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Abstract 12 

 13 
Sexually selected traits are hypothesized to be honest signals of individual quality due to the 14 
costs associated with their development or expression. Testosterone, a sex steroid known to 15 

influence the production of sexually selected traits, has been proposed to underlie the costs 16 

associated with sexually selected traits via its immunosuppressive effects (i.e., the 17 
Immunocompetence Handicap Hypothesis) or by influencing an individual’s 18 
exposure/susceptibility to oxidative stress (i.e., the Oxidation Handicap Hypothesis). Previous 19 

work testing these hypotheses has primarily focused on physiological measurements of immunity 20 
or oxidative stress, but little is known about the molecular pathways by which testosterone could 21 

influence immunity and/or oxidative stress pathways. To measure the molecular consequences of 22 
experimentally elevated testosterone, we used previously published RNA-seq data from studies 23 
that measured the transcriptome of individuals treated with either a testosterone-filled or an 24 

empty (i.e., control) implant. Two studies encompassing two species of bird and three tissue 25 

types fit our selection criteria. We found strong support for the Immunocompetence Handicap 26 

Hypothesis, but no support for the Oxidation Handicap Hypothesis. More specifically, 27 
testosterone-treated individuals exhibited strong signatures of immunosuppression, 28 

encompassing both cell-mediated and humoral immunity. Our results suggest that testosterone 29 
enforces the honesty of sexually-selected traits by influencing an individual’s 30 
immunocompetence rather than their exposure or susceptibility to oxidative stress. 31 

 32 
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 35 
Introduction 36 
 37 
There is a long-standing interest in understanding why sexually selected traits have evolved and 38 

one hypothesis suggests that mates have selected for traits that are costly to develop or bear (i.e., 39 
the handicap hypothesis; Zahavi, 1975). An important assumption of the handicap hypothesis is 40 

that an individual’s investment in sexually selected traits correlates with their investment in other 41 
traits that also influence their reproductive success or survival (Grafen, 1990; Andersson, 1994). 42 
Individuals face tradeoffs when fitness-related traits exhibit negative correlations and, as a result, 43 
individuals can incur survival costs from their reproductive investments (Stearns, 1992). These 44 
costs arise because the development and/or expression of traits important for reproduction (e.g., 45 
sexually selected traits) and traits important for survival (e.g., immune function) are dependent 46 
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on the same mechanism (Zera and Harshman, 2001). As such, our understanding of the evolution 47 
of sexually selected traits is dependent upon our understanding of the pleiotropic nature of the 48 
mechanisms that underlie their production (Kokko et al., 2003). 49 

 50 
Testosterone is a sex steroid that is known to influence the development and/or 51 

expression of sexually selected traits (Hau, 2007; Fusani, 2008; Ball and Balthazart, 2009). In 52 
combination with its effects on other fitness related traits (e.g., immune function, Segner et al., 53 
2017), testosterone is thought to enforce the honesty of sexually selected traits (Ketterson and 54 

Nolan, Jr., 1999, Buchanan et al., 2001, Wingfield et al., 2001, Reed et al., 2006). Two 55 
prominent hypotheses have been proposed to explain how testosterone enforces the honesty of 56 
sexually selected traits: the Immunocompetence Handicap Hypothesis (Folstad and Karter, 1992) 57 
and the Oxidation Handicap Hypothesis (Alonso-Alvarez et al., 2007). The Immunocompetence 58 
Handicap Hypothesis proposes that sexually selected traits remain honest because of 59 

testosterone’s antagonistic effects on an individual’s immune function. Therefore, poor quality or 60 
low condition individuals cannot maintain high levels of circulating testosterone due its 61 

immunosuppressive effects (Folstad and Karter, 1992). A meta-analysis by Roberts et al. (2004) 62 

revealed weak support for this hypothesis. However, a meta-analysis by Foo et al. (2017) found 63 
that experimentally increasing testosterone results in suppression of both cell-mediated and 64 
humoral immunity. Foo et al. (2017) also found positive trends between multiple measures of 65 

