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8

Abstract9

The visual system must make predictions to compensate for inherent delays in its processing, yet10

little is known, mechanistically, about how prediction aids natural behaviors. Here we show that11

despite a 30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly12

can achieve maximally efficient prediction. This prediction enables fine discrimination of input13

motion direction during evasive flight maneuvers, which last just 40ms. Combining a rich database14

of behavioral recordings with detailed compartmental modeling of the VS network, we further15

show how the VS network implements this optimal prediction. The axonal gap junctions between16

the VS cells are crucial for optimal prediction during the short timespan of evasive maneuvers. Its17

subpopulation output further selectively conveys predictive information about the future visual18

input to the downstream neck motor center. Our work predicts novel sensory-motor pathways that19

link prediction to behavior.20

21

Introduction22

Escape from predators is critical for survival. Escape behaviors can take on a variety of forms,23

from the triggering of a reflexive startle response (e.g. the c-bend escape in zebrafish (Lopez-Schier,24

2019), fly escape take-offs (Card and Dickinson, 2008), to more ongoing behaviors that require25

continuous sensory processing (e.g. escape from a looming threat during flight (Schilling and Borst,26

2015; Hanlon, 2018)). In the latter kind of escape, here called an ‘evasive maneuver’, the organism27

needs to update its motor output dynamically as the escape unfolds. Although most animals28

steer away from imminent threats, the trajectories of escapes, even for similar threats, are highly29

variable (Domenici et al., 2011). To a certain degree, such variability makes the escape maneuver30

unpredictable in the eyes of the predator. This feature prevents the predator from learning31

to anticipate a stereotyped escape pattern and foiling the escape. During ongoing behaviors,32

generating this kind of escape response requires actively controlled and finely stimulus-tuned33

maneuvers. Therefore, the escape trajectory is predictable to the animal because it must maintain34

good control of its motor plant. Here we investigate how fine-controlled variation is instantiated in35

evasive responses while animals are engaged in ongoing behaviors.36

Insects, especially diptera, are excellent models for exploring this problem. For the animal37

models in this work, the blowfly and the drosophila, both precise measurements of the motion38

executed during their evasive behaviors (Muijres et al., 2014) and mechanistic level understanding39

of the underlying neuronal circuits (Cuntz et al., 2007;Weber et al., 2008) are available. Furthermore,40
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insect brain architecture is highly conserved. Flies in particular use similar neural architecture41

to drive similar behaviors (Dickinson, 2014). Escape behaviors and the corresponding sensory-42

motor circuits controlling them emerged as early as flight itself, 400 million years ago (Dickinson,43

2014). Many modern arthropod species thus inherited this core sensory-behavioral module. In44

particular, both blowflies and drosophila use banked turns to change their heading direction,45

during both stereotypical saccadic flights (Muijres et al., 2015; Schilstra and Hateren, 1999;Hateren46

and Schilstra, 1999) and visually induced turns (Balint and Dickinson, 2001; Muijres et al., 2014).47

Despite their size differences (a blowfly is roughly four times larger than a drosophila), recent work48

has shown that the electrotonic structures and neuronal functions of motion sensitive neurons49

between these two animals are analogous (Cuntz et al., 2013). Meanwhile, the banked turns they50

make with their bodies are similar in shape (Schilstra and Hateren, 1999; Hateren and Schilstra,51

1999;Muijres et al., 2015), while drosophila show a slower overall profile of angular velocity (van52

Breugel and Dickinson, 2012; Schilstra and Hateren, 1999). In addition, drosophila do not use53

additional head banking to stabilize their retinal input, possibly because of the lower acuity in54

their compound eyes compared to the blowfly. Because the only precise measurements of the55

fly’s evasive maneuver are available in drosophila (Muijres et al., 2014) and the only mechanistic56

understanding of the neural circuit that processes the visual input during these maneuvers is from57

the blowfly (Cuntz et al., 2007;Weber et al., 2008; Borst and Weber, 2011), but the two species are58

so similar overall, we use the behavioral measurements from drosophila to investigate how the59

blowfly’s motion sensing circuit extracts behaviorally relevant information for this survival-critical60

maneuver. Blowflies have higher angular velocity during their banked turns and higher acuity in61

their compound eyes, thus we hypothesize that the blowfly must perform evasive maneuvers in a62

more precise and finely controlled manner than drosophila. Hence, this investigation will show the63

minimum necessary computation that the blowfly’s neural circuit must execute during fast evasive64

maneuvers.65

Drosophila are capable of performing in-flight evasive maneuvers after a 60ms sensory-motor66

delay (Muijres et al., 2014). These evasive maneuvers use a mere 40ms to reorient the animal’s67

heading and accelerate it away from the threat. Previous work showed that such maneuvers consist68

of visually-guided banked turns followed immediately by active counter-banked turns. Perhaps69

to be maximally unpredictable to the predator (Domenici et al., 2011), these escape maneuvers70

show substantial variability in their initial heading and subsequent flight trajectory, though they71

are finely controlled throughout their execution (i.e. this variability is not just noise) (Muijres et al.,72

2014). Thus, these maneuvers are not simply reflexive patterns or gestures that are triggered in an73

all-or-none fashion; even within the brief 40ms time frame of the escape response, sensory-motor74

circuits in the fly brain continuously transform visual information into the motor commands that75

control flight.76

We set out to explore how visual information from escaping a purely visual threat is used to77

sculpt the fly’s evasive maneuver. Because the fly visual system has a 30ms processing lag (Land and78

Collett, 1974), it is unlikely that evasive maneuvers use visual information through feedback given79

their brief, 40ms time span. Previous work (Muijres et al., 2014) hypothesized that either evasive80

maneuvers are guided by a single feed-forward program or that the fly uses mechanosensory81

feedback from the halteres to sculpt the active counter-bank turns during the escape. Haltere82

steering neurons make direct electric synapses with motoneurons of wing steering muscles (Heide,83

1983; Fayyazuddin and Dickinson, 1996, 1999) that can cause fast alterations of wing kinematics84

(Bergou et al., 2010; Ristroph et al., 2010) with only a 15-20ms delay. Thus, the halteres could85

initiate the active counter-bank turns, about halfway through the fly’s escape maneuver. Previous86

work have shown that these haltere neurons also use visual input during flight to regulate their87

activity (Dickerson et al., 2019). This suggests that the feed-forward output of the fly visual system88

at the beginning of evasive maneuver may be used by the halteres to regulate evasive flight roughly89

20ms after the evasive maneuver starts. Since the evasive maneuver is a fast and large repositioning90

of the fly’s body and flight path, this would only be a useful visual input if it contained significant91
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information about the future state of the fly’s posture and heading. In this work, we investigate92

how the fly uses predictive information from the visual system for active flight control.93

Specifically, we hypothesize that if the fly can predict the future visual input that it will experience94

during the evasive maneuver, it can use such information to actively control the banked and counter95

banked turns that it will execute. Given the exceptionally short time scale of the evasive maneuver,96

we focus on the bottom-up prediction (i.e., no feedback). To be effective, this prediction exploits97

the temporal correlations between past and future visual stimuli during evasive maneuvers. Said98

another way, the fly’s evasive maneuver is initiated with a particular heading change that is selected99

in the moment and based on the purely visual threat cue. The escape trajectory depends on the100

threat angle relative to the fly’s heading (Muijres et al., 2014). Where and how the escape maneuver101

begins constrains how it will unfold, giving the visual system ample predictive power with which102

to guide active flight control. We show how this bottom-up prediction provides information about103

future sensory input, subverting delays in the visual input stream. Encoding of optimal predictive104

information exists in the vertebrate retina (Palmer et al., 2015) and may ensure fluid interaction105

with the external environment. It may also be important in the formation of long-term memory106

(Berman et al., 2016). Here we hypothesize that such bottom-up prediction in the fly visual system107

enables it to control brief evasive maneuvers that are critical for survival.108

Because the banked/counter-banked turns of the evasive maneuvers are combinations of pitch109

and roll rotations, we focus on how visual prediction emerges in the vertical motion sensing (VS)110

network of the fly visual system, i.e. the sensory system dedicated to encoding these specific111

rotation angles (Borst and Weber, 2011). The fly visual system is organized in four consecutive112

layers: retina, lamina, lobula and lobula plate. The VS network consists of 10 lobula plate tangential113

cells (the VS cells) in each compound eye. It receives retinotopically organized local motion inputs114

and outputs global motion information in its axonal voltages. Each VS cell has its dendritic receptive115

field center at a specific rotational axis of the fly’s coronal plane. They are numbered VS1-VS10 along116

the fly’s anterior-posterior axis according to their receptive field location. Not only is the VS network117

essential for generating proper optomotor responses, silencing this network also eliminates the118

fly’s escape response (Schilling and Borst, 2015). The output from the VS network arises from119

subpopulations of adjacent cell triplets, which target different downstream areas (Borst and Weber,120

