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Abstract

The resources generated by the GTEx consortium offer unprecedented
opportunities to advance our understanding of the biology of human
diseases. Here, we present an in-depth examination of the phenotypic
consequences of transcriptome regulation and a blueprint for the
functional interpretation of genome-wide association study-discovered
loci. Across a broad set of complex traits and diseases, we demonstrate
widespread dose-dependent effects of RNA expression and splicing.
We develop a data-driven framework to benchmark methods that
prioritize causal genes and find no single approach outperforms
the combination of multiple approaches. Using colocalization and
association approaches that take into account the observed allelic
heterogeneity of gene expression, we propose potential target genes
for 47% (2,519 out of 5,385) of the GWAS loci examined. Our results
demonstrate the translational relevance of the GTEx resources and
highlight the need to increase their resolution and breadth to further
our understanding of the genotype-phenotype link.

Introduction

In the last decade, the number of reproducible genetic associations with complex human traits that
have emerged from genome-wide association studies (GWAS) has substantially grown. Many of
the identified associations lie in non-coding regions of the genome, suggesting that they influence
disease pathophysiology and complex traits via gene regulatory changes. Integrative studies of
molecular quantitative trait loci (QTL) [Nicolae et al., 2010] have established gene expression as a
key intermediate molecular phenotype, and improved functional interpretation of GWAS findings,
spanning immunological diseases [Guo et al., 2015], various cancers [Wu et al., 2018; Gong et al.,
2018], lipid traits [Pashos et al., 2017; Caliskan et al., 2019], and a broad array of other complex
traits.

Large-scale international efforts such as the Genotype-Tissue Expression (GTEx) Consortium
have provided an atlas of the regulatory landscape of gene expression and splicing variation in
a broad collection of primary human tissues [Carithers et al., 2015; GTEx Consortium et al.,
2017; Aguet et al., 2019]. Nearly all protein-coding genes in the genome now have at least
one local variant associated with expression changes and the majority also have common variants
affecting alternative splicing (FDR < 5%) [Aguet et al., 2019]. In parallel, there has been an
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explosive growth in the number of genetic discoveries across a large number of traits, prompting
the development of integrative approaches to characterize the function of GWAS findings [Barbeira
et al., 2019; Gamazon et al., 2018; Zhu et al., 2016; Gusev et al., 2016; Wen, 2016]. Nevertheless,
our understanding of underlying biological mechanisms for most complex traits substantially lags
behind the improved efficiency of the discovery of genetic associations, made possible by large-
scale biobanks and GWAS meta-analyses.

One of the primary tools for the functional interpretation of GWAS associations has been
the integrative analysis of molecular QTLs. Colocalization approaches that seek to establish
shared causal variants (e.g., eCaviar [Hormozdiari et al., 2016], enloc [Wen et al., 2017], and
coloc [Giambartolomei et al., 2014]), enrichment analysis (S-LDSC [Bulik-Sullivan et al., 2015]
and QTLEnrich [Gamazon et al., 2018]) or mediation and association methods (SMR [Zhu et al.,
2016], TWAS [Gusev et al., 2016] and PrediXcan [Gamazon et al., 2015]) have provided important
insights, but they are often used in isolation, and there have been limited prior assessments of
power and error rates associated with each [Wainberg et al., 2019]. Their applications often
fail to provide a comprehensive, biologically interpretable view across multiple methods, traits,
and tissues or offer guidelines that are generalizable to other contexts. Thus, a comprehensive
assessment of expression and splicing QTLs for their contributions to disease susceptibility and
other complex traits requires the development of novel methodologies with improved resolution
and interpretability.

Here, we develop novel methods, approaches, and resources that elucidate how genetic variants
associated with gene expression (cis-eQTLs) or splicing (cis-sQTLs) contribute to, or mediate,
the functional mechanisms underlying a wide array of complex diseases and quantitative traits.
Since splicing QTLs have largely been understudied, we perform a comprehensive integrative
study of this class of QTLs, in a broad collection of tissues, and disease associations. We provide
predictions of functional mechanisms for 74 distinct complex traits from 87 GWA study results and
demonstrate independent validation and evaluation of findings using likely causal gene-disease
relationships in the Online Mendelian Inheritance of Man (OMIM) database. Notably, we find
widespread dose-dependent effects of cis-QTLs on traits through multiple lines of evidence. We
examine the importance of considering, or correcting for, false functional links attributed to GWAS
loci due to neighboring but distinct causal variants. We call this confounding LD contamination for
the remainder of the paper. To identify predicted causal effects among the complex trait associated
QTLs, we conduct systematic evaluation across different methods. Furthermore, we provide
guidelines for employing complementary methods to map the regulatory mechanisms underlying
genetic associations with complex traits.
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Mapping the regulatory landscape of complex traits

The final GTEx data release (v8) included 54 primary human tissues, 49 of which included at least
70 samples with both whole genome sequencing (WGS) and tissue-specific RNA-seq data. A total
of 15,253 samples from 838 individuals were used for cis-QTL mapping (Fig. 1) [Aguet et al.,
2019]. In addition to the expression quantitative trait loci (eQTL) mapping, we also evaluated
genetic variation associated with alternative splicing (sQTL) and their impact on complex traits.

We downloaded and processed 114 publicly available GWAS datasets with genome-wide vari-
ant association summary statistics (here onwards, summary statistics). After data harmoniza-
tion, format standardization, missing data imputation and other quality assurance steps (fig. S2,
fig. S3, and fig. S4), we retained 87 datasets representing 74 distinct complex traits including car-
diometabolic, hematologic, neuropsychiatric and anthropometric traits (fig. S1). We provide the
full list of datasets used in our study and all processing scripts as a resource to the community
(table S2; see URLs).

Using these resources, we sought to identify likely causal associations among these gene- and
alternatively spliced transcript-associated variants (eVariants and sVariants, respectively). For this
purpose, we applied colocalization, enrichment, and association analyses, and provide a resource
to enable investigations into gene prioritization approaches for disease associations (see URLs).
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Fig. 1. Overview of workflow for mapping complex trait associated QTLs. Full variant
association summary statistics results from 114 GWAS were downloaded, standardized, and imputed
to the GTEx v8 WGS variant calls (maf>0.01) for analyses. A total of 8.87 million imputed and
genotyped variants were investigated to identify trait-associated QTLs. A total of 49 tissues, 87
studies (74 distinct traits), and 23,268 protein-coding genes and lncRNAs remained after stringent
quality assurance protocols and selection criteria. A wide array of complex trait classes, including
cardiometabolic, anthropometric, and psychiatric traits, were included.

Gene expression and alternative splicing dysregulations have been proposed as the underlying
mechanism of the association signals in many diseases [Pashos et al., 2017; Takata et al., 2017;
Saferali et al., 2019; Li et al., 2016; Gamazon et al., 2018; Barbeira et al., 2018]. Similar to
previous reports [GTEx Consortium et al., 2017], we observed robust and widespread enrichment
of eQTLs and sQTLs among disease-associated variants (fig. S5). This observation suggests a
causal role for expression and splicing regulation in complex traits.

Dose-dependent regulatory effects of expression and alternative splicing on
complex traits

Nevertheless, enrichment studies can be confounded by many unknown factors. Therefore, we
sought to gather stronger evidence for a causal link by testing whether there is a dose-dependent
effect of expression and splicing QTLs on complex traits. Fig. 2A illustrates schematically
our approach. We examined whether expression or splicing associated variants (referred to as
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e/sVariants for the remainder of the paper) with higher impact on gene expression or splicing
lead to higher impact on a complex trait, i.e. a larger GWAS effect (Fig. 2A). The impact of the
regulation of a gene on a trait is quantified by the slope βgene. That is, a null hypothesis of no
dose-dependent effect is equivalent to βgene = 0.

To reduce unnecessary noise in the analysis, we included only the most likely causal e/sVariant
within each credible set as determined by the e/sQTL fine-mapping (denoted "fine-mapped
variants" throughout the remainder of the paper. See Methods on QTL fine-mapping).

First, we quantified dose-dependent effect of expression and splicing regulation on the trait
as the average mediating effect size, β̄. We calculated this average effect using the Pearson
correlation between the absolute values of the molecular and complex trait effect sizes (cor(|γ|,
|δ|)) across all fine-mapped variants (for any gene) for each trait-tissue pair. As hypothesized, we
found, consistently across all tissue-trait pairs, a positive correlation between the GWAS and QTL
effects, which was significantly larger than the permuted null with matched local LD. The average
correlations were 0.18 (s.e. = 0.004, p < 1 × 10−30) and 0.25 (s.e. = 0.006, p < 1 × 10−30) for
expression and splicing, respectively with the distribution of the median correlation across tissues
for each trait shown in Fig. 2B. Averages and standard errors were calculated taking into account
correlation between tissues, and p-values were calculated against permuted null with matched local
LD (Supplementary Text). These results provide the first line of evidence of the dose-response
effect.

To test and account for mediation effect heterogeneity (different slope/dosage sensitivity for
different genes), we modeled the gene-specific mediation effect, βg, as a random variable following
a normal distribution βg ∼ N (0, σ2

gene). Under this random effects model, the null hypothesis can
be stated as σ2

gene = 0 (Supplementary Text; Fig. 2C). As shown in Fig. 2C, these effects were
significantly larger than expected from the permuted null (expression p = 1.8 × 10−9; splicing
p = 2.5 × 10−7). These results indicate that strong genetic effects on expression or splicing
are more likely to have a strong association to complex traits, adding strong support to a dose-
dependent relationship between gene regulation and downstream traits.

Importantly, by averaging across all genes, the estimates, from both the average and the
random-effects approach, of the mediating effect are robust to confounding due to LD, as discussed
in the Supplementary Text.

Another way to account for mediation effect heterogeneity is to make use of the allelic series
of independent eQTLs identified for over half of the eGenes [Aguet et al., 2019]. We examined
whether the mediating effect (β = δ/γ) inferred from the primary eQTL (βprim) was consistent with
the one inferred from the secondary eQTL (βsec). Among the independent eQTLs for a given gene,
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we called primary the one with the larger effect size. We considered only fine-mapped eQTLs
given the low power to detect multiple independent sQTLs. We confirmed this concordance, as
reported by the GTEx consortium [Aguet et al., 2019], demonstrating that the correlation between
the primary and secondary mediating effects is larger than expected given the LD between them. To
better visualize this concordance, we plotted the estimated mediating effects of primary against the
secondary eQTLs (whole blood shown here but other tissues look similar, Fig. 2D and showed that
they cluster near the identity line. All gene-trait pairs with relatively high regional colocalization
probability (rcp>0.10, see colocalization details below) are shown here to facilitate visualization,
but the clustering around the diagonal line was observed even without the filtering. This provides
a third confirmatory evidence for the widespread dose-dependent effects of eQTLs on complex
traits.

Fig. 2. Dose-dependent effects of QTLs on complex traits. Here all analyses were
performed with fine-mapped variants (QTL with highest posterior inclusion probability). (A)
Schematic representation of dose-response model. (B) Correlation between QTL and GWAS
effects, Cor(|δ̂|, |γ̂|). Gray distribution represents permuted null with matched local LD. Each data
point corresponds to the median correlation for the trait across 49 tissues. (C) Average mediated
effects from mediation model (σ2gene, median across tissues). Gray distribution represents permuted
null with matched local LD. (E) Mediated effects of secondary vs primary eQTLs of genes with
colocalization probability (rcp) > 0.10. in whole blood, genes for all 87 traits are shown.
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Causal gene prediction and prioritization

In addition to genome-wide analyses that shed light on the molecular architecture of complex
traits, QTL analysis of GWAS data can identify potential causal genes and molecular changes
in individual GWAS loci. Towards this end, we performed association analysis with genetically
predicted regulation and colocalization (Fig. 3A). After evaluating the performance of coloc and
enloc [Wen et al., 2017; Giambartolomei et al., 2014], we chose enloc as our primary approach,
due to its use of hierarchical models to estimate colocalization priors [Wen et al., 2017] and its
ability to account for multiple causal variants. The coloc assumption of a single causal variant
drastically reduces performance especially in large QTL datasets such as GTEx with widespread
allelic heterogeneity (fig. S22). We estimated the posterior regional colocalization probability
(rcp), using enloc, for 12,072,964 tissue-gene-GWAS locus-trait tuples and 67,943,800 tissue-
splicing event-GWAS locus-trait tuples. For the tally of colocalized genes, we used rcp>0.5 as
a stringent cutoff.

In total, we identified 3,477 (15% of 23,963) unique genes colocalizing with GWAS hits
(rcp > 0.5) across all traits and tissues analyzed (fig. S9A). Similarly, 3,157 splicing events (1%
out of 310,042) colocalized with GWAS hits, corresponding to 1,226 genes with at least one
colocalized splicing event (5% of 23,963, fig. S9B).

Colocalization of e/sQTLs with GWAS variants provides important causal support for molec-
ular traits. However, we found their estimates to be overly conservative. To illustrate this point,
we tested the colocalization of height with itself, using two large-scale studies of individuals of
European-ancestry individuals: GIANT [Wood et al., 2014] and UK Biobank. We started by
performing fine-mapping of both GWAS results using susier [Wang et al., 2018]. Notably, only
416 (39%) of GIANT’s fine-mapped credible sets overlapped with the corresponding UK Biobank
credible sets. We estimated the colocalization probability as the sum of the product of posterior
inclusion probabilities of variants for each of the 1069 independent credible sets in GIANT, which
is similar to the approach used by eCAVIAR [Hormozdiari et al., 2016]. Two thirds of the GIANT
credible sets (66.2%) had a colocalization probability below 0.01 and about half (48.9%) had a
colocalization probability below 0.001. In other words, two thirds of the loci found by GIANT
would be considered not to be colocalized with UK Biobank’s loci when using a seemingly very
loose colocalization probability cutoff of 0.01. Given the larger sample size of the UK Biobank
GWAS (n=337,119 UKB GWAS vs. n=253,288 for GIANT), the low colocalization cannot be
attributed to lack of power. This result is likely due in part to the sensitivity to small LD differ-
ences between different EUR populations that make up large GWAS meta-analysis cohorts such
as GIANT. Our analysis illustrates the fact that colocalization probability estimates are highly
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conservative and may miss many causal genes, and low colocalization probability should not be
interpreted as evidence of lack of a causal link between the molecular phenotype and the GWAS
trait.

