded optimal performance under varying 
levels of sample size, SNR, and proportion of true signal. Using the empirical data from the 
ABCD study, we also demonstrated that the PVS-B had superior predictive performance 
compared to the PVS-U and the Min-p, showing the importance of capturing the multivariate 
nature of the imaging phenotype for optimal prediction.  

Traditional methods of analyzing neuroimaging data aim to identify brain regions 
significantly associated with a behavior of interest. This approach has been fruitful in 
characterizing the involvement of brain regions and systems in behavior, but has produced little 
utility in predicting behavioral variability. Using simulations and empirical data, we have shown 
that incorporating effect sizes across all vertices, using the PVS method, explained more 
variance in behavior than thresholding vertices based on significance level. Consistent with 
association patterns reported in other task-based fMRI studies (Chang et al., 2015; Gonzalez-
Castillo et al., 2012) and for other brain phenotypes (Dubois et al., 2018; Palmer et al, in prep; 
Smith et al., 2015), the explanatory effect of these functional brain phenotypes on the behaviors 
tested was widespread and distributed across the cortex. Our results provide an empirical 
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evidence that it is important to account for the whole brain pattern of association when studying 
brain-behavior relationships. Moreover, the PVS-B also demonstrated specificity in prediction 
such that significant relationship was identified specifically for the nBack-TC and the SST-SSRT 
association but not for the other two brain-behavior associations of interest. The PVS-B appears 
to capture the available explanatory effect without overfitting with the noise component of the 
imaging phenotype to boost prediction performance.  

Nevertheless, there are limitations to our current approach. First, the signal architecture 
across the cortex varies in sparsity and distribution depending on the brain-behavior association 
of interest. Complex behaviors, such as general cognitive performance, are associated with 
activities or cortical architectures across widespread brain regions (Bruin, Denys, & Wingen, 
2019; Reddan, Lindquist, & Wager, 2017). More focused contrasts or specialized tasks, such as 
finger tapping or visual perception, on the other hand, may demonstrate sparser and more 
localized effect size distribution pattern across the cortex. Despite that the PVS-B does not 
explicitly impose a sparsity assumption, such as the spike-and-slap prior (Mitchell & 
Beauchamp, 1988), it still demonstrates robustness against varying signal sparsity levels of the 
effect size distribution, making it as an appealing predictive tool when the true association 
structure in the brain is unknown.  

Secondly, the PVS-B only captures additive effects across the cortex given its parameters 
are calculated based on the mass univariate parameter estimates. Therefore, non-linear effects 
and interactions between vertices are not accounted for with the PVS-B. While the PVS-B may 
potentially show inferior performance to multivariate prediction models that assess nonlinear 
relationships across vertices, it is tightly linked to the traditional brain mapping approach and has 
important utilities for smaller sample studies to boost power for prediction. The PVS-B can be 
applied to a smaller scale imaging study where the mass univariate parameter estimates and the 
correlation structure of the imaging phenotype are acquired from the ABCD study to generate a 
more accurate estimate of a brain-behavior association in this independent sample. These PVS-B 
scores can subsequently be associated with other brain and behavioral phenotypes, mirroring the 
utility of the PRS in assessing the relationship between individual risks for disease and 
variability in behavior in genetics.  

The application of the PVS-B prediction framework is not limited to functional imaging 
phenotypes. The PVS-B has proven useful for structural imaging phenotypes to examine the 
association between regional cortical morphology and cognition in children (Palmer et al., in 
prep). It can be applied to data of other imaging modalities and resolutions. A common challenge 
of multimodal imaging studies is the growing dimension of the parameter space by including 
predictors from multiple imaging modalities. The PVS-B tackles this issue by summarizing the 
effect sizes at all vertices as one composite measure. Thus, the number of parameters for 
multimodal analyses is significantly reduced, and PVS-Bs of different imaging modalities can be 
combined to examine the effect of multiple imaging properties of cortical and subcortical regions 
on behavior. As the PRS empowered the genetics research community in data sharing and 
scientific discovery, we believe that the PVS framework will shed light on the multivariate 
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nature of brain-behavior associations, and will hopefully inspire more data sharing and 
collaborative effort among neuroimaging studies for more accurate and replicable scientific 
discoveries.  
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Supplementary Materials 
 

 
Supplementary Figure 1. The estimated SNR  at the corresponding true SNR level as a function 

of sample size in the simulations. The  reliably estimated the true SNR across all sample sizes 
as demonstrated in simulations. 
 

Supplementary Figure 2. Variance explained and 95% CI based on 1000 subsamples of the full 
sample using each of the nine PVS methods as a function of sample size for the nBack predicting 
TC and the SST predicting SSRT condition.  
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