2011; Haag et al., 2007). In particular, the VS network connects to the downstream neck motor121

center only through the VS 5-6-7 triplet of cells (Hagg and Borst, 1996; Haag et al., 2007), which122

have dendritic receptive fields located at the center of the field of view of the fly.123

The VS network has a chain-like structure (Hagg and Borst, 1996; Haag and Borst, 2004, 2005;124

Cuntz et al., 2007). Each VS cell only connects with other VS cells having immediately neighboring125

receptive fields. Meanwhile, the VS1 and VS10 cells show reciprocal inhibition (Haag and Borst,126

2007). Previous dual-recording experiments (Haag and Borst, 2004) showed that VS cells connect127

amongst each other through electrical synapses. Further dye-coupling experiments showed that128

these electrical synapses were gap junctions (Haag and Borst, 2005). In (Cuntz et al., 2007), they129

further identified that these gap junctions are located at the axons of VS cells. By having these130

axonal gap junctions, the VS network implements an electrotonic segregation mechanism between131

its dendrites and axons: all VS cells show broadened receptive fields at their axons compared to132

those at their dendrites. These broadened receptive fields improve the encoding robustness of133

motion stimuli (Cuntz et al., 2007; Elyada et al., 2009) at the output of the VS network. Recent work134

also shows that this wiring architecture, coupled with subpopulation readout from the VS 5-6-7135

triplet, enables near-optimal encoding of constant speed rotations (Wang et al., 2017). In this work,136

we focus on behavioral constraints imposed by fast evasive flights maneuvers, asking whether this137

same wiring architecture supports visual prediction on a fast enough time scale to efficiently guide138

evasive maneuvers.139

To explore this hypothesis, ideally one would trace the activity of the VS cells in behaving animals.140

However, evasive flight maneuvers require untethered flight, which makes population recording141

from the VS network prohibitive. Here instead we use numerical simulations of a biophysically142
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realistic compartmental reconstruction of the VS network to investigate how the VS network might143

encode this kind of fast, predictive information. This compartmental reconstruction of the VS144

network is highly experimentally constrained (Cuntz et al., 2007;Weber et al., 2008). All single-cell145

(Hagg and Borst, 1996) and neuronal circuitry parameters (Haag and Borst, 2004, 2005; Cuntz et al.,146

2007) are set such that this compartmental reconstruction behaves as does the real VS network147

when presented with the same current injection (Weber et al., 2008; Haag and Borst, 2004, 2005).148

Based on how the output of the VS network encodes predictive information about the visual inputs149

during recorded evasive maneuvers, we first demonstrate that axonal gap junctions are essential150

for input prediction in the VS network during evasive maneuvers. Next, we show that this predictive151

information, present at the output of the VS network, is near-optimal throughout the duration of152

evasive maneuvers. We further show that the output circuitry of the VS network (the VS 5-6-7 triplet)153

to the neck motor center retains all available information about future stimuli, i.e., compressing the154

readout does not sacrifice how much a downstream pathway knows about the ongoing evasive155

maneuver. Finally, we show that the predictive information about future visual inputs can be used156

for fine scale discrimination between input motion directions. The encoding of such predictive157

information is especially beneficial for fine-tuning subsequent motor behavior. Our results also158

predict the existence of a novel sensory-motor pathway between the visual system and a visually159

gated motoneuron of wing steering muscles, namely the second basalare motoneurons (M.b2) (Tu160

and Dickinson, 1996; Heide and Götz, 1996; Dickson et al., 2006; Lindsay et al., 2017).161

Results162

Visual prediction provides substantial information about motion without delay163

Figure 1 shows that visual prediction contains substantial information about future motion for164

controlling evasive flight maneuvers. We first use a schematic trace to illustrate the inputs and165

delays in the system (Figure 1A). Previous work shows that the feedback from the halteres onto166

motoneurons of wing steering muscles only becomes available after a 15-20ms delay (Muijres167

et al., 2014; Dickinson and Muijres, 2016), towards the second half of the maneuver, right before168

the active counter-banked turn starts. Visual feedback would also arrive too late, coming online169

only after 30ms, long after the banked turn is replaced by the counter-banked turn through active170

control (Dickinson and Muijres, 2016).171

To quantify how much visual prediction encodes about the stimulus (Figure 1B), we define this172

stimulus-relevant predictive information in the output voltage from the fly VS network as:173

Ifuture∶stim(Δt) = I(Vpast; stimfuture) = I(Vt; stimt+Δt)

= ∬Vt ,stimt+Δt

p(Vt)p(stimt+Δt|Vt) log2
p(stimt+Δt|Vt)

p(Vt)
,

(1)

where Vt is the output axonal voltage of the VS network at time t. Δt is the time interval between174

the past voltage and future visual stimulus. Here we use intervals of Δt = 10ms, 20ms, 30ms, 40ms to175

obtain the output of the VS network. This is because the maximum firing rate of the descending176

neuron connecting to the neck motor center is 100Hz (Weber et al., 2008), which corresponds to an177

integration step of at least 10ms (see Methods and Materials). Throughout this paper, we represent178

the future rotational stimulus stimt+Δt, by its vector components (cos(stimt+Δt), sin(stimt+Δt)). The179

cosine component corresponds to roll direction/magnitude and the sine component corresponds180

to pitch direction/magnitude. This vector is within the fly’s coronal plane, to which the VS neurons181

are selectively sensitive. We then estimate p(stimt+Δt), i.e., the stimuli distribution and p(stimt+Δt|Vt),182

i.e., the probability of the future stimulus conditioned on the past output axonal voltage to obtain183

Ifuture∶stim (see Methods and Materials). Figure 1B shows that the predictive information Ifuture∶stim in184

the VS output voltage about the future stimulus captures nearly 50% of the entropy of the future185

motion. This suggests that the predictive information encoded by the VS network is an important186

information source for evasive flight behaviors, in the natural environment.187
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To evaluate Ifuture∶stim, we need to approximate both the stimulus distribution and the respective188

output distribution of the VS network. To obtain the stimulus distribution, we generate 650,000189

samples of visual field motion trajectories based on behavioral recordings published in (Muijres190

et al., 2014). Each visual experience corresponds to one instance of a particular evasive maneuver191

embedded in a randomly selected set of nature scene images. There are 10,000 samples for each192

of the 65 evasive flight trajectories with duration of 40ms (out of the total 92 published trajectories193

in (Muijres et al., 2014)). Figure 1C shows one exemplar visual experience of a particular evasive194

maneuver trajectory with the blue arrow as the instant rotation trajectory. Here, we obtain the195

“cage” of natural images for simulation by randomly selecting six images out of the van Hateren196

dataset (van Hateren, 1992) and patch them onto the six faces of a cube. Then we generate a197

movie mimicking the evasive flight in the natural environment by rotating this natural scene cage198

according to the measured rotations in the evasive flight trajectory (we do not use the translation199

component of the evasive maneuver in this simulation because previous work showed that the VS200

network is not sensitive to translation (Borst and Weber, 2011), also see Methods and Materials).201

We next project this movie onto 5,500 local motion detectors, whose responses are integrated202

as the input current of the VS network (Figure 1D). This simulation procedure is the same as that203

described in (Trousdale et al., 2014). Previously, we showed that the VS network can use its own204

transient response (10ms after the onset of stimuli) to encode the stimulus with constant rotational205

motion at a relatively high fidelity (Wang et al., 2017). Here we use a behaviorally realistic, highly206

variable visual input and explore its intrinsic correlation structure, to investigate how the fly’s brain207

use this predictive information to make fast and accurate sensory predictions.208

Axonal gap junctions enable prediction during evasive maneuvers209

Figure 2 shows that the anatomical locations of the gap junctions have significant impact on the210

predictive encoding capability of the VS network. Located in the lobula plate, the VS network does211

not have direct access to the visual input. Instead, the dendrites of all VS cells receive current inputs212

resulting from integrating the outputs from hundreds of upstream local motion detectors (Haag213

and Borst, 2004). Here, we use correlations in the VS input current induced by the stimulus as a214

proxy for the stimulus correlations, themselves, which can be in turn used to encode predictive215

information about the future stimulus. In this encoding scheme, the correlation between the past216

and the future of the input current itself limits how much predictive information the VS network217

can encode. This generalized correlation between the past and future of the VS inputs Ifuture∶limit, is218

Ifuture∶limit = I(currpast; currfuture) = I(currt; currt+Δt)

= ∬currt ,currt+Δt

p(currt)p(currt+Δt|currt) log2
p(currt+Δt|currt)

p(currt)
.