A complementary approach to colocalization is to estimate the GWAS trait association with
genetically predicted gene expression or splicing [Gamazon et al., 2015]. The GTEx v8 data
provides an important expansion of these analyses, allowing generation of prediction models in
49 tissues with whole genome sequencing data to impute gene expression and splicing variation.
We trained prediction models using a variety of approaches and selected the top performing one
based on precision, recall, and other metrics [Barbeira et al., 2020]. Briefly, the optimal model
uses fine-mapping probabilities for feature selection and exploits global patterns of tissue sharing
of regulation (Supplementary Text; fig. S23) to improve prediction. Multi-SNP prediction models
were generated for a total of 686,241 gene-tissue and 1,816,703 splicing event-tissue pairs. The
larger sample size and improved models led to an increase in the number of expression models to
a median across tissues of 14,062, from a median of 4,776 GTEx v7 Elastic Net models (median
increase at 191%, fig. S8). Splicing models are available only for the v8 release.

Next, we computed the association between an imputed molecular phenotype (expression
or splicing) and a trait to estimate the genic effect on the trait, using the summary statistics
based PrediXcan [Barbeira et al., 2018]. Given the widespread tissue-sharing of regulatory
variation [GTEx Consortium et al., 2017], we also computed MultiXcan scores to integrate patterns
of associations from multiple tissues and increase statistical power [Barbeira et al., 2019]. Out of
the 22,518 genes tested with PrediXcan, 6,407 (28%) showed a significant association with at
least one of the 87 traits at Bonferroni-corrected p-value threshold (p < 0.05/686, 241, where the
denominator is the number of gene-tissue pairs tested; fig. S9). For splicing, about 15% (20,364 of
138,890) of tested splicing events showed a significant association (p < 0.05/1, 816, 703, where
the denominator is the number of intron-tissue pairs tested). Nearly all traits (94%; 82 out of
87) showed at least one significant gene-level PrediXcan association in at least one tissue (fig. S14
and S15); the median number of associated genes across traits was 974. This resource of PrediXcan
associations can be used to prioritize a list of putatively causal genes for follow-up studies.

To replicate the PrediXcan expression associations in an independent dataset, BioVU, which is
a large-scale biobank tied to Electronic Health Records [Roden et al., 2008; Denny et al., 2013], we
selected seven traits with predicted high statistical power. Out of 947 gene-tissue-trait discoveries
tested, 458 unique gene-tissue-trait triplets (48%) showed replication in this independent biobank
(PrediXcan association p < 0.05; see Supplementary Text).

Altogether, these results provide abundant links between gene regulation and GWAS loci. To
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further quantify this, we split the genome into approximately LD-independent blocks [Berisa and
Pickrell, 2016] and identified blocks with a significant GWAS variant for each trait (at Bonferroni
threshold adjusted for number of variants 0.05/8.8 × 106 ∼ 5.7 × 10−9); we refer to any such
region-trait pair by “GWAS locus”. We calculated the proportion of GWAS loci that contain a
significantly associated gene via PrediXcan or a colocalized gene via enloc (rcp > 0.5). Briefly,
the LD blocks are defined by analyzing empirical patterns of LD observed in 1000 Genomes [?]
and variants in different regions are unlikely to be correlated, thus providing us with a data-driven
criterion to distinguish independent genomic signals.

Across the traits, 72% (3,899/5,385) of GWAS loci had a PrediXcan expression association
in the same LD block, of which 55% (2,125/3,899) had evidence of colocalization with an
eQTL (table S4). For splicing, 62% (3,345/5,385) had a PrediXcan association of which 34%
(1,135/3,345) colocalized with an sQTL (fig. S13). From the combined list of eGenes and
sGenes, 47% of loci have a gene with both enloc and PrediXcan support. The distribution of
the proportion of associated and colocalized GWAS loci across 87 traits is summarized in Fig. 3-
C; for a typical complex trait, about 20% of GWAS loci contained a colocalized, significantly
associated gene while 11% contained a colocalized, significantly associated splicing event. These
results propose function for a large number of GWAS loci, but most loci remain without candidate
genes, highlighting the need to expand the resolution of transcriptome studies.
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Fig. 3. Identifying and validating predicted causal genes. (A) Schematic representation of
association and colocalization approaches. (B) Schematic representation of extrapolating the dose-
response curve to the Mendelian end of phenotypic variation spectrum [Plenge et al., 2013]. (C)
Proportion of GWAS-associated loci per trait that contain colocalized and PrediXcan-associated
signals for expression and splicing.

Of note, two members of the sterolin family, ABCG5 and ABCG8, showed highly significant
predicted causal associations using both PrediXcan and enloc for LDL-C levels and self-reported
high cholesterol levels. ABCG8 showed more significant associations in both datasets (chr2:
43838964 - 43878466; UKB self-reported high cholesterol: -log10(pPrediXcan) = 38.43, rcp = 0.985;
GLGC LDL-C: -log10(pPrediXcan) = 71.40, rcp = 0.789), compared to ABCG5 (chr2: 43812472
- 43838865; -log10(pPrediXcan) = 36.85, rcp = 0.941; -log10(pPrediXcan) = 80.80, rcp = 0.705).
Mutations in either of the two ATP-binding cassette (ABC) half-transporters, ABCG5 and ABCG8,
lead to reduced secretion of sterols into bile, and ultimately, obstruct cholesterol and other sterols
exiting the body [Kidambi and Patel, 2008]. In mice with disrupted Abcg5 and Abcg8 (G5G8-/-
), a 2- to 3-fold increase in the fractional absoprtion of dietary plan steols and extrememly low
biliary cholesterol levels was observed, indicating that disrupting these genes contribute greatly to
plasma cholesterol levels [Yu et al., 2002]. The overexpression of human ABCG5 and ABCG8 in
transgenic Ldlr-/- mice resulted in 30% reduction in hepatic cholesterol levels and 70% reduced
atherosclerotic legion in the aortic root and arch [Wilund et al., 2004] after 6-months on a Western
diet.

Several other lipid-associated loci were also consistently predicted as causal across OMIM,
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the rare variant derived set, PrediXcan and enloc. Rare protein-truncating variants in APOB have
been previously associated with reduced LDL-C and triglyceride levels and reduced coronary heart
disease risk [Peloso et al., 2019]. Interestingly, APOB has been predicted as a causal gene in four
related traits, coronary artery disease, LDL-C levels, triglyceride levels, and self-reported high
cholesterol levels. Among the four traits, PrediXcan showed the highest association to LDL-C
levels (-log10(pPrediXcan) = 130.89; rcp = 0.485) while self-reported high cholesterol showed the
strongest evidence using enloc at nearly maximum posterior probability (-log10(pPrediXcan) = 93.66;
rcp = 0.969). Although APOB has been suggested as a better molecular indicator of predicted
cardiac events in place of LDL-C levels [Walldius and Jungner, 2004; Contois et al., 2009], its
translation has been surprisingly slow in clinical practice [Leslie, 2017]. Here, we provide an
additional support for the crucial role APOB may play in predicting lipid traits.

Performance for identifying “ground truth” genes

To compare the ability of different approaches to identify the causal gene that mediates the
association between GWAS loci and the traits, we sought to curate sets of “ground truth” genes
using information that is independent of GWAS results. We call these sets “silver standards” as
a reminder of their imperfect nature. The first silver standard was based on the OMIM (Online
Mendelian Inheritance in Man) database [Hamosh et al., 2005] and the second one was based on
publicly available rare variant tests from exome-wide association studies [Marouli et al., 2017; Liu
et al., 2017; Locke et al., 2019] (fig. S16, table S6), resulting in 1,592 OMIM gene-trait pairs and
101 rare variant based gene-trait pairs (table S11, table S12, fig. S17.)

The rationale behind the choice of the OMIM database is the comorbidity among Mendelian
and complex diseases suggesting that genes whose loss of function cause Mendelian diseases also
manifest in milder phenotypic variation when modified to a lesser degree by regulatory variation
[Lupski et al., 2011; Blair et al., 2013]. In other words, that the dose-response curve at the
regulatory range may be extrapolated to the rare, loss-of-function end (Fig. 3B). The rationale
behind the use of the rare variant association study results is the excess of deleterious rare variants
associated with complex traits in genes that are in the vicinity of common variants associated with
the same trait [Marouli et al., 2017; Fuchsberger et al., 2016; Keinan and Clark, 2012]. Note that
rare variant associations are nearly independent of common variants due to the allele frequency
difference between them.

For the analysis, we partitioned the genome into approximately independent LD blocks [Berisa
and Pickrell, 2016] and considered all the blocks where a silver standard gene was available for
the trait. Since only genes in the vicinity of an index gene can be discovered with cis-regulatory
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information, we only considered the LD blocks with a GWAS significant variant. This selection
resulted in 228 OMIM gene-trait pairs (28 distinct traits) and 80 rare variant-associated genes-trait
pairs (5 distinct traits) that are located within the same LD block as the GWAS locus for a matched
trait (fig. S18).

Both PrediXcan and enloc based on expression and splicing showed good sensitivity and
specificity for identifying the silver standard genes as demonstrated by the ROC curves in Figs. 4A-
B. These are well above the gray random guess lines indicating the predictive ability of these
methods to find causal genes.

For applications such as target selection for drug development or follow-up experiments,
another relevant metric is the precision or, equivalently, positive predictive value (PPV) – the
probability that the gene-trait link is causal given that it is called significant or colocalized.
Precision recall curves for expression and splicing based predictions are shown in Fig. 4C-D. With
more stringent threshold (towards the left in the recall axis), higher precision is obtained.

For example, 8.7% of genes with PrediXcan significant genes (p < 0.05/49 × number
of gene/trait pairs) were OMIM genes and 14.8% of genes with high colocalization probability
(rcp>0.5) were also OMIM genes for matched traits.

Multiple factors contribute to the rather low precision. One of them is the widespread molecular
pleiotropy [Aguet et al., 2019], i.e. multiple genes affected by the same trait-associated variants.
Another factor reducing the overall causal gene detection performance is the inherent bias of the
OMIM gene list. Our current understanding of gene function is biased towards protein-coding
variants with very large effects, as reflected in the list of OMIM genes. Genes associated to rare
severe disease tend to be depleted of regulatory variation [Karczewski et al., 2019; Mohammadi
et al., 2019], which will decrease the performance of a QTL-based method in a way that is
unlikely to be generally applicable to GWAS genes that are more tolerant to regulatory variation
[Mohammadi et al., 2019].

Among the 206 loci with at least one OMIM gene (a few loci contained multiple OMIM genes),
an OMIM gene was the closest to the top GWAS SNP in 31.6% of the loci, it was the most
colocalized in 24.8% of the loci, and it was the most significant in 20.4% of the loci (Fig. 4E-F).

To further investigate whether this predictive power could be improved by combining multiple
criteria, we performed a joint logistic regression of OMIM gene status on 1) the proximity of
the top GWAS variant to the nearest gene (distance to the gene body), 2) posterior probability of
colocalization, and 3) PrediXcan association significance between QTL and GWAS variants. To
make the scale of the three features more comparable, we used their respective ranking. When
genes did not have an enloc or PrediXcan score, they were assigned to the last position in the
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ranking. All three features were significant predictors of OMIM gene status, with better ranked
genes more likely to be OMIM genes (proximity p = 2.0×10−2, enloc p = 6.1×10−3, PrediXcan
p = 2.5×10−4), indicating that each method provides an additional source of causal evidence even
after conditioning on the others. Similar results were obtained using splicing colocalization and
association scores and the rare variant based silver standard, as shown in table S8. These results
provide further empirical evidence that a combination of colocalization and association methods
will perform better than individual ones. The significance of the proximity score even after
accounting for significance and colocalization indicates missing regulatory events, i.e. mechanisms
that may be uncovered by that assays other tissue or cell type contexts, larger samples, and other
molecular traits, underscoring the need to expand the size and breadth of QTL studies.

Predicted OMIM genes included well-known findings such as PCSK9 for LDLR, with PCSK9

significant and colocalized for relevant GWAS traits (LDL-C levels, coronary artery disease, and
self-reported high cholesterol), and Interleukins and HLA subunits for asthma, both significant
and colocalized for related immunological traits. Significantly associated and colocalized genes
that predicted OMIM genes also included FLG (eczema), TPO (hypothyroidism), and NOD2

(inflammatory bowel disease) (see table S11 for complete list). Analysis with rare variant-based
silver standard yielded similar conclusions (Supplementary Text; fig. S21).
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Fig. 4. Causal gene identification performance. ROC curves of enloc and PrediXcan
statistics to identify the ‘causal’ genes (OMIM silver standard) using expression (A) and splicing
(B) are shown. Precision recall curves of enloc and PrediXcan to identify silver standard genes
using expression (C) and splicing (D) (We show the precision in the range 0 to 0.4 to improve
visualization). The number of GWAS loci (LD block-trait pairs) where the OMIM gene was ranked
at the top by proximity, enloc, and PrediXcan using expression (E) and splicing (F). In 131 loci out
of 206 the OMIM gene was not ranked at the top by either proximity, significance, or colocalization.
In thirty one of the loci, the OMIM gene was ranked first by all three criteria. In nineteen loci,
the OMIM gene was closest gene (to the top GWAS variant) but not the top gene by PrediXcan
significance nor enloc’s colocalization proability.

Tissue enrichment of GWAS signals

A systematic survey of regulatory variation across 49 human tissues promises to facilitate the
identification of the tissues of action for complex traits. However, because of the broad sharing of
regulatory variation across tissues and the reduced significance of tissue-specific eQTLs, causal
tissue identification has been challenging. Here we used sparse factors from FLASH Urbut
et al. [2018] representing patterns of tissue sharing of eQTLs (Supplementary Text), to classify
each gene-trait association into one of 15 tissue classes (fig. S23). Using the pattern of tissue
classes of non-colocalized genes (rcp = 0) as the expected null, we assessed whether significantly
associated and colocalized genes (PrediXcan significant and rcp > 0.01) were over-represented
in certain tissue classes (Fig. 5). Consistent with previous reports [Gamazon et al., 2018; Ongen
et al., 2017], we identified several instances in which the most significant tissue is supported by
current biological knowledge. For example, blood cell count traits were enriched in whole blood,
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neuroticism and fluid intelligence in brain/pituitary, hypothyrodism in thyroid, coronary artery
disease in artery, and cholesterol-related traits in liver. Taken together, these results show the
potential of leveraging regulatory variation to help identify tissues of relevance for complex traits.

