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Abstract (256 words) 
 
Objective 
Psychotic symptoms are an important feature of severe neuropsychiatric disorders, but 
are also common in the general population, especially in youth. The genetic etiology of 
psychosis symptoms in youth remains poorly understood. To characterize genetic risk for 
psychosis spectrum symptoms (PS), we leverage a community-based multi-ethnic sample 
of children and adolescents aged 8-22 years, the Philadelphia Neurodevelopmental 
Cohort (n = 7,225, 20% PS). 
 
Methods 
Using an elastic net regression model, we aim to classify PS status using polygenic scores 
(PGS) based on a range of heritable psychiatric and brain-related traits in a multi-PGS 
model. We also perform univariate PGS associations and evaluate age-specific effects. 
 
Results 
The multi-PGS analyses do not improve prediction of PS status over univariate models, 
but reveal that the attention deficit hyperactivity disorder (ADHD) PGS is robustly and 
uniquely associated with PS (OR 1.12 (1.05, 1.18) P = 0.0003). This association is: i) 
driven by subjects of European ancestry (OR=1.23 (1.14, 1.34), P=4.15x10-7) but is not 
observed in African American subjects (P=0.65) and ii) independent of phenotypic overlap. 
We also find a significant interaction with age (P=0.01), with a stronger association in 
younger children. In an independent sample, we replicate an increased ADHD PGS in 328 
youth at clinical high risk for psychosis, compared to 216 unaffected controls (OR 1.06, 
CI(1.01, 1.11), P= 0.02). 
 
 
Conclusions 
Our findings suggest that PS in youth may reflect a different genetic etiology than 
psychotic symptoms in adulthood, one more akin to ADHD, and shed light on how genetic 
risk can be investigated across early disease trajectories.  
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Introduction 
 
Psychotic symptoms, such as delusions and hallucinations, are an important feature of 
severe psychiatric disorders such as schizophrenia and bipolar disorder. They are, 
however, also common in the general population, and occur in ~5-10%(1) of adults; a 
prevalence much higher than that of clinical diagnoses of schizophrenia and bipolar 
disorder (about 0.5-3% each(2, 3)) In children and adolescents, the prevalence of 
psychotic symptoms/psychotic-like experiences is even higher, as high as 20%(4). Youth 
experiencing psychotic symptoms typically exhibit a multitude of other comorbid 
symptoms, such as increased mood, anxiety, and attention deficit hyperactivity disorder 
(ADHD) symptoms, as well as increased substance use and impairments in global 
functioning(5-7). While subclinical psychopathology poses a risk for later development of 
overt psychiatric illnesses(5, 8-11), only a minority of youth reporting psychotic symptoms 
will convert to full-blown psychotic disorders.  
 
With recent progress in psychiatric genetics, psychotic disorders are becoming well-
characterized genetically(12-14). In particular, the landmark genome-wide association 
study (GWAS) of schizophrenia provides aggregate risk conferred by variants identified, 
polygenic scores (PGS), which explain about 7-10% of variance in case-control status(12, 
15). In individuals with bipolar disorder, both genetic risk for schizophrenia as well as for 
bipolar disorder have been associated with psychotic symptoms(16, 17).  
 
In the general population, however, the genetic etiology of psychotic symptoms across 
development is still largely unknown. The heritability of psychotic experiences has been 
estimated between 30-50% from twin studies(18, 19) with the proportion of genetic 
variance explained by common variants (SNP-heritability) of 3-17% in adolescents(18, 
20). Adults with psychotic symptoms harbor  increased genetic liability for a broad 
spectrum of psychiatric disorders, including schizophrenia and other neuropsychiatric 
disorders(21). While in adolescents some evidence suggests increased genetic risk for 
schizophrenia (and major depressive disorder) for specific features of psychosis(18), the 
reported effect sizes are very small, and these effects not very robust(22). In pre-
adolescent youth, the relationship between genetic risk for psychiatric traits and psychotic 
symptoms has not yet been explored. The genetic characterization of psychosis spectrum 
symptoms across development may increase our understanding of their etiological and 
pathological significance. 
 