immune function and naturally occurring levels of circulating testosterone. These results fit the 66 
predictions of the Immunocompetence Handicap Hypothesis because individuals naturally 67 

expressing high of testosterone represent high quality or high condition individuals that can 68 
invest in sexually selected traits without compromising their immune system (Peters, 2000). The 69 
Oxidation Handicap Hypothesis, on the other hand, states that sexually selected traits remain 70 

honest because testosterone increases an individual’s susceptibility and/or exposure to oxidative 71 

stress (Alonso-Alvarez et al., 2007). In other words, testosterone may influence an individual’s 72 

ability to protect or repair cellular machinery from oxidative damage (e.g., an individual’s 73 
antioxidant defenses) or testosterone may influence the rate that reactive oxygen species are 74 

produced (Alonso-Alvarez et al., 2007). Importantly, either one of these consequences may occur 75 
independent of the other. Of the few studies that have directly tested the Oxidation Handicap 76 
Hypothesis, some have found support (Mougeot et al., 2009; Hoogenboom et al., 2012) while 77 

results from others did not find support for this hypothesis (Isaksson et al., 2011; Casagrande et 78 
al., 2012; Taff and Freeman-Gallant, 2014; Baldo et al., 2015). Nonetheless, both hypotheses 79 

have primarily been tested using physiological measurements of oxidative stress and immunity, 80 
but less is known about the underlying molecular pathways. Given that sex steroids partly 81 
function by binding to intracellular receptors and acting as transcription factors (Ketterson and 82 

Nolan, Jr., 1999; Nelson, 2011), measuring the relationship between testosterone and 83 
transcription can shed light on the proximate pathways that testosterone influences. 84 

 85 
Modern sequencing approaches, like RNA sequencing (RNA-seq), allow for 86 

comprehensive measurements of whole transcriptomes and the relative abundance of each 87 
transcript (Wang et al., 2009). This approach assesses coordinated, large-scale transcriptional 88 
responses rather than focusing on targeted candidate genes (e.g., via qPCR). RNA-seq 89 
approaches have been used to investigate the role of androgens on gene expression, particularly 90 
in the context of sex differences (Gao et al., 2015; Cox et al., 2017) and gonadal development 91 
(Monson et al., 2017; Zheng et al., 2019). Similarly, RNA-seq based studies have been crucial in 92 
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providing a more comprehensive understanding of the complex and dynamic immune and stress 93 
responses (e.g., Barshis et al., 2013; Huang et al., 2013; Kim et al., 2018). In the context of mate 94 
choice, measuring the relationship between testosterone and transcription can shed light on the 95 

pathways that testosterone influences to potentially enforce the honesty of sexually selected traits 96 
(e.g., immune or oxidative stress pathways). Therefore, our understanding of the pleiotropic 97 
nature of testosterone is partly dependent upon our understanding of the impact of circulating 98 
testosterone on the transcriptomic signatures of immunity and oxidative stress. To date, these 99 
hypotheses have rarely been tested using genome scale approaches (Wenzel et al., 2013). In red 100 

grouse (Lagopus lagopus scoticus), testosterone treatment had little effect on overall gene 101 
expression in the liver and spleen but did result in the down-regulation of genes related to 102 
immune function in caecal tissue (Wenzel et al., 2013). Given that Wenzel et al. (2013) used a 103 
microarray-based approach, testing these handicap hypotheses using RNA-seq represents a more 104 
modern, robust test as RNA-seq provides many advantages over microarray technologies, 105 

including higher sensitivity and no hybridization biases (Wang et al., 2009).  106 
 107 

