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Abstract

Local interactions among individual members of a population can generate intri-
cate small-scale spatial structure, which can strongly influence population dynam-
ics. The two-way interplay between local interactions and population dynamics
is well understood in the relatively simple case where the population occupies a
fixed domain with a uniform average density. However, the situation where the
average population density is spatially varying is less well understood. This sit-
uation includes ecologically important scenarios such as species invasions, range
shifts, and moving population fronts. Here, we investigate the dynamics of the
spatial stochastic logistic model in a scenario where an initially confined popula-
tion subsequently invades new, previously unoccupied territory. This simple model
combines density-independent proliferation with dispersal, and density-dependent
mortality via competition with other members of the population. We show that,
depending on the spatial scales of dispersal and competition, either a clustered or a
regular spatial structure develops over time within the invading population. In the
short-range dispersal case, the invasion speed is significantly lower than standard
predictions of the mean-field model. We conclude that mean-field models, even
when they account for non-local processes such as dispersal and competition, can
give misleading predictions for the speed of a moving invasion front.

Keywords: density-dependence; dispersal; mean-field model; plant populations; species
range shifts; stochastic model.
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Introduction

Spatial structure can affect population dynamics. Common examples of spatial structure
are clustering, where individuals tend to occur in tightly packed groups, and regular
structure, where individuals tend to be evenly spaced from one another (Pacala and
Silander Jr, 1985; Mahdi and Law, 1987; Purves and Law, 2002). Spatial structure can
arise from individual-level processes and interactions that occur locally in space, such as
competition (Yokozawa et al., 1999; Adams et al., 2013), dispersal (Lewis and Pacala,
2000), adhesion (Johnston et al., 2013) and crowding (Binny et al., 2016a). These local
interactions typically generate small-scale spatial structure that occurs at a length scale
of the order one to ten times an individual’s size. Despite being local in origin, spatial
structure can have significant large-scale effects on population size, and even determine
whether the population survives or dies (Law et al., 2003). Mean-field models neglect
short-range correlations among individual locations by assuming that the presence of an
individual at one location is independent of the presence of an individual at neighbouring
locations. A consequence of this assumption is that individuals interact with one another
in proportion to their average densities. Mean-field models include spatially explicit
models, such as partial differential equations and integro-differential equations (Hastings
et al., 2005), which describe large-scale spatial variations in average density, but cannot
account for the effects of small-scale spatial structure.

Most mathematical studies that incorporate small-scale spatial structure in a lattice-free
setting have focused on the relatively simple case where the population occupies a fixed
region at constant average density (e.g. Bolker and Pacala, 1999; Dieckmann et al., 2000;
Murrell and Law, 2003; Murrell, 2005; Binny et al., 2016b). This does not preclude
the development of spatial structure over time. For example, individuals may become
clustered and so, in any given realisation of the process, the density will be higher in
some regions than others. However, the locations of the clusters are random and, when
averaged over multiple realisations, the density is spatially uniform. We refer to this as
the translationally invariant case.

The spatial stochastic logistic model (Bolker and Pacala, 1997; Law et al., 2003) is a
spatially explicit, individual-based model of dispersal and competition that is transla-
tionally invariant. In this model, individuals undergo density-independent proliferation
accompanied by dispersal, and density-dependent mortality, with the mortality rate being
an increasing function of the number and the proximity of individuals within the local
neighbourhood. The mean-field equation for the spatial stochastic logistic model is the
well-known logistic growth differential equation (Law et al., 2003). However, depend-
ing on the spatial scales of dispersal and competition, the stochastic model can produce
different population dynamics to the mean-field equation, in both its transient and its
long-term phase. An improvement on the mean-field model can be obtained using spatial
moment dynamics (Dieckmann and Law, 2000; Plank and Law, 2015) to account for the
pair density function (second spatial moment) as well as the average density (first spatial
moment). Law et al. (2003) used this approach to show that, when there is a regular spa-
tial structure, the population grows to a higher density than predicted by the mean-field
equation. When there is a clustered structure, the population eventually asymptotes to
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a lower density than predicted by the mean-field equation, or can even die out altogether
(Law et al., 2003). Translationally invariant models such as these can investigate the ef-
fect of spatial structure on population density, but cannot describe populations where the
occupied region changes over time. These models are therefore not suitable for modelling
many ecological scenarios such as species invasions, range shifts, or moving population
fronts.