Fig. 5. Identifying trait-relevant tissues using tissue-specific enrichment. Enrichment of
tisssue-specific association and colocalization compared to the pattern of tissue-specificity of non-
colocalized genes. Over-representation of the tissue class for PrediXcan-significant and colocalized
genes is indicated by dark yellow while depletion is indicated by blue. Black dots label the tissue
class-trait pairs passing the nominal p-value significance threshold of 0.05. Abbreviation: S2. Trait
category colors: S1.

Discussion

We performed in-depth examination of the phenotypic consequences of the genetic regulation
of the transcriptome and provide data-driven analytical approaches to benchmark methods that
assign function to GWAS loci and best-practice guidelines for using the GTEx resources to
interpret GWAS results. We provide a systematic empirical demonstration of the widespread dose-
dependent effect of expression and splicing on complex traits, i.e., variants with larger impact at
the molecular level have larger impact at the trait level. Furthermore, we found that target genes in
GWAS loci identified by enloc and PrediXcan were predictive of OMIM genes for matched traits,
implying that for a proportion of the genes, the dose-response curve can be extrapolated to the
rare and more severe end of the genotype-trait spectrum. The observation that common regulatory
variants target genes also implicated by rare coding variants underscores the extent to which these
different types of genetic variants converge to mediate a spectrum of similar pathophysiological
effects and may provide a powerful approach to drug target discovery.

We implemented association and colocalization methods that leverage the observed allelic
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heterogeneity of expression traits. After extensive comparison using two independent sets of silver
standard gene-trait pairs, we conclude that combining enloc, PrediXcan, and proximity ranking
outperforms the individual approaches. The significance of the proximity ranking is a sign of the
“missing regulability” emphasizing the need to expand the resolution, sample size, and range of
contexts of transcriptome studies as well as to examine other molecular mechanisms.

We caution that the increased power offered by this release of the GTEx resources also brings
higher risk of false links due to LD contamination and that naive use of eQTL or sQTL association
p-values to assign function to a GWAS locus can be misleading. Colocalization approaches can be
used to weed out LD contamination but given the lack of LD references from source studies, they
can also be overtly conservative. General purpose reference LD from publicly available sources
are not sufficient for fine-mapping and colocalization approaches, which can be highly sensitive
to LD misspecification when only summary results are used [Benner et al., 2017]. The GWAS
community has made great progress in recognizing the need to share summary results, but to take
full advantage of these data, improved sharing of LD information from the source study as well as
from large sequencing reference datasets, is also required.

Finally, we generated several resources that can open the door for addressing key questions
in complex trait genomics. We present a catalog of gene-level associations, including potential
target genes for nearly half of the GWAS loci investigated here that provides a rich basis for
studies on the functional mechanisms of complex diseases and traits. We provide a database of
optimal gene expression imputation models that were built on the fine-mapping probabilities for
feature selection and that leverage the global patterns of tissue sharing of regulation to improve the
weights. These imputation models of expression and splicing, which to date has been challenging
to study, provide a foundation for transcriptome-wide association studies of the human phenome –
the collection of all human diseases and traits – to further accelerate discovery of trait-associated
genes. Collectively, these data thus represent a valuable resource, enabling novel biological
insights and facilitating follow-up studies of causal mechanisms.
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https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz;
1000 Genomes Project Reference with regression weights for LDSC,
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_weights_hm3_no_MHC.tgz;
BioVU, https://victr.vanderbilt.edu/pub/biovu/?sid=194;
eCAVIAR, https://github.com/fhormoz/caviar;
QTLEnrich, https://github.com/segrelabgenomics/eQTLEnrich;
flashr, https://gaow.github.io/mnm-gtex-v8/analysis/mashr_flashr_workflow.html#flashr-prior-covariances;
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Storeyś qvalue R package, https://github.com/StoreyLab/qvalue;
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UK Biobank, http://www.ukbiobank.ac.uk/;
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1.1 Terminology
For clarity and to reduce ambiguities, we provide the definition of some of the key terms used in the
manuscript.

Trait: Here, trait (or complex trait) is used for observable, quantitative trait of individuals, such as
presence of a disease or an anthropometric measurement. When speaking about traits, we do not include
molecular phenotypes like gene expression or intron splicing quantification.
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LD block/LD region: Region of the genome containing variants in LD among themselves, as
determined from empirical LD patterns observed in 1000 Genomes [Berisa and Pickrell, 2016]. Variants in
different LD blocks are unlikely to be correlated.

GWAS locus: This term is, in general, used somewhat loosely to refer to a region with a significantly
associated variant which may span from tens to hundreds of kilobases depending on the LD of the region.
However, here for quantification, we define it as one of the approximately independent LD blocks from
[Berisa and Pickrell, 2016] that harbor a GWAS significant association. If multiple traits exist for a GWAS
significant association in the block, we count them as distinct.

eQTL, eVariant: Here an eVariant is a genetic variant that is associated (FDR< 0.05) with the
expression of a gene. eQTL refers to the variant-gene pair, in which the variant is an eVariant for the
gene.

sQTL, sVariant: An sVariant is a genetic variant that is associated (FDR< 0.05) with the splicing
(quantified as intron excision ratio) of a gene. sQTL refers to the variant-gene pair, in which the variant is
an sVariant for the gene.

Fine-mapped variant: We call fine-mapped variant to the proxy for causal variant which we selected
using dap-g’s posterior inclusion probabilities. These variants that are within credible sets with total posterior
inclusion probability of at least 0.25 and have variant-level pip> 0.01. Within each credible set, one such
variant is selected for our analysis.

LD contamination: This phenomenon occurs when the variant that alters the expression or splicing
is distinct from the one that alters the complex trait, but they are in LD. In these circumstances, the QTL
will be associated with the GWAS trait and the GWAS variant will be associated with the molecular trait, but
there is no causal relationship between the gene and the complex trait.

Posterior inclusion probability (pip): This is the probability that a variant has a causal effect on
a trait. These probabilities are calculated by Bayesian fine-mapping approaches such as dapg and susier.

PrediXcan: This term refers to the family of methods that seeks to identify causal genes by correlating
the genetic component of gene expression (mRNA level and splicing) with the trait. This family includes
S-PrediXcan (which uses GWAS summary statistics rather than individual level data) and MultiXcan (which
aggregates evidence of associations across all tissues leveraging the fact that e/sQTLs are shared across
tissues). We use PrediXcan as a generic term to refer to this family of methods.

Silver standard genes: To test the ability of colocalization and association methods to identify true
causal genes, we curated a set of ‘causal’ genes. To emphasize the imperfect nature, we use the term silver
standard genes. In this context, the term OMIM gene is used as the causal gene for the trait.

1.2 Genotype-Tissue Expression (GTEx) Project
All processed Genotype-Tissue Expression (GTEx) Project v8 data have been made available on dbGAP
(accession ID: phs000424.v8). Primary and extended results generated by consortium members are
available on the Google Cloud Platform storage accessible via the GTEx Portal (see URLs).The GTEx
Project v8 data, based on 17,382 RNA-sequencing samples from 54 tissues of 948 post-mortem subjects,
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has established the most comprehensive map of regulatory variation to date. In addition to the larger sample
size and greater tissue coverage compared to v6, v8 data also included whole-genome sequencing data,
facilitating high resolution QTL map of 838 subjects for 49 tissues with at least 70 samples. The GTEx
consortium mapped complex trait associations for 23,268 cis-eGenes and 14,424 cis-sGenes [Aguet et al.,
2019]. We did not include trans QTLs in our analyses due to limited power after correcting for confounders
and potential pleiotropic effect in complex trait associations. Below, we briefly describe the whole-
genome sequencing, RNA-sequencing and QTL data processing protocols. Detailed description of subject
ascertainment, sample procurement, and sequencing data processing are available elsewhere [Aguet et al.,
2019].

1.2.1 Whole-genome sequence data processing and quality control

Out of 899 WGS samples sequenced at an average coverage of 30x on HiSeq200 (68 samples) and HiSeqX
(all other samples), variant call files (VCF) for 866 GTEx donors were included in downstream analyses after
excluding one each from 30 duplicate samples and three donors. Of these, 838 subjects with RNA-seq data
were included for QTL mapping and subsequent complex trait association analyses in our study. All whole-
genome sequencing data were mapped to GRCh38/hg38 reference.

1.2.2 RNA-Seq data processing and quality control

Whole transcriptome RNA-Seq data were aligned using STAR (v2.5.3.a; [Dobin et al., 2013]). For STAR
index, GENCODE v26 (GRCh38; see URLs) was used with the sjdbOverhang 75 for 76-bp paired-end
sequencing protocol. Default parameters were used for RSEM (see URLs; [Li and Dewey, 2011]) index
generation. GTEx utilized Picard (see URLs) to mark and remove potential PCR duplicates and RNA-
SeQC [DeLuca et al., 2012] to process post-alignment quality control. RSEM was then used for per-
sample transcript quantification. Subsequently, read counts were normalized between samples using
TMM [Robinson and Oshlack, 2010]. For eQTL analyses, latent factor covariates were calculated using
PEER as follows: 15 factors for N<150 per tissue; 30 factors for 150<=N<250; 45 factors for 250<=N<350;
and 60 factors for N>=350. Finally, fastQTL [Ongen et al., 2016] was used for cis-eQTL mapping in each
tissue. Only protein-coding, lincRNA, and antisense biotypes as defined by Gencode v26 were considered
for further analyses. To study alternative splicing, GTEx applied LeafCutter (version 0.2.8; [Li et al., 2018])
using default parameters to quantify splicing QTLs in cis with intron excision ratios [Aguet et al., 2019].

1.3 Genome-wide association studies (GWAS) data
1.3.1 Harmonization of GWAS summary statistics

The process followed for the harmonization and imputation are depicted in fig. S2. For each standardized
GWAS summary statistics, we mapped all variants to hg38 (GRCh38) references using pyliftover (see
URLs). For missing chromosome or genomic position information in the original GWAS summary statistics
file, we queried dbSNP build 125 (hg17), dbSNP build 130 (hg18/GRCh36), and dbSNP build 150
(hg19/GRCh37) using the provided variant rsID information and the original reference build of the GWAS
summary statistics file. Variants with missing chromosome, genomic position, and rsID information were
excluded from further analyses. Only autosomal variants were included in our analyses. Missing allele
frequency information was filled using the allele frequencies estimated in the GTEx (v8) individuals of
genotype-based European genetic ancestry (here onwards, GTEx-EUR) whenever possible. We excluded
variants with discordant reference and alternate allele information between GTEx and the GWAS study. We
included only the alleles with the highest MAF among multiple alternate alleles if the variant was reported
as multiallelic in GTEx. When more than one GWAS variant mapped to a given GTEx variant (i.e., the
same chromosomal location in hg38), only the one with the highest significance was retained. For binary
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traits, if the sample size was present but the number of cases was missing, we filled the missing count with
the sample size and number of cases reported in the paper. For continuous traits, if the file contained the
sample size for each variant, the reported number was used. If not, we filled this value using the number
reported in the corresponding publication. If only some variants were missing sample size information, we
filled the missing value with the median of all reported values.

1.3.2 Imputation of GWAS summary statistics

To standardize the number of variants across tissue-trait pairs, all processed GWAS results were imputed.
We implemented the Best Linear Unbiased Prediction (BLUP) approach [Lee et al., 2013; Pasaniuc
et al., 2014] in-house (https://github.com/hakyimlab/summary-gwas-imputation) to impute z-scores
for those variants reported in GTEx without matching data in the GWAS summary statistics. This algorithm
does not impute raw effect sizes (β coefficients). The imputation was performed in specific regions
assumed to have sufficiently low correlations between them, defined by approximately independent linkage
disequilibrium (LD) blocks [Berisa and Pickrell, 2016] lifted over to hg38/GRCh38.

Only GTEx variants with MAF > 0.01 in GTEx-EUR subjects were used in downstream analyses. Co-
variance matrices (reference LD information) were estimated on these GTEx-EUR subjects. The corre-
sponding (pseudo-)inverse matrices for covariances C were calculated via Singular Value Decomposition
(SVD) using ridge-like regularization C + 0.1I. To avoid ambiguous strand issues homogeneously, palin-
dromic variants (i.e. CG) were excluded from the imputation input. Thus, an imputed z-score was generated
for palindromic variants available in the original GWAS; for them, we report the absolute value of the original
entry with the sign from the imputed z-score. The sample size that we report for the imputed variants is the
same as the sample size for the observed ones if it is reported as constant across variants, or their median
if it changes across the observed variants, which occurs in the case of meta-analyses.

We initially considered publicly available GWAS summary statistics for 114 complex traits provided
by large-scale consortia and the UK Biobank [Bycroft et al., 2018] (table S9). Of these, 27 studies with
a relatively small intersection of variants with the GTEx panel (number of variants< 2 × 106, compared
to almost 9 × 106 variants available in GTEx) exhibited significant deflation of their association p-values
(fig. S4). Thus, all analyses focused on 87 traits where missing variants could be properly imputed unless
otherwise stated explicitly (table S2). We observed noteworthy association prediction performance across
the selected 87 traits (e.g., with a median r2 = 0.90 (IQR = 0.0268) between the original and imputed
zscores on chromosome 1). The median slope was 0.94 (IQR = 0.0164), as the imputed zscore values tend
to be more conservative than the original ones. Imputation quality was consistent across traits, depending
strongly on the number of input available variants (fig. S3).
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Supplementary Fig. S1. GWAS trait categories. Categories of the traits with full GWAS summary
statistics used in the analysis. See list of traits in S2.
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Supplementary Fig. S2. Workflow of GWAS results processing.
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Supplementary Fig. S3. GWAS imputation quality Original versus imputed zscores for palindromic
variants in chromosome 1 for 3 traits.