To study genetic risk for psychosis symptoms in a population sample of youth, we leverage 
a large well-characterized community-based sample of youth aged 8-22 years, the 
Philadelphia Neurodevelopmental Cohort (PNC, n = 9,498 in total). The PNC is a multi-
ethnic cohort, with the largest proportion of individuals of European (66%) and African 
American (26%) ancestry. In this community-based sample that is not ascertained for 
neuropsychiatric disorders, about 20% of the youth are classified as having psychotic 
spectrum symptoms (PS).  In the PNC, having PS has been associated with structural and 
functional brain alterations(23-25), qualitatively similar to those present in overt psychotic 
disorders, as well as cognitive deficits(26). These findings underscore both the increased 
vulnerability in youth experiencing psychosis spectrum symptoms and  the importance of 
investigating psychosis risk as a dynamic developmental process(7). 
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In this well-characterized sample, we explore the genetic architecture of PS based on 
common variant liability for psychiatric illness. Specifically, we aim to understand whether 
PGS for psychiatric disorders can be used to classify psychotic symptoms in youth. To do 
so, we adopt a recently developed multi-PGS approach (27). The method combines 
multiple summary statistics from different GWAS into a single predictive model, thus 
potentially increasing classification power. Given evidence suggesting PS increases risk 
for broader psychopathology(11, 21) and the wide spectrum of genetic inter-correlations 
in adults with psychotic experiences(21), we include a range of heritable psychiatric and 
brain traits in our analyses, an analytic approach that has not been previously explored in 
this type of cohort. In addition to multi-variate classification, we perform univariate 
associations and also assess phenotypic overlap between traits.  
 
We hypothesize that developmental changes in the expression of psychotic symptoms will 
be reflected via age-specific genetic etiology, with the genetic architecture underlying 
psychosis spectrum symptoms in older youth being more similar to psychotic disorders. 
We evaluate this hypothesis by testing whether the observed correlations and the interplay 
with phenotypic overlap changes across the development. 
 
 
Methods 
 
Cohort Description 
Data were obtained from the publicly available Philadelphia Neurodevelopmental Cohort 
(PNC, 1st release, phs000607.v1.p1, #7147) via the Database of Genotypes and 
Phenotypes (dbGap) platform. The PNC is a community-based sample consisting of 9,498 
genotyped youth (ages 8-22 years) who participated in clinical and neurocognitive 
assessment, with a subsample undergoing MRI, after providing written informed consent 
or assent with parental consent (youth under 18 years old). Psychiatric symptomatology 
was assessed using the GOASSESS interview(28) covering broad domains of 
psychopathology including mood, anxiety, phobias, psychosis and externalizing 
behavior(29).  Psychotic symptoms were specifically assessed with questions from the 
Kiddie Schedule for Affective Disorders and Schizophrenia for School- Age Children (K-
SADS)(30), the Structured Interview for Prodromal Syndromes (SIPS)(31), and the PRIME 
Screen Revised (P-SR).  
 
Definition of psychosis spectrum  
Criteria to establish a group of individuals that experiences psychosis spectrum symptoms 
were defined as in prior PNC studies(7, 24, 32). These criteria consider lifetime occurrence 
of positive psychotic symptoms such as hallucinations and persecutory thinking, 
negative/disorganized symptoms such as flattened affect, as well as age- appropriateness 
of these symptoms (Supplementary Methods). Previous publications have described the 
clinical and functional significance of these criteria(7, 24, 32).    
 
Since MRI data are available for only a subset of the PNC sample that is too small for 
genetic analyses, we do not include these in our analyses. Other symptoms, such as PS 
domain scores of positive (PRIME) and negative/disorganized (SOPS) as well as 
symptoms of ADHD are described in the Supplementary Material.  

Genotyping QC and imputation 
Genotyping QC, imputation and selection of individuals of European and African ancestry 
are described in detail in the Supplementary Materials. In brief, imputation followed the 
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standard Ricopili pipeline (see URLS) and best-guess genotypes of well-imputed variants 
(INFO>0.8) were selected for further analysis. The imputed dataset included 7,774 
subjects, 7,764 with phenotyping data. Individuals were assigned ancestry group based 
on estimates from ADMIXTURE(33) and related subjects (specifically 477 siblings) were 
removed within ancestry groups (Supplementary Note).  After these final filtering steps, 
the total sample size is 7,225, with a total of 1,937,561 included SNPs. We identified two 
sub-cohorts: one including individuals of European ancestry (EA, N=4,852) and one 
African American ancestry group (AA, N=1,802).  
 