(2)

This is also the mutual information between the past and future input (the dendritic current) and219

defines the total interdependence of the current with itself in time.220

Similar to Ifuture∶limit, we also define the information encoded by the axonal voltage of the VS221

network from its own input as222

Ifuture∶in = I(Vpast; currfuture) = I(Vt; currt+Δt). (3)

This is the predictive information between the output axonal voltage and the future input current,223

which again we are using as a proxy for future stimulus. Causality dictates that the past axonal224

voltage can only obtain information about the future current from the past current, therefore225

Ifuture∶limit is an upper bound on Ifuture∶in. Here, we explore what network wiring features support226

the maximal transmission of the correlation structure in the input current onto the output axonal227

voltage of the VS network.228

As shown in Figure 2, axonal gap junctions are necessary for the system to encode the maximal229

amount of predictive information about the input current. Namely, the Ifuture∶in (shown in pink) only230

approaches Ifuture∶limit (shown in green) when gap junctions are present to neighboring VS axons.231
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Figure 1. Predictive information is the dominant information source about visual inputs during evasive flight maneuvers. (A) Upon

emergence of a threat (shown as the red star, dashed line represents the visual-motor delay of 60ms from the onset of threat to the start of the

evasive maneuver), the fly performs an evasive maneuver by changing its heading through a banked turn. During the evasive maneuver, visual

predictions can provide motion information throughout the entire duration, i.e., without delay (shown as the green zone), whereas the haltere

feedback is only available after 20ms (shown as the yellow zone) and the visual feedback is only available after 30ms (shown as the blue zone). (B)

This histogram compares how much information the visual prediction (shown in blue) can encode about the stimulus during the evasive maneuver

with the stimulus entropy (shown in gray). We use the stimulus distribution at Δt = 10ms into the evasive maneuver to compute this entropy. Its
distribution is shown in Figure 1–Figure Supplement 1A. Note that the VS output contains almost half of the future stimulus entropy. (C) Schematic
depiction of the visual stimuli for the simulation, recompiled from (Wang et al., 2017). Six natural images (five are shown here, with one excluded
to reveal the fly’s viewing perspective) were randomly selected from the van Hateren dataset (van Hateren, 1992); each image was patched onto a
different face of a cube. Assuming that the fly is located in the center of this cube, we obtain the visual experience of the fly’s ego-rotational motion

by rotating this cage around a particular motion direction shown by the dark blue arrow. We then project the moving natural scene cage to ∼5,500
local motion detectors (LMD), which are randomly distributed on the fly’s retina. The responses of these LMDs are then integrated as the input

current to the VS network (shown as arrow to D). (D) A biophysically detailed model of the VS network, based on known neural circuitry (Hagg and
Borst, 1996; Haag and Borst, 2004). We highlight the outputs to the neck motor center here, the axonal voltages of the VS 5-6-7 triplet. This is the
only known readout that directly connects to motor pathways.

Figure 1–Figure supplement 1. Stimulus distributions for different time steps during the evasive maneuver.
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Figure 2. The capacity of the VS network to encode predictive information varies with the anatomical locations of the gap junction

between VS cells. The predictive information about the future input current, Ifuture∶in encoded in four different schemes: 1) the past dendritic
input current (in green, this is the limit Ifuture∶limit. It is also the upper bound of Ifuture∶in), 2) the past axonal voltage when the gap junctions are
present between VS axons (pink), 3) when the gap junctions are present between VS dendrites (purple) and 4) in the absent of gap junctions (black).

All Gap junctions = 1000 nS for both settings when they are present. Only their locations differ, i.e., axon vs. dendrite. Note that when the gap

junctions are present between VS cell axons, the output voltages preserve almost the entire amount of the predictive information available at the

inputs (red). (See details in Methods and Materials.)

The other two configurations of gap junctions, i.e., no gap junctions or gap junctions at the dendrites232

(shown in black and purple, respectively), cannot encode as much predictive information. Previous233

work had shown that the axonal gap junctions implement an electrotonic segregation that results234

in the broadening of receptive fields at the axonal terminal of the VS cells, for constant rotational235

motion (Cuntz et al., 2007). Here, we further determine that such electrotonic segregation supports236

maximal predictive encoding in a realistic behavioral context.237

The VS network is near-optimal in predicting its own future input.238

All of the information encoded by the VS network comes from its sole input current, currpast. To239

quantify the efficiency of encoding, we not only need to quantify the benefit (i.e., the Ifuture∶in), we240

also need to quantify the cost, which is how much the axonal voltage encodes about its input (at241

the same time in the past). We define this as another mutual information quantity,242

Ipast∶in = I(Vpast; currpast) = I(Vt; currt). (4)

Comparing Ipast∶in and Ifuture∶in, where the past is at time t and the future at t + Δt, we can ask243

formally whether the VS network encodes as much as predictive information as possible, using244

the information bottleneck framework (Tishby et al., 2000). Given the amount of information the245

axonal voltage encodes about the past sensory input, what is the maximal amount of information246

it can encode about the future input? Such an optimum I∗future∶in(Ipast∶in) traces out a bound (the247

dark blue line) in Figure 3 as a function of Ipast∶in. It is the maximal possible predictive information248

at each level of compression, Ipast∶in. For encodings with the same Ipast∶in, those approaching the249

bound are optimal.250

7 of 19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2020. ; https://doi.org/10.1101/814319doi: bioRxiv preprint 

https://doi.org/10.1101/814319


The known circuitry of the VS network allows us to probe two coupled questions: 1) What is the251

predictive efficiency (based on the past encoding) and 2) What is the predictive capacity (encoding of252

the past input only to predict the future input) of the VS network, given different readout encoding253

architectures?254

The predictive capacity of the VS network for its own future inputs is near-optimal, as shown in255

Figure 3A, the axonal voltages of the VS network encode Ifuture∶in = 3.49 ± 0.1 bits for future inputs at256

Δt = 10ms (the beginning of the banked turn). Considering that optimum is I∗future∶in(Ipast∶in) = 3.59257

bits, using axonal voltages of all VS cells capture Ifuture∶in∕I∗future∶in = 97.2% of the optimal predictive258

information. Such optimality is also present for predicting visual inputs at Δt = 40ms (the counter259

banked turn segment, corresponding to the end of the evasive maneuver, as shown in Figure 3B).260

Similarly, using only the axonal voltages from the triplets, prediction of the entire VS network’s261

future input is also close to optimal. We show this as the cross in red, for predicting both the future262

right after the start of the evasive maneuver and towards the end of the evasive maneuver in263

Figure 3A and Figure 3B, respectively. For example, all encodings based on outputs of triplets reach264

Ifuture∶in = 2.89 ± 0.36 bits while their respective physical limits are 3.07 ± 0.24 bits in Figure 3A. This265

suggests that all triplets achieve 89.8 ± 1.5% efficiency in encoding predictive information about the266

inputs Ifuture∶in∕I∗future∶in.267

However, the near-optimality of the triplets are still inferior to that obtained by having the axonal268

voltages of all VS neurons in the network (89.8% vs. 97.2%). All encodings based on triplets contain269

somewhat less absolute predictive information. The VS network achieves its best trade-off efficiency,270

the middle shoulder section between the quickly-rising phase and the diminishing-returns-phase of271

the bound I∗future∶in(Ipast∶in) in Figure 3B, for encoding stimuli towards the end of the flight maneuver.272