Here, we use published RNA-seq datasets to further examine the effects of testosterone 108 

on the transcriptome. Specifically, we re-analyze studies that compared gene expression between 109 
testosterone-treatment and control subjects in two bird species: golden-collared manakin 110 
(Manacus vitellinus) and Japanese quail (Coturnix japonica). Golden-collared manakin males 111 

produce brightly colored plumage ornaments and engage in elaborate courtship behaviors during 112 
the breeding season (Day et al., 2007). Importantly, previous work on the golden-collared 113 

manakin experimentally blocked androgen receptors to show that the expression of male 114 
reproductive behaviors is dependent upon the interaction between testosterone and the androgen 115 
receptor (Day et al., 2007; Schlinger et al., 2013). Japanese quail males also produce brightly 116 

colored cheek feathers to attract females (Hiyama et al., 2018). Castrating males influences the 117 

color of a male’s cheek feathers and administering testosterone to castrated males causes cheek 118 

patches of castrated males to match those of males that have not been castrated. In this study, we 119 
use transcriptomic data from the foam gland of quail and muscular tissue of the golden-collared 120 

manakin, tissues that are known to be express significant amounts of androgen receptors 121 
(Adkins-Regan, 1999; Fuxjager et al., 2016). However, we re-analyze the data to explicitly test 122 
the Immunocompetence Handicap Hypothesis and the Oxidation Handicap Hypothesis. We 123 

constructed co-expression networks to identify gene networks that show correlated expression 124 
patterns following testosterone treatment. If testosterone is immunosuppressive, then we predict 125 

that testosterone treatment will cause consistent down-regulation (i.e. suppression) of genes with 126 
annotated immune function in both species. Similarly, if testosterone influences an individual’s 127 
susceptibility or exposure to oxidative stress, then we predict that testosterone treatment will 128 

cause a decrease in the expression of genes with annotated functions in antioxidant protection 129 
and/or an increase in genes that are expressed in response to oxidative stress. An important 130 

caveat is that no support for either hypothesis does not exclude the possibility that these 131 
pathways enforce the honestly of sexually selected traits independent of testosterone’s effects, as 132 

has been suggested before (Metcalfe and Alonso-Alvarez, 2010; Weaver et al., 2017). 133 

 134 
Methods 135 
Study Selection 136 
 137 
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To identify studies of interest, we first performed a literature search on both Scopus and Google 138 
Scholar with the following search terms: “testosterone” AND “RNA-seq” or “transcriptome” or 139 
“transcriptomics”. This literature search produced 260 results. From this list of 260 studies, we 140 

retained RNA-seq studies that measured gene expression in adult males from both testosterone-141 
manipulated and control groups. This process resulted in one study for re-analysis and we also 142 
identified an additional dataset by searching within NCBI’s Sequence Read Archive 143 
(Supplemental Figure 1). Fuxjager et al. (2016) experimentally increased testosterone in golden-144 
collared manakins (Manacus vitellinus, “manakin”) and performed RNA-seq on pectoralis and 145 

scapulohumeralis caudalis tissue (n= 3 each testosterone and control for each tissue). Finseth and 146 
Harrison (2018) experimentally increased testosterone in Japanese quail (Coturnix japonica, 147 
“quail”) experiencing short days and performed RNA-seq on the foam gland (n=6 each 148 
testosterone and control).  149 
 150 

Data Re-analysis 151 
 152 

We downloaded the raw sequencing data from SRA with sratoolkit fastq-dump (quail: 153 

PRJNA397592; manakin: PRJNA297576) and adaptor trimmed all reads with Trim Galore! 154 
v0.3.8 (https://github.com/FelixKrueger/TrimGalore). We aligned trimmed reads to the 155 
respective reference genome (M. vitellinus v2, C. japonica v2) for each species with STAR 156 

v2.5.3 (Dobin et al., 2013) and quantified expression with htseq-count v0.6.0 (Anders et al., 157 
2015), specifying strand ‘no’. We normalized counts to sequencing depth and variance 158 

stabilizing transformed counts with DEseq2 (Love et al., 2014). Transformed counts were 159 
visualized with a principal component analysis (PCA) using pcaExplorer v2.8.1 (Marini and 160 
Binder, 2016). 161 