 
GWAS summary statistics 
We selected GWAS summary statistics from LD hub (34), a centralized repository for 
summary statistics (accessed June 2018). Specifically, we included 23 GWAS summary 
statistics of psychiatric, brain traits and personality traits, that were either publicly available 
or obtained via personal correspondence. From these, a total of 12 had a linkage 
disequilibrium (LD) score heritability z-score >5, indicating good statistical power 
(27)(which is a function of variance explained and sample size) and complete GWAS 
information available.  If available, we replaced summary statistics in LD hub with more 
recent or powerful GWAS: For the Psychiatric Genomics Consortium (PGC), we replaced 
MDD, BIP, ADHD. Finally, we also included the 23andMe traits for Morningness and self-
reported depression. For more details on the included GWAS see Supplementary Table 
1.  
 
After filtering, the 13 traits included in our analyses include psychiatric disorders (PGC 
GWAS for: ADHD(35), Autism(36), bipolar disorder(13), schizophrenia(12), cross-
disorder, a joint analyses of severe mental illness (37), major depression(38); other 
psychiatric GWAS for: self-reported depression from 23andMe (39) major depressive 
disorder from CONVERGE(40)) brain traits (ENIGMA Caudate volume and Putamen 
volume(41)) and behavioral traits (Morningness 23andMe(42), Neuroticism(43) and 
subjective well-being(43)(SWB)).  
 
 
Polygenic scoring 
Polygenic scoring was performed in a standard clumping and thresholding fashion, based 
on a p-value threshold of 0.05 (see Supplementary Methods for details). Specifically, for 
analyses only involving the EA (or AA) cohort, we included ancestry-specific principal 
components (PCs) after exclusion of related samples. The standardized residuals were 
used for follow-up analyses.  
 In addition to the conventional approach of thresholding and clumping, which can 
lead to loss of information, especially in cases where the ancestry of the GWAS sample 
diverges from the target sample, we also computed polygenic scores using LDPRED for 
follow-up analysis(44). As recommended, we used the target sample genotype data as 
the LD reference panel, performing scoring separately in the EA and AA ancestry samples. 
We used standard settings with an LD radius of 500 SNPs.  
 

Multi-score PGS analyses 
As has been successfully implemented previously (27), we used elastic net regularized 
regression to predict outcomes by selecting predictors and estimating their contribution to 
the prediction. Elastic net uses a linear combination of two regularization techniques, L2 
regularization (used in ridge regression) and L1 regularization (used in LASSO), and has 
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been shown to work particularly well in case of correlated predictors, as is expected in the 
context of highly correlated genetic traits(45). 
        Elastic net regularized regression employs two hyper-parameters, alpha and lambda. 
To achieve optimized balance between variance explained and minimum bias, we fit 
models to tune over both alpha and lambda parameter values in repeated 10-fold cross-
validation, and used the minimal lambda for the prediction model.  As a performance 
measure, we use area under the ROC curve (AUC). Models were trained on a random 
subset of 70% of the data and weights of the selected variables subsequently used to test 
their cumulative discriminatory power in predicting psychosis status in the remaining 30%. 
We performed model fit both in the entire sample as well as within EA and AA separately. 
To obtain an estimate of the robustness and range of the selected parameters we 
performed 1000 repetitions of the procedure. In addition, we also generated models for 
1000 permutations of the phenotype (within the All, EA and AA cohorts). Comparing our 
models to those derived from permutation, we adopt the conservative approach to 
compare the mean of the 1000 repetitions in the actual sample to the distribution of the 
permutations.  
 
Univariate PGS analyses 
To estimate the effect of each PGS individually, we fit a series of logistic regression models 
for each of the corrected polygenic scores including Age, Age2 and Sex as covariates. 
Effect sizes are reported as odds ratio (OR) relative to one standard deviation increase in 
PGS. To account for multiple testing, we applied a Bonferroni correction, dividing the p-
value by the total number of tests (14x3=42 tests yields a p-value cutoff of 0.001). 
Interactions were tested by including the interaction term in the full model.  
 