Because the prediction of its own input is only a proxy of prediction for future stimulus, inferior273

optimality in predicting its own input does not necessarily map to the same degradation in the274

prediction of the future stimulus. In the next section, we explore how much this efficiency for275

predicting its own future input affects the encoding of future visual stimulus.276

The triplet architecture selectively encodes predictive information about the fu-277

ture stimulus.278

The triplet readout encoding architecture retains close to all of the available predictive information279

about the future stimulus available to the VS network at its input. Using the VS 5-6-7 triplet as an280

example (darker color bars in Figure 4A), we can see that triplets capture most of the available281

predictive information about the future stimulus (Ifuture∶stim, defined in Section 1 of the Results).282

Because downstream pathways of the VS network only readout from triplets, the VS network283

appears to use a two-step strategy to optimize this readout: it first efficiently represents correlations284

within its own past and future input, i.e., Ifuture∶in, at its output; then selects components within285

that output that are relevant for predicting the future stimulus, Ifuture∶stim. This is possible because286

correlations coming from events in the visual world, such as the movement of large objects or the287

full-field background movement have a different temporal structure (e.g. longer correlation times)288

than those internal to the brain.289

Figure 4B shows that all triplets are near-optimal in encoding the predictive information about290

the future stimulus. Interestingly, such optimality is close to the niche region where the predictive291

information just begins to saturate (such optimality is also present for prediction of the distant292

future, i.e., Δt > 10ms, results not shown). Considering that the VS 5-6-7 triplet encodes nearly the293

same information about the future stimulus compared to the VS network (Figure 4A), the main294

benefit of using triplet is compression: despite encoding less predictive information about its own295

input, the VS triplet readout encoding retains nearly as much as possible about the future statistical296

structure of the ongoing maneuver, discarding information predictive of the less-behaviorally-297

relevant intrinsic dynamics of the inputs, themselves.298

Although all triplets encode similar amounts of information about the future stimulus (the299

standard deviation of the Ifuture∶stim amongst all 120 triplets is just 0.1 bits), the particular triplet300
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Figure 3. Near-optimal prediction of the input to the VS network. (A) The encoding of predictive information about the future current input to

the VS network is near-optimal 10ms after the evasive maneuver starts (Δt = 10ms). Such performance is present for using both the entire VS
network and the triplets. The dark blue curve traces out optimum encoding of future input to the VS network given varying amounts of information

retained about the past input (also see Methods and Materials). This curve also divides the plane into allowed (blue shaded region) and forbidden

regions. No encoding can exist in the forbidden region because it cannot have more information about its future inputs than the input correlation

structure allows, given causality and the data processing inequality. In addition, the maximal amount of information (shown as the highest point of

the information curve) that is available as predictive information is limited by the correlation structure of the input (current), itself. We then plot the

amount of information the axonal voltages of VS network (we show with axonal gap junctions in pink and without gap junctions in black) encode

about the future input (the input current at time t + Δt) versus the information they retain about the past input (the input current at time t) (with all
120 triplets (crosses) and the whole network (circle)). The information efficiency, compared to the bound, contained in a particular encoding

scheme corresponds to a single point in this Ipast∶in- Ifuture∶in plane, which shows how much information it encodes about the past input vs. how
much it encodes about the future. A particular VS encoding could occupy any point within the blue shaded region, but those that get close to the

bound I∗future∶in(Ipast∶in) for a particular Ipast∶in are the maximally informative predictors of the future input. (B) Similar to A, but for prediction of the
distant future: Δt = 40ms, corresponding to the stimulus at the end of evasive maneuver.
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Figure 4. Encodings based on the axonal voltages of triplets are near-optimal in predicting the future stimulus. (A) Histogram showing

that although the VS triplets encode less predictive information compared to a combination of all VS axonal voltages (shown in red), the triplets (we

use the VS 5-6-7 triplet as an example here) encode nearly as much information about the future stimulus (shown in cyan) as the whole VS
population. Here we show the comparison for the immediate future stimulus after the onset of the evasive maneuver, Δt = 10ms. Similar
relationships also hold for the more distant future stimuli, e.g. Δt > 10ms (not shown). (B) Similar to Figure 3A: The encoding of predictive
information for the future stimulus 10ms after the start of the evasive maneuver (Δt = 10ms). The dark blue curve traces out the optimum encoding
of the future stimulus given varying amounts of information retained about the past input. The cyan cross corresponds to how much information

each of all possible 120 triplets encode about the future stimulus vs. how much information they retain from the past input.

Figure 4–Figure supplement 1. How much a triplet readout encoding retains from the past input vs. how much that information is about the

future stimulus (out of the information about their own future input), for all 120 possible triplets.

connecting to the neck motor center, the VS 5-6-7, is one of the better choices in terms of howmuch301

information about the future stimulus it packs into its prediction of the future input (Figure 4–Figure302

Supplement 1. The most efficient triplet is VS 1-2-3. However, if we factor in wiring constraints,303

linking the output from VS 5-6-7 to a downstream dendritic arbor in the descending neurons for the304

neck motor center requires a much shorter wiring length compared to the peripheral location of305

the VS 1-2-3 triplet (VS cells are numbered according to their locations along the anterior-posterior306

axis, VS 5-6-7 are central in the compound eyes). It is possible that the minimization of wiring307

length (Cuntz et al., 2009) is important in selecting the simultaneously most predictive and most308

resource-efficient encoding.309

Here we show that the VS 5-6-7 triplet is successful in retaining nearly all of the predictive310

information about the future stimulus compared to that encoded by the entire VS network. This311

result also clarifies that the predictive information encoded by the VS network is compressible:312

the VS 5-6-7 triplet successfully reformats the predictive information from 20 dendrites/axons (10313

VS cells from both compound eyes combined) into six axons (the axons of VS 5-6-7 from both314

compound eyes combined). In the next section, we investigate how the stimulus representations315

vary based on either the entire VS network or the VS 5-6-7 triplet. We do this to understand a) what316

kind of computation is possible via the encoding of near optimal predictive information, and b) how317

the VS 5-6-7 triplet reformats this near-optimal prediction.318
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Predictive information encoded by the VS network provides fine-scale discrimina-319

tion of nearby stimuli.320

Comparing the stimulus representations encoded by the entire VS network and the VS 5-6-7 triplet321

is challenging. No direct comparison can be made between representations of different dimensions322

(20-D based on the entire VS network and 6-D based on the VS 5-6-7 triplet). We can, however,323

make use of our information plane analysis and fact that both schemes encode similar amount of324

predictive information. Points at the same y-value or similar y-values in the information plane have325

the same dimensionality in their compressed representations, Z (Tishby et al., 2000). Therefore, to326

compare encoding schemes, we can explore the structure of the encoding Z. While we were able to327

compute information quantities in Z as shown above, it is more complicated to derive the structure328

of of the mapping to Z, itself. Thankfully, recent work in machine learning and computational329

neuroscience guides the way forward. We can approximate the structure of the optimal encoding by330

finding a variational approximation (Alemi et al., 2016; Higgins et al., 2017; Chalk et al., 2016) to the331

information bottleneck (VIB) problem. It has been shown that this approximation is closely related332

to the loss function use to train variational autoencoders (Kingma and Welling, 2013). The VIB is a333

generative learning framework. Given pairs of the inputs and outputs, it generates a latent feature334

space whose dimensions are predictive features from the input to the output (Figure 5–Figure335

Supplement 1). One can then project the input into this latent feature space to obtain the predictive336

representation of the output. Therefore, by using the axonal voltage as input and the future input337

current as output (During the evasive maneuver, the VS network does not have direct access to338

the visual input. Instead, it uses the correlations between its past and future inputs induced by the339

stimulus as a proxy for the stimulus correlations, themselves) in training a VIB, we can explore the340

representation of the future stimulus encoded by the optimally predictive VS network at a fixed level341

compression (see Materials and Method). To allow for a direct comparison, we keep the dimension342

(D = 2) of the latent feature space to be the same while changing the input, using either the axonal343

voltages of the entire VS network, or those of the VS 5-6-7 triplet.344

The representations of the future stimulus generated by the VIB (Figure 5), reveal that the345

predictive information encoded by the VS network supports fine-scale discrimination of the input346

motion direction. We obtain these predictive representations in two steps: first we train the VIB347

to generate a latent feature space that maps the input (the axonal voltages of the VS network)348

to the future input current. Next, we project input voltages that correspond to the same future349

stimulus onto this latent space. We can label these points in the latent space by their future350

stimulus value, and repeat this procedure for several different stimulus values. We can visually351

and computationally examine how overlapping or distinct these maximally predictive stimulus352

clusters are in the latent space of the VIB. Based on these predictive stimulus representations,353

we can understand what is being computed during the evasive maneuver. The Figure 5A shows354

a predictive representation for stimuli with different degrees of clockwise roll and up-tilt pitch355