 To test for the effect of testosterone treatment on transcription, we performed network 162 

analysis with the weighted gene co-expression network analysis (WGCNA) tool (Langfelder et 163 

al., 2011; Langfelder and Horvath, 2008). We created modules independently for each species 164 
with the following shared parameters: network type=signed, minimum module size=30, and 165 

module dissimilarity=0.2. We used β=12 for quail and β=18 for manakin, which represents the 166 
point the network reached scale free topology. We then tested for correlations between modules 167 
and testosterone treatment using a p<0.05 cutoff. We identified the hub genes of each module by 168 

selecting the top five genes with the highest module membership (MM) score.  169 
 To test the Immunocompetence and Oxidation Handicap Hypotheses, we performed 170 

ranked order gene ontology (GO) analyses with GOrilla (Eden et al., 2009, 2007). For each 171 
module, we ordered the gene list by descending MM scores and input this entire list into GOrilla. 172 
GOrilla then tests for enrichment and places greater weight on genes at the top of the list relative 173 

to the bottom. GO categories were significantly enriched if the qvalue < 0.05. To find support for 174 
the Immunocompetence Handicap Hypothesis, immune related GO categories (e.g., “immune 175 

system process”) had to be significantly enriched among down-regulated genes. To find support 176 
for the Oxidation Handicap Hypothesis, oxidative stress related GO categories had to be 177 

significantly enriched among up-regulated genes (e.g., “response to oxidative stress”) or down-178 
regulated genes (e.g., “antioxidant activity”).  179 
 180 

Results 181 
Overall Results 182 
 183 
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After filtering, we used 13,509 manakin genes and 13,946 quail genes for PCA and WGCNA 184 
network construction. Testosterone treatment had pronounced effects on gene expression and 185 
individuals clustered by treatment in both comparisons (Figure 1).  186 

 187 
WGCNA – Quail 188 
 189 
WGCNA constructed 18 modules for quail, six of which were correlated with testosterone 190 
treatment (Supplemental Figure 2). The yellow module (925 genes, r=-0.74) and dark green 191 

module (88 genes, r=-0.67) were both strongly enriched for immune related GO categories 192 
(Table 1). The yellow module was primarily enriched for broad immune categories, e.g., 193 
“immune system process” and “immune response”, whereas the dark green module was 194 
primarily enriched for lymphocyte and leukocyte related categories. This represents a significant 195 
decrease in immune gene expression following treatment (Figure 2A). The yellow module hubs 196 

were SASH3, ITGB2, SLAMF8 (LOC107324444), TRAF3IP3, and EVI2A. The dark green hub 197 
genes were FBL, PIK3R6, STOML2, GPR157, and DNAL4. 198 

The black and purple modules were also negatively correlated with testosterone treatment 199 

and were enriched for translation and muscle process GO categories respectively. Lastly, we 200 
found two modules up-regulated following testosterone treatment. The turquoise module was the 201 
most strongly correlated with testosterone treatment (4423 genes, r=0.98). GO enrichment was 202 

largely driven by genes involved in the Golgi apparatus and endoplasmic reticulum functions 203 
(Supplemental Table 1). The green module (795 genes, r=0.61) was primarily enriched for broad 204 

metabolic activity and protein modification processes. 205 
 206 
WGCNA – Manakin 207 

 208 

WGCNA constructed 34 modules for manakin, 12 of which were correlated with testosterone 209 

treatment (Supplemental Figure 3). Seven modules were correlated with muscle type. None of 210 
these modules were also correlated with testosterone treatment, indicating no tissue specific 211 

response at the network level. Of the 12 modules, 7 were negatively correlated and 5 positively 212 
correlated. Like the quail, manakins also exhibited a significant decrease in immune gene 213 
expression following testosterone treatment (Figure 2B, Supplemental Table 2). The dark 214 

turquoise module (198 genes, r=-0.71) was strongly enriched for a broad range of immune 215 
related GO categories (Table 1). The dark turquoise hub genes were MHC1A (LOC108639055), 216 

INPPL1 (LOC103767762), CCL14 (LOC103758017), CCL3L (LOC103757995), and an 217 
uncharacterized non-coding RNA (LOC108640668).  218 