Some studies have investigated the more complex translationally dependent case, where
the region occupied by the population changes over time. Lewis and Pacala (2000) focused
on a model of invasion with density-independent proliferation and long-range dispersal,
and used a spatial moments approach to derive results for the dependence of invasion
speed on the dispersal kernel. Lewis (2000) generalised this model to show that local
density-dependent proliferation reduced the invasion speed in one spatial dimension, rel-
ative to mean-field predictions. However, this model only applied to a situation where
density-dependence affects proliferation, and operates over a short spatial scale. Omelyan
and Kozitsky (2019) derived a spatial moments approximation for the translationally de-
pendent version of the spatial stochastic logistic model in one dimension. They showed
that the results differed significantly from the mean-field model, which neglects corre-
lations among individual locations. However, they did not test the predictions of their
spatial moment equations against individual-based simulations, which serve as ‘ground
truth’ for the approximation. It is therefore unknown how well the spatial moment dy-
namics system approximates the underlying stochastic process in practice.

Invasion dynamics with small-scale spatial structure have also been studied in lattice-
based models. Ellner et al. (1998) developed a method for estimating invasion speed
using a pair-edge approximation, which is a type of pair density function for a lattice-
based model. Simpson and Baker (2011) used a pair approximation to improve mean-field
predictions for the dynamics of moving fronts. A key drawback of lattice-based models is
that they limit the types of interactions and spatial structure that the model can support
(Plank and Simpson, 2012). In the models referred to above, dispersal or movement is
restricted to nearest-neighbour lattice sites and competition or crowding is effectively
modelled by volume exclusion, i.e. a maximum of one individual is allowed per lattice
site. This restricts the scope for investigating the interplay between these individual-
level mechanisms as their spatial scales vary. In addition, the geometry of the lattice
can impose an artificial carrying capacity (Plank and Simpson, 2012), affect invasion
dynamics (Fernando et al., 2010), and may have other unknown consequences.

In this study, we investigate the dynamics of an invading population with small-scale
spatial structure, using the translationally dependent version of the spatial stochastic
logistic model. Similarly to Omelyan and Kozitsky (2019), we focus on the case where
the population is initially confined to a subregion of the domain and subsequently invades
via dispersal of individuals into previously unoccupied regions. However, unlike Omelyan
and Kozitsky (2019), we carry out individual-based simulations of the translationally
dependent spatial stochastic logistic model and we work in a two-dimensional domain.
We systematically investigate scenarios with different spatial scales for competition and
dispersal, and compare them to predictions of the mean-field model. This allows us to
quantify the departure of the stochastic process from mean-field dynamics in terms of
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the spatial structure. To provide insight into how spatial structure affects population
spreading, we test how the speed of the invasion and the population density behind the
invasion front depend on the spatial scales of competition and dispersal. We interpret
these results in light of what is already known about the translationally invariant form
of the spatial stochastic logistic model.

Translationally dependent spatial stochastic logistic

model

Individual-based model

We consider a population of N(t) individuals with locations zi(t) = (xi(t), yi(t)) ∈ Ω ⊆ R2

(i = 1, . . . , N(t)). The spatial stochastic logistic model consists of two individual-level
mechanisms: density-independent proliferation accompanied by dispersal; and density-
dependent mortality modelling local competition. Specifically, in a short time interval
δt, each of the N(t) agents has a probability λδt + O(δt2) of proliferating, independent
of all other agents. Offspring are dispersed to a location at a displacement ξ from the
parent, where ξ is a random variable from a bivariate probability distribution with density
function wd(ξ), referred to as the dispersal kernel. In addition, agent i has a probability
µi(t)δt+O(δt2) of dying in time interval δt. The mortality rate for individual i at time t
consists of a constant density-independent term µ0 and a contribution from neighbouring
individuals µc, weighted by a competition kernel wc(ξ):

µi(t) = µ0 + µc
∑
j 6=i

wc (zj(t)− zi(t)) . (1)

The dispersal and competition kernels are assumed to be isotropic and symmetric about
the origin and to integrate to 1 over Ω. We consider a rectangular domain Ω = [−Lx, Lx]×
[0, Ly] with periodic boundaries, such that dispersal and competition are wrapped across
opposing boundaries. This is equivalent to the spatial stochastic logistic model studied by
Bolker and Pacala (1997) and Law et al. (2003) for a translationally invariant population.
To investigate the dynamics of a translationally dependent population, we consider an
initial condition where N0 agents are distributed independently and uniformly at random
in the region −x0 ≤ x ≤ x0, where x0 < Lx.