(i.e., their corresponding directional vectors are located in the 1st quadrant in the fly’s coronal356

plane). The Figure 5B shows a similar predictive representation using the axonal voltages of the VS357

5-6-7 triplet as input. In both predictive representations, the clusters corresponding to different358

stimuli are distinguishable. Such discrimination also applies to stimuli combining counter-clockwise359

roll and up tilt, i.e., corresponding to vectors within the 4th quadrant of the fly’s coronal plane360

(Figure 5C for using the entire VS network as input and Figure 5D for using the VS 5-6-7 triplet as361

input, respectively). However, these predictive representations cannot discriminate stimuli with362

vastly different roll or pitch directions, i.e., belonging to different quadrants: there is substantial363

overlap if we overlay these predictive representations, e.g. the cluster corresponding to 270◦ (shown364

in magenta in Figure 5C) will entirely cover the cluster corresponding to 19◦ (also shown in magenta,365

but in Figure 5A). The same overlap is also present in Figure 5B and Figure 5D. Therefore, both the VS366

network and the VS 5-6-7 triplet support a similar fine-scale discrimination between closely-related367

stimuli. This similarity agrees with our previous result (Figure 4) that both the VS network and the VS368
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5-6-7 triplet, as well as their respective VIB approximations (Figure 5–Figure Supplement 4), retain369

almost the same amount of predictive information about the future stimulus.370

Interestingly, such discrimination preferentially disentangles nearby stimuli. For example, a371

pair of stimuli (56◦ and 67◦, shown in Figure 5–Figure Supplement 4A and Figure 5–Figure Supple-372

ment 4B) that are just 10 degrees apart are mapped to distinct, well-separated clusters in the latent373

space of the VIB. Conversly, another pair (19◦ and 37◦) that are farther apart share some overlap374

(Figure 5A and Figure 5C). The VS 5-6-7 triplet preserves this fine scale discrimination (Figure 5B and375

Figure 5D) while compressing the readout. During the evasive maneuver, this fine-scale discrimina-376

tion can aid in fine tuning of banking, allowing the fly to carefully adjust its heading change based377

on the input threat. We hypothesize that the predictive information encoded by the VS network378

can help the downstream neck motor center to actively control the evasive maneuver. Because379

the predictive representations generated by VIB contain about 75% of the predictive information380

in their inputs (Figure 5–Figure Supplement 2), this result provides a lower estimate of what the381

biological networks can encode: because both the VS network and the VS 5-6-7 triplet encode more382

predictive information than their respective VIB approximations, they should be able to perform at383

or better in the fine-scale discrimination achieved by the VIB’s, as shown in Figure 5.384

Even with a representation that retains all of the stimulus information in the input to the385

VS network, one cannot discriminate stimuli in vastly different directions. We construct such a386

representation based on the instantaneous input current of the present stimuli. These input387

currents contain 2.44 bits of the stimulus information at the same point in time, i.e. without388

prediction forward in time. This information is higher than that available via predictive information389

encoding of the past input current (2.1 bits, shown as the red bar in Figure 5–Figure Supplement 2).390

The first two principal components (PC) of the input current retain nearly all available stimulus391

information, so we ask whether disparate stimuli can be disentangled in this subspace of the392

instantaneous stimulus representation. Hence, we obtain a representation retaining all stimulus393

information by projecting all VS input currents into these first 2 PCs. We find that there still exists394

substantial overlaps between stimuli (Figure 5–Figure Supplement 3), e.g. the cluster of 19◦ in395

magenta almost covers the entire cluster of 247◦ in light green (Figure 5–Figure Supplement 3A).396

This shows that the input to the VS network can only support fine-scale discrimination, whether397

an instantaneous readout or predictive readout. This also means that based on prediction, the VS398

network can only perform fine-scale discrimination. Therefore, it is possible that the integration at399

the neck motor center frommultiple sources (VS network, haltere and prosternal organs (Buschbeck400

and Strausfeld, 1997) combines information from other pathways to discriminate stimuli with larger401

direction differences.402

Discussion403

Here, by focusing our analysis of the fly’s neural code for a key survival strategy, the evasive404

flight maneuver, we have shown that the VS network can encode predictive information near-405

optimally. A subpopulation readout mechanism, based on triplets of VS cells, further compresses406

the representation of that predictive information. This compression trades off local input prediction407

with the prediction of the future stimulus: while it encodes the future input somewhat sub-optimally,408

it retains the more behaviorally important predictive stimulus information at higher fidelity, in all409

triplets. The encoding of predictive information has a concrete behavioral goal: it enables fine-410

tuning of motion discrimination during the evasive maneuver.411

Combining these observations, the fly brain satisfies an overarching computational goal of412

effectively guiding evasive flight trajectories through visual prediction at both levels of input filtering413

(via axonal gap junctions) and output reformatting (via subpopulation readout based on triplets). By414

next identifying that the predictive representations of future stimuli are best at enabling fine-scale415

discrimination of nearby stimuli, we have shown how structure maps to function in this motion416

sensing system. In addition, we have shown that behaviorally relevant features of the stimulus are417

faithfully encoded via circuit mechanisms at the sensory end of the arc from sensation to action.418
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Figure 5. The predictive information encoded by the VS network supports fine scale discrimination of the future stimulus. (A) The

predictive representation of four future stimuli in the same quadrant of roll and pitch, e.g. an up-tilt and a clockwise roll. This representation maps

the axonal voltage of the entire VS network to the future stimulus through a latent feature space. The dimensions in this latent feature space

(shown as VIB D1 and VIB D2) are VIB-learned predictive features based on the output of the VS network. All stimuli correspond to vectors within

the 1st quadrant of the fly’s coronal plane. The inset shows a polar histogram in grey and the four selected stimuli in color. (B) Similar to A but

using the axonal voltages of the VS 5-6-7 triplet. (C) Similar to A, but the motion stimuli are all counter-clockwise roll and up-tilt, corresponding to

vectors in the 4th quadrant (between 270◦ and 360◦) of the fly’s coronal plane. (D) Similar to C, but obtained using the axonal voltages of the VS
5-6-7 triplet as the VIB input.

Figure 5–Figure supplement 1. Network schematic for the variational approximation of the information bottleneck solution (VIB)

Figure 5–Figure supplement 2. Predictive information for the future stimulus 10ms after the evasive maneuver starts (Δt = 10ms)
Figure 5–Figure supplement 3. The input to the VS network only supports local discrimination.

Figure 5–Figure supplement 4. The predictive information encoded by the VS network preferentially discriminates nearby stimuli.
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This suggests that behavioral goals sculpt neural encoding even at the earliest stages of sensory419

processing.420

our work predicts a novel sensory-motor pathway between the visual system and a visually421

gated motoneuron of wing steering muscles. Evasive maneuvers consist of rapid banked and422

counter-banked turns. These rapid turns require elevated wing kinematics, including stroke am-423

plitude and frequency (Heide and Götz, 1996). Previous work showed that a motoneuron of wing424

steering muscles, e.g., the second basalare motoneurons (M.b2) in both blowfly and drosophila, are425

responsible for initiating these elevated wing kinematics (Tu and Dickinson, 1996; Lehmann and426

Gotz, 1996). However, little is known about these neurons other than that they can be switched427

on and off by visual input (Dickson et al., 2006; Lindsay et al., 2017). Our work shows that visual428

prediction can reach these motoneurons at the beginning of evasive maneuvers. This makes visual429

prediction a suitable input source that may activate these motoneurons at the beginning of rapid430

banked turns.431

Although our results show that the near-optimal prediction is present in the VS network of the432

blowfly, further investigation is necessary to identify whether this generalizes to other dipterans.433

First, not all dipterans use VS cells for flight control, e.g. predatory flies like Holcocephala and Efferia434

do not have VS cells. Instead, they use extra, complementary horizontal motion sensitive (HS)435

cells to compute rotational motion (Buschbeck and Strausfeld, 1997); second, other dipterans may436

have flight behaviors non-exist in blowflies, i.e., stationary hovering or ballistic interception. These437

maneuvers provide drastically different selective pressure on their respective tangential neurons.438