Analyses of phenotyping data  
Symptom overlap was tested using Fisher’s exact test (pairs of binary traits), Wilcoxon 
Rank-sum test (binary vs quantitative) and Spearman rank correlation (pairs of 
quantitative traits).  
 
Results 
Ancestry 
After quality control (see Supplementary methods), the PNC cohort consists of a total of 
N=7,225 youth ages 8-22 with both phenotypic and imputed data available with two 
ancestry groups: European ancestry (EA, N=4,852) and African American ancestry (AA, 
n=1,802). From the total sample, 1,369 youth (19%)  are classified as having psychosis 
spectrum symptoms (PS). Figure 1 displays the demographics of the cohorts. Common 
variant heritability of the PS phenotype was estimated using GCTA, but due to lack of 
power, we were unable to obtain an accurate estimate (SNP-h2 = 0.11, se=0.21, P=0.3, 
Supplementary Methods).  
 
Multi-PGS prediction 
Our multi-PGS models classified PS marginally better than chance, both in the whole 
sample and in the EA cohort alone (average AUC All =0.53 (sd 0.01) P=0.009, average 
AUC EA=0.55 (sd 0.02) P< 0.001). Within the AA cohort, however, the multivariate 
prediction was not different from chance (average AUC AA =0.51 (sd 0.02) P=0.35). In 
EA, the highest weight was consistently assigned to the PGS of ADHD, with an average 
standardized coefficient of 0.09 (sem 0.0007) corresponding to an OR of 1.10 (Figure 2), 
after correcting for all other selected variables.  This effect was driven by the EA cohort 
(OR= 1.18; Figure 2 and Supplementary Figure 1) but absent in AA (OR=1.00). As 
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expected, permutation of case-control status separately within the ancestry groups did not 
highlight any single trait (Supplementary Figure 4). 
 
 
Univariate association 
In line with the multivariate model, univariate logistic regression yielded a modest but 
significant association between PS and ADHD liability (OR 1.12 (1.05, 1.18) P = 0.0003, 
Figure 2, Table 1, Figure S6). This effect was driven by youth with EA ancestry (OR=1.23 
(1.14, 1.34), P=4.15x10-7), and not observed in the AA cohort (OR=0.98 (0.88,1.08) 
P=0.65). Genetic liability for all other neuropsychiatric traits, including schizophrenia, was 
not associated with PS in either ancestry group. Since the AA cohort is of a different 
ancestry than the majority of GWAS cohorts, with different allele frequencies, LD patterns 
and effect sizes(46, 47), we also performed PGS computation using LDPRED(44), a 
method that explicitly models LD. No other traits were significantly associated using this 
method either. To test whether the multivariate predictor outperformed ADHD PGS alone, 
we performed the same classification procedure including only the ADHD GWAS. That is, 
we estimated the regression coefficient on a training dataset including 70% of data and 
tested on the subset that was left out.  Our multivariate model did not outperform a 
univariate predictor. In fact, in the case of EA, the univariate predictor even performed 
slightly better (P= 0.004, Wilcoxon rank-sum test, Figure S5), indicating the PGS for 
additional traits introduce more noise than signal to the classifier.  
 
Since the EA cohort drives the observed genetic association between PS and ADHD, we 
next explored the nature and robustness of the association in the EA cohort only. 
Comparing the extremes of the distribution, the top decile of PGS was associated with a 
nearly 2.5-fold increased risk for being assigned to the PS group compared to the lowest 
decile (OR=2.43 (1.71, 3.51) P=1.25e-06, Figure 2b).  Globally, within EA the ADHD PGS 
explains about 1% of variation in case-control status, as measured by reduction in 
Nagelkerke R2. Moreover, the association is (i) robust across P-value thresholds (ii) not 
driven by subtle population stratification within the EA cohort, (ii) extends to the European-
only version of the ADHD GWAS (see Supplementary Results for details).  
 