Since the population is translationally invariant in the vertical direction, we calculate the
average agent density û(x, t) in thin vertical strips of width δx:

û(x, t) =
1

δxLy

N(t)∑
i=1

I (x− δx/2 ≤ xi(t) < x+ δx/2) , (2)

where I is an indicator function.

To quantify the spatial structure of the population, we compute the pair correlation
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Parameter Value
Proliferation rate λ = 1
Intrinsic mortality rate µ0 = 0.01
Neighbour-dependent mortality rate µc = 0.1
Dispersal kernel standard deviation σd (variable)
Competition kernel standard deviation σc (variable)
Domain size Lx = 20, Ly = 10
Width of the initially occupied region x0 = 1
Initial population size N0 = 20
Threshold density for invasion front uthresh = 1

Table 1: Model parameter values.

function at time t defined by:

g(r, t) =

∑N(t)
i=1

∑
j 6=i I (r − δr/2 ≤ |zi(t)− zj(t)| < r + δr/2)

2rδr
∑N(t)

i=1

∫ π
0
û (xi(t) + r cos(θ), t) dθ

. (3)

This corresponds to the ratio of the number of pairs a distance r apart to the expected
number of pairs a distance r apart, in a population with density û(x, t) that is in a state
of complete spatial randomness. The integral in Eq. (3) is approximated numerically by
discretising the integration variable θ and using linear interpolation for the required values
of û(x, t). In principle, the nature and strength of spatial structure could vary across
the spatial domain Ω. This could be measured by calculating different pair correlation
functions in different regions R ⊂ Ω by restricting the index i to individuals that are
in the region R. However, in practice we find that the pair correlation function is very
similar throughout Ω, so for simplicity we calculate a single pair correlation function
across the whole of the spatial domain.

We measure the extent of the invasion at time t by calculating the mean squared dis-
placement, defined as the average value of xi(t)

2 across all N(t) agents. We also measure
the location of the invasion front at time t as the location of the agent with the 10th

largest value of |xi(t)|. We use the 10th largest value as opposed to the largest value to
reduce noise caused by outlying agents, but the qualitative results are not sensitive to
this choice.

We perform M independently initialised realisations of the individual-based model (IBM)
and average û(x, t) and g(r, t) over the M realisations. Note that these are effectively
double averages because Eq. (2) is the average density in a thin vertical strip and Eq.
(3) is the average pair density in a thin annulus. This means that smooth outputs can
typically be obtained with a relatively small number of IBM realisations. The dispersal
and competition kernels are set to be bivariate Heaviside functions:

w[c,d](ξ) =
1

4σ2
[c,d]

{
1, |ξx|, |ξy| ≤ σ[c,d]
0, otherwise

(4)

This provides a simple on/off model for spatial interactions in which competition and
dispersal are uniform in a specified neighbourhood (a square of length σc and σd respec-
tively) and zero outside that neighbourhood. We also test the effect of using Gaussian
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functions instead of Heaviside functions for the interaction kernels (see Supplementary
Information). Parameter values are shown in Table 1.

Mean-field dynamics

The mean-field equation for the translationally dependent spatial stochastic logistic model
is:

∂u(x, t)

∂t
= λ

∫
w̃d(x− y)u(y, t)dy −

(
µ0 + µc

∫
w̃c(x− y)u(y, t)dy

)
u(x, t), (5)

where x ∈ [−Lx, Lx]. This formulation makes use of the translational invariance in the
vertical direction to write the average population density u(x, t) in terms of the horizontal
coordinate x only, where w̃d(x) and w̃c(x) are the marginal distributions over x of the
dispersal and competition kernels wd(x, y) and wc(x, y) respectively. Eq. (5) neglects
correlations in the locations of pairs of agents and assumes that the system is locally well
mixed. Formally, this corresponds to approximating the joint density of pairs of agents
at x and y in the second integral in Eq. (5) by the product of the average agent densities
u(x, t) and u(y, t).