However, all dipterans’ lobula plate tangential neurons are strongly lagged with respect to their439

behavioral timescales (e.g. the reaction time of robber flies are even faster for prey capture, around440

10-30ms, and their sensory processing delay is around 18-28ms) (Fabian et al., 2018).441

Gap junctions are prevalent throughout the brain in many species (Connors, 2017; Marder,442

1998). In vertebrate visual systems, the retina also encodes predictive information near-optimally443

to potentially circumvent sensory processing delays (Palmer et al., 2015; Sederberg et al., 2018).444

Initial evidence supports the notion that gap junctions are a key circuit element in improving signal445

transmission in retina: for example, gap junctions between directionally selective ganglion cells in446

the mouse retina result in lag-normalization (Trenholm et al., 2013), and the gap junctions present447

in cones and bipolar cells improve the signal-to-noise ratio in their respective outputs (Ala-Laurila448

et al., 2011). Gap junctions can also rapidly regulate chemical synapses and improve sensitivity449

to correlated signals (Jacoby et al., 2018). When processing stimuli with correlations between450

the past and the future (e.g. predictable motion), these mechanisms can support prediction to451

compensate for delays. In the central nervous system, gap junctions are versatile enough to support452

flexible hierarchical information processing in cortical circuits, as hypothesized in (Heeger, 2017).453

The ubiquitous evolutionary pressure to perform efficient prediction may shape nervous systems454

through this common circuit motif.455

The brain carries out flexible, robust, and efficient computations at every moment as an or-456

ganism explores and interacts with the external world. These computations are only possible457

through versatile mechanisms that operate under realistic behavioral constraints. We have shown458

that optimizing the transmission of predictive information in sensing systems is a useful way to459

interrogate the neural code. Given the presence of predictive information in sensory systems that460

evolved independently (Palmer et al., 2015), our work supports the idea that predictive information461

may very well be a fundamental design principle that underlies neural circuit evolution. While462

we have dug into the specific mechanisms and representations that support this kind of efficient463

prediction for fast, natural and behaviorally critical motion processing in the fly visual system, the464

lessons learned may apply to a much larger class of neural sensing systems.465
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Methods and Materials466

Self-motion stimuli for evasive flight maneuvers467

We obtain self-motion stimuli from a large dataset of evasive flight maneuvers in drosophila468

published in (Muijres et al., 2014). This dataset contains 82 traces of evasive trajectories when469

the flies face looming targets from all possible angles in their left visual field. All traces contain470

motion information (e.g., direction, velocity, etc.) from the emergence of the threat to the end of471

the evasive maneuver. In this dataset, the evasive flight trajectories are aligned at the beginning of472

the maneuver. The duration of the evasive trajectories vary between 10-40ms, with 65 out of 82473

flights as long as 40ms. We chose this dataset for two reasons: a) its sample rate (7500 fps) allows474

us to trace the activity of the VS network at the millisecond scale; b) it contains threats approaching475

the fly from angles spanning a full 180◦, providing a well-sampled collection of the fly’s behavioral476

repertoire.477

Simulation of the model VS network478

Our simulation uses a biophysically realistic simplified model of the VS network based on a recon-479

struction introduced in (Cuntz et al., 2007). This reconstruction models each VS cell with hundreds480

of dendritic compartments based on image stacks obtained by two-photon microscopy. Meanwhile,481

it implements the chain-like circuitry of the VS network by using both a) resistances connecting482

neighboring cells as axonal gap junctions (Haag and Borst, 2004, 2005); b) the negative conductance483

between the VS1 and the VS10 to account for the reciprocal innhibition. (Haag and Borst, 2007)484

Compared to the detailed reconstruction, the simplified, biophysically realistic model introduced485

in (Weber et al., 2008) reduces all dendritic compartments into a single compartment while keeping486

other components intact. In the simplified model, an individual VS cell is represented by one den-487

dritic compartment and one axonal compartment, respectively. All its parameters were determined488

by a genetic algorithm (Weber et al., 2008) so that this simplified model behaves roughly the same489

as the real VS network when given the same current injection (Haag and Borst, 2005, 2004).490

Both the dendritic and axonal compartments have their own conductances (gdend and gax,491

respectively) and a connection conductance between them (shown as the gde−ax). This VS network492

model defines the receptive field (RF) of these dendritic compartments as a 2-D Gaussian with493

�azimutℎ = 15◦ and �elevation = 60◦, tiling along the anterior-posterior axis. Input from local motion494

detectors within the receptive field of an individual dendrite are integrated into the input current495

(shown as the arrow between Figure 1C and Figure 1D)). The neighboring axonal compartments496

of different VS cells are connected by gap junctions (shown as ggap), whereas VS1 and VS10 are497

connected by inhibitory chemical synapses. In our simulation, we set all conductance magnitudes498

using the same method as in (Weber et al., 2008). Based on experimental findings from (Hagg and499

Borst, 1996), we vary the magnitude of the GJ conductance between 0 and 1 �S.500

In every simulation, we first generate the pseudo-3D visual “cube” (Figure 1C) representing the501

environment to which our model fly visual system responds, by randomly selecting six images from502

the van Hateren dataset. Next, we rotate this cube according to the rotational motion during evasive503

maneuvers recorded in (Muijres et al., 2014). Following the protocol in (Trousdale et al., 2014), we504

sample the rotational motion at a Δt = 1ms interval, but integrate the above two equations at a505

smaller time step of 0.01ms to guarantee numerical accuracy. This yields the optic flow pattern506

that we then project into the 5000 local motion detectors (LMD) in our model visual system. Each507

LMD contains two subunits that differ by 2° in elevation. They are randomly distributed in a sphere508

mimicking the visual range of the fly. Each VS dendrite takes as input the output of the LMDs that509

fall into its respective field to generate the input current to the model VS network. We then use the510

temporal average of the resulting axonal voltage Vpast = 1∕T ∫ Vpast(t)dt. For the voltage just before511

the start of the evasive flight maneuver, we use t = −10 ∼ 0ms, because 0ms is the start of evasive512

maneuver. For each of the 65 evasive traces that lasted a full 40ms, we simulated 10,000 randomly513

generated natural scenes to obtain samples of the input (current arriving at dendrites) and output514
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(axonal voltages) for subsequent analysis.515

Efficient encoding of predictive information516

To predict the future input motion, the only input the VS network has is its dendritic input at past517

times up to the present, i.e., currpast. Ideally, the VS network output represents the future motion518

in a specific form, Z, following the optimal encoding dictated by the solution to our information519

bottleneck problem. The bottleneck minimizes how much the representation retains about the past520

input I(Z; currpast) and maximizes how much it encodes about the future input i.e., I(Z; currfuture).521

Formally, such encoding Z solves the following variational problem, prediction of its own input:522

p(Z|currpast),� = Ipast∶in − �Ifuture∶in. (5)

where � is the trade-off parameter between compression of information about the past, and523

retention of information about the future sensory input (we switch to Ifuture∶stim when we look at the524

prediction of the future stimulus, as shown in Section 4 of the Result). For each Ipast∶in, there exists525

an optimal I∗future∶in(Ipast∶in) which is the maximum Ifuture∶in possible for a specified Ipast∶in, determined526

by the statistics of the sensory input, i.e., currpast, itself.527

We use the following iterative (the Blahut-Arimoto algorithm (Blahut, 1972)) algorithm to find Z528

that optimizes Equation 5:529

pt(Z|currpast) =
pt(Z)

Z(currpast, �)
exp[−�

∑

currfuture

p(currfuture|currpast) log
p(currfuture|currpast)
pt(currfuture|z)

] (6)

pt+1(Z) =
∑

currpast

p(currpast)pt(z|currpast) (7)

pt+1(currfuture|Z) =
∑

currpast

p(currfuture|currpast)pt(currpast|Z) (8)