The remaining negatively correlated modules were primarily enriched for metabolism 219 

(green, dark olive green), ribosomal components (dark red, pale turquoise), and mitochondria 220 
related categories (steel blue, pale turquoise). Among the positively correlated modules, we also 221 

found enrichment of cellular metabolism, catabolism, and mitochondrial related GO categories 222 
(Supplemental Table 2). 223 

 224 

Discussion 225 

In this study, we quantified transcriptional responses to experimentally increased circulating 226 
testosterone in two species of bird. Our gene network analysis revealed that both manakin and 227 
quail exhibit immunosuppression following testosterone treatment, supporting the 228 
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Immunocompetence Handicap Hypothesis. However, we did not find support for the Oxidation 229 
Handicap Hypothesis, as there was no enrichment of genes expressed related to oxidative 230 
damage, nor suppression of genes related to antioxidant defenses in either species. These results 231 

suggest that high levels of circulating testosterone can be costly to maintain partly due to their 232 
potential negative effects on an individual’s immune response and not the individual’s 233 
susceptibility or exposure to oxidative stress. Importantly, oxidative stress could still be involved 234 
in enforcing the costs of reproduction or sexually selected traits; however, our results suggest 235 
that this cost is not borne out via molecular pathways that are sensitive to testosterone, at least in 236 

the tissues and species examined here. 237 
 238 

Our analyses revealed that transcriptomic immunosuppression was broad, encompassing 239 
aspects of both innate immunity (e.g., leukocyte activation and cytokine signaling) as well as 240 
adaptive immunity (e.g., antigen processing and presentation) across both species (Table 1). The 241 

observed effect of testosterone could occur through both genomic and non-genomic pathways, 242 
but regulation of the immune system by androgens receptors likely plays an important role 243 

(Trigunaite et al., 2015; Segner et al., 2017; Gubbels Bupp and Jorgensen, 2018). More 244 

specifically, while testosterone exposure and subsequent androgen receptor activity can promote 245 
innate immune cell differentiation and development, testosterone also reduces activity of these 246 
cells (Gubbels Bupp and Jorgensen, 2018). As such, the hub genes of the immune related 247 

modules highlight broad suppression of innate immune signaling (quail yellow: SASH3, 248 
SLAMF8, TRAF3IP3; manakin dark turquoise: INPPL1, CCL14, CCL3L, ncRNA; (Beer et al., 249 

2005; Veillette, 2010; Dauphinee et al., 2013; Sokol and Luster, 2015; Zou et al., 2015; Thomas 250 
et al., 2017; Wang et al., 2018). Similarly, testosterone exposure had substantial effects on the 251 
regulation of the adaptive immune system. Testosterone exposure greatly reduces T cell activity 252 

(Lin et al., 2010; Kissick et al., 2014), which is a prominent signature in both quail 253 

(Supplemental Table 1) and manakin (Table 1). In addition to suppression of T cell activity in 254 

manakin, we also identified MHC class IA as a hub gene in the manakin dark turquoise module. 255 
MHC class IA binds and presents viral peptides to CD8+ T cells, which is a critical component 256 

of the adaptive immune response (Neefjes et al., 2011). Previous work has shown suppressive 257 
effects of testosterone on CD4+ T cells/MHC class IIB (Lin et al., 2010) and CD8+ T cells (Page 258 
et al., 2006). However, our study is the first to describe suppression of genes involved in T cell 259 

activity as well as MHC class I.  260 
 261 

We were also interested in whether the changes in gene expression as a result of 262 
experimental testosterone treatment were consistent between manakin and quail. Despite 263 
evidence of immunosuppression in both species, the immune related gene networks are not 264 

preserved between the species (Supplemental Figure 4). These results suggest either a species 265 
specific and/or tissue specific response to testosterone treatment, both of which have previously 266 

been documented in transcriptomic data (Breschi et al., 2016). Given that muscle tissues used in 267 
the manakin study are very distinct from the foam gland tissue used in the quail study, it should 268 