The population carrying capacity K (i.e. equilibrium average density in a uniformly
occupied domain) can be found from Eq. (5). This corresponds to a solution u to Eq. (5)
that is independent of both x and t, which is uniquely given by K = (λ−µ0)/µc. We can
also calculate the total population size N(t) and mean squared displacement MSD(t) at
time t under the mean-field equation via:

N(t) =

∫
u(x, t)dx, MSD(t) =

∫
x2u(x, t)dx

N(t)
.

The location of the invasion front at time t is defined to be the smallest value of |x| for
which u(x, t) > uthresh.

The integro-differential equation (5) is solved by discretising x using a mesh spacing
δx = 0.01 and solving the resulting system of ordinary differential equations using Mat-
lab’s ode45 routine. To implement periodic boundaries, we set w̃d and w̃c to be periodic
extensions of the dispersal kernel and competition kernel respectively on x ∈ [−Lx, Lx].
This means that population members located near the boundary at x = −Lx are inter-
acting with population members located near the boundary at x = Lx and vice versa.

Results

First, we test the behaviour of the translationally dependent spatial stochastic logistic
model when both dispersal and competition operate over a long range (σd = σc = 5,
Fig. 1). In this case, agents compete weakly with neighbours over a relatively large
neighbourhood (encompassing the full height Ly of the domain), and the correlation
between locations of parent and offspring is weak. As a consequence, spatial structure is
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Figure 1: IBM and mean-field results for long-range competition and long-range dispersal
(σc = 5, σd = 5): (a) snapshots of a single realisation of the IBM; (b) average agent density
in the IBM (blue) and mean-field equation (red) at t = 0, 2, 4, 6, 8, 10. (c) pair-correlation
function (PCF) at t = 10; (d) time series of the average population size in the IBM (blue)
and mean-field equation (red); (e) time series of the invasion size measured by the location
of the invasion front (solid) and the root mean squared displacement (dashed) in the IBM
(blue) and mean-field equation (red). IBM results in (b-e) are averaged across M = 10
independent realisations, each initialised with N0 agents randomly placed in the region
|x| < x0.
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close to random (pair correlation function close to 1, Fig. 1c) and the IBM results are
close to the predictions of the mean-field equation (Fig. 1d-e).

We now focus on the deviation from mean-field dynamics as the range for dispersal σd
and/or competition σc are reduced. In all cases, the long-term statistical equilibrium
of the model is a spatially structured population with uniform average agent density,
consistent with the translationally invariant version of the spatial stochastic logistic model
(Law et al., 2003). Here, we focus on the population dynamics in the transient phase
corresponding to the invasion of the initially unoccupied region.

When competition is short-range and dispersal is long-range (σc = 0.1, σd = 1, Figure 2),
a regular spatial structure develops, indicated by values of the pair correlation function
less than 1 for pairs less than distance 0.1 apart (Fig. 2c). These results are consistent
with the translationally invariant spatial stochastic logistic model: strong competition in
small neighbourhoods makes the probability of more than one agent persisting in such
a neighbourhood very small. Conversely, offspring have a high probability of escaping
the competitive influence of their parent and finding an empty neighbourhood. The
population in the region behind the invasion front reaches a substantially higher density
then predicted by the mean-field equation (Fig. 2b,d) because a typical agent experiences
a lower-density neighbourhood, and therefore a lower mortality rate, than in the mean-
field model. However, the speed of the invasion, as measured by the root mean squared
displacement or by the location of the invasion front, is well predicted by the mean-field
equation (Fig. 2e).