Mutual information estimation530

We use the k-nearest neighbor approach described in (Kraskov et al., 2004) to obtain mutual531

information estimates of Ifuture∶in, Ifuture∶limit, Ifuture∶stim and Ipast∶in. Here, the mutual information is532

approximated via its corresponding complete gamma function:533

I(X; Y ) =  (K)− <  (nx + 1) +  (ny + 1) > + (N), (9)

with N being the sample size, here N = 650, 000. Given the skewed stimulus distributions shown534

in Figure 1–Figure Supplement 1, we vary k = 10,⋯ , 15 and use the mean as the estimate in our535

analysis.536

Variational approximation of optimal encoding of the predictive information (VIB)537

We use the variational approximation introduced in (Alemi et al., 2016). We first rewrite Equation 5538

as:539

′p(z|currpast),�′ = Ifuture∶in − �
′Ipast∶in (10)

The minimization of Equation 5 is equivalent to the maximization of Equation 10 (i.e., when �′ = 1
�
,540

Equation 10 is the same as Equation 5).541

Next, we minimize the following variational lower bound of Equation 10:542

′p(z|currpast),� − �
′Hstimfuture ≥ V IB = ∫ dydzp(currfuture, Z) log q(currfuture|Z)

−�′ ∫ dcurrpastdzp(currpast)p(Z|currpast) log
p(Z|currpast)

r(Z)

(11)

The advantage of using this variational approximation of Equation 10 is that we can constrain the543

distribution of Z to a particular form (i.e., a 2-D Gaussian) while letting the distributions of x and y544
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to be arbitrary. This provides us with a latent feature representation of the lower bound for the545

optimal encoding of predictive information.546

In this work, we would like to understand the structure of the optimal encoding for the future547

stimulus given the input (the dendritic current, the VS axonal voltages, or the triplet voltages).548

Therefore, we obtain the respective solutions of V IB with fixed �′ = 40. This is the value that falls549

into the diminishing return part of the IB curves in both Figure 3 and Figure 4. We also limit the550

dimension of Z to be 2 for direct comparison of inputs having different dimensions.551

Acknowledgement552

SW and IS and were supported by a grant from the Gatsby Charitable Foundation and by the Max553

Planck Hebrew University Center for Sensory Processing of the Brain in Action. The latter grant also554

supported AB. SEP was also supported by the National Science Foundation, both via CAREER award555

1652617, and through the Center for the Physics of Biological Function (PHY-1734030). This work556

was also supported by NIH grant R01EB026943 (SEP).557

References558

Ala-Laurila, P., Greschner, M., Chichilnisky, E., and Rieke, F. (2011). Cone photoreceptor contributions to noise559

and correlation in the retinal output. Nat Neurosci, 14:1309–1316.560

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. (2016). Deep Variational Information Bottleneck. arXiv e-prints,561

page arXiv:1612.00410.562

Balint, C. N. and Dickinson, M. H. (2001). The correlation between wing kinematics and steering muscle activity563

in the blowfly calliphora vicina. The Journal of experimental biology, 204:4213–4226.564

Bergou, A. J., Ristroph, L., Guckenheimer, J., Cohen, I., and Wang, Z. J. (2010). Fruit flies modulate passive wing565

pitching to generate in-flight turns. Physical review letters, 104:148101.566

Berman, G., Bialek, W., and Shaevitz, J. (2016). Predictability and hierarchy in Drosophila behavior. Proc Natl Acad567

Sci USA, 113:11943–11948.568

Blahut, R. (1972). Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theor., 18(4):460–569

473.570

Borst, A. and Weber, F. (2011). Neural action fields for optic flow based navigation: a simulation study of the fly571

lobula plate network. PLoS One., 6(1):e16303.572

Buschbeck, K. and Strausfeld, N. (1997). The relevance of neural architecture to visual performance: phylogenetic573

conservation and variation in Dipteran visual systems. J Comp Neurol., 383(3):282–304.574

Card, G. and Dickinson, M. (2008). Visually mediated motor planning in the escape response of Drosophila.575

Current Biology, 18(17):1300–7.576

Chalk, M., Marre, O., and Tkacik, G. (2016). Relevant sparse codes with variational information bottleneck. arXiv577

e-prints, page arXiv:1605.07332.578

Connors, B. (2017). Synchrony and so Much More: Diverse Roles for electrical Synapses in Neural Circuits. Dev579

Neurobiol., 77(5):610–624.580

Cuntz, H., Borst, A., and Segev, I. (2009). Optimization principles of dendritic structure. Theor Biol Med Model.,581

8:4–21.582

Cuntz, H., Forstner, F., Schnell, B., Ammer, G., Raghu, S. V., and Borst, A. (2013). Preserving neural function under583

extreme scaling. PLoS ONE, 8(8):e71540.584

Cuntz, H., Haag, J., Forstner, F., Segev, I., and Borst, A. (2007). Robust coding of flow-field parameters by585

axo-axonal gap junctions between fly visual interneurons. Proc Natl Acad Sci USA, 104:10229–10233.586

Dickerson, B. H., de Souza, A. M., Huda, A., and Dickinson, M. H. (2019). Flies regulate wing motion via active587

control of a dual-function gyroscope. Current Biology, 29(20):3517–3524.588

17 of 19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2020. ; https://doi.org/10.1101/814319doi: bioRxiv preprint 

https://doi.org/10.1101/814319


Dickinson, M. and Muijres, F. (2016). the aerodynamics and control of free flight manoeuvres in Drosophila. Phil.589

Trans. R. Soc, 371.590

Dickinson, M. H. (2014). Death valley,drosophila, and the devonian toolkit. Annual Review of Entomology,591

59(1):51–72.592

Dickson, W., Straw, A., Poelma, C., and Dickinson, M. (2006). An integrative model of insect flight control (invited).593

In 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.594

Domenici, P., Blagburn, J., and JP., B. (2011). Animal escapology I: theoretical issues and emerging trends in595

escape trajectories. J Exp Biol., 214:2463–73.596

Elyada, Y., Haag, J., and Borst, A. (2009). Different receptive fields in axons and dendrites underlie robust coding597

in motion-sensitive neurons. Nat Neurosci., 12(3):327–332.598

Fabian, S., Sumner, M., Wardill, T., Rossoni, S., and Gonzalez-Bellido, P. (2018). Interception by two predatory fly599

species is explained by a proportional navigation feedback controller. J R Soc Interface.600

Fayyazuddin, A. and Dickinson, M. H. (1996). Haltere afferents provide direct, electrotonic input to a steering601

motor neuron in the blowfly, calliphora. The Journal of neuroscience : the official journal of the Society for602

Neuroscience, 16:5225–5232.603

Fayyazuddin, A. and Dickinson, M. H. (1999). Convergent mechanosensory input structures the firing phase of a604

steering motor neuron in the blowfly, calliphora. Journal of neurophysiology, 82:1916–1926.605

Haag, J. and Borst, A. (2004). Neural mechanism underlying complex receptive field properties of motion606

sensitive interneurons. Nat Neurosci., 7:628–634.607

Haag, J. and Borst, A. (2005). Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly.608

Journal of Comparative Physiology A, 191(5):445–454.609

Haag, J. and Borst, A. (2007). Reciprocal inhibitory connections within a neural network for rotational optic-flow610

processing. Frontiers in neuroscience, 1:111–121.611

Haag, J., Wertz, A., and Borst, A. (2007). Integration of lobula plate output signals by DNOVS1, an identified612

premotor descending neuron. J Neurosci.613

Hagg, J. and Borst, A. (1996). The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. J614

Comput Neurosci.615

Hanlon, R. (2018). Cephalopod behaviour. Cambridge University Press.616

Hateren and Schilstra (1999). Blowfly flight and optic flow. ii. head movements during flight. The Journal of617

experimental biology, 202 (Pt 11):1491–1500.618

Heeger, D. (2017). Theory of cortical function. Proc Natl Acad Sci USA, 114(8):1773–1782.619

Heide, G. (1983). Neural mechanisms of flight control in diptera. In BIONAReport 2, W. Nachtigall, ed. (Gustav620

Fischer Verlag),.621

Heide, G. and Götz, K. G. (1996). Optomotor control of course and altitude in drosophila melanogaster is622

correlated with distinct activities of at least three pairs of flight steering muscles. The Journal of experimental623

biology, 199:1711–1726.624

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A. (2017).625

beta-vae: Learning basic visual concepts with a constrained variational framework. In International Conference626

on Learning Representations (ICLR), page ICLR.627

Jacoby, J., Nath, A., Jessen, Z., and Schwartz, G. (2018). A self-regulating gap junction network of amacrine cells628

controls nitric oxide release in the retina. Neuron, 100(5):1149–1162.629

Kingma, D. P. and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv e-prints, page arXiv:1312.6114.630

