Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Cryptococcus neoformans Chitin Synthase 3 (Chs3) Plays a Critical Role in Dampening Host Inflammatory Responses

Camaron R. Hole, Woei C. Lam, Rajendra Upadhya, Jennifer K. Lodge
doi: https://doi.org/10.1101/814400
Camaron R. Hole
aDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Woei C. Lam
aDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajendra Upadhya
aDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer K. Lodge
aDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lodgejk@wustl.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Cryptococcus neoformans infections are significant causes of morbidity and mortality among AIDS patients and the third most common invasive fungal infection in organ transplant recipients. One of the main interfaces between the fungus and the host is the fungal cell wall. The cryptococcal cell wall is unusual among human pathogenic fungi in that the chitin is predominantly deacetylated to chitosan. Chitosan deficient strains of C. neoformans were found to be avirulent and rapidly cleared from the murine lung. Moreover, infection with a chitosan deficient C. neoformans lacking three chitin deacetylases (cda1Δ2Δ3Δ) was found to confer protective immunity to a subsequent challenge with a virulent wild type counterpart. In addition to the chitin deacetylases, it was previously shown that chitin synthase 3 (Chs3) is also essential for chitin deacetylase mediated formation of chitosan. Mice inoculated with chs3Δ at a dose previously shown to induce protection with cda1Δ2Δ3Δ die within 36 hours after installation of the organism. Mortality was not dependent on viable fungi as mice inoculated with heat-killed preparation of chs3Δ died at the same rate as mice inoculated with live chs3Δ, suggesting the rapid onset of death was host mediated likely caused by an over exuberant immune response. Histology, cytokine profiling, and flow cytometry indicates a massive neutrophil influx in the mice inoculated with chs3Δ. Mice depleted of neutrophils survived chs3Δ inoculation indicating that death was neutrophil mediated. Altogether, these studies lead us to conclude that Chs3, along with chitosan, plays critical roles in dampening cryptococcal induced host inflammatory responses.

IMPORTANCE Cryptococcus neoformans is the most common disseminated fungal pathogen in AIDS patients, resulting in ∼200,000 deaths each year. There is a pressing need for new treatments for this infection, as current antifungal therapy is hampered by toxicity and/or the inability of the host’s immune system to aid in resolution of the disease. An ideal target for new therapies is the fungal cell wall. The cryptococcal cell wall is different than many other pathogenic fungi in that it contains chitosan. Strains that have decreased chitosan are less pathogenic and strains that are deficient in chitosan are avirulent and can induce protective responses. In this study we investigated the host responses to chs3Δ, a chitosan-deficient strain, and found mice inoculated with chs3Δ all died within 36 hours and death was associated with an aberrant hyperinflammatory immune response driven by neutrophils, indicating that chitosan is critical in modulating the immune response to Cryptococcus.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 22, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Cryptococcus neoformans Chitin Synthase 3 (Chs3) Plays a Critical Role in Dampening Host Inflammatory Responses
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cryptococcus neoformans Chitin Synthase 3 (Chs3) Plays a Critical Role in Dampening Host Inflammatory Responses
Camaron R. Hole, Woei C. Lam, Rajendra Upadhya, Jennifer K. Lodge
bioRxiv 814400; doi: https://doi.org/10.1101/814400
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Cryptococcus neoformans Chitin Synthase 3 (Chs3) Plays a Critical Role in Dampening Host Inflammatory Responses
Camaron R. Hole, Woei C. Lam, Rajendra Upadhya, Jennifer K. Lodge
bioRxiv 814400; doi: https://doi.org/10.1101/814400

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Immunology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4095)
  • Biochemistry (8793)
  • Bioengineering (6495)
  • Bioinformatics (23406)
  • Biophysics (11769)
  • Cancer Biology (9173)
  • Cell Biology (13304)
  • Clinical Trials (138)
  • Developmental Biology (7426)
  • Ecology (11392)
  • Epidemiology (2066)
  • Evolutionary Biology (15127)
  • Genetics (10419)
  • Genomics (14029)
  • Immunology (9154)
  • Microbiology (22132)
  • Molecular Biology (8797)
  • Neuroscience (47470)
  • Paleontology (350)
  • Pathology (1423)
  • Pharmacology and Toxicology (2486)
  • Physiology (3712)
  • Plant Biology (8073)
  • Scientific Communication and Education (1434)
  • Synthetic Biology (2217)
  • Systems Biology (6023)
  • Zoology (1251)