not necessarily be surprising that the response to testosterone treatment was not preserved. 269 
Nonetheless, we identified these immunosuppression signatures in muscle and foam gland, 270 
tissues which are not traditionally studied in avian immunology (Rose, 1979; Schat et al., 2014). 271 
Thus, our results are likely conservative, and we may expect to see a stronger signature in 272 
immune tissues, such as broader suppression of adaptive immune response. This highlights the 273 
sensitivity of RNA-seq to detect functional signatures in non-traditional tissues (e.g., Louder et 274 
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al., 2018) In both species, testosterone is necessary to produce secondary sexual characteristics 275 
for mating (Schlinger et al., 2013, Hiyama et al., 2018). Our results detail the potential molecular 276 
pathways underlying the trade-off between the expression of sexually selected traits and immune 277 

function. 278 
 279 

Given that we found strong support for immunosuppression in both studies, multiple 280 
experiments should be conducted to continue to broaden our understanding of testosterone’s 281 
immunosuppressive effects. First, studies should focus on performing testosterone manipulations 282 

and examining transcriptomic responses in a wider range of tissues and species. Moreover, 283 
studies should prioritize conducting experimental infections and/or immune challenges in 284 
combination with RNA-seq analyses to examine how transcriptomic signatures relate to immune 285 
function. Novel endocrine-based experiments, similar to (Goymann et al., 2015; Goymann and 286 
Flores Dávila, 2017), paired with RNA-seq analyses can also shed light on how acute changes in 287 

testosterone levels influence transcription over shorter timeframes. When possible, studies 288 
should also prioritize measuring testosterone’s effect on gene expression using a within-289 

individual sampling approach as this allows for a more robust test of testosterone’s effect on 290 

gene expression (Williams, 2008). Overall, these integrative, mechanistic approaches will 291 
ultimately provide novel insights into the evolution of sexually selected traits.  292 
 293 
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Table and Figures 297 

Table 1. GO enrichment for modules found in both species that support the Immunocompetence 298 
Handicap Hypothesis. The top 5 gene ontology (GO) categories are presented, along with FDR 299 
adjusted p-value and GOrilla enrichment score.  300 

GO ID Description FDR Enrichment 

Quail, Yellow Module 

GO:0002376 immune system process 3.11E-45 4.53 

GO:0006955 immune response 3.47E-35 5.53 

GO:0002682 regulation of immune system process 4.30E-35 3.59 

GO:0002684 positive regulation of immune system 

process 

1.34E-32 4.25 

GO:0046649 lymphocyte activation 1.08E-30 11.1 

Quail, Dark Green Module  

GO:0002684 positive regulation of immune system 

process 

4.09E-05 1.86 

GO:1903706 regulation of hemopoiesis 5.89E-05 2.17 

GO:0046649 lymphocyte activation 6.06E-05 2.45 

GO:0038023 signaling receptor activity 6.38E-05 1.83 

GO:0002682 regulation of immune system process 6.42E-05 1.61 

Manakin, Dark Turquoise Module  

GO:0006955 immune response 8.81E-10 2.48 

GO:0046649 lymphocyte activation 3.29E-08 7.44 

GO:0042110 T cell activation 3.57E-08 10.58 

GO:0002376 immune system process 4.34E-08 3.04 

GO:0002521 leukocyte differentiation 3.31E-07 4.09 

  301 
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Figure 1. PCA of (A) manakin and (B) quail. Samples separate by treatment along PC3 for 302 
manakin and PC1 for quail. Each circle represents a sample and is color-coded by treatment. 303 
Manakin samples are labeled by muscle type. Ellipses represent 95% confidence intervals. 304 

  305 
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Figure 2. Expression heatmaps of the (A) Manakin Dark Turquoise Module and (B) Quail 306 

Yellow Module, which represent down-regulation of the immune system. Each column 307 

represents a sample color coded by treatment or muscle type. Each row represents a module 308 

gene. High expression is indicated by orange colors and low expression is represented by blue 309 

colors.   310 

  311 
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