Kraskov, A., Stogbauer, H., and Grassberger, P. (2004). Estimating mutual information. Phy. Rev. E, 69:066138.631

Land, M. and Collett, T. (1974). Chasing behaviour of houseflies (fannia canicularis). J. Compara, 89:331–357.632

18 of 19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2020. ; https://doi.org/10.1101/814319doi: bioRxiv preprint 

https://doi.org/10.1101/814319


Lehmann, F. and Gotz, K. (1996). Activation phase ensures kinematic efficacy in flight-steering muscles of633

drosophila melanogaster. Journal of Comparative Physiology A, 179(3).634

Lindsay, T., Sustar, A., and Dickinson, M. (2017). The function and organization of the motor system controlling635

flight maneuvers in flies. Current Biology, 27(3):345–358.636

Lopez-Schier, H. (2019). Neuroplasticity in the acoustic startle reflex in larval zebrafish. Current opinion in637

Neurobiology, 54:134–139.638

Marder, E. (1998). Electrical synapses: Beyond speed and synchrony to computation. Current Biology, 8:R795–639

R797.640

Muijres, F., Elzinga, M., Melis, J., and Dickinson, M. (2014). Flies evade looming targets by executing rapid visually641

directed banked turns. Science, 344:172–177.642

Muijres, F. T., Elzinga, M. J., Iwasaki, N. A., and Dickinson, M. H. (2015). Body saccades of drosophila consist of643

stereotyped banked turns. The Journal of experimental biology, 218:864–875.644

Palmer, S., Marre, O., Berry, M., and Bialek, W. (2015). Predictive information in a sensory population. Proc Natl645

Acad Sci USA, 112:6908–6913.646

Ristroph, L., Bergou, A. J., Ristroph, G., Coumes, K., Berman, G. J., Guckenheimer, J., Wang, Z. J., and Cohen,647

I. (2010). Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proceedings of the648

National Academy of Sciences, 107(11):4820–4824.649

Schilling, T. and Borst, A. (2015). Local motion detectors are required for the computation of expansion650

flow-fields. Biol Open, 4(9):1105–8.651

Schilstra and Hateren (1999). Blowfly flight and optic flow. i. thorax kinematics and flight dynamics. The Journal652

of experimental biology, 202 (Pt 11):1481–1490.653

Sederberg, A., MacLean, J., and Palmer, S. (2018). Learning to make external sensory stimulus predictions using654

internal correlations in populations of neurons. Proc Natl Acad Sci USA, 115(5):1105–1110.655

Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck method. arXiv e-prints, page656

physics/0004057.657

Trenholm, S., Schwab, D., Balasubramanian, V., and Awatramani., G. (2013). Lag normalization in an electrically658

coupled neural network. Nat Neurosci.659

Trousdale, J., Carroll, S., Gabbiani, F., and Josi, K. (2014). Near-optimal decoding of transient stimuli from coupled660

neuronal subpopulations. J.Neurosci., 34:12206–12222.661

Tu, M. S. and Dickinson, M. H. (1996). The control of wing kinematics by two steering muscles of the blowfly662

(calliphora vicina). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 178:813–830.663

van Breugel, F. and Dickinson, M. H. (2012). The visual control of landing and obstacle avoidance in the fruit fly664

drosophila melanogaster. The Journal of experimental biology, 215:1783–1798.665

van Hateren, J. (1992). A theory of maximizing sensory information. Biol Cybern, 68:23–29.666

Wang, S., Borst, A., Zaslavsky, N., Tishby, N., and Segev, I. (2017). Efficient encoding of motion is mediated by gap667

junctions in the fly visual system. Plos. Comp. Bio, vol. 13, no. 12, p. e1005846, 13:e1005846.668

Weber, F., Eichner, H., Cuntz, H., and Borst, A. (2008). Eigenanalysis of a neural network for optic flow processing.669

New Journal of Physics, 10:015–013.670

19 of 19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 14, 2020. ; https://doi.org/10.1101/814319doi: bioRxiv preprint 

https://doi.org/10.1101/814319


0°

90°

180°

270°

∆t=10ms
A

∆t=20ms
B

∆t=30ms
C

∆t=40ms
D

Figure 1–Figure supplement 1. Stimulus distributions for different time steps during the evasive

maneuver. Here we focus on the stimuli to which the VS network is sensitive. Because the VS

network is only responsive to combinations of roll and pitch motions, i.e., motions within the

fly’s coronal plane, we represent all stimuli with their corresponding vectors in this plane. A) The

stimulus distribution at 10ms after the initiation of the evasive maneuver. B) Similar to A, but for

the stimulus at 20ms after the start of the evasive maneuver. Here, most of the banked turns slow

down and counter banked turns start. C) Similar to A, but for the stimulus at 30ms after the start of

the evasive maneuver. This motion corresponds to the start of the counter-banked turn. D) Similar

to A, but for the stimulus at 40ms after the start of the evasive maneuver. This motion corresponds

to the slowing down of counter-banked turn and the completion of evasive maneuver. All of these

stimulus distributions have entropy ∼ 4 − 4.3 bits.
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Figure 4–Figure supplement 1. How much a triplet based encoding retains from the past input vs.

how much that information is about the future stimulus (out of the information about their own

future input), for all 120 possible triplets. The particular VS 5,6,7 triplet (shown by the red circle and

the arrow) that connects with the neck motor center, is one of the most efficient in terms of how

much fraction its prediction of its own input is about the future stimulus, while its encoding cost

Ipast∶in is modest.
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Figure 5–Figure supplement 1. Network schematic for the variational approximation of the

information bottleneck solution (VIB). By constructing a variational approximation, the encoder

learned a latent representation z⃗ from the past VS voltages. W generates samples from z⃗ and reads
them out as the future input current to the VS network. Note the VS network does not have direct

access to the stimulus, it uses the correlations between its past and future inputs induced by the

stimulus as a proxy for the stimulus correlations, themselves. z⃗ follows a Gaussian distribution,
with parameters as � and Σ. During training for this VIB, the mean � and covariance matrix Σ of z⃗
map the axonal voltages of VS to the future input. When the VIB succeeds, we obtain the predictive

representation of the future stimulus by projecting their respective axonal voltages into the latent

feature space of z⃗.
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Figure 5–Figure supplement 2. Predictive information for the future stimulus 10ms after the

evasive maneuver starts (Δt = 10ms). The red bar shows that the PCA projection of the first
2PCs from the input current contains almost all of the stimulus information available at the input

current itself. We use this PCA projection to understand whether it is possible to disentangle

input stimuli from different quadrants using prediction in ??. The green bar shows the limit on

prediction information, based on the information bottleneck method. It corresponds to the point

on information curve at the given compression in Figure 4B. The cyan bar corresponds to the
predictive information about the future stimulus using outputs from all VS cells. The darker-colored

region shows how much information the corresponding VIB captures about the future stimulus.

The purple bar is similar to the cyan bar, for predictive encodings of the VS 5-6-7 triplet vs. their

respective VIB solution.
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Figure 5–Figure supplement 3. The input to the VS network only supports local discrimination. A)

The representation of 8 randomly selected stimuli within the plane whose dimensions are the first

two principal components of the input currents. Note that there are substantial overlaps between

clusters: e.g. the light-green cluster is almost on top of the dark-red/dark-blue clusters. B) The

subset of 4 stimuli from A. The only difference, as compared to A, is that all these stimuli have the

same pitch/roll directions (clockwise roll and up tilt pitch, i.e., they are all within the 1st quadrant of

the fly’s coronal plane).
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Figure 5–Figure supplement 4. The predictive information encoded by the VS network prefer-

entially discriminates nearby stimuli. A) The predictive representation of stimuli at 19◦ and 37◦

obtained by mapping the respective axonal voltages of the entire VS network to the latent feature

space generated by the VIB. B) Similar to A, but using the VS 5-6-7 triplet as input. C) The predictive

representation of two stimuli that are much closer in stimulus space: 56◦ and 67◦, respectively. Note
that there is no overlap between these two nearby stimuli whereas there is some overlap for stimuli

that are farther apart (shown in A). D) Similar to C, but using the VS 5-6-7 triplet as input.
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