 
Developmental effects 
We hypothesized that the association between PS and ADHD PGS would be strongest in 
the younger children and weaker closer to the typical age of onset of schizophrenia and 
other psychotic disorders. As predicted, we observe a significant interaction of ADHD PGS 
with age, with a stronger association for younger children (age 12 or younger), weakening 
in late adolescence (P=0.02 for the interaction term in the full model, Figure 2c). Given 
this decrease of association across age, we hypothesized an association with 
schizophrenia PGS in the older age group, but this was not the case (Supplementary 
Results).  
 
We observed no interaction with sex (P=0.85): the association between males and 
females are near-identical, with the OR in males-only 1.23 (1.10,1.37) and females-only 
1.25 (1.10,1.41) .  
 
Phenotypic overlap 
While evidence for shared genetic risk for (categorically defined) SCZ and ADHD is 
minimal (genetic correlation is r=0.11, se=0.04, P=0.001, LD-score regression(17)), ADHD 
and psychosis symptoms are known to co-occur in youth(5, 6). Indeed, across ancestries, 
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we observe a strong phenotypic overlap between PS and ADHD symptoms in the PNC 
(see Supplementary Materials). In the total sample, 5% of youth satisfy the DSM criteria 
for lifetime ADHD (n=384; n=222 and n=114 within EA and AA, respectively). A large 
fraction of ADHD cases also endorse psychosis spectrum symptoms, and the majority of 
subjects in the PS group  endorse ADHD symptoms (OR 2-4.7, Table 1). 
 
We additionally explored the overlap between ADHD and PS using a variety of phenotypic 
constructs, and observed strong phenotypic overlap across domains, and across ancestry 
groups (Supplementary Methods and Results). For example, we observe strong positive 
correlations between ADHD and PS domain scores (For all correlations, spearman rho is 
0.25 < r <0.69 and P<10-16). Both higher inattention and hyperactivity scores are 
associated with an increased probability of being classified as PS,  while at the same time 
higher PRIME and SOPS scores are associated with increased probability of meeting 
ADHD criteria, across ancestry groups (Supplementary Results and Figures S9-S12). The 
age interaction effect we observed at the genetic level is not consistently observed at the 
phenotypic level; e.g., the effect of answering “yes” to any of the ADHD screener questions 
on the probability of being classified as PS does not change during development (P=0.41 
in EA, Supplementary results).  
 
 
Phenotypic overlap and genetic liability  
Given the strong phenotypic overlap between PS and ADHD symptoms, we performed a 
series of follow-up analyses to determine the extent to which the observed genetic 
association is driven by this overlap. We tested the association after removing ADHD 
cases. We also removed the subset of youth that endorsed any ADHD symptoms from the 
screener. The latter analysis leaves only 2,497 EA subjects and reduces the percentage 
of PS cases from 15% to 7%, with a total n= 169 PS subjects. In both cases, despite the 
smaller sample sizes and the relative depletion of the number of cases, the effect of ADHD 
PGS on PS risk remains stable (Table 2, Supplementary results, Table S2).  
 
Thus, the association between increased ADHD liability and PS in youth does not appear 
to be driven by symptom overlap. Moreover, ADHD genetic risk is not only associated with 
PS as a categorical variable, but similarly with the psychosis severity scales, measured 
quantitatively (beta=0.47, P=0.0002 for PRIME and beta= 0.21, P= 1.68*10-8  for SOPS), 
and significantly increased in the subset of PS subjects that endorse hallucinations 
(n=258; OR=1.15 (1.02,1.30), P=0.02). As expected, the ADHD PGS is associated with 
ADHD status (OR 1.18, CI(1.04, 1.36), P=0.01). Conversely, and contrary to existing 
evidence (48), the schizophrenia PGS is not associated with ADHD status (P= 0.51). 
 
Finally, we investigate the relationship of ADHD and psychosis phenotypes to substance 
use. In the PNC EA cohort, substance use information was available for 43% of the 
sample. In this sample, PS overlapped the use of alcohol, tobacco and marijuana only 
nominally (P>0001), and not cocaine or over the counter substance use (P>0.05). 
Including these as covariates in the model did not alter the estimated effect sizes (See 
Table S2).   
 