When competition is long-range and dispersal is short-range (σc = 1, σd = 0.1, Fig. 3), a
strongly clustered spatial structure develops. This can be seen in individual realisations
of the IBM (Fig. 3a) and values of pair correlation function greater than 1 for pairs less
than distance r = 0.5 apart (Figure 3a). The pair correlation function drops below 1 for
r > 0.5, indicating that the clusters are not randomly distributed, but are spaced regularly
apart from one another. This is a consequence of competition making it difficult for any
individual to survive in the neighbourhood surrounding an established cluster. These
results are consistent with the translationally invariant version of the spatial stochastic
logistic model. The cause of the clustering is the short dispersal distances leading to an
accumulation of offspring around a common ancestor. This cluster eventually reaches a
critical size where proliferation by individuals in the cluster is balanced by the elevated
mortality rates due to competition. Because competition operates over a relatively long
range, all individuals in a cluster tend to compete with all other individuals in the same
cluster and hence experience similar mortality rates. Short-range dispersal makes it very
difficult for new offspring to escape the cluster.

In the very early stages on the invasion up to around t = 20, the population size and
invasion speed are reasonably well approximated by the mean-field equation (Fig. 3d,e).
During this phase of the invasion, the population is increasing in density, but is mostly
restricted to the initially occupied region, |x| ≤ x0. At around t = 20, the mean-field
model establishes a newly occupied region and undergoes a second wave of rapid popula-
tion growth. This pattern repeats periodically with the mean-field population alternating
between phases of growth (increasing density in situ) and expansion (occupying new ar-
eas). In contrast, the clustered structure in the IBM makes it very difficult for a daughter
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Figure 2: IBM and mean-field results for short-range competition and long-range dispersal
(σc = 0.1, σd = 1): (a) snapshots of a single realisation of the IBM; (b) average agent
density in the IBM (blue) and mean-field equation (red) at t = 0, 2, 4, 6, 8, 10. (c) pair-
correlation function (PCF) at t = 10; (d) time series of the average population size in the
IBM (blue) and mean-field equation (red); (e) time series of the invasion size measured by
the location of the invasion front (solid) and the root mean squared displacement (dashed)
in the IBM (blue) and mean-field equation (red). IBM results in (b-e) are averaged across
M = 10 independent realisations, each initialised with N0 agents randomly placed in the
region |x| < x0.
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Figure 3: IBM and mean-field results for long-range competition and short-range dispersal
(σc = 1, σd = 0.1): (a) snapshots of a single realisation of the IBM; (b) average agent
density in the IBM (blue) and mean-field equation (red) at t = 0, 50, 100, 150, 200, 250.
(c) pair-correlation function (PCF) at t = 250; (d) time series of the average population
size in the IBM (blue) and mean-field equation (red); (e) time series of the invasion
size measured by the location of the invasion front (solid) and the root mean squared
displacement (dashed) in the IBM (blue) and mean-field equation (red). IBM results
in (b-e) are averaged across M = 10 independent realisations, each initialised with N0

agents randomly placed in the region |x| < x0.
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Figure 4: IBM and mean-field results for short-range competition and short-range disper-
sal (σc = 0.1, σd = 0.1): (a) snapshots of a single realisation of the IBM; (b) average agent
density in the IBM (blue) and mean-field equation (red) at t = 0, 50, 100, 150, 200, 250.
(c) pair-correlation function (PCF) at t = 250; (d) time series of the average popula-
tion size in the IBM (blue) and mean-field equation (red); (e) time series of the invasion
size measured by the location of the invasion front (solid) and the root mean squared
displacement (dashed) in the IBM (blue) and mean-field equation (red). IBM results
in (b-e) are averaged across M = 50 independent realisations, each initialised with N0

agents randomly placed in the region |x| < x0.
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agent to escape the influence of its ancestral cluster and establish a new cluster. Only
occasionally can a new cluster establish and this means that the invasion proceeds very
slowly relative to mean-field.

When both competition and dispersal and short-range (σc = σd = 0.1, Fig. 4), the spatial
structure is also clustered, although not as strongly as when competition acts over a longer
range (Fig. 3). Short-range dispersal means that individuals with a common ancestor
have strongly correlated locations, but tend to be thinned out by short-range competition.
Although the clustering is weaker than in Fig. 3, it still severely limits the ability of the
population to invade, with population growth and the invasion speed much lower than
predicted by the mean-field equation (Fig. 4d-e).