Supplementary Fig. S4. GWAS imputation deflation This figure compares the distribution of p-values
for 28 GWAS traits before and after imputation. Vertical scale shows -log10(p-value) of variant association.
The 27 traits that exhibited deflation are filled in gray. An undeflated trait (e.g., Red Blood Cell count) is
included for comparison. See trait abbreviation list in table S9.
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Table S1: List of 87 GWAS datasets

Category Trait Abbreviation Sample_Size

Psychiatric-neurologic Alzheimers Disease AD 54162
Psychiatric-neurologic Attention Deficit Hyperactivity Disorder ADHD 53293
Psychiatric-neurologic Chronotype CHRONO 128266
Psychiatric-neurologic Chronotype UKB CHRONO_UKB 337119
Psychiatric-neurologic Depressive Symptoms DEPR 180866
Psychiatric-neurologic Education Years EDU 293723
Psychiatric-neurologic Epilepsy UKB EPI_UKB 337119
Psychiatric-neurologic Fluid Intelligence Score UKB FIS_UKB 337119
Psychiatric-neurologic Insomnia In Both Sexes INSOMN 113006
Psychiatric-neurologic Insomnia UKB INSOMN_UKB 337119
Psychiatric-neurologic Insomnia UKBS INSOMN_UKBS 337119
Psychiatric-neurologic Migraine UKB MIGR_UKB 337119
Psychiatric-neurologic Migraine UKBS MIGR_UKBS 337119
Psychiatric-neurologic Multiple Sclerosis UKBS MS_UKBS 337119
Psychiatric-neurologic Neuroticism UKB NEUROT_UKB 337119
Psychiatric-neurologic Parkinsons Disease UKBS PD_UKBS 337119
Psychiatric-neurologic Psychological Problem UKBS PSY_UKBS 337119
Psychiatric-neurologic Schizophrenia SCZ 150064
Psychiatric-neurologic Schizophrenia UKBS SCZ_UKBS 337119
Psychiatric-neurologic Sleep Duration SLEEP 128266
Psychiatric-neurologic Sleep Duration UKB SLEEP_UKB 337119
Anthropometric BMI UKB BMI_UKB 337119
Anthropometric Birth Weight BW 143677
Anthropometric Birth Weight UKB BW_UKB 337119
Anthropometric Body Fat Percentage UKB FAT_UKB 337119
Anthropometric Bone Mineral Density BMD 49988
Anthropometric Height HEIGHT 253288
Anthropometric Intracraneal Volume ICV 30717
Anthropometric Standing Height UKB HEIGHT_UKB 337119
Cardiometabolic CH2DB NMR CH2 24154
Cardiometabolic Coronary Artery Disease CAD 184305
Cardiometabolic Deep Venous Thrombosis UKB DVT_UKB 337119
Cardiometabolic Deep Venous Thrombosis UKBS DVT_UKBS 337119
Cardiometabolic Fasting Glucose FG 46186
Cardiometabolic Fasting Insulin INSUL 38238
Cardiometabolic HDL Cholesterol NMR HDLC 19270
Cardiometabolic Heart Attack UKB MI_UKB 337119
Cardiometabolic High Cholesterol UKBS HC_UKBS 337119
Cardiometabolic Hypertension UKBS HPT_UKBS 337119
Cardiometabolic LDL Cholesterol NMR LDLC 13527
Cardiometabolic Pulmonary Embolism UKB PE_UKB 337119
Cardiometabolic Triglycerides NMR IDL 21559
Cardiometabolic Type 2 Diabetes UKBS T2D_UKBS 337119
Blood Eosinophil Count EC 173480
Blood Granulocyte Count GC 173480
Blood High Light Scatter Reticulocyte Count HRET 173480
Blood Lymphocyte Count LC 173480
Blood Monocyte Count MC 173480
Blood Myeloid White Cell Count MWBC 173480
Blood Neutrophil Count NC 173480
Blood Platelet Count PLT 173480
Blood Red Blood Cell Count RBC 173480
Blood Reticulocyte Count RET 173480
Blood Sum Basophil Neutrophil Count BNC 173480
Blood Sum Eosinophil Basophil Count EBC 173480
Blood Sum Neutrophil Eosinophil Count NEC 173480
Blood White Blood Cell Count WBC 173480
Cancer Breast Cancer BC 120000
Cancer ER-negative Breast Cancer ERNBC 120000
Cancer ER-positive Breast Cancer ERPBC 120000
Allergy Asthma UKBS ATH_UKBS 337119
Allergy Eczema ECZ 116863
Allergy Eczema UKBS ECZ_UKBS 337119
Immune Ankylosing Spondylitis UKBS ASP_UKBS 337119
Immune Asthma UKB ATH_UKB 337119
Immune Crohns Disease CD 20833
Immune Crohns Disease UKBS CD_UKBS 337119
Immune Hayfever UKB HAY_UKB 337119
Immune Inflammatory Bowel Disease IBD 34652
Immune Inflammatory Bowel Disease UKBS IBD_UKBS 337119
Immune Psoriasis UKBS PSO_UKBS 337119
Immune Rheumatoid Arthritis RA 80799
Immune Rheumatoid Arthritis UKBS RA_UKBS 337119
Immune Systemic Lupus Erythematosus SLE 23210
Immune Type 1 Diabetes UKBS T1D_UKBS 337119
Immune Ulcerative Colitis UC 27432
Immune Ulcerative Colitis UKBS UC_UKBS 337119
Aging Fathers Age At Death UKB FAD_UKB 337119
Aging Mothers Age At Death UKB MAD_UKB 337119
Digestive system disease Irritable Bowel Syndrome UKBS IBS_UKBS 337119
Endocrine system disease Hyperthyroidism UKBS HYPERTHY_UKBS 337119
Endocrine system disease Hypothyroidism UKBS HYPOTHY_UKBS 337119
Skeletal system disease Gout UKBS GOUT_UKBS 337119
Skeletal system disease Osteoporosis UKBS OST_UKBS 337119
Morphology Balding Pattern 2 UKB BLDP2_UKB 337119
Morphology Balding Pattern 3 UKB BLDP3_UKB 337119
Morphology Balding Pattern 4 UKB BLDP4_UKB 337119
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1.3.3 IGAP GWAS

We used summary results from an Alzheimer’s Disease study from International Genomics of Alzheimer’s
Project (IGAP).

IGAP is a large two-stage study based upon genome-wide association studies (GWAS) on individuals
of European ancestry. In stage 1, IGAP used genotyped and imputed data for 7,055,881 single nucleotide
polymorphisms (SNPs) to meta-analyze four previously-published GWAS datasets consisting of 17,008
Alzheimer’s disease cases and 37,154 controls (The European Alzheimer’s disease Initiative - EADI the
Alzheimer Disease Genetics Consortium - ADGC The Cohorts for Heart and Aging Research in Genomic
Epidemiology consortium - CHARGE The Genetic and Environmental Risk in AD consortium - GERAD). In
stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s
disease cases and 11,312 controls. Finally, a meta-analysis was performed combining results from stages
1 & 2.

1.3.4 NHGRI-EBI GWAS catalog

In addition to the GWAS summary statistics described above, we obtained the list of trait-associated SNPs
from the GWAS catalog [Buniello et al., 2019] (downloaded on 9/7/2018), which, at download, contained
80,727 entries. To measure the enrichment of e/sQTL in the GWAS Catalog, we computed the proportion
of e/sQTL in the GWAS catalog relative to the proportion of e/sQTL among all GTEx V8 variants. We then
obtained a measure of the uncertainty in the proportion and enrichment-fold using block jackknife. See
[Aguet et al., 2019] for details.

1.4 Correlated t-test to summarize across traits and tissues
Most statistics shown in these analyses are at the tissue-trait level. There are 4,263 statistics, generated
from 49 tissues and 87 traits. Typical statistical tests assume the data from which the statistic is computed
is sampled independently and identically distributed (IID). Among different tissues, there are wide ranges
of standard errors and different patterns of correlation. Because of this, the IID assumption can not be
applied to the tissue-trait statistics. Therefore, we describe our derivation of standard errors when statistics
are summarized across traits for a given tissue, and when statistics are summarized across tissue and trait
pairs. In the following paragraphs, we use Stp to indicate a statistic estimated in tissue t and trait p. This
statistic has standard error se(Stp).

Summarizing across traits for a given tissue. When we have one statistic per tissue-trait
pair and summarize across traits in a given tissue, we assume the traits are independent, but we take into
account the differences in standard errors. For each tissue t, we summarized St1, · · · , StP by fitting the
following linear model:

Stp = µtS + εtp (1)

εtp ∼ N(0, se(Stp)2 × σ2
t ) (2)

So µ̂tS is an estimate for the statistic S summarized across all traits in tissue t, and this estimate has
standard error se(µ̂tS). This is essentially a weighted average across traits.

Summarizing across trait and tissue pairs. When we summarize across all tissue-trait pairs,
S11, · · · , Stp, · · · , STP , we fit a similar linear model, which allows for correlation between tissues and
correlation between traits, and corrects for differences in the standard errors.
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Stp = µS + µtS + µpS + εtp (3)

µtS ∼ N(0, σ2
T ) (4)

µpS ∼ N(0, σ2
P ) (5)

εtp ∼ N(0, se(Stp)2 × σ2), (6)

Here, µtS is the tissue-specific random intercept, and µpS is the trait-specific random intercept. These
components account for features common across traits that are specific to tissue t and features common
across tissues that are specific to trait p respectively. The estimate µ̂S is the weighted average of Stp across
all tissue-trait pairs, and its standard error is se(µ̂S).

Testing whether two statistics have different mean. We would often like to test whether
two statistics are different, e.g. enrichment signal measured for sQTL as µS1 versus enrichment signal
measured for eQTL as µS2

. For this, we need to construct a test aggregating pairwise differences across
all tissue-trait pairs. For this purpose, we constructed the following paired test. Our test statistic is
T tp := S1,tp − S2,tp with se(T tp) =

√
se(S1,tp)2 + se(S2,tp)2. We calculate µ̂T by summarizing across

all tissue-trait pairs as described in the previous paragraph. Under the null H0 : µS1
= µS2

and
µ̂T ∼ N(0, se(µ̂T )).

1.5 Enrichment of QTLs among trait-associated variants
To estimate the proportion of SNPs considered as associated with expression (for at least one gene) at
various p-value thresholds, we used the most significant p-value (tested using all GTEx individuals) for
each SNP from all associations in all tissues (including all genes and variants tested). We observed that the
proportion of variants associated with expression and splicing at different significance threshold was much
larger for trait-associated variants from the GWAS catalog than for the full set of tested common variants
(fig. S5). At a nominal threshold, the proportion of common variants associated with the expression of a
gene in some tissue increased from 92.7% in the V6 release [GTEx Consortium et al., 2017] to 97.3% in
V8. For splicing, the proportion was 97.7%. These results should serve as a cautionary note that assigning
function to a GWAS locus based on QTL association p-value alone, even with a more stringent threshold,
could be misleading.
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Supplementary Fig. S5. Expression and splicing QTL enrichment among GWAS variants. The
proportion of genetic variants associated with gene expression (A) and splicing (B) of at least one gene
in at least one tissue for each p-value cutoff (on x-axis in − log10(p) scale) is shown. The proportions for
all tested variants are shown as squares and the proportions for the GWAS catalog variants are shown as
circles.

1.6 Cis-region and covariates used in fine-mapping and prediction
of expression and splicing traits

For each gene, we considered all variants within the cis-window (1Mbps) with MAF>0.01, and used the
same covariates as in the GTEx v8 main eQTL analysis: sex, WGS plaform, WGS library preparation
protocol, top 5 genetic principal components, and PEER factors. The number of PEER factors was
determined from the sample size: 15 for n < 150, 30 for 150 ≤ n < 250, 45 for 250 ≤ n < 350, 60 for
350 ≤ n.

1.7 Fine-mapping expression and splicing QTLs
We applied dap-g [Wen, 2016] to the 49 tissues to estimate the degree to which a variant might exert a
causal effect on expression or splicing levels, using default parameter values. First, we selected genes
annotated as protein-coding, lincRNA or pseudogenes. We used the covariates listed in the supplement
section 1.6. This yielded a list of clusters (variants related by LD), and posterior inclusion probabilities
(pip) that provide an estimate of the probability of a variant being causal. We repeated this process
for splicing ratios from Leafcutter, using a cis-window ranging from 1Mbps upstream of the splicing
event start location to 1Mbps downstream of the end location. We used individual-level data for GTEx-
EUR subjects both for expression and splicing. We note that the main report of the GTEx v8 included
individuals of non-European descent and reported only expression QTL fine-mapping. Sample sizes
ranged from 65 in kidney cortex to 602 in skeletal muscle tissues. All results are made publicly available
(https://github.com/hakyimlab/gtex-gwas-analysis).
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1.8 Mediation analysis to quantify the dose-dependent effects of
expression and splicing on traits

Enrichment of expression and splicing QTLs suggest a causal role of molecular trait regulation on complex
traits. However, confounders such as LD contamination could be inflating these results limiting their
interpretation. Here, we sought to gather stronger evidence for a causal link. We tested whether there is
a dose-dependent effect of expression and splicing QTLs on complex traits and also whether independent
QTLs provided similar measures of the mediated effects.

1.8.1 Selection of fine-mapped variants as instrumental variables and their effect
sizes

To investigate the relationship between GWAS and QTL effect sizes in the transcriptome, we generated a
set of fine-mapped QTL signals derived from dap-g fine-mapping performed in the GTEx-EUR individuals to
serve as proxy for causal QTLs. For splicing, we utilized sQTLs at the splicing event/variant level rather than
the gene/variant level. We considered only variants within credible sets with at least 25% total probability.
Within each credible set, the variant with highest posterior inclusion probability was selected as the fine-
mapped variant. Only variants with variant-level pip of at least 0.01 were considered.

For each of the selected QTLs, we used the QTL effect size estimated from the marginal test (using the
GTEx-EUR individuals) and the GWAS effect size reported by the study or if missing, calculated from the
imputed z-score from the GWAS imputation by β̂ ≈ z/

√
f(1− f)N , where f is the allele frequency and N

is the GWAS sample size.

1.8.2 Correlation between GWAS and QTL effect sizes

To get a first-order approximation to the mediated effect sizes without imposing any modeling assumptions,
we calculated the Pearson correlation of the magnitude of observed GWAS effect size and of cis-eQTL
effect size, Ĉor(|δ̂k|, |γ̂k|), for the list of selected fine-mapped QTLs. This was done for each tissue-trait pair
separately. The observed Pearson correlation captures the mediated effect (see details in Section 1.8.5).
To obtain a null distribution for the correlation that accounts for the potential confounding effect of different
local LD score values, we computed the Pearson correlation under the shuffled data within each LD-score
bin defined by quantiles (100 bins were used). The significance of the difference between observed and
null distribution was calculated using the correlated t-test method described in Section 1.4.

1.8.3 Modeling effect mediated by regulatory process

We compared the magnitude of GWAS and cis-QTL effect sizes, which is the basis of multi-SNP Mendelian
randomization approaches [Bowden et al., 2015].

To formalize the relationship between the GWAS effect size (δ) and the QTL effect size (γ), we assumed
an additive genetic model for the GWAS trait. Specifically, for variant k,

Y =
∑
k

δk ·Xk + ε, (7)

where Xk is the allele count of variant k, Y is the trait, and ε is the un-explained variation. We decomposed
GWAS effect size into its mediated and un-mediated components,

δk =
∑
g∈Gk

βgγk,g + νk, (8)

where Gk represents the set of genes regulated by variant k with corresponding QTL effect size as γk,g, and
νk is the un-mediated effect of variant k on trait. And βg is the downstream effect of gene g on the trait.
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1.8.4 Transcriptome-wide estimation of mediated effects

To estimate the transcriptome-wide contribution of the mediated effects on complex traits, we proposed a
mixed-effects model on the basis of Eq. 8,

|δk| = βg · (sign(δk) · γk,g) + b0 + b1 ·
√

LD-scorek + ε (9)

βg ∼ N(0, σ2
gene) (10)

ε ∼ N(0, σ2), (11)

where b0, b1 are the fixed effect capturing the un-mediated effect and βg is the mediated effect of the gene
or splicing event g. In short, we assumed a random effects model to account for the heterogeneity of the
β’s and aimed at estimating σ2

gene as the transcriptome-wide average of the mediated effect. For each
tissue-trait pair, we fitted the model using selected fine-mapped QTLs, as described in Section 1.8.1, along
with the corresponding δ̂k (GWAS effect for variant k), γ̂k,g (QTL effect for variant k, gene g). To obtain the
distribution of σ2

gene under the null, we performed the same calculation using shuffled GWAS effect sizes.
The effect allele choice is arbitrary and we chose them so that all the GWAS effects are positive. This choice
made the modeling of the effect of local LD more straightforward since we expect that variants in high LD
regions may tag more causal variants and end up with a larger estimated GWAS effect, which would result
in a positive b1. The square root of LD-score represents better the potential effect of LD score on the effect
size. Using absolute value of the GWAS effects (|δk|) and sign(δk) · γk,g in equation (9) is a convenient way
to implement the recoding of the effect allele.

1.8.5 Robustness of the estimation of the mediating effect to LD contamination

We illustrate the intuition behind the LD-contamination correction when the average mediated effects are
estimated using the approximate method (correlation of absolute values) or the mixed-effects approach.

Supplementary Fig. S6. Schematic representation of LD contamination. SNP1 has a causal effect on
the expression level of a gene but not on the trait (Disease here), δ1 = 0 and γ1 6= 0. SNP2 has a causal
effect on the trait but not on the expression of the gene, δ2 6= 0 and γ2 = 0.

Consider the LD-contamination scenario where SNP 1 and SNP 2 are in LD with correlation R2

(suppose LD is fixed) and have a non-zero effect on gene expression and trait, respectively (as shown
in fig. S6). The marginal effect estimates of SNP 1, i.e. δ̂1 and γ̂1, are given by

δ̂1 = Rδ2 + εGWAS (12)
γ̂1 = γ1 + εQTL, (13)
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where Eq. 12 holds because the marginal effect size depends on LD. To determine the covariance of the
magnitude of the GWAS and QTL estimates for SNP 1, we consider E(|δ̂1||γ̂1|).

E(δ̂1γ̂1 |R) = E((Rδ2 + εGWAS) · (γ1 + εQTL) |R) (14)
= E(Rδ2γ1 |R) + E(εGWASγ1) + E(Rδ2εQTL |R) + E(εGWASεQTL) (15)
= R · E(δ2γ1), (16)

where Eq. 16 holds since the last three terms in the previous line are zeros, due to the independence among
εGWAS, εQTL, and true effect sizes, δ and γ.

Hence, the covariance of the GWAS and QTL effect sizes under the LD contamination scenario is

Cov(δ̂1, γ̂1 |R) = E(δ̂1γ̂1 |R)− E(δ̂1 |R) · E(γ̂1 |R) (17)

= R · E(δ2γ1)− E(δ̂1 |R) · E(γ̂1 |R) (18)
= R · E(δ2γ1)− E(Rδ2 + εGWAS) · E(γ1 + εQTL) (19)
= R · E(δ2γ1)−R · E(δ2) · E(γ1) (20)
= R · Cov(δ2, γ1), (21)

which implies that conditioning on LD, the observed correlation between δ̂ and γ̂ should be very small.

Supplementary Fig. S7. Diagram representation of mediation model.

Similarly, we can derive the correlation between GWAS and QTL effect size estimates under the simple
mediation model shown in fig. S7, where we have

δ̂1 = β1γ1 + εGWAS (22)
γ̂1 = γ1 + εQTL, (23)

where Eq. 22 follows by definition of the mediation model considering no direct effect. So,

Cov(δ̂1, γ̂1 |β1) = β1E(γ21)− β1E(γ1)2 (24)
= β1Var(γ1) (25)

So, if we consider a gene locus, which naturally conditions on local LD and gene-level effect β, we can
conclude that

Cov(δ̂1, γ̂1 |gene locus) = Cov(δ̂1, γ̂1 |β1, R) (26)

=

{
0 LD contamination
Var(γ1) Mediation model

(27)
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1.8.6 Concordance of mediated effects for allelic series of independent eQTLs

Under the mediation model in Eq. 8, we expect that for a given gene with multiple QTL signals, these signals
should share the same downstream effect, βg. Since the number of splicing events with multiple QTL signals
was limited, we restricted this analysis to eQTLs only. We tested for concordance of downstream effect size
obtained from the primary and secondary eQTL of a gene (ranked by QTL significance or QTL effect size
estimate). Specifically, for a given trait and gene g, we defined the observed downstream effect for the kth
variant as β̂k,g = δ̂k/γ̂k,g. Thus, for each gene, we obtained β̂prim and β̂sec as the observed downstream
effect for the primary and secondary eQTLs if more than one eQTL signal was detected by dap-g. Ideally,
for a mediating gene in a causal tissue (or a good proxy tissue), we would expect that β̂prim and β̂sec should
be similar. We measured the concordance in two ways: 1) correlation between β̂prim and β̂sec; 2) percent
concordant, defined as the fraction of eQTL pairs having the same sign in β̂prim and β̂sec. The results of 1)
were reported in [Aguet et al., 2019].

Visualizing the concordance among colocalized genes. To visualize the concordance of
β̂prim and β̂sec, we first scaled δ̂ and γ̂ by their standard deviation among all eQTLs selected in Section 1.8.1.
Then, we extracted the set of genes with exactly two dap-g eQTLs (as described in 1.8.1) and labelled the
two eQTLs as primary and secondary based on QTL significance or QTL effect size. We computed β̂prim
and β̂sec and removed the genes with β̂prim or β̂sec in the top and bottom 5%. As a control, we also simulated
random δ to compute simulated βsim for downstream analysis. We further filtered the genes by selecting
only those with enloc rcp > 0.1.

1.9 Identifying patterns of regulation of expression across tissues
We used FLASH Sparse Factor Analysis [Wang and Stephens, 2018] to identify latent factors specific to
different tissue clusters. We ran flashr on a set of top eQTLs (obtained from all GTEx individuals) per gene
which had been tested in all 49 tissues (around 16,000 eQTLs in total were selected) and shown strong
evidence of being active in at least one tissue. Then, for each selected variant-gene pair, the marginal
effect size estimates were extracted for all 49 tissues regardless of whether it was significant in that tissue
or not. The resulting estimated effect-size matrix (of dimension ∼ 16, 000×49) was the input to flashr (with
normal prior on loading and uniform with positive support as prior on factor) to obtain the sparse factors.
The flashr run yielded 31 FLASH factors (fig. S23), which were used to assign the tissue-specificity of an
eQTL.

We defined the eQTL cross-tissue patterns by projecting the estimated effect-size vector across 49
tissues onto the FLASH factors and computed the quality of the projection, PVE, as PVEk =

‖~βk‖22
‖~β‖22

. PVEk
represented the quality score for using FLASH factor k to explain the cross-tissue pattern of eQTL. The
eQTL was assigned to a FLASH factor k if PVEk was maximal among all FLASH factors and PVEk > 0.2
and for those with PVEk ≤ 0.2 in all FLASH factors, NA (short for not assigned) was assigned instead.
These "not assigned" eQTLs had more complex tissue-sharing pattern than the factors captured in the
FLASH analysis. To obtain an interpretable tissue-specificity category, we labeled Factor1 as the shared
factor, Factor2, Factor13, Factor14, Factor29, and Factor30 as brain-specific factors, and the rest of the
factor assignment as other factors.

We applied the multivariate adaptive shrinkage implemented in mashr [Urbut et al., 2018] to smooth
cis-eQTL effect size estimates (obtained from all GTEx individuals) by taking advantage of correlation
between tissues. To fit the mashr model, we used the set of ∼ 16, 000 cis-eQTLs as stated in Section 1.9
to learn the mashr prior, and then fit the mashr model using ∼ 40, 000 randomly selected variant-gene
pairs for the same set of eGenes. We learned data-driven mashr priors in three ways: 1) FLASH factors
as described above; 2) PCA with number of PC = 3; 3) empirical covariance of observed z-scores. The
data-driven covariances were further denoised by calling cov_ed in mashr. Furthermore, we included the
set of canonical covariances as described in [Urbut et al., 2018] as an additional mashr prior. We fit the
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mashr model using the set of randomly selected variant-gene pairs with the error correlation estimated
by applying estimate_null_correlation function in mashr and the priors obtained above. The resulting
mashr model was used to compute the posterior mean, standard deviation, and local false sign rate (LFSR)
for any variant-trait pair.

1.10 Causal gene prioritization
Two classes of methods can be used to identify the target genes of GWAS loci. One class is based on the
colocalization of GWAS and QTL loci, which seeks to determine whether the causal variant for the trait is
the same as the causal variant for the molecular phenotype. The other class is based on the association
between the genetically regulated component of gene expression (or splicing) with the trait. We applied
representative examples of each class of methods.

1.10.1 Colocalization

For a given variant associated with multiple traits such as gene expression (eQTL) and complex
disease (trait-associated variant), extensive LD makes it challenging to identify the underlying true
causal mechanisms. Colocalization approaches attempt to address this problem. Here, we conducted
colocalization analysis using two independent approaches: coloc [Giambartolomei et al., 2014] and
enloc [Wen et al., 2017]), to estimate whether a gene’s expression or a splicing event shares a causal
variant with a trait.

1.10.2 enloc

We computed Bayesian regional colocalization probability (rcp) using enloc, to estimate the probability of
a GWAS region and a gene’s cis window sharing causal variants. We used the dap-g results described
in 1.7, which was based on EUR individuals only. We split the GWAS summary statistics into approximately
LD-independent regions [Berisa and Pickrell, 2016], each region defining a GWAS locus. For each tissue-
trait combination, we computed the rcp of every overlapping GWAS locus to a gene’s or splicing event’s cis
window with enloc’s default execution mode.

For each trait, we counted the number of GWAS loci that contain a GWAS significant hit, and among
these, the number of loci that additionally contain a gene with enloc colocalization rcp > 0.5. As shown in
fig. S12C, across traits, a median 29% of loci with a GWAS signal contain an enloc colocalized signal. Given
enloc’s conservative nature, we caution that rcp < 0.5 does not mean that there is no causal relationship
between the molecular phenotype and the complex trait; rather, it should be interpreted as lack of sufficient
evidence with current data. We summarize the findings in fig. S13. We observed a smaller proportion of
GWAS loci containing a colocalized splicing event (median 11% across traits).

1.10.3 coloc

We computed coloc on all cis-windows with at least one eVariant (cis-eQTL per-tissue q-value< 0.05) or
sVariant. For each gene’s cis-window, we used summary statistics from the GWAS traits and the main
GTEx eQTL/sQTL analysis. For binary traits, case proportion and ’cc’ trait type parameters were used.
For continuous traits, sample size and ’quant’ trait type parameters were used. In both cases, imputed or
calculated z-scores were used as effect coefficients in Bayes factor calculations.

Coloc is very sensitive to the choice of priors. We used enloc’s enrichment estimates to define data-
based priors in a consistent manner. First, we defined likely LD-independent blocks of variants using
definitions provided previously [Berisa and Pickrell, 2016]. The probability of eQTL signal, Pr(di = 1), was
estimated using dap-g [Wen, 2016]. Subsequently, we calculated priors p1, p2, and p12 for colocalization
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analyses as follows:

p1 := Pr(γi = 1, di = 0) =
exp(α0)

1 + exp(α0)
× (1− Pr(di = 1)),

p2 := Pr(γi = 0, di = 1) =
1

1 + exp(α0 + α1)
× Pr(di = 1), and

p12 := Pr(γi = 1, di = 1) =
exp(α0 + α1)

1 + exp(α0 + α1)
× Pr(di = 1),

where α0 and α1 indicate intercept effect estimate and log odds ratio estimate for the enrichment using
enloc, respectively.

We ran coloc using variants in the cis-window for each gene and the intersection with each GWAS trait,
obtaining five probabilities for each gene-tissue-trait tuple: P0 for the probability of neither expression nor
GWAS having a causal variant; P1 for the probability of only expression having a causal variant; P2 for only
the GWAS having a causal variant; P3 for the GWAS and expression traits to have distinct causal variants;
P4 for the GWAS and expression traits to have a shared causal variant. We repeated this process using
sQTL results.

1.11 Fine-mapping of height GWAS using summary statistics
To investigate the robustness of fine-mapping, we fine-mapped “height” from the GIANT GWAS meta-
analysis and “standing height” from the UK Biobank using susieR [Wang et al., 2018]. We performed
fine-mapping using susie_bhat within each LD block [Berisa and Pickrell, 2016]. We used GWAS effect
sizes β̃ imputed from z-scores by β̃ = z/

√
Nf(1− f) and se(β̃) = β̃/z, where f is allele frequency and

N is GWAS sample size. The GTEx-EUR individuals were used to calculate the reference LD panel. We
recorded 95% credible set which has posterior probability 95% to capture a causal signal. To compare the
fine-mapping results of two GWASs, we defined their 95% credible sets as “overlapped” if they shared at
least one variant. To see how 95% in GIANT GWAS is colocalized with UK Biobank GWAS, we calculated
colocalization probability as

∑
i:varianti∈95%CS of GIANT PIPi,GIANT × PIPi,UKB.

1.12 Association to predicted expression or splicing
1.12.1 Predicting the genetically regulated components of expression and splic-

ing

To predict expression, we constructed linear prediction models [Barbeira et al., 2020], using only individuals
of European ancestry, and variants with MAF > 0.01, for genes annotated as protein-coding, pseudo-gene,
or lncRNA. For each gene-tissue pair, we selected the variants with highest pip in their cluster, and kept
those achieving pip > 0.01 in dap-g [Wen, 2016]. We used mashr [Urbut et al., 2018] effect sizes (as
computed in 1.9) for each selected variant. For each model, we computed the covariance matrix between
variants using only individuals of European ancestries, with sample sizes ranging from 65 (kidney - cortex)
to 602 (skeletal muscle). This allowed us to build LD panels for every tissue. For every gene, we also
computed the covariance of all the variants present across the different tissue models, compiling a cross-
tissue LD panel to compute the correlation between predicted expression levels across tissues. We refer
to these models as mashr models. We compared the number of mashr models to the number of Elastic
Net models from GTEx version 7 (fig. S8). We generated analogous prediction models for splicing ratios,
as computed by Leafcutter [Li et al., 2018], applying the same model-building methodology to the data from
the sQTL analysis.

Expression phenotypes were adjusted for unwanted variation using the following covariates: sex,
sequencing plaform, the top 3 principal components from genotype data, and PEER factors. The number
of PEER factors was determined from the sample size: 15 for n < 150, 30 for 150 ≤ n < 250, 45 for
250 ≤ n < 350, 60 for 350 ≤ n. We obtained 686,241 models for different (gene, tissue) pairs.
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We also generated analogous prediction models for splicing ratios, with the same model-building
methodology applied to the data from the sQTL analysis, obtaining 1,816,703 (splicing event, tissue) pairs.

Supplementary Fig. S8. Number of models available in v8 MASHR family of models, compared to v7
Elastic Net family. The point with 17,867 models is Testis, consistently with the high levels of expression
observed in the eQTL analysis Aguet et al. [2019].

1.12.2 PrediXcan

We performed PrediXcan analysis [Barbeira et al., 2018] on the 87 complex traits, using the GWAS
summary statistics described in 1.3.2, to identify trait-associated genes (typically p < 2.5 × 10−7). We
used the 49 models and LD panels described in 1.12.1, separately on each trait, to obtain 59,485,548 gene-
tissue-trait tuples. Repeating this process to generate splicing event ratio models, we obtained 154,891,730
splicing event-tissue-trait tuples; for each trait, the Bonferroni-significance threshold was p < 9.5× 10−8.

1.12.3 Colocalized and significantly associated genes

We assessed how many genes present evidence of trait association and colocalization, using both
expression and splicing event. First, we counted the proportion of genes that showed a colocalized
expression signal with any trait in any tissue, and observed 15% such genes at rcp> 0.5. Then, for each
gene, we considered the splicing event with highest colocalization value in any trait or tissue, and found
evidence for 5% at rcp> 0.5.

Then we repeated this process for PrediXcan associations at different signifcance thresholds. About
30% of genes showed a significant PrediXcan association to any trait, and only 8% when filtered for
associations with rcp> 0.5. When using the highest splicing association and colocalization value for a
gene, these proportions were 20% and 3%, respectively.

These proportions gauge our power to predict causal genes affecting complex traits on the GTEx
resource, with expression yielding more findings than splicing.
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Supplementary Fig. S9. Proportion of genes with a colocalized or associated signal using
expression or splicing event.
A shows the proportion of genes with colocalization evidence in expression data, for different rcp thresholds.
3,477 genes show evidence at rcp> 0.5 (15% out of 23,963 genes with enloc results). B shows the
proportion of genes with colocalization evidence in splicing data; 1,277 genes (5% of all 23,963) show
evidence at rcp> 0.5.
C shows the proportion of genes with association evidence in expression data, additionally filtered by
colocalization on different thresholds. About 30% of genes show associations at the bonferroni threshold
(p < 0.05/686, 241), while 8% also show colocalization evidence.
D shows the proportion with association and colocalization evidence in splicing data; about 20% show
association evidence (p < 0.05/1, 816, 703) and 3% are also colocalized.

1.12.4 S-MultiXcan

Given the substantial sharing of eQTLs across tissues [GTEx Consortium et al., 2017], we aggregated
PrediXcan results across tissues using S-MultiXcan [Barbeira et al., 2019]. MultiXcan has been shown to
exploit the tissue sharing of regulatory variation, to improve our ability to identify trait-associated genes. The
method extends the single-tissue PrediXcan approach, leveraging GWAS summary statistics and taking into
account the correlation between tissues. We obtained association statistics for 1,958,220 gene-trait pairs
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and 11,986,329 splicing event-trait pairs.

1.12.5 PrediXcan replication in BioVU

We replicated the significant gene-level associations for a prioritized list of traits (table S16) using
BioVU [Denny et al., 2013], Vanderbilt University’s DNA Biobank tied to a large-scale Electronic Health
Records (EHR) database. We sought BioVU replication in the exact discovery tissues for the significant
gene-trait associations. We restricted our analysis to subjects of European ancestries, using principal
component analysis as implemented in EIGENSOFT (version 7.1.2; [Price et al., 2006]). First, we
estimated the genetically determined component of gene expression in the BioVU individuals using the
PrediXcan imputation models. We then conducted association analysis for the prioritized traits using logistic
regression, with sex and age as covariates.

Among replicated loci are SORT1 (liver, coronary artery disease rcp = 0.952; dicovery p = 2.041×10−19

BioVU p = 3.475× 10−4), which has a well-established associations to lipid metabolism and cardiovascular
traits [Musunuru et al., 2010]. Chromosome 6p24 region, which contains PHACTR1, has been previously
associated with a constellation of vascular diseases, including coronary artery disease [Nikpay et al., 2015]
and migraine headache [Anttila et al., 2013]. Notably, PHACTR1 was significant in three different arteries
(aorta artery, coronary artery and tibial artery) in two traits (coronary artery disease and migraine) in
the replication analysis. In all six tissue-trait pairs, PHACTR1 showed very high posterior probabilities
in discovery analyses (rcp = 0.992 to 1.00). In our replication analysis, PHACTR1 remained significant only
for coronary artery disease associations (table S16, aorta artery, discovery p = 2.246 × 10−39, BioVU p =
7.484× 10−8; coronary artery, discovery p = 1.952× 10−37, BioVU p = 2.047× 10−7; tibial artery, discovery
p = 1.559× 10−33, BioVU p = 9.880× 10−7).

Supplementary Fig. S10. Causal gene prioritization using PrediXcan and enloc. Summary of GWAS
loci that also contain an associated PrediXcan or colocalized signal, for expression (left) and splicing (right),
using MASHR models.
Significance was defined at Bonferroni-adjusted threshold for number of tests in each trait: p <
0.05/(gene-tissue pairs) = 7.28 × 10−8 for expression, p < 0.05/(intro-tissue pairs) = 2.75 × 10−8 for
splicing. Colocalization status was defined as enloc rcp> 0.5.
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Supplementary Fig. S11. Causal gene prioritization using PrediXcan and enloc. Summary of GWAS
loci that also contain an associated PrediXcan or enloc signal, for expression (left) and splicing (right), using
Elastic Net models.
Significance was defined at Bonferroni-adjusted threshold for number of tests in each trait: p <
0.05/(gene-tissue pairs) = 1.77 × 10−7 for expression, p < 0.05/(intro-tissue pairs) = 9.51 × 10−8 for
splicing. Colocalization status was defined as enloc rcp> 0.5.
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Table S2: Expression and splicing prediction models using mashr-based models. Training
sample size and number of genes predicted for expression and splicing traits.

name european samples abbreviation expression models splicing models

Adipose - Subcutaneous 491 ADPSBQ 14732 42912
Adipose - Visceral (Omentum) 401 ADPVSC 14640 41720
Adrenal Gland 200 ADRNLG 13622 36754
Artery - Aorta 338 ARTAORT 14396 40474
Artery - Coronary 180 ARTCRN 13878 40579
Artery - Tibial 489 ARTTBL 14493 40690
Brain - Amygdala 119 BRNAMY 12814 24236
Brain - Anterior cingulate cortex (BA24) 135 BRNACC 13528 28806
Brain - Caudate (basal ganglia) 172 BRNCDT 14118 32127
Brain - Cerebellar Hemisphere 157 BRNCHB 13771 39862
Brain - Cerebellum 188 BRNCHA 13992 40747
Brain - Cortex 184 BRNCTXA 14284 35086
Brain - Frontal Cortex (BA9) 158 BRNCTXB 14091 32031
Brain - Hippocampus 150 BRNHPP 13526 27437
Brain - Hypothalamus 157 BRNHPT 13741 30326
Brain - Nucleus accumbens (basal ganglia) 181 BRNNCC 14062 32670
Brain - Putamen (basal ganglia) 153 BRNPTM 13694 28461
Brain - Spinal cord (cervical c-1) 115 BRNSPC 13096 28883
Brain - Substantia nigra 101 BRNSNG 12637 23677
Breast - Mammary Tissue 337 BREAST 14654 44613
Cells - Cultured fibroblasts 417 FIBRBLS 13976 36809
Cells - EBV-transformed lymphocytes 116 LCL 12398 37627
Colon - Sigmoid 274 CLNSGM 14363 41581
Colon - Transverse 306 CLNTRN 14582 41215
Esophagus - Gastroesophageal Junction 281 ESPGEJ 14285 41004
Esophagus - Mucosa 423 ESPMCS 14589 37186
Esophagus - Muscularis 399 ESPMSL 14603 40376
Heart - Atrial Appendage 322 HRTAA 14035 36322
Heart - Left Ventricle 334 HRTLV 13200 29470
Kidney - Cortex 65 KDNCTX 11164 24571
Liver 183 LIVER 12714 27011
Lung 444 LUNG 15058 44346
Minor Salivary Gland 119 SLVRYG 13884 38380
Muscle - Skeletal 602 MSCLSK 13381 31855
Nerve - Tibial 449 NERVET 15373 45478
Ovary 140 OVARY 13738 40857
Pancreas 253 PNCREAS 13695 31203
Pituitary 219 PTTARY 14647 42343
Prostate 186 PRSTTE 14450 41991
Skin - Not Sun Exposed (Suprapubic) 440 SKINNS 14932 42005
Skin - Sun Exposed (Lower leg) 517 SKINS 15204 42219
Small Intestine - Terminal Ileum 144 SNTTRM 14065 39864
Spleen 186 SPLEEN 14073 40290
Stomach 269 STMACH 14102 36624
Testis 277 TESTIS 17867 67784
Thyroid 494 THYROID 15303 45217
Uterus 108 UTERUS 13199 39485
Vagina 122 VAGINA 12969 36931
Whole Blood 573 WHLBLD 12623 24568

total 686241 1816703
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Table S3: GWAS loci with colocalized or significant genes assigned. Numbers of loci-
trait associations with associated/colocalized genes/splicing event detected by each method. A
locus is said to have a GWAS association to a trait if it contains at least one variant with
p < 0.05/(variants tested) = 5.7 × 10−9. We list here how many such loci-trait associations have
an S-PrediXcan association or enloc signal. Significant S-PrediXcan associations were defined
at Bonferroni-adjusted threshold for number of tests in each trait: p < 0.05/(gene-tissue pairs) =
7.28 × 10−8 for expression, p < 0.05/(intro-tissue pairs) = 2.75 × 10−8 for splicing. Colocalization
status was defined as enloc rcp> 0.5.

GWAS-significant (loci, trait) associations 5385

GWAS-significant unique loci 1167

enloc (loci, trait) colocalizations expression 2303
enloc (loci, trait) colocalizations splicing 1223
PrediXcan (loci, trait) associations expression 3899
PrediXcan (loci, trait) associations splicing 3345
PrediXcan & enloc (loci, trait) detections expression 2125
PrediXcan & enloc (loci, trait) detections splicing 1135

1.12.6 Summary-data-based Mendelian Randomization (SMR) and HEIDI

For comparison, we also performed top-eQTL based Summary-data-based Mendelian Randomization
(SMR) [Zhu et al., 2016] analysis of the 4,263 tissue-trait pairs. SMR, which integrates summary statistics
from GWAS and eQTL data, has been used to prioritize genes underlying GWAS associations.
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Supplementary Fig. S12. Colocalization of expression QTLs Colocalization for each of the 87 GWAS
traits aggregated across the 49 tissues. GWAS loci are shown in gray, colocalized results are shown in
dark green. The traits are ordered by number of GWAS-significant variants.
Panel A shows the number of colocalized genes, achieving enloc rcp > 0.5 in at least one tissue, for each
GWAS trait. The number of colocalized results tends to increase with the number of GWAS-significant
variants.
Panel B shows the number of loci (approximately independent LD regions from [Berisa and Pickrell, 2016])
with at least one GWAS-significant variant (dark gray), and among them those with at least one gene
reaching rcp > 0.5 (dark green).
Panel C shows the proportion of loci with at least one GWAS-significant hit that contain at least one
colocalized gene. Across traits, a median of 21% of the GWAS loci contain colocalized results. See trait
abbreviation list in table S2. These results were also presented in [Aguet et al., 2019] and are shown here
for completeness.
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Supplementary Fig. S13. Colocalization of splicing QTLs for each of the 87 GWAS traits aggregated
across the 49 tissues. The traits are ordered by number of GWAS-significant variants. GWAS loci are
shown in gray, colocalized results are shown in dark green.
Panel A shows the number of colocalized splicing event, achieving enloc rcp > 0.5 in at least one tissue,
for each GWAS trait. As with gene expression results, the number of colocalized results tends to increase
with the number of GWAS-significant variants.
Panel B shows the number of loci (approximately independent LD regions from [Berisa and Pickrell, 2016])
with at least one GWAS-significant variant (dark gray), and among them those with one splicing event
achieving rcp > 0.5 (dark green).
Panel C shows the proportion of loci with at least one GWAS-significant hit loci with at least one colocalized
splicing event. Across traits, a median of 11% of the GWAS loci contain a colocalized result, lower than the
gene expression counterpart (29%), indicating a decreased power in the sQTL study. See trait abbreviation
list in table S2.

62

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2020. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. S14. PrediXcan expression associations aggregated across tissues. This figure
summarizes S-MultiXcan associations for each of the 87 traits using the gene expression models. The traits
are ordered by number of GWAS-significant variants.
Panel A) shows in purple the number of S-MultiXcan significant genes, and in dark green the subset also
achieving enloc rcp > 0.5 in any tissue. S-MultiXcan has a high power for detecting associations, but 12%
(median across traits) of these genes show evidence of colocalization.
Panel B) shows the number of loci (approximately independent LD regions [Berisa and Pickrell, 2016])
with a significant GWAS association (gray), a significant S-MultiXcan association (purple), and a significant
S-MultiXcan association that is colocalized (dark green). Anthropometric and Blood traits tend to present
the largest number of associated loci, with Height from two independent studies leading the number of
associations.
Panel C) shows the proportion of loci with significant GWAS associations (gray) that contain S-Multixcan
(purple) and colocalized S-MultiXcan associations (dark green). Across traits, a median of 70% of GWAS-
associated loci show a S-MultiXcan detection, while 19% show a colocalized S-MultiXcan detection.
See trait abbreviation list in table S2.
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Supplementary Fig. S15. PrediXcan splicing associations aggregated across tissues. This figure
summarizes S-MultiXcan associations for each of the 87 traits using splicing models. The traits are ordered
by number of GWAS-significant variants.
Panel A) shows in purple the number of S-MultiXcan significant splicing events, and in dark green the subset
also achieving enloc rcp > 0.5 in any tissue. The proportion of colocalized, significantly associated splicing
events is typically 2%, much lower than the proportion from gene expression (12%).
Panel B) shows the number of loci (approximately independent LD regions [Berisa and Pickrell, 2016]) with
a significant GWAS association (gray), a significant S-MultiXcan association (purple), and a significant S-
MultiXcan association that is colocalized (dark green). As in the case of expression models, Anthropometric
and Blood traits tend to present the largest number of associated loci.
Panel C) shows the proportion of loci with significant GWAS associations (gray) that contain S-Multixcan
(purple) and colocalized S-MultiXcan associations (dark green). Across traits, a median of 63% of GWAS-
associated loci show an S-MultiXcan association, while 11% show a colocalized S-MultiXcan association.
These proportions are lower than the corresponding ones for expression (70% and 19% respectively).
See trait abbreviation list in table S2.

1.13 Assessing the performance of association and colocalization
methods to identify causal genes

To assess the performance of colocalization and association methods to identify causal genes, we curated
two sets of ‘causal’ gene-trait pairs. One set is based on the OMIM database and the other one is based
on rare variant association results from exome-wide association studies. To quantify the performance, we
framed the causal gene identification problem as one of classification and used the standard tools such as
ROC and precision recall curves, which have the advantage of not needing ad-hoc thresholds and show
the full trade-off between true positives and false positives as well as precision vs. power. Throughout this
section, we limited our scope to only the protein-coding genes.
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1.13.1 OMIM-based curation of causal genes

To obtain a curated set of trait-gene pairs from the OMIM database [Hamosh et al., 2005], we mapped our
GWAS traits to the OMIM traits and linked them to the corresponding genes in the OMIM database. The
mapping process is illustrated in fig.S16 for a specific example GWAS trait, fasting glucose by the MAGIC
consortium. First, the GWAS trait was mapped to the GWAS catalog trait names by searching for relevant
keywords (defined manually S5) in the description field of the GWAS catalog. Second, the GWAS catalog
trait names were linked to phecodes using the mapping in the phewas catalog [Denny et al., 2013]. Third,
we mapped phecodes to OMIM traits ids (MIM) as described in [Bastarache et al., 2018]. Finally, in step 4,
we mapped OMIM traits to OMIM genes using the

The keywords used for the each of the initial selected set of 114 GWAS traits is listed in tab S5). For a
subset of datasets with GWAS results from more than one source (public GWAS vs UKB) in our collection,
we kept the dataset with higher number of GWAS loci to avoid double counting. The number of GWAS
loci was determined based on counting the lead variants, using the PLINK V1.9 command –clump-r2 0.2
–clump-p1 5e-8 at genome-wide significance 5 × 10−8) for each trait. Furthermore, for this analysis, we
excluded GWAS traits with fewer than 50 GWAS loci. The full list of OMIM based trait-gene pairs is listed
in S10.

With this procedure, we curated a list of 1,592 gene-trait pairs with evidence of causal associations in the
OMIM database (hereafter, OMIM genes), which was downloaded from omim.org/downloads (accessed
on Aug 12th 2019). After matching traits, we retained 29 unique traits and 631 unique genes that were
within the same LD block [Berisa and Pickrell, 2016] as the GWAS hit (table S10).

Supplementary Fig. S16. Workflow of OMIM-based curation of causal genes. The workflow of OMIM-
based causal gene curation is shown where each box represents the trait description/identifier in different
databases. The steps to obtain OMIM genes for MAGIC_FastingGlucose, one of our GWAS traits, is shown
as a concrete application of the workflow.
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Table S4: Keywords of GWAS traits used for mapping with the GWAS catalog. Keywords of
all 114 GWAS traits used for OMIM-based curation and analyses are listed.

Abbreviation Keyword Abbreviation Keyword

Sleep_Duration_UKB sleep duration Sum_Eosinophil_Basophil_Ct
Chronotype_UKB chronotype Sum_Neutrophil_Eosinophil_Ct
Insomnia_UKB insomnia White_Blood_Cell_Count white blood cell count
Fathers_Age_At_Death_UKB aging Coronary_Artery_Disease coronary heart disease
Deep_Venous_Thrombosis_UKB venous thromboembolism Chronic_Kidney_Disease chronic kidney
Asthma_UKB asthma Insomnia_In_Both_Sexes insomnia
Irritable_Bowel_Syndrome_UKB irritable bowel Type_2_Diabetes type 2 diabetes
Type_1_Diabetes_UKB type 1 diabetes Eczema atopic dermatitis
Type_2_Diabetes_UKB type 2 diabetes Birth_Length
Hyperthyroidism_UKB hyperthyroidism BMI_Childhood bmi;body mass index
Hypothyroidism_UKB hypothyroidism Birth_Weight
Psychological_Problem_UKB psychiatric;psychological Pubertal_Height_Female
Multiple_Sclerosis_UKB multiple sclerosis Pubertal_Height_Male
Parkinsons_Disease_UKB Parkinson’s Intracraneal_Volume intracranial volumn
Migraine_UKB migraine Asthma asthma
Schizophrenia_UKB Schizophrenia Bone_Mineral_Density bone mineral density
Osteoporosis_UKB osteoporosis BMI_Active_Inds bmi;body mass index
Ankylosing_Spondylitis_UKB ankylosing spondylitis BMI_EUR bmi;body mass index
Eczema_UKB eczema;dermatitis Height height
Psoriasis_UKB psoriasis Hip_Circumference_EUR hip circumference
Inflammatory_Bowel inflammatory bowel disease Waist_Circumference_EUR waist circumference

_Disease_UKB
Crohns_Disease_UKB crohn’s disease Waist-to-Hip_Ratio_EUR waist-to-hip
Ulcerative_Colitis_UKB ulcerative colitis HDL_Cholesterol hdl cholesterol
Rheumatoid_Arthritis_UKB rheumatoid arthritis LDL_Cholesterol ldl cholesterol
Gout_UKB gout Triglycerides triglycerides
High_Cholesterol_UKB total cholesterol Neuroticism neuroticism
Insomnia_UKB insomnia Heart_Rate heart rate
Fluid_Intelligence_Score_UKB intelligence Crohns_Disease crohn’s disease
Birth_Weight_UKB birth weight Inflammatory_Bowel_Disease inflammatory bowel disease
Neuroticism_UKB neuroticism Ulcerative_Colitis ulcerative colitis
BMI_UKB bmi;body mass index Alzheimers_Disease alzheimer
Body_Fat_Percentage_UKB body fat Epilepsy epilepsy
Balding_Pattern_2_UKB Celiac_Disease celiac disease
Balding_Pattern_3_UKB Multiple_Sclerosis multiple sclerosis
Balding_Pattern_4_UKB Systemic_Lupus_ systemic lupus

Erythematosus erythematosus
Mothers_Age_At_Death_UKB aging Stroke stroke
Standing_Height_UKB height Chronotype chronotype
Heart_Attack_UKB Sleep_Duration sleep duration

Fasting_Glucose fasting glucose;
fasting plasma glucose

Pulmonary_Embolism_UKB Fasting_Insulin fasting insulin
Asthma_UKB asthma CH2DB_NMR
Hayfever_UKB HDL_Cholesterol_NMR hdl cholesterol
Epilepsy_UKB epilepsy Triglycerides_NMR triglycerides
Migraine_UKB migraine LDL_Cholesterol_NMR ldl cholesterol
Hypertension_UKB hypertension Attention_Deficit attention deficit

_Hyperactivity_Disorder hyperactivity disorder
Adiponectin adiponectin Autism_Spectrum_Disorder autism
Eosinophil_Count eosinophil count Schizophrenia schizophrenia
Granulocyte_Count Rheumatoid_Arthritis rheumatoid arthritis
High_Light_Scatter Depressive_Symptoms depression

_Reticulocyte_Count
Lymphocyte_Count lymphocyte Education_Years education
Monocyte_Count monocyte count;monocytes Asthma_TAGC_EUR asthma
Myeloid_White_Cell_Count Systolic_Blood_Pressure systolic blood pressure
Neutrophil_Count neutrophil count;neutrophils Diastolic_Blood_Pressure diastolic blood pressure
Platelet_Count platelet counts ER-negative_Breast_Cancer breast cancer
Red_Blood_Cell_Count red blood cell count ER-positive_Breast_Cancer breast cancer
Reticulocyte_Count Breast_Cancer breast cancer
Sum_Basophil_Neutrophil_Ct Smoker smoking behavior

1.13.2 Rare variant association-based curation of causal genes

In addition to the OMIM-based curation, we collected a set of genes in which rare protein-coding variants
were reported to be significantly associated with our list of complex traits. Given the power of existing rare
variant association studies, we focused on height and lipid traits (low-density lipid cholesterol, high-density
lipid cholesterol, triglycerides, and total cholesterol levels) [Marouli et al., 2017; Liu et al., 2017; Locke et al.,
2019].
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We collected significant coding/splicing variants reported previously [Marouli et al., 2017] and kept
variants with effect allele frequency < 0.01 (table S6 therein: ExomeChip variants with Pdiscovery <2e-07
in the European-ancestry meta-analysis (N=381,625)). Similarly, we collected significant variants reported
by [Liu et al., 2017] (table S12 therein: Association Results for 444 independently associated variants with
lipid traits) and filtered out variants with minor allele frequency < 0.01. For the whole-exome sequencing
study conducted in Finnish isolates [Locke et al., 2019], we extracted significant genes identified by a gene-
based test using protein truncating variants (table S9 therein: Gene-based associations from aggregate
testing with EMMAX SKAT-O with P<3.88E-6) and significant variants (table S7 therein: A review of all
variants that pass unconditional threshold of P<5E-07 for at least one trait) with gnomAD MAF < 0.01. The
full list of trait-gene pairs constructed from the process is available in table S13.

1.13.3 Setting up the classification problem to quantify performance for identify-
ing causal genes

We partitioned the genome into approximately independent LD blocks [Berisa and Pickrell, 2016] and for
each GWAS trait, we kept only genes located in LD blocks where there were at least one silver standard
gene and a GWAS significant hit for the trait as illustrated in fig. S18. Then, we labelled the silver standard
genes as 1 and all the others were labelled as 0, as represented schematically in fig. S19. We calculated
the ROC and precision recall curves for classifying the silver standard gene correctly.

In more detail, for each of tested gene-trait pairs, we obtained the gene-level statistics for the
corresponding trait from the application of various methods, i.e. enloc, coloc, SMR, and PrediXcan-
mashr. Since we had results across tissues, we selected the ‘best’ scores (highest regional colocalization
probability (rcp) in enloc; highest posterior probability under hypothesis 4 in coloc; smallest p-value in SMR
and PrediXcan-mashr ) to build the table S19. For splicing (with statistics reported at the intron excision
event level), we obtained gene-level statistics by taking the ‘best’ score among all splicing events of the
gene, across all tissues.

The full list of silver standard genes can be found in tables S14 and S15. The number of GWAS loci and
silver standard genes that remained after the above filtering steps can be found in table S6. The number of
genes tested per LD block is shown in fig. S17.

silver trait nloci ngene silver trait nloci ngene
standard standard

rare variant Standing_Height_UKB 29 35 OMIM Monocyte_Count 1 1
rare variant LDL_Cholesterol 7 10 OMIM Neutrophil_Count 14 17
rare variant High_Cholesterol_UKBS 6 8 OMIM White_Blood_Cell_Count 16 17
rare variant HDL_Cholesterol 12 18 OMIM Coronary_Artery_Disease 12 13
rare variant Triglycerides 6 9 OMIM Type_2_Diabetes 11 12

OMIM Deep_Venous_Thrombosis 2 2 OMIM Waist_Circumference_EUR 6 6
OMIM Asthma_UKBS 10 12 OMIM LDL_Cholesterol 7 9
OMIM Type_1_Diabetes_UKBS 1 2 OMIM Triglycerides 11 11
OMIM Hypothyroidism_UKBS 14 14 OMIM Inflammatory_Bowel_Disease 7 8
OMIM Eczema_UKBS 4 5 OMIM Ulcerative_Colitis 4 4
OMIM Psoriasis_UKBS 2 2 OMIM Alzheimers_Disease 2 2
OMIM Gout_UKBS 1 1 OMIM Systemic_Lupus_Erythematosus 3 5
OMIM High_Cholesterol_UKBS 6 8 OMIM Schizophrenia 1 1
OMIM BMI_UKB 35 35 OMIM Rheumatoid_Arthritis 3 3
OMIM Hypertension_UKBS 19 24 OMIM Systolic_Blood_Pressure 2 2
OMIM Eosinophil_Count 7 7 OMIM Diastolic_Blood_Pressure 3 3
OMIM Lymphocyte_Count 2 2

Table S5: Count of GWAS loci with predicted causal effects overlapping likely functional
genes. The number of GWAS loci and the number of silver standard genes included for analysis
after taking the intersection between GWAS loci and silver standard genes are shown.
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Supplementary Fig. S17. Distribution of the number of tested genes per GWAS locus overlapping
OMIM- and rare variant-based silver standard. The distributions of the number of candidate genes per
GWAS locus are shown for OMIM-based curation (top) and rare variant association-based curation (bottom).

Supplementary Fig. S18. Selection of genes to assess ability to identify silver standard genes. The
GWAS summary statistics were binned into independent LD blocks (boundaries of LD block are shown as
gray vertical lines). Only genes within LD blocks that contain both a silver standard gene (red triangle) and
a GWAS significant variant (points above − log10(p) > − log10(5 · 10−8)) were used in the calculation of
performance (ROC and PR curves).
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Supplementary Fig. S19. Schematic representation of data used for classification.

1.13.4 AUC of the ROC curves

For expression, the areas under the curve (AUC) of were, in increasing performance, 0.553, 0.591, 0.669,
and 0.672 for coloc, SMR, enloc, and PrediXcan using the OMIM silver standard 3C. AUC were higher when
using the rare variant silver standard with SMR at the bottom of the ranking followed by coloc, PrediXcan,
and enloc at the top S7. For splicing enloc had higher 0.650 vs. 0.632 for PrediXcan using OMIM silver
standard and 0.714 and 0.686 using the rare variant silver standard.

Regulation Dataset Method ROC AUC

expression OMIM coloc 0.553
expression OMIM enloc 0.669
expression OMIM PrediXcan 0.672
expression OMIM SMR 0.591
expression Rare variant coloc 0.661
expression Rare variant enloc 0.755
expression Rare variant PrediXcan 0.743
expression Rare variant SMR 0.629

splicing OMIM enloc 0.650
splicing OMIM PrediXcan 0.632
splicing Rare variant enloc 0.714
splicing Rare variant PrediXcan 0.686

Table S6: Enrichment and AUC fo coloc, enloc, SMR, and PrediXcan
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1.13.5 Precision-recall curves of PrediXcan and enloc on silver standard gene
sets

(A) (B)

(C) (D)

Supplementary Fig. S20. Precision-recall curves of colocalization/association based methods on
OMIM silver standard. The results on expression data are shown in top row and the ones on splicing data
are shown in bottom row. (A,C) Precision-recall curve of colocalization/association based methods. (B,D)
Precision-recall curve of association based methods when pre-filtering with enloc rcp > 0.1.
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(A) (B)

(C) (D)

Supplementary Fig. S21. Precision-recall curves of colocalization/association based methods on
rare variant-based silver standard. The results on expression data are shown in top row and the ones
on splicing data are shown in bottom row. (A,C) Precision-recall curve of colocalization/association based
methods. (B,D) Precision-recall curve of association based methods when pre-filtering with enloc rcp > 0.1.
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(A) (B)

Supplementary Fig. S22. Precision-recall curves of enloc vs coloc. Precision recall curve of enloc
(blue) and coloc (green) with expression using OMIM silver standard (in (A)) and rare variant-based silver
standard (in (B)).

1.13.6 Assessing the contribution of proximity, colocalization, and association
significance

To investigate the usefulness of the colocalization and association statistics reported by enloc and
PrediXcan respectively, we performed logistic regression, as described in Eq. 28, to fit log odds of being
a ’causal’ gene against the ranking of: 1) proximity to GWAS lead variant (from close to distal), 2) rcp
from enloc (from high to low), and 3) gene-level association p-value from PrediXcan-mashr or SMR (from
significant to non-significant).

logit(Pr(causali)) = β0 + β1 · rank(proximityi) + β2 · rank(rcpi) + β3 · rank(P-valuei), (28)

in which non-zero βk meant that the kth variable contributed independently on predicting whether a gene
was causal. Moreover, negative βk indicated that the direction of contribution of the variable was as
expected.

We note that here the analysis is performed by LD blocks rather than genome-wide as was done for
calculating the ROC and precision recall curves. More specifically, the ranking within each LD block is used
rather than genome-wide.
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regulation silver_standard variable coefficient coefficient_se pvalue

expression OMIM rank_proximity -0.018 0.0081 0.03
expression OMIM predixcan_mashr_eur -0.038 0.008 2.2× 10−6

expression OMIM enloc -0.02 0.0093 0.031
splicing OMIM rank_proximity -0.026 0.0073 0.00031
splicing OMIM predixcan_mashr_eur -0.037 0.008 3.5× 10−6

splicing OMIM enloc -0.012 0.0086 0.17
expression rare variant rank_proximity -0.013 0.018 0.46
expression rare variant predixcan_mashr_eur -0.043 0.016 0.0084
expression rare variant enloc -0.043 0.02 0.032

splicing rare variant rank_proximity -0.048 0.015 0.0015
splicing rare variant predixcan_mashr_eur -0.018 0.013 0.15
splicing rare variant enloc -0.02 0.015 0.2

Table S7: Predictive value of different per-locus prioritization methods. Results on
regression-based test (logistic regression) in per-locus analysis are shown. The estimated
log odds ratio of the rank of proximity (distance between GWAS leading variant and gene
body), PrediXcan significance, and enloc rcp are shown in rows rank_proximity, predix-
can_mashr_eur, and enloc.

1.14 Causal tissue analysis
To identify tissues of relevance for the etiology of complex traits, we investigated the patterns of tissue
specificity and tissue sharing of PrediXcan association results across 49 tissues. For each trait-gene pair,
the PrediXcan z-score can be represented as a 49× 1 vector with each entry being the gene-level z-score
in the corresponding tissue (if the prediction model of the gene is not available in that tissue, we filled in
zero). To explore the tissue-specificity of the PrediXcan z-score vector, we proceeded by assigning the
z-score vector to a tissue-pattern category and tested whether certain tissue-pattern categories were over-
represented among colocalized PrediXcan genes as compared to non-colocalized genes. We used the
FLASH factors identified from matrix factorization applied to the cis-eQTL effect size matrix, as described in
Section 1.9 (as PrediXcan and cis-eQTL shared similar tissue-sharing pattern, data not shown). To obtain
a set of detailed and biologically interpretable tissue-pattern categories from the 31 FLASH factors, we
manually merged them into 18 categories as shown in fig. S23. For each trait, we projected the z-score
vector of each gene to one of the 31 FLASH factors (as described in Section 1.9) so that the gene was
assigned to the corresponding tissue-pattern category. We defined a ‘positive’ set of genes as the ones
that met Bonferroni significance at α = 0.05 in at least one tissue and enloc rcp > 0.01 in at least one
tissue, which could be thought as a set of candidate genes affecting the trait through expression level. We
chose a rather low threshold used for the rcp due to the stringent conservative nature of colocalization
probabilities. We also constructed a ‘negative’ set of genes with enloc rcp = 0, which could be thought as
a set of genes whose expressions were unlikely to affect the trait. We proceeded to test whether certain
tissue-pattern categories were enriched in ‘positive’ set as compared to ‘negative’ set. Since the main focus
of this analysis was tissue-specific patterns, we excluded Factor1 (the cross-tissue factor) and Factor25
(likely to be a tissue-shared factor capturing tissues with large sample size). Additionally, we excluded
Factor7 (testis), as it was unlikely to be the mediating tissue but might introduce false positives. We tested
the enrichment of each tissue-pattern category by Fisher’s exact test (‘positive’/‘negative’ sets and in/not
in tissue-patter category). Among 87 traits, 82 traits had enloc signal and the enrichment of these was
calculated accordingly.
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Supplementary Fig. S23. Patterns of tissue sharing identified via factor analysis using flashr.
Tissue-pattern categories generated from FLASH applied to the cis-eQTLs are shown. Factor 1 represents
cross tissue category covering all tissues, with higher weight for larger sample size tissues. These tissue
categories (on y-axis) were used in the analysis of causal tissue identification. Tissues are ordered by
sample size.

1.15 Supplementary tables in spreadsheet

Table S9: Presumed causal genes included in the OMIM database. Columns are: trait: Tag
used for the trait, pheno_mim: MIM ID of the phenotype mapped to GWAS trait, mim: MIM ID of
the corresponding gene, entry_type: Entry type in the OMIM database, entrez_gene_id: Gene
ID based on Entrez database, gene_name: Official gene symbol, ensembl_gene_id: Gene ID
based on Ensembl database, gene_type: Gene type based on Gencode, gene: Trimmed Gene
ID based on Ensembl database.
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Table S8: GWAS Metadata contains relevant information concerning each GWAS study used.
Full table available in Supplementary Material. Analyses used the 87 traits with deflation=0 unless
explictly said otherwise. Columns are: Tag: Internal name to identify the study, Deflation:
Deflation status after imputation (0 for no deflation, 1 for moderate deflation, 2 for extreme
deflation), PUBMED_Paper_Link: PUBMED entry, Pheno_File: name of downloaded file,
Source_File: actual name of GWAS summary statistics (i.e. downloaded files might contain
several traits), Portal: URL to GWAS study portal, Consortium: Name of Consortium if any,
Link: download link for the file, Notes: any special comment on the GWAS trait, Header:
GWAS summary statistics header in case the file is malformed, EFO: Experimental Factor
Ontology [Malone et al., 2010] entry if applicable, HPO: Human Phenotype Ontology [Köhler
et al., 2013] entry if applicable, Description: optional description of the study, Trait: trait name,
Sample_Size: number of individuals included in the study, Population: types of populations
present (EUR for European, AFR for African, EAS for East Asian, etc), Date: Date the file
was downloaded, Declared_Effect_Allele: column specifying effect allele, Genome_Reference:
Human Genome release used as reference (i.e. hg19, hg38), Binary: wether the trait is
dichotomous, Cases: number of cases if binary trait, abbreviation: short string for figure and table
display, new_abbreviation: additional abbreviation, new_Trait: additional trait name, Category:
type of trait, Color: Hexadecimal color code for display

Table S10: PrediXcan and enloc results for predicted causal genes selected based on
OMIM. Columns are: lead_var: the most significant variant within the LD block, trait: trait
name, gene: Ensembl ID for the gene, is_omim: Is included in the OMIM database. TRUE
if included, FALSE if not, proximity: 0 if variant is in the gene, otherwise BPS from the
gene boundary, rank_proximity: ranking by proximity within LD block (rank starts from 0
and the closer the lower rank), percentage_proximity: rank_proximity / number of genes in
the locus, predixcan_mashr_eur_score: -log10 p-value (most significant across tissues is
used) of PrediXcan-MASH trained on European data, enloc_score: rcp (max across tissues),
predixcan_mashr_eur_rank: PrediXcan significance ranking within LD block (rank starts from
0 and the higher significance the lower rank), enloc_rank: enloc rcp ranking within LD block
(rank starts from 0 and the higher rcp the lower rank), predixcan_mashr_eur_percentage:
predixcan_mashr_eur_rank / number of genes in the locus, enloc_percentage: enloc_rank /
number of genes in the locus, gene_name: Official gene symbol, gene_type: Gencode annotsted
gene type, chromosome: Chromosome for the gene, start: Gencode annotated gene start
position. All isoforms are combined, end: Gencode annotated gene end position. All isoforms
are combined, strand: Gencode annotated gene strand.
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Table S11: PrediXcan and enloc results for presumed causal genes in the rare variant
based silver standard. Columns are: lead_var: the most significant variant within the LD
block, trait: trait name, gene: Ensembl ID for the gene, is_ewas: Is included in the EWAS
. TRUE if included, FALSE if not, proximity: 0 if variant is in the gene, otherwise BPS
from the gene boundary, rank_proximity: ranking by proximity within LD block (rank starts
from 0 and the closer the lower rank), percentage_proximity: rank_proximity / number of
genes in the locus, predixcan_mashr_score: -log10 p-value (most significant across tissues is
used) of PrediXcan-MASH trained on European data, enloc_score: rcp (max across tissues),
predixcan_mashr_rank: PrediXcan significance ranking within LD block (rank starts from
0 and the higher significance the lower rank), enloc_rank: enloc rcp ranking within LD
block (rank starts from 0 and the higher rcp the lower rank), predixcan_mashr_percentage:
predixcan_mashr_eur_rank / number of genes in the locus, enloc_percentage: enloc_rank /
number of genes in the locus, gene_name: Official gene symbol, gene_type: Gencode annotsted
gene type, chromosome: Chromosome for the gene, start: Gencode annotated gene start
position. All isoforms are combined, end: Gencode annotated gene end position. All isoforms
are combined, strand: Gencode annotated gene strand.

Table S12: Genes suggested as causal by rare variant association studies. Columns are:
gene: Trimmed gene ID based on Ensembl database, nobs: Number of times gene has been
observed in the trait, trait: Tag for the trait name.

Table S13: OMIM genes included in the analysis. Columns are: gene, trait.

Table S14: Rare variant silver standard genes included in the analysis. Columns are: gene,
trait.

Table S15: BioVU. Columns are: gene, tissue, trait_map: mapped trait, pheno: trait,
gene_name, p_discovery, rcp_discovery, beta_biovu, p_biovu, z_biovu.

76

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2020. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Mapping the regulatory landscape of complex traits
	Dose-dependent regulatory effects of expression and alternative splicing on complex traits
	Causal gene prediction and prioritization
	Performance for identifying ``ground truth'' genes
	Tissue enrichment of GWAS signals
	Discussion
	Supplementary Materials
	Terminology
	Genotype-Tissue Expression (GTEx) Project
	Whole-genome sequence data processing and quality control
	RNA-Seq data processing and quality control

	Genome-wide association studies (GWAS) data
	Harmonization of GWAS summary statistics
	Imputation of GWAS summary statistics
	IGAP GWAS
	NHGRI-EBI GWAS catalog

	Correlated t-test to summarize across traits and tissues
	Enrichment of QTLs among trait-associated variants
	Cis-region and covariates used in fine-mapping and prediction of expression and splicing traits
	Fine-mapping expression and splicing QTLs
	Mediation analysis to quantify the dose-dependent effects of expression and splicing on traits
	Selection of fine-mapped variants as instrumental variables and their effect sizes
	Correlation between GWAS and QTL effect sizes
	Modeling effect mediated by regulatory process
	Transcriptome-wide estimation of mediated effects
	Robustness of the estimation of the mediating effect to LD contamination
	Concordance of mediated effects for allelic series of independent eQTLs

	Identifying patterns of regulation of expression across tissues
	Causal gene prioritization
	Colocalization
	enloc
	coloc

	Fine-mapping of height GWAS using summary statistics
	Association to predicted expression or splicing
	Predicting the genetically regulated components of expression and splicing
	PrediXcan
	Colocalized and significantly associated genes
	S-MultiXcan
	PrediXcan replication in BioVU
	Summary-data-based Mendelian Randomization (SMR) and HEIDI

	Assessing the performance of association and colocalization methods to identify causal genes
	OMIM-based curation of causal genes
	Rare variant association-based curation of causal genes
	Setting up the classification problem to quantify performance for identifying causal genes
	AUC of the ROC curves
	Precision-recall curves of PrediXcan and enloc on silver standard gene sets
	Assessing the contribution of proximity, colocalization, and association significance

	Causal tissue analysis
	Supplementary tables in spreadsheet