Replication in an independent cohort 
We sought to replicate our finding of increased polygenic liability for ADHD in youth with 
psychotic spectrum symptoms in the North American Prodrome Longitudinal Study, Phase 
2 (NAPLS2) cohort(49, 50). NAPLS2 is an eight-site longitudinal study of predictors and 
mechanisms of conversion to psychosis, and includes help-seeking adolescents and 
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young adults at clinical high-risk (CHR) for psychosis (ages 12-35, with a median age of 
18; N=328) as well as unaffected control subjects (N=216) (51).  
       As in our discovery sample, we observed increased ADHD risk in CHR youth 
compared to controls (OR=1.06 (1.01, 1.11) P= 0.02;  in EA, OR= 1.09 (1.01, 1.18) 
P=0.03; N=124 and N=70 respectively). These effect sizes are similar to the ones 
observed in the >16 age group in the PNC EA cohort (Figure 2). However, there is no 
difference in ADHD PGS between CHR subjects who subsequently convert to psychosis 
versus those who do not (N=80 converters, N=248 non-converters; P=0.62).  
 

Discussion 
Leveraging a large community-based sample, we sought to characterize genetic risk 
profiles for psychotic spectrum symptoms across childhood and adolescence. We applied 
recently developed multi-PGS prediction models as well univariate statistical tests, based 
on GWAS of multiple brain and behavioral traits. We observed a modest but robust 
association between broadly defined psychosis symptomatology and genetic liability for 
ADHD, but not for schizophrenia or any other psychiatric traits. This effect was only 
observed in participants of European ancestry, for whom those within the highest decile 
of ADHD genetic risk have an almost 2.5-fold increased likelihood of being in the PS group, 
compared to those with lowest ADHD polygenic scores. This association, while modest, 
holds even when excluding individuals who endorsed any ADHD symptoms, is strongest 
in children twelve years or younger, and diminishes closer to typical age of onset of 
schizophrenia. ADHD polygenic scores, were never before tested for association with 
symptoms of psychosis in youth. We therefore replicated our finding in an independent 
cohort of subjects at clinical high risk for psychosis.  
 
Contrary to recent genetic evidence based on psychotic experiences in adulthood (21), 
psychosis spectrum symptoms in youth did not yield a general association with multiple 
psychiatric illnesses, but with ADHD specifically. While an association between 
schizophrenia genetic risk and psychosis symptoms has been reported in adults, the lack 
of such an association in our study is consistent with previous literature in adolescents (in 
a population sample of >5k genotyped youth aged 12-18, no such association was 
observed (22)).  
 
In our study, the multivariate approach did not improve classification accuracy above a 
single trait association of ADHD. However, future efforts to improve risk scoring 
methodology and especially more powerful GWAS of related traits are likely to improve 
prediction as well.   
 
As the discovery GWAS of ADHD included 55,374 children and adults (20,183 ADHD 
cases and 35,191 control subjects), ADHD genetic risk across all developmental ranges 
is captured in the downstream polygenic scores. An important avenue for future work will 
be to investigate if the association with general psychotic symptomatology is driven more 
by genetic liability present in children versus adults diagnosed with ADHD. 
 
Despite similar phenotypic correlations across ancestry groups, the absence of any 
genetic association in youth of African ancestry highlights the need for increasing ethnic 
diversity in GWA studies. Because allele frequencies, linkage disequilibrium patterns, and 
effect sizes of common polymorphisms vary with ancestry, current common variant 
genetic findings do not translate well across populations (46, 47, 52). Our study offers 
further evidence that polygenic scores, at this point, have limited predictive power in non-
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European ethnic groups. As PGS scores are approaching clinical utility(53), the crucial 
equity issue that arises as a result from this discrepancy should not be taken lightly. Novel 
tools to generate risk scores across ancestries, such as by scoring only segments of the 
genome matching the GWAS population in admixed populations, may improve 
applicability of the risk scores across ancestries. Most importantly, however, larger 
samples from different ancestries are needed to begin to close this gap.  
 
Based on a follow up study of PNC youth, about half of youth experiencing psychotic 
symptoms, symptoms persist or get worse over a two-year follow up, while even those 
whose psychotic symptoms remit exhibited comparatively higher symptom levels and 
lower functioning than typically developing youths(7). An important follow-up question is 
whether youth with psychotic symptoms that ultimately develop a psychotic disorder have 
different genetic characteristics than those who do not. Consistent with our present 
findings in the PNC, we recently found that subjects meeting psychosis risk syndrome 
criteria that do not develop psychosis in a two year follow-up in the NAPLS cohort do not 
have increased genetic risk for schizophrenia compared to controls. However, polygenic 
liability for schizophrenia is a predictor for conversion to overt psychosis(6). We now show, 
in the same NAPLS cohort, that ADHD PGS is also increased in CHR youth, but was not 
associated with conversion. While there are important clinical differences between PNC 
PS and NAPLS CHR cohorts (importantly, the latter consists of help-seeking youth, 
whereas PNC is a community sample), the consistency of our findings across cohorts 
confirms the robustness of the ADHD PGS association with psychosis symptoms. 
 
Our findings shed light on the genetic architecture of psychosis symptoms in a population-
based youth cohort and suggest that broad psychosis spectrum symptoms in youth may 
reflect a different genetic etiology than psychotic symptoms in adulthood, or those that 
convert to psychosis. Rather, the genetic etiology of psychosis symptoms in youth seems 
more akin to ADHD. Findings indicate that genetic risk can be investigated across early 
symptom trajectories, and in non-help seeking populations, to improve our understanding 
of disease risk factors and psychiatric comorbidities.   
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Figures 

 
 
Figure 1. Demographics of the PNC cohort 
1a) Demographic overview of all subjects included in our analyses: pie charts display the 
proportion of subjects with psychosis spectrum symptoms (PS), and histograms the age 
distributions, with darker colors indicating PS subjects. Three groups included are all 
subjects (All), subjects of European and African American ancestry (EA and AA 
respectively). 1b) Relative admixture ancestry components (based on K=3) for the PNC 
cohort, ordered by self-reported ancestry.  
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Figure 2. Multivariate classification of PS, by ancestry  
2a) AUCROC for each elastic net model trained on 70% and tested on the remaining 30% 
of data in All (pink), EA (blue) and AA (orange). Box plots indicate the median and the 
lower and upper hinges correspond to the first and third quartiles. The grey dots and 
boxplots refer to fits of permuted datasets within each ancestry group. The observed 
predictive power is driven by the EA cohort. 2b) Mean regression coefficients for the 
PGS based on different GWAS in EA. Standard errors indicate standard errors of the 
mean. The ADHD PGS is consistently included in the regression with the highest weight.  
 

 
Figure 3. Univariate regression of ADHD PGS with PS in EA 
3a) Standardized ADHD PGS are higher in EA youth with PS versus non-PS youth. Each 
SD increase in PGS is associated with an OR=1.23 CI=(1.14, 1.34), P=4.15e-07. b) 
Proportion of cases with PS per PGS decile. c) Relative association in different age-bins 
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(8-12, 12-16 and 16-22). The association between ADHD PGS and PS is strongest in 
youngest children 12 and younger. Adding the interaction term of age:PGS to the full 
model is significant (P=0.01) .  
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Tables 
 

Group N %PS OR 2.5% 97.5% P 
All 7008 19% 1.12 1.05 1.18 0.0003 

EA 4790 15% 1.23 1.14 1.34 4.15*10-7  

AA 1746 29% 0.98 0.88 1.06 0.65 

EA_noADHD 4349 13% 1.26 1.16 1.38 2.63*10-7  

EA_noSymptoms 2497 7% 1.23 1.05 1.44 0.01 

 
       

Table 1. Univariate association of ADHD PGS with PS across ancestry groups. 
EA_noADHD and EA_noSymptoms denote the EA group after removing ADHD cases 
and subjects that endorse any of the symptoms in the ADHD screener, respectively.  
 