To understand the departures of the IBM from mean-field predictions, it is helpful to
visualise how competition and dispersal interact spatially. Fig. 5 shows the strength of
competition C(x, y, t) and the expected rate of arrival of newly dispersed offspring (i.e.
propagule pressure) P (x, y, t), defined by

C(x, y, t) = µc

N(t)∑
i=1

wc ((xi(t), yi(t))− (x, y)) , P (x, y, t) = λ

N(t)∑
i=1

wd ((xi(t), yi(t))− (x, y)) ,

in a typical realisation of the IBM. When competition is short-range and dispersal is
long-range (Fig. 5a-c), propagule pressure is uniformly high at all locations behind the
invasion front (Fig. 5c). This means that any gaps in the patchy competition field (Fig.
5b) where an individual is viable will rapidly be filled. At the invasion front itself, there
is a lower but still significant propagule pressure across the whole front, and so newly
dispersed individuals can continuously advance the invasion front.

When competition is long-range and dispersal is short-range (Fig. 5d-f), these spatial
patterns are reversed: competition is strong everywhere behind the invasion front and
at the front itself; propagule pressure is highly patchy and localised to the locations of
existing clusters. This shows how difficult it is for the population to establish new clusters
and hence advance the front.

We also tested the robustness of the model to the choice of interaction kernels by sim-
ulating the individual-based model and solving the mean-field equation using Gaussian
kernels instead of the Heaviside kernels specified by Eq. (4). We also tested model
sensitivity to the rate parameters λ, µ0 and µc. Changing the kernels or parameter val-
ues did not qualitatively change the model behaviour or key results (see Supplementary
Information).

Discussion

The effect of spatial structure on average population density has been investigated previ-
ously (Law et al., 2003; Binny et al., 2016b). However, in some situations, understanding
and predicting how spatial structure affects a biological invasion is more relevant than pre-
dictions of population density. Examples include the invasion of a pest species (Sprague
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Figure 5: Maps of the strength of competition and dispersal in one typical realisation of
the IBM with: (a-c) short-range competition and long-range dispersal (σc = 0.1, σd = 1);
(d-f) long-range competition and short-range dispersal (σc = 1, σd = 0.1). (a,d) show
agent locations; (b,e) show the strength of competition; (c,f) show the propagule pressure.
Results in (a-c) correspond to the final time point of the IBM realisation shown in Fig.
2(a); results in (d-f) correspond to the final time point of the IBM realisation shown in
Fig. 3(a).

et al., 2019), species range shifts due to climate change (Godsoe et al., 2014; Hurford
et al., 2019), wound healing where cells migrate to fill injured tissue (Maini et al., 2004),
or invasion of cancer cells into healthy tissue.

We have investigated the dynamics of translationally dependent populations under the
spatial stochastic logistic model. This is a simple individual-based model (IBM) that
consists of two mechanisms: density-independent proliferation accompanied by dispersal;
and density-dependent mortality as a result of local competition (Bolker and Pacala,
1997; Law et al., 2003). Our results reveal that spatial structure can affect invasion
speed and population density in different ways. In the long-range competition, short-
range dispersal regime, the clustered spatial structure reduces both population density
and invasion speed. The spatial structure in the occupied region rapidly reaches a strongly
clustered state. This strong localised clustering makes it difficult for offspring to escape
the competitive influence of their cluster and this is the limiting factor both for the
effective carrying capacity and for the speed at which the invasion front can advance.
In the short-range competition, long-range dispersal regime, a regular spatial structure
develops. The uniformly high propagule pressure means that the population is effective
at filling gaps in the competition field, and can therefore grow to higher densities than
predicted by the mean-field. This is consistent with previous studies of the translationally
invariant form of the model (Law et al., 2003). However, the speed of the invasion remains
close to the mean-field prediction. This result may be understood by examining the spatial
interaction of competition and dispersal (Fig. 5). Although short-range competition
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increases the effective carrying capacity in the interior of the population, the speed of the
invasion is determined primarily by the low-density dynamics at the front itself. Thus,
the limiting factors for the invasion speed are the net proliferation rate at low-density
and the characteristic dispersal distance, as predicted by the mean-field model.