 
 
  PS_ALL   PS_EA  PS_AA  

  1 0 1 0 1 0 

ADHD 1 151 233 83 139 50 64 
 0 1115 5220 584 3765 426 1080 

 Overlap 
Statistic  

OR 3.0 (2.4-3.7), 
P<2.2*10-16 

OR 3.8 (2.8-5.1) 
P<2.2*10-16 

OR 1.9 (1.3-2.9) 
P= 0.0008 

        

ADHD_Symptoms 1 1073 2515 536 1694 427 621 
 0 284 3120 169 2328 91 573 

 Overlap 
Statistic 

OR 4.7 ( 4.1-5.4), 
P<2.2*10-16 

OR 4.6 (3.6-5.3), 
P<2.2*10-16  

OR 4.3 (3.3-5.6), 
P<2.2*10-16 

 
 
Table 2. Clinical overlap between PS and ADHD across ancestry groups. Confusion 
matrices for overlap between PS and subjects meeting DSM criteria for ADHD (ADHD) 
and subjects that endorse any of the symptoms in the ADHD screener 
(ADHD_Symptoms), respectively. Colors indicate different ancestry groups All pink, EA 
blue, AA Orange. 
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Supplementary Figure legends 
 
Figure 1. A) Relative admixture ancestry components (based on K=3) for the EA and AA 
subjects in the PNC B) Cross-validation error for different ancestry components K.    
 
Figure 2. MDS components based on a set of high quality independent SNPs. Orange 
indicates individuals assigned  AA ancestry, light blue EA and dark blue are subjects with 
>95% EA, used for heritability analyses.  
 
Figure 3. Identity by state estimates >0.05 between EA and AA pairs estimated from 
analysis including the whole cohort that were not identified in within-ancestry analyses. 
Nearly all pairs (~98%) are pairs of AA subjects. 
 
Figure 4. Mean regression coefficients for the multivariate PGS based on different 
GWAS in All, EA and AA subjects. Standard errors indicate standard errors of the mean. 
Actual data is displayed on the left, models based on case-control permutations on the 
right. 
 
Figure 5. AUCROC for each elastic net model trained on 70% and tested on the remaining 
30% of data in All (pink), EA (blue) and AA (orange). Box plots indicate the median and 
the lower and upper hinges correspond to the first and third quartiles. The grey dots and 
boxplots here refer to a model including only the ADHD PGS within each ancestry group. 
 
Figure 6. Standardized ADHD PGS in youth with PS versus non-PS youth for All, EA, and 
AA.  
 
Figure 7. Association of ADHD PGS with PS in EA varying the P-value threshold.  
 
Figure 8. Correlation between ADHD PGS based on the entire sample and the European-
only sample.    
 
Figure 9. Spearman rank correlations between PRIME and SOPS psychosis scores and 
Inattention and hyperactivity ADHD scores in EA, AA, and All samples.  
 
Figure 10. Relation between Inattention and Hyperactivity scores and proportion of PS 
cases in EA, AA, and All samples.  
 
Figure 11. Relation between PRIME and SOPS scores and proportion of ADHD cases in 
EA, AA, and All samples.  
 
Figure 12. Inattention (a), Hyperactivity (b), PRIME (c) and SOPS (d) scores by case 
category: neither (subjects that are not ADHD or PS cases), ADD_only (ADHD cases that 
are not PS cases), PS_only (PS cases that are not ADHD cases), both (subjects that are 
both PS and ADHD cases), in EA, AA, and All samples.  
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Supplementary Table legends 
 
Table 1. Summary of GWAS used for analyses  
For summary statistics not available through LD-hub, we estimated the heritability on the 
liability scale and other GWAS parameters by running LD score regression(17), using the 
population prevalence as reported in the GWAS.  
 
Table 2. Univariate association of ADHD PGS with PS across ancestry groups, 
correcting for phenotypic overlap and substance use, where: 95 subjects with >95% EA; 
noADHD removing ADHD subjects; noADD011 removing subjects that answer “yes” to 
the question ADD011 “Did you often have trouble paying attention or keeping your mind 
on your school, work, chores, or other activities that you were doing?”; Hyperactivityscore 
is the Hyperactivity score, InattentionScore is the Inattention score; noSymptoms 
removing subjects that endorse any of the symptoms in the ADHD screener; 
Substances: OTC over the counter, ALC alcohol, TOB tobacco, MAR marihuana, COC 
cocaine.  
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