In all situations investigated, the IBM population invades at a similar or slower rate
than the standard mean-field, suggesting that the mean-field equation provides an upper
bound for the true invasion speed. The main factor that limits the invasion is the dispersal
distance. Populations with short-range dispersal tend to invade more slowly, relative to
mean-field predictions, because it is difficult for daughter agents to escape from the
competitive influence of their ancestral cluster.

Lewis (2000) derived analytical and asymptotic results for the invasion speed in a one-
dimensional, spatially structured population with competition and dispersal. These re-
sults, in contrast to ours, showed that short-range competition could significantly slow
the asymptotic invasion speed. The discrepancy could be due to differences in model
assumptions. In particular, the model of Lewis (2000) assumed that all individuals with
at least one neighbour within a defined distance immediately became non-viable. In con-
trast, in our model, individuals in a crowded neighbourhood have an elevated probability
of mortality. This means that crowded neighbourhoods tend to be thinned out over time,
but some individuals will typically remain and continue to proliferate. Model behaviour
in the low-density limit, which is the most determinant of invasion speed, is therefore
less sensitive to competition than that of Lewis (2000). The results of Lewis (2000) were
restricted to the short-range competition case so did not cover the clustered populations
and reduced invasion speeds seen in our model under long-range competition.

The scenarios we have tested are similar to those investigated by Omelyan and Kozitsky
(2019), who developed spatial moment dynamics approximation for a population with
the same competition and dispersal mechanisms, described by Heaviside kernels, as used
here. Omelyan and Kozitsky (2019) solved this system in one spatial dimension, but their
solutions, particularly the speed of the invasion front, are yet to be tested against IBM
simulations. Our individual-based simulations exhibit similar spatial structure to that
predicted by Omelyan and Kozitsky (2019), i.e. clustered in the short-range dispersal
regime and regular in the short-range competition regime. However, the spatial moment
dynamics system of Omelyan and Kozitsky (2019) predicted that, in the short-range
dispersal regime, the invasion speed would be similar to that of the mean-field equation
and the population size would be larger. In contrast, our results for this case show that
both the invasion speed and the population size in the IBM are much lower than mean-
field. It is possible that differences between our results and those of Omelyan and Kozitsky
(2019) are due to differences in the strength of spatial structure that develops in the one-
dimensional and two-dimensional versions of the model, or the impact of approximations
inherent in the analysis based upon a moment closure approximation (Murrell et al.,
2004).

Our key results are robust to the exact shape of the dispersal and competition kernels, for
example Heaviside or Gaussian kernels. However, we have not tested the effect of heavy-
tailed kernels, which have been used to describe dispersal in empirical and theoretical
studies (Kot et al., 1996; Katul et al., 2005; Paradis et al., 2002; Sundberg, 2005). It
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is likely that a heavy-tailed dispersal kernel would change the behaviour of the model
because it means that, even when the majority of dispersal distance are small, there
are occasional long-distance dispersal events. We hypothesise that this would improve
the ability of offspring to escape the competitive influence of clusters and hence occupy
new regions more rapidly, but this remains to be tested. It is known that heavy-tailed
dispersal tends to lead to a patchy distribution without a well-defined invasion front
(Lewis and Pacala, 2000) and an accelerating invasion that does not approach a constant
speed (Kot et al., 1996). How these phenomena interact with small-scale spatial structure
is an interesting question for future research.

We have focused on the spatial stochastic logistic model (Bolker and Pacala, 1997; Law
et al., 2003), which is the simplest IBM that is capable of generating non-trivial spatial
structure. There are other individual-level mechanisms that generate and/or are influ-
enced by spatial structure. Examples include density-dependent proliferation (Lewis,
2000), movement (Dieckmann and Law, 2000; Murrell and Law, 2000), directional bias
(Binny et al., 2015), and interspecific interactions (Bolker and Pacala, 1999; Murrell and
Law, 2003). The interplay between these mechanisms and spatial structure has been
investigated for translationally invariant populations, i.e. when the average density is
spatially uniform (Binny et al., 2016b; Surendran et al., 2018; Binny et al., 2019). Ex-
tending the analysis of these mechanisms to a translationally dependent population will
be an objective of